JP2008302351A - Composite material and composition containing the same - Google Patents

Composite material and composition containing the same Download PDF

Info

Publication number
JP2008302351A
JP2008302351A JP2007177237A JP2007177237A JP2008302351A JP 2008302351 A JP2008302351 A JP 2008302351A JP 2007177237 A JP2007177237 A JP 2007177237A JP 2007177237 A JP2007177237 A JP 2007177237A JP 2008302351 A JP2008302351 A JP 2008302351A
Authority
JP
Japan
Prior art keywords
composite material
photocatalytic
particle size
composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177237A
Other languages
Japanese (ja)
Other versions
JP5068592B2 (en
Inventor
Junwei Huang
黄俊偉
▲厳▼徳勝
Tokusho Gen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eternal Materials Co Ltd
Original Assignee
Eternal Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eternal Chemical Co Ltd filed Critical Eternal Chemical Co Ltd
Publication of JP2008302351A publication Critical patent/JP2008302351A/en
Application granted granted Critical
Publication of JP5068592B2 publication Critical patent/JP5068592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material whose photocatalytic material content is about 1 to about 99 wt.% of the total weight of the composite material. <P>SOLUTION: The composite material contains an inorganic material whose surface is coated with a photocatalytic material. The content of the photocatalytic material is about 1 to about 99 wt.% of the total weight of the composite material. The composite material can shut off infrared light. The composite material can absorb ultraviolet light since it contains the photocatalytic material. The composite material has excellent ultra-hydrophilicity and self-cleaning, sterilizing and deodorizing effects. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は赤外線を遮断し紫外線を吸収する機能を有する複合材料およびそれを含む組成物に関する。   The present invention relates to a composite material having a function of blocking infrared rays and absorbing ultraviolet rays, and a composition containing the same.

赤外線とは波長約750nm〜約1nmの範囲の電磁波を指し、このうち波長約750nm〜約2500nmの赤外線は熱効果が非常に強いため、物体に容易に吸収されて熱源を発生する。したがって、人体が赤外線の照射下に曝されると、前記赤外線を吸収して皮膚の温度が上昇し、毛細血管の拡張や充血、表皮の水分蒸発が加速化するなど、皮膚に好ましくない影響をもたらす。また赤外線と紫外線の照射下に同時に曝されると(例えば日光照射)、赤外線は紫外線の皮膚損傷作用を促進する。   Infrared rays refer to electromagnetic waves having a wavelength of about 750 nm to about 1 nm. Among them, infrared rays having a wavelength of about 750 nm to about 2500 nm have a very strong thermal effect and are easily absorbed by an object to generate a heat source. Therefore, when the human body is exposed to infrared radiation, it absorbs the infrared radiation and raises the temperature of the skin, which causes unfavorable effects on the skin, such as dilation of capillaries, hyperemia, and accelerated water evaporation of the epidermis. Bring. In addition, when exposed to infrared rays and ultraviolet rays at the same time (for example, sunlight irradiation), infrared rays promote the skin damage action of ultraviolet rays.

現在、市場にはすでに赤外線の熱効果を阻隔するための材料が多数存在する。例えばビルのガラスカーテンウォール、車両用ガラス、断熱フィルム等である。端的に言えば、これらの材料の目的は陽光を通過させて光線を提供するが、同時に陽光がもたらす熱源(即ち赤外線熱効果)は阻隔することにある。しかし、例えば赤外線を遮断する性能を有するガラスを例にとると、その製造コストは非常に高価でありながら、期待ほどの効果は得られない。具体的には、ガラス中に赤外線を吸収できる超薄型の銀フィルムを埋め込んで赤外線を阻隔することが知られているが、この方法は製造コストが高く、また銀が酸化し易いため赤外線の遮断効果は失われてしまう。   At present, there are already many materials on the market for blocking the thermal effect of infrared rays. For example, glass curtain walls of buildings, glass for vehicles, heat insulating films, and the like. In short, the purpose of these materials is to allow sunlight to pass through to provide light, while at the same time blocking the heat source (ie, infrared thermal effects) that sunlight provides. However, for example, when glass having the ability to block infrared rays is taken as an example, the production cost is very high, but the effect as expected cannot be obtained. Specifically, it is known that an ultra-thin silver film capable of absorbing infrared rays is embedded in glass to block infrared rays. However, this method is expensive to manufacture, and since silver easily oxidizes, The blocking effect is lost.

さらに、真空蒸着法を用いて赤外線を阻隔できる材料(例えば高屈折率の二酸化チタンや低屈折率のシリカ等)をガラスまたはレンズ上にメッキして、赤外線阻隔フィルムを形成するものがある。しかし、こうしたフィルムを形成するためのコストは高く、製造フローは複雑で、効果も期待ほどではなく、経済効果が優れない。   In addition, there is a material that forms an infrared blocking film by plating a glass or a lens with a material capable of blocking infrared rays using a vacuum deposition method (for example, high refractive index titanium dioxide or low refractive index silica). However, the cost for forming such a film is high, the manufacturing flow is complicated, the effect is not as expected, and the economic effect is not excellent.

前記2種以外にも、比較的低コストの代替案が提起されている。即ち、色素または染料をガラス中に混入させ陽光中の赤外線を吸収する方法である。しかし、強烈な陽光や散乱光の照射下では、これらの色素や染料を含んだガラスに煙のような薄い曇りが発生し、赤外線吸収性能に影響する。さらには色素や染料は長時間使用しているうちに分解されて従来の効用が失われることもある。   In addition to the two types, relatively low cost alternatives have been proposed. That is, it is a method of absorbing infrared rays in sunlight by mixing pigments or dyes in glass. However, under intense sunlight and scattered light irradiation, the glass containing these pigments and dyes is lightly cloudy like smoke, affecting the infrared absorption performance. Furthermore, pigments and dyes may be decomposed over a long period of time and lose their conventional utility.

ところで、光触媒材料は光線(特に紫外線)が照射されると励起状態になり、接触する物質を変化させる過程で光触媒の性質を有することが知られている。光触媒材料が光線に励起されると、空気中の水分子または酸素分子を活性化させ、OHラジカルまたはO2 -イオンを生成させる。これらのラジカルまたはイオンは酸化還元作用を行い、環境中の汚染物および/または細菌を分解する。したがって光触媒材料は空気中や廃水中の汚染物を除去するために使用され、またその表面に付着した細菌を分解し、抗菌作用をもたらすことができる。同時に、光触媒材料は光照射下において、表面の水素分子がラジカルまたはO2 -イオンを生成し放出するため、元は酸素が存在していた空位が形成され、このとき環境中に水分子が存在すれば、水分子がこの空位を占拠するとともにプロトンが1個取り除かれて水酸基が生成され、光触媒材料は超親水性を発揮し、セルフクリーニングおよび防曇効果が達成される。 By the way, it is known that a photocatalyst material is in an excited state when irradiated with light (especially ultraviolet rays), and has a photocatalytic property in the process of changing a substance to be contacted. When the photocatalytic material is excited by light, water molecules or oxygen molecules in the air are activated to generate OH radicals or O 2 ions. These radicals or ions perform a redox action and degrade environmental pollutants and / or bacteria. Therefore, the photocatalytic material is used to remove contaminants in the air and wastewater, and can decompose bacteria adhering to the surface and provide an antibacterial action. At the same time, the photocatalyst material, under irradiation of light, generates and releases radicals or O 2 - ions from the surface hydrogen molecules, forming vacancies where oxygen originally existed. At this time, water molecules exist in the environment. Then, the water molecule occupies this vacancy and one proton is removed to generate a hydroxyl group. The photocatalytic material exhibits super hydrophilicity, and self-cleaning and anti-fogging effects are achieved.

一般に、赤外線遮断および紫外線吸収の両機能を有する断熱フィルムまたは窓ガラスコーティングでは、基材上に多層処理を行い複合膜を形成させる必要があるが、その製造過程は複雑でコストが高い。したがって現在は、赤外線遮断および紫外線吸収の機能を同時に備える材料を提供することに努力が重ねられている。   In general, in a heat insulating film or window glass coating having both functions of blocking infrared rays and absorbing ultraviolet rays, it is necessary to perform a multilayer treatment on a substrate to form a composite film, but the manufacturing process is complicated and expensive. Therefore, at present, efforts are being made to provide a material having the function of simultaneously blocking infrared rays and absorbing ultraviolet rays.

上記に鑑みて、本出願の発明者は研究を重ね、前記課題を解決できる複合材料を開発した。具体的には、本発明の複合材料は温熱効果を発生する電磁波を効果的に阻隔し、即ち波長約750nm〜2500nmの赤外線に対して、赤外線の透過率を大幅に低下させるとともに、光触媒材料の紫外線吸収性能、セルフクリーニング、防曇、殺菌および脱臭機能を発揮させるものである。また、一般的なコーティング方法により、本発明の複合材料を基材上にコーティングして利用することもでき、その製造過程は相対的に簡単で廉価である。   In view of the above, the inventors of the present application have conducted research and developed a composite material that can solve the above-described problems. Specifically, the composite material of the present invention effectively shields electromagnetic waves that generate a thermal effect, that is, significantly reduces the transmittance of infrared rays with respect to infrared rays with a wavelength of about 750 nm to 2500 nm, It exhibits ultraviolet absorption performance, self-cleaning, anti-fogging, sterilizing and deodorizing functions. Further, the composite material of the present invention can be coated on a substrate by a general coating method, and the manufacturing process is relatively simple and inexpensive.

本発明は、六硼化ランタン、酸化イットリウム、インジウム錫金属酸化物、アンチモン錫金属酸化物、アルミナ、シリカ、酸化鉄、およびそれらの組合せからなる群より選択される無機材料と、前記無機材料の表面を覆う光触媒材料とを含む複合材料であって、前記光触媒材料の含有量が、前記複合材料の全体重量を基準として約1〜約99重量%である複合材料を提供することを目的とする。   The present invention provides an inorganic material selected from the group consisting of lanthanum hexaboride, yttrium oxide, indium tin metal oxide, antimony tin metal oxide, alumina, silica, iron oxide, and combinations thereof; and An object of the present invention is to provide a composite material including a photocatalytic material covering a surface, wherein the content of the photocatalytic material is about 1 to about 99% by weight based on the total weight of the composite material. .

本発明はまた、本発明の複合材料および樹脂を含む組成物であって、前記複合材料の含有量が、前記組成物の全体重量を基準として約1〜約70重量%である組成物を提供することを目的とする。   The present invention also provides a composition comprising the composite material and resin of the present invention, wherein the content of the composite material is about 1 to about 70% by weight based on the total weight of the composition The purpose is to do.

本発明はさらに、基材と、本発明の組成物から形成され前記基材表面を覆う断熱被覆層とを含む断熱装置を提供することを目的とする。   It is another object of the present invention to provide a heat insulating device including a base material and a heat insulating coating layer that is formed from the composition of the present invention and covers the surface of the base material.

本発明の複合材料は、無機材料と、前記無機材料の表面を覆う光触媒材料とを含み、前記光触媒材料の含有量は、前記複合材料の全体重量を基準として約1〜約99重量%、好ましくは約50〜約80重量%である。さらに、前記複合材料の粒径は通常10nm〜120nmであり、好ましくは30nm〜100nmである。本発明の複合材料の粒径は可視光波長(380nm〜780nm)より小さいため、前記複合材料に光線が照射されるとき、透過光をひどく散乱させることがなく、透過光線の質に影響を及ぼさない。   The composite material of the present invention includes an inorganic material and a photocatalytic material that covers the surface of the inorganic material, and the content of the photocatalytic material is preferably about 1 to about 99% by weight, preferably based on the total weight of the composite material. Is from about 50 to about 80% by weight. Furthermore, the particle size of the composite material is usually 10 nm to 120 nm, preferably 30 nm to 100 nm. Since the particle size of the composite material of the present invention is smaller than the visible light wavelength (380 nm to 780 nm), when the composite material is irradiated with light, the transmitted light is not severely scattered, and the quality of the transmitted light is affected. Absent.

上述の通り、透過光線の質に影響することを回避するため、本発明の複合材料における無機材料の粒径はナノメートル級とし、通常1nm〜200nm、好ましくは5nm〜100nmとする。また、使用する無機材料は赤外線を遮断できるものとし、例えば(但しこれに限らない)、本発明の複合材料における無機材料は、六硼化ランタン(LaB6)、酸化イットリウム(Y23)、インジウム錫金属酸化物(indium tin oxide,ITO)、アンチモン錫金属酸化物(antimony tin oxide,ATO)、アルミナ(Al23)、シリカ(SiO2)、酸化鉄(Fe23)およびそれらの組合せからなる群より選択でき、好ましくは六硼化ランタンである。 As described above, in order to avoid affecting the quality of transmitted light, the particle size of the inorganic material in the composite material of the present invention is set to the nanometer class, usually 1 nm to 200 nm, preferably 5 nm to 100 nm. The inorganic material used can block infrared rays. For example (but not limited to), the inorganic material in the composite material of the present invention is lanthanum hexaboride (LaB 6 ), yttrium oxide (Y 2 O 3 ). Indium tin oxide (ITO), antimony tin oxide (ATO), alumina (Al 2 O 3 ), silica (SiO 2 ), iron oxide (Fe 2 O 3 ) and It can be selected from the group consisting of combinations thereof, preferably lanthanum hexaboride.

本発明の複合材料は、赤外線を遮断できる無機材料を含むほか、さらに光触媒材料を含んでいる。光触媒は紫外光を吸収して電子を励起する機能を有するため、したがって本発明の複合材料には光触媒の性能が備わっている。光触媒材料は光線によって励起され、空気中の水分子または酸素分子を活性化してOHラジカルまたはO2 -イオンを生成し、酸化還元作用を行って、環境中の汚染物を分解する。即ち空気中または廃水中の汚染物を除去するために使用でき、また表面に付着した細菌を抑制して、抗菌作用をもたらすこともできる。したがって、本発明の複合材料における光触媒材料は、紫外線吸収、セルフクリーニング、防曇、殺菌、脱臭等の効果を有している。 The composite material of the present invention includes an inorganic material that can block infrared rays, and further includes a photocatalytic material. Since the photocatalyst has a function of absorbing ultraviolet light and exciting electrons, the composite material of the present invention has the photocatalytic performance. Photocatalytic material is excited by light, the water molecules or oxygen molecules in the air by activated OH radicals or with the O 2 - generated ions, by performing an oxidation-reduction action to degrade contaminants in the environment. That is, it can be used to remove contaminants in the air or wastewater, and it can also suppress the bacteria attached to the surface and provide an antibacterial action. Therefore, the photocatalytic material in the composite material of the present invention has effects such as ultraviolet absorption, self-cleaning, anti-fogging, sterilization, and deodorization.

本発明の複合材料に適用される光触媒材料としては、本技術分野において一般的な知識を有する者であれば熟知している、例えば(但しこれに限らない)、二酸化チタン(TiO2)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO3)、またはこれらの組合せがある。このうち、毒性の問題と還元酸化性能を考慮すると、人体および環境に無害な二酸化チタンを本発明の複合材料中の光触媒材料に使用することが好ましい。また、触媒性能の観点から言えば、アナタース型二酸化チタンが最適である。光触媒材料の粒径寸法は通常約1nm〜約50nmとし、好ましくは約5nm〜約30nmである。光触媒材料の粒径が約1nm未満であると、加工生産が困難になり、実用性に欠ける。約50nmを超えると、光触媒材料の効果が大きく低減する。 As a photocatalyst material applied to the composite material of the present invention, a person having general knowledge in this technical field is familiar, for example (but not limited to) titanium dioxide (TiO 2 ), oxidation There is zinc (ZnO), strontium titanate (SrTiO 3 ), or a combination thereof. Among these, in consideration of toxicity problems and reduction oxidation performance, it is preferable to use titanium dioxide, which is harmless to human body and environment, for the photocatalytic material in the composite material of the present invention. From the viewpoint of catalyst performance, anatase type titanium dioxide is most suitable. The particle size of the photocatalytic material is usually about 1 nm to about 50 nm, preferably about 5 nm to about 30 nm. When the particle size of the photocatalyst material is less than about 1 nm, processing and production becomes difficult and lacks practicality. If it exceeds about 50 nm, the effect of the photocatalytic material is greatly reduced.

さらに詳述すれば、本発明の複合材料を太陽光の照射下に置くと、紫外線は複合材料の外側層の光触媒材料に当たる際に吸収され、赤外線は外側層の光触媒材料を透過し、材料内部の無機材料に当たって吸収される。したがって、本発明の複合材料は赤外線による温熱効果を効果的に阻隔し、かつ紫外線を吸収してクリーニング、防曇、殺菌および脱臭等の効果を提供できる。また、複合材料の粒径が可視光波長より小さいため、透過した光線を散乱させず、透過光線の質が維持できる。   More specifically, when the composite material of the present invention is placed under the irradiation of sunlight, ultraviolet rays are absorbed when hitting the photocatalyst material of the outer layer of the composite material, and infrared rays are transmitted through the photocatalyst material of the outer layer, It is absorbed by hitting inorganic materials. Therefore, the composite material of the present invention can effectively block the thermal effect by infrared rays and absorb ultraviolet rays to provide effects such as cleaning, anti-fogging, sterilization and deodorization. Further, since the particle size of the composite material is smaller than the visible light wavelength, the transmitted light is not scattered and the quality of the transmitted light can be maintained.

本発明の好ましい実施形態では、粒径5nm〜30nmのアナタース型二酸化チタンにより、粒径5nm〜100nmの六硼化ランタンの表面を覆って、赤外線を遮断するとともに紫外線を吸収できる複合材料が提供されている。   In a preferred embodiment of the present invention, an anatase-type titanium dioxide having a particle size of 5 nm to 30 nm covers the surface of lanthanum hexaboride having a particle size of 5 nm to 100 nm to provide a composite material capable of blocking infrared rays and absorbing ultraviolet rays. ing.

また、本発明の複合材料と一般的な基材を組み合わせて用いるとき、光触媒材料の酸化特性が、基材の、特に有機系基材の劣化を引き起こし易い。このため本発明の複合材料はさらに無機微粒子層を含んで、光触媒材料の表面を被覆し、光触媒と基材が直接接触し基材を破壊することを回避させる。前記無機微粒子を使用するとき、その含有量は前記複合材料の全体重量を基準として0.1〜10重量%とする。本発明中の無機微粒子として使用可能な種類には特に制限はなく、一般的には例えばシリカ(SiO2)、アルミナ(Al23)、硫化カドミウム(CdS)、ジルコニア(ZrO2)、リン酸カルシウム(Ca3(PO42)、酸化カルシウム(CaO)およびそれらの組合せから選択できるが、好ましくはシリカである。 In addition, when the composite material of the present invention is used in combination with a general base material, the oxidation characteristics of the photocatalytic material tend to cause deterioration of the base material, particularly the organic base material. For this reason, the composite material of the present invention further includes an inorganic fine particle layer, and covers the surface of the photocatalyst material to prevent the photocatalyst and the substrate from coming into direct contact with each other and destroying the substrate. When the inorganic fine particles are used, the content is 0.1 to 10% by weight based on the total weight of the composite material. There are no particular restrictions on the types that can be used as the inorganic fine particles in the present invention. Generally, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), cadmium sulfide (CdS), zirconia (ZrO 2 ), calcium phosphate Although it can be selected from (Ca 3 (PO 4 ) 2 ), calcium oxide (CaO) and combinations thereof, silica is preferred.

本発明によれば、多孔性無機微粒子層を形成させて、前記光触媒材料を被覆する。具体的には、本発明の複合材料中の光触媒材料(例えば二酸化チタン)は多孔性無機微粒子(例えばシリカ)によって被覆されるため、基材に直接接触してこれを破壊することがなく、かつ外部の不純物(例えば臭味分子、細菌等)は前記多孔性無機微粒子に拡散して透過し、光触媒材料に到達し吸着されて、光触媒により分解され、クリーニング、殺菌および脱臭等の目的が達成される。   According to the present invention, a porous inorganic fine particle layer is formed to cover the photocatalytic material. Specifically, since the photocatalytic material (for example, titanium dioxide) in the composite material of the present invention is coated with porous inorganic fine particles (for example, silica), it does not directly contact the substrate and destroys it, and External impurities (for example, odor molecules, bacteria, etc.) diffuse and permeate into the porous inorganic fine particles, reach the photocatalyst material and are adsorbed, decomposed by the photocatalyst, and achieve the purposes such as cleaning, sterilization, and deodorization. The

本発明の複合材料の製造方法は、光触媒前駆体を提供する工程と、無機材料を前記光触媒前駆体に添加し、混合物を提供する工程と、および前記混合物を熱処理して前記複合材料を得る工程とを有する。   The method for producing a composite material of the present invention includes a step of providing a photocatalyst precursor, a step of adding an inorganic material to the photocatalyst precursor to provide a mixture, and a step of heat-treating the mixture to obtain the composite material And have.

本発明において「光触媒前駆体」とは、適当な反応によって所望の光触媒材料を生成可能な成分を指す。二酸化チタン光触媒材料を含む複合材料の製造方法を例にとると、その光触媒前駆体は、チタン酸エステル類を直接加水分解して得られる生成物により提供され、または先に四塩化チタンを加水分解しさらに濃硫酸を添加して得られる硫酸チタンによっても提供可能であり、硫酸チタンを前記前駆体として直接使用することも可能である。   In the present invention, the “photocatalyst precursor” refers to a component capable of producing a desired photocatalytic material by an appropriate reaction. Taking a method for producing a composite material containing a titanium dioxide photocatalyst material as an example, the photocatalyst precursor is provided by a product obtained by directly hydrolyzing titanates, or previously hydrolyzed titanium tetrachloride. Further, it can be provided by titanium sulfate obtained by adding concentrated sulfuric acid, and titanium sulfate can be directly used as the precursor.

次いで、得られた光触媒前駆体中に無機材料を添加して混合し、無機材料を均一に分散させる。この混合攪拌工程は通常、常温下で約0.5〜2時間行う。ここで、添加する無機材料は粉末状でも分散水溶液の形状であってもよい。   Subsequently, an inorganic material is added and mixed in the obtained photocatalyst precursor, and an inorganic material is disperse | distributed uniformly. This mixing and stirring step is usually performed at room temperature for about 0.5 to 2 hours. Here, the inorganic material to be added may be in the form of a powder or a dispersion aqueous solution.

本発明の方法における熱処理工程において、加熱条件は使用原料および設備に関係する。通常は、加熱温度が高いほど要する時間が短くなる。例を挙げると(但しこれに限らない)、チタン酸エステル類を加水分解して得られる光触媒前駆体中に無機材料を添加して混合物を得るとき、該混合物を反応槽内に入れ約100〜250℃に加熱し、約4〜20時間反応させることができる。或いは、前記混合物を高温炉内に入れ、約450〜550℃の温度で約0.5〜2時間焼成してもよい。このほか、硫酸チタンを光触媒前駆体として用いるときには、加熱により得られる硫酸チタンと前記無機材料との混合物を約80〜100℃で約4〜7時間反応させても所望の複合材料を提供できる。   In the heat treatment step in the method of the present invention, the heating conditions are related to the raw materials and equipment used. Usually, the higher the heating temperature, the shorter the required time. For example (but not limited to this), when an inorganic material is added to a photocatalyst precursor obtained by hydrolyzing titanate esters to obtain a mixture, the mixture is placed in a reaction vessel to give about 100 to It can be heated to 250 ° C. and allowed to react for about 4-20 hours. Alternatively, the mixture may be placed in a high temperature furnace and fired at a temperature of about 450 to 550 ° C. for about 0.5 to 2 hours. In addition, when titanium sulfate is used as a photocatalyst precursor, a desired composite material can be provided by reacting a mixture of titanium sulfate obtained by heating with the inorganic material at about 80 to 100 ° C. for about 4 to 7 hours.

好ましい具体的な実施形態では、下記の方法で本発明の複合材料が提供される。まず、四塩化チタンまたはチタン酸エステル類を加水分解して、白色のゲル水和物を得る。次いで得られた水和物中に濃硫酸を添加し10〜50分攪拌し、硫酸チタン溶液を得る。前記硫酸チタン溶液中に六硼化ランタンを加え充分に混合して常温下で0.5〜2時間攪拌し、続けて該溶液を80〜100℃に昇温して一定の温度下で4〜7時間反応させた後、適量の4〜6Mの水酸化ナトリウム水溶液を滴下する。最後にろ過、洗浄し、室温下で乾燥させて、本発明の複合材料粉末を得る。   In a preferred specific embodiment, the composite material of the present invention is provided by the following method. First, titanium tetrachloride or titanate is hydrolyzed to obtain a white gel hydrate. Next, concentrated sulfuric acid is added to the obtained hydrate and stirred for 10 to 50 minutes to obtain a titanium sulfate solution. Lanthanum hexaboride was added to the titanium sulfate solution and mixed well, followed by stirring at room temperature for 0.5 to 2 hours. Subsequently, the solution was heated to 80 to 100 ° C. and heated at a constant temperature for 4 to 4 hours. After reacting for 7 hours, an appropriate amount of 4-6M sodium hydroxide aqueous solution is added dropwise. Finally, it is filtered, washed, and dried at room temperature to obtain the composite material powder of the present invention.

本発明はさらに、前記複合材料および樹脂を含み、赤外線を遮断し紫外線を吸収する機能を有する組成物を提供している。本発明によれば、前記組成物に含まれる樹脂は接着剤として用いられ、その種類には特に限定はなく、通常は(但しこれに限らない)、シリコン樹脂、フッ素樹脂、(メタ)アクリル酸樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、アルキド樹脂、ポリエステル樹脂、およびそれらの組合せから選択することができる。好ましい実施形態では、シリコン樹脂、フッ素樹脂、およびそれらの組合せから選択され、最適な実施形態ではシリコン樹脂を使用する。   The present invention further provides a composition comprising the composite material and the resin and having a function of blocking infrared rays and absorbing ultraviolet rays. According to the present invention, the resin contained in the composition is used as an adhesive, and the type thereof is not particularly limited, and usually (but not limited to) silicon resin, fluororesin, (meth) acrylic acid It can be selected from resins, polyamide resins, epoxy resins, polyimide resins, polyurethane resins, alkyd resins, polyester resins, and combinations thereof. In a preferred embodiment, it is selected from silicone resins, fluororesins, and combinations thereof, and in an optimal embodiment, silicone resin is used.

前記複合材料の含有量は、前記組成物の全体重量を基準として約1〜約70重量%であり、好ましくは約40〜約60重量%である。ここで、前記複合材料の含有量が1重量%未満であると、組成物の赤外線遮断および紫外線吸収効果が劣り、70重量%を超えると、複合材料は樹脂における分散性が急激に低下し、かつコーティングした組成物が脱落し易くなる。   The content of the composite material is about 1 to about 70% by weight, preferably about 40 to about 60% by weight, based on the total weight of the composition. Here, when the content of the composite material is less than 1% by weight, the infrared shielding effect and ultraviolet absorption effect of the composition are inferior, and when it exceeds 70% by weight, the dispersibility of the composite material in the resin rapidly decreases. In addition, the coated composition easily falls off.

本発明の組成物は断熱装置に使用することができ、該断熱装置は基材と、該基材表面にコーティングされる断熱被覆層とを含み、前記断熱被覆層は本発明の組成物から形成される。本技術分野において一般的な知識を有している者であれば、塗布、噴付、含浸等あらゆる適当な技術方式を用いることができるが、本発明の組成物を基材表面にコーティングする際、コーティング厚みは約3〜10μmとする。使用可能な基材には特に制限はなく、例えばガラス(ビルのガラスカーテンウォールや車両用ガラス等)や透明プラスチックを使用できる。   The composition of the present invention can be used in a heat insulating device, and the heat insulating device includes a base material and a heat insulating coating layer coated on the surface of the base material, and the heat insulating coating layer is formed from the composition of the present invention. Is done. Any person who has general knowledge in this technical field can use any appropriate technical method such as coating, spraying, and impregnation. However, when coating the composition of the present invention on the substrate surface, The coating thickness is about 3 to 10 μm. There is no restriction | limiting in particular in the base material which can be used, For example, glass (glass curtain wall of a building, glass for vehicles, etc.) and transparent plastics can be used.

これまで、断熱装置は基材上に赤外線遮断処理と紫外線吸収処理をそれぞれ行わねばならなかった。したがって、基材上に赤外線遮断と紫外線吸収の効果を同時に備えさせるには多層処理を施すことが必要であった。しかし、本発明の組成物を使用すれば、基材表面にコーティング処理を1回行うだけで、赤外線遮断と紫外線吸収の効果を兼ね備える断熱装置を製造することができる。前記基材上にコーティングされる断熱被覆層は光触媒材料を含むため、紫外線を吸収し、セルフクリーニング、防曇、殺菌および脱臭等の効果を提供できる。また、断熱被覆層は無機材料を含むため、赤外線を効果的に吸収して赤外線の透過率を減少できるほか、可視光はそのまま透過させる。さらに、前記断熱被覆層に含まれる粒子の粒径は可視光の波長よりも小さいため、透過した光は散乱することがなく透過光線の質に影響せず、基材の透明度を維持することができる。   Until now, the heat insulation apparatus had to perform an infrared ray shielding treatment and an ultraviolet ray absorption treatment on the substrate, respectively. Accordingly, in order to simultaneously provide the substrate with the effects of blocking infrared rays and absorbing ultraviolet rays, it has been necessary to perform a multilayer treatment. However, if the composition of this invention is used, the heat insulation apparatus which has the effect of infrared shielding and ultraviolet absorption can be manufactured only by performing a coating process once on the substrate surface. Since the heat insulation coating layer coated on the base material contains a photocatalytic material, it can absorb ultraviolet rays and provide effects such as self-cleaning, anti-fogging, sterilization and deodorization. Moreover, since the heat insulation coating layer contains an inorganic material, it can effectively absorb infrared rays to reduce the transmittance of infrared rays, and allows visible light to pass through as it is. Furthermore, since the particle size of the particles contained in the heat insulating coating layer is smaller than the wavelength of visible light, the transmitted light is not scattered, does not affect the quality of the transmitted light, and can maintain the transparency of the substrate. it can.

次に、具体的な実施形態を挙げて本発明をさらに説明する。但し、これらの例示形態は本発明を例示するためのものであり、本発明の範囲を限定するものではない。本分野において一般的な知識を有する者が容易に達成できる修飾や変更はいずれも、本明細書に掲げた内容および特許請求の範囲の範囲内に含まれる。   Next, the present invention will be further described with specific embodiments. However, these exemplary forms are for illustrating the present invention and do not limit the scope of the present invention. Any modifications or alterations that can be easily achieved by persons having general knowledge in the field are included in the contents of the specification and the scope of the claims.

下記の実施例および比較例において、特に注記したものを除き、各用量はいずれも重量百分率(重量%)で表す。   In the following examples and comparative examples, all doses are expressed in weight percentages (% by weight) except as otherwise noted.

四塩化チタン溶液200ml(3.9M)に水を加えて総体積2000mlに希釈し、アンモニア水500ml(5M)中に滴下して、生成された白色の二酸化チタン水和物をろ過し、脱イオン水200mlで3回洗浄し、余分な水分を除去し、白色ゲルの水酸化チタン水和物(TiO(OH)2)を得る。 Water is added to 200 ml (3.9 M) of titanium tetrachloride solution to dilute to a total volume of 2000 ml, and the resulting solution is added dropwise to 500 ml (5 M) of aqueous ammonia, and the resulting white titanium dioxide hydrate is filtered and deionized. Wash with 200 ml of water three times to remove excess water, and obtain white gel titanium hydroxide hydrate (TiO (OH) 2 ).

濃硫酸60ml(18M)を前記水和物中に添加し、30分攪拌して無色透明の硫酸チタン溶液を得る。さらに該硫酸チタン溶液を反応槽に入れ、100℃に昇温して5時間反応させ、続けて得られた硫酸チタン中に六硼化ランタン水溶液(20%)225gを加え、常温下で1時間攪拌して混合物を得る。   60 ml (18 M) of concentrated sulfuric acid is added to the hydrate and stirred for 30 minutes to obtain a colorless and transparent titanium sulfate solution. Further, the titanium sulfate solution was put into a reaction vessel, heated to 100 ° C. and reacted for 5 hours. Subsequently, 225 g of a lanthanum hexaboride aqueous solution (20%) was added to the obtained titanium sulfate, and the reaction was performed at room temperature for 1 hour. Stir to obtain a mixture.

水酸化ナトリウム水溶液700ml(5M)を得られた混合物中に滴下し、それをろ過して洗浄し、室温で乾燥させれば黒紫色の粉状物が得られる。XRDおよびFE−SEM測定により、得られた黒紫色の粉状物の表面は二酸化チタンで被覆された六硼化ランタンであり、即ち本発明の複合材料であって、その粒径は約85nmであることがわかる。   When 700 ml (5 M) of an aqueous sodium hydroxide solution is dropped into the obtained mixture, it is filtered and washed, and dried at room temperature to obtain a black purple powder. According to XRD and FE-SEM measurements, the surface of the resulting black-violet powder was lanthanum hexaboride coated with titanium dioxide, i.e. the composite material of the present invention having a particle size of about 85 nm. I know that there is.

得られた複合材料をシリコン樹脂中に添加し、混合比率は複合材料と樹脂の固形分を1:1とし、攪拌して分散させる。次いで、5μmの厚みでガラス板に塗布して被覆膜を作製し、レンズ透過率測定器で光透過率試験を行う。得られた測定結果を表1に示した。   The obtained composite material is added to the silicone resin, and the mixing ratio is set to 1: 1 so that the solid content of the composite material and the resin is stirred and dispersed. Subsequently, it coats on a glass plate with the thickness of 5 micrometers, produces a coating film, and performs a light transmittance test with a lens transmittance meter. The obtained measurement results are shown in Table 1.

[比較例1]
四塩化チタン溶液200ml(3.9M)に水を加えて総体積2000mlに希釈し、アンモニア水500ml(5M)中に滴下して、生成された白色の二酸化チタン水和物をろ過し、脱イオン水200mlで3回洗浄し、余分な水分を除去すれば、白色ゲルの水酸化チタン水和物(TiO(OH)2)が得られる。
[Comparative Example 1]
Water is added to 200 ml (3.9 M) of titanium tetrachloride solution to dilute to a total volume of 2000 ml, and the resulting solution is added dropwise to 500 ml (5 M) of aqueous ammonia, and the resulting white titanium dioxide hydrate is filtered and deionized. Washing with 200 ml of water three times to remove excess water gives white gel titanium hydroxide hydrate (TiO (OH) 2 ).

濃硫酸60ml(18M)を前記水和物中に添加し、30分攪拌して無色透明の硫酸チタン溶液を得る。さらに該硫酸チタン溶液を反応槽に入れ、100℃に昇温して5時間反応させる。   60 ml (18 M) of concentrated sulfuric acid is added to the hydrate and stirred for 30 minutes to obtain a colorless and transparent titanium sulfate solution. Furthermore, this titanium sulfate solution is put into a reaction vessel, heated to 100 ° C. and reacted for 5 hours.

水酸化ナトリウム水溶液700ml(5M)を滴下し、それをろ過して洗浄し、室温で乾燥させれば白色の粉状物が得られる。XRDおよびFE−SEM測定により、白色の粉状物はアナタース型の二酸化チタン光触媒であり、粒径は15nm〜19nmであることがわかる。   When 700 ml (5 M) of an aqueous sodium hydroxide solution is dropped, it is washed by filtration, and dried at room temperature to obtain a white powder. XRD and FE-SEM measurements show that the white powder is an anatase-type titanium dioxide photocatalyst with a particle size of 15 nm to 19 nm.

得られた光触媒材料をシリコン樹脂中に添加し、混合比率は二酸化チタンと樹脂の固形分を1:1とし、攪拌して分散させる。次いで、5μmの厚みでガラス板に塗布して被覆膜を作製し、レンズ透過率測定器で光透過率試験を行う。得られた測定結果を表1に示した。   The obtained photocatalyst material is added to the silicon resin, and the mixing ratio is set to 1: 1 for the solid content of titanium dioxide and the resin, and dispersed by stirring. Subsequently, it coats on a glass plate with the thickness of 5 micrometers, produces a coating film, and performs a light transmittance test with a lens transmittance meter. The obtained measurement results are shown in Table 1.

[比較例2]
単なるガラス板にレンズ透過率測定器で光透過率試験を行う。得られた測定結果を表1に示した。
[Comparative Example 2]
A light transmittance test is performed on a simple glass plate with a lens transmittance measuring device. The obtained measurement results are shown in Table 1.

[表1]
試料を透過した光線の百分率

Figure 2008302351
[Table 1]
Percentage of light transmitted through the sample
Figure 2008302351

実施例1と比較例1、および実施例1と比較例2の結果比較から、基材表面に本発明の複合材料を有する被覆層を塗布したものは、赤外線を効果的に阻止するとともに、紫外線を吸収する機能を同時に有していることがわかる。   From the comparison of the results of Example 1 and Comparative Example 1 and Example 1 and Comparative Example 2, the coated surface having the composite material of the present invention on the substrate surface effectively blocked infrared rays and ultraviolet rays. It can be seen that it has a function of absorbing water simultaneously.

Claims (24)

(1)六硼化ランタン、酸化イットリウム、インジウム錫金属酸化物、アンチモン錫金属酸化物、アルミナ、シリカ、酸化鉄およびそれらの組合せからなる群より選択される無機材料と、
(2)前記無機材料の表面を覆う光触媒材料と、
を含む複合材料であって、
前記光触媒材料の含有量が、前記複合材料の全体重量を基準として1〜99重量%である、
複合材料。
(1) an inorganic material selected from the group consisting of lanthanum hexaboride, yttrium oxide, indium tin metal oxide, antimony tin metal oxide, alumina, silica, iron oxide, and combinations thereof;
(2) a photocatalytic material that covers the surface of the inorganic material;
A composite material comprising:
The content of the photocatalytic material is 1 to 99% by weight based on the total weight of the composite material,
Composite material.
前記光触媒材料の含有量が、前記複合材料の全体重量を基準として50〜80重量%である請求項1に記載の複合材料。   The composite material according to claim 1, wherein the content of the photocatalytic material is 50 to 80% by weight based on the total weight of the composite material. 前記無機材料が六硼化ランタンである請求項1に記載の複合材料。   The composite material according to claim 1, wherein the inorganic material is lanthanum hexaboride. 前記無機材料が約1nm〜約200nmの粒径を有する請求項1に記載の複合材料。   The composite material of claim 1, wherein the inorganic material has a particle size of about 1 nm to about 200 nm. 前記無機材料が約5nm〜約100nmの粒径を有する請求項4に記載の複合材料。   The composite material of claim 4, wherein the inorganic material has a particle size of about 5 nm to about 100 nm. 前記光触媒材料が、二酸化チタン、酸化亜鉛、チタン酸ストロンチウムおよびそれらの組合せからなる群より選択される請求項1に記載の複合材料。   The composite material according to claim 1, wherein the photocatalytic material is selected from the group consisting of titanium dioxide, zinc oxide, strontium titanate, and combinations thereof. 前記光触媒材料が二酸化チタンである請求項6に記載の複合材料。   The composite material according to claim 6, wherein the photocatalytic material is titanium dioxide. 前記光触媒材料がアナタース型の二酸化チタンである請求項7に記載の複合材料。   The composite material according to claim 7, wherein the photocatalytic material is anatase-type titanium dioxide. 前記光触媒材料が約1nm〜約50nmの粒径を有する請求項1に記載の複合材料。   The composite material of claim 1, wherein the photocatalytic material has a particle size of about 1 nm to about 50 nm. 前記光触媒材料が約5nm〜約30nmの粒径を有する請求項9に記載の複合材料。   The composite material of claim 9, wherein the photocatalytic material has a particle size of about 5 nm to about 30 nm. 約10〜約120nmの粒径を有する請求項1に記載の複合材料。   The composite material of claim 1 having a particle size of about 10 to about 120 nm. 赤外線遮断および紫外線吸収に用いられる請求項1に記載の複合材料。   The composite material according to claim 1, which is used for infrared shielding and ultraviolet absorption. (1)5nm〜100nmの粒径を有する六硼化ランタンと、
(2)5nm〜30nmの粒径を有し、前記六硼化ランタンの表面を覆う二酸化チタン光触媒と、
を含む複合材料であって、
前記二酸化チタン光触媒の含有量が、前記複合材料の全体重量を基準として50〜80重量%である
複合材料。
(1) lanthanum hexaboride having a particle size of 5 nm to 100 nm;
(2) a titanium dioxide photocatalyst having a particle size of 5 nm to 30 nm and covering the surface of the lanthanum hexaboride;
A composite material comprising:
The composite material, wherein the content of the titanium dioxide photocatalyst is 50 to 80% by weight based on the total weight of the composite material.
前記二酸化チタン光触媒の表面を覆う無機微粒子をさらに含む請求項13に記載の複合材料。   The composite material according to claim 13, further comprising inorganic fine particles covering a surface of the titanium dioxide photocatalyst. 前記無機微粒子が、シリカ、アルミナ、硫化カドミウム、ジルコニア、リン酸カルシウム、酸化カルシウムおよびそれらの組合せからなる群より選択される請求項14に記載の複合材料。   The composite material according to claim 14, wherein the inorganic fine particles are selected from the group consisting of silica, alumina, cadmium sulfide, zirconia, calcium phosphate, calcium oxide, and combinations thereof. 前記無機微粒子がシリカである請求項15に記載の複合材料。   The composite material according to claim 15, wherein the inorganic fine particles are silica. 約30nm〜約100nmの粒径を有する請求項13に記載の複合材料。   14. The composite material of claim 13, having a particle size of about 30 nm to about 100 nm. 赤外線遮断および紫外線吸収に用いられる請求項13〜17のいずれか1項に記載の複合材料。   The composite material according to any one of claims 13 to 17, which is used for infrared blocking and ultraviolet absorption. 請求項1または13に記載の複合材料および樹脂を含む組成物であって、
前記複合材料の含有量が、前記組成物の全体重量を基準として約1〜約70重量%であり、前記樹脂がフッ素樹脂、シリコン樹脂、(メタ)アクリル酸樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、アルキド樹脂、ポリエステル樹脂およびそれらの組合せからなる群より選択される
組成物。
A composition comprising the composite material according to claim 1 or 13 and a resin,
The content of the composite material is about 1 to about 70% by weight based on the total weight of the composition, and the resin is a fluororesin, silicon resin, (meth) acrylic resin, polyamide resin, epoxy resin, polyimide A composition selected from the group consisting of resins, polyurethane resins, alkyd resins, polyester resins, and combinations thereof.
前記樹脂が、シリコン樹脂、フッ素樹脂およびそれらの組合せからなる群より選択される請求項19に記載の組成物。   The composition according to claim 19, wherein the resin is selected from the group consisting of a silicon resin, a fluororesin, and combinations thereof. 前記樹脂がシリコン樹脂である請求項20に記載の組成物。   The composition according to claim 20, wherein the resin is a silicon resin. 前記複合材料の含有量が、前記組成物の全体重量を基準として約40〜約60重量%である請求項19に記載の組成物。   20. The composition of claim 19, wherein the composite material content is from about 40 to about 60% by weight, based on the total weight of the composition. 赤外線遮断および紫外線吸収に用いられる請求項19に記載の組成物。   The composition according to claim 19, which is used for infrared blocking and ultraviolet absorption. 基材と、前記基材の表面を覆う断熱被覆層とを含む断熱装置であって、前記断熱被覆層が請求項19〜23のいずれか1項に記載の組成物から形成され、前記基材がガラスまたは透明プラスチックである断熱装置。   It is a heat insulation apparatus containing a base material and the heat insulation coating layer which covers the surface of the said base material, Comprising: The said heat insulation coating layer is formed from the composition of any one of Claims 19-23, The said base material Insulation device that is glass or transparent plastic.
JP2007177237A 2007-06-06 2007-07-05 COMPOSITE MATERIAL AND COMPOSITION CONTAINING THE SAME Expired - Fee Related JP5068592B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW096120299 2007-06-06
TW096120299A TWI370014B (en) 2007-06-06 2007-06-06 Composite materials and composition containing the same

Publications (2)

Publication Number Publication Date
JP2008302351A true JP2008302351A (en) 2008-12-18
JP5068592B2 JP5068592B2 (en) 2012-11-07

Family

ID=40231528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177237A Expired - Fee Related JP5068592B2 (en) 2007-06-06 2007-07-05 COMPOSITE MATERIAL AND COMPOSITION CONTAINING THE SAME

Country Status (2)

Country Link
JP (1) JP5068592B2 (en)
TW (1) TWI370014B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168666A1 (en) * 2010-12-31 2012-07-05 Eternal Chemical Co., Ltd. Coating composition and uses thereof
CN101716525B (en) * 2009-12-10 2012-08-29 南京大学 Anion resin-based loaded CdS composite material and preparation method thereof
CN101708464B (en) * 2009-12-10 2012-08-29 南京大学 Cation resin matrix CdS-loaded composite material and preparation method thereof
CN109423206A (en) * 2017-06-20 2019-03-05 金伟明 A kind of nano ecological paint and preparation method thereof
JP2019089706A (en) * 2014-01-29 2019-06-13 コーニング インコーポレイテッド Bendable glass stack assembly, article and manufacturing method therefor
CN112028259A (en) * 2020-08-27 2020-12-04 无锡阿尔美环保科技有限公司 Multilayer composite functional material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2001232190A (en) * 2000-02-22 2001-08-28 Toshiba Corp Photocatalyst membrane and method for producing the same
JP2003321218A (en) * 2002-04-25 2003-11-11 Sumitomo Metal Mining Co Ltd Covered hexaboride particle and optical member using the same
JP2004267985A (en) * 2003-03-12 2004-09-30 Sumitomo Electric Fine Polymer Inc Photocatalyst carrier and method for producing the same
JP2005261997A (en) * 2004-03-16 2005-09-29 Nbc Inc Method for producing photocatalytic body
JP2006193376A (en) * 2005-01-14 2006-07-27 Sumitomo Metal Mining Co Ltd Surface-coated hexaboride particulate and method for producing the same
JP2006213576A (en) * 2005-02-04 2006-08-17 Sumitomo Metal Mining Co Ltd Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2001232190A (en) * 2000-02-22 2001-08-28 Toshiba Corp Photocatalyst membrane and method for producing the same
JP2003321218A (en) * 2002-04-25 2003-11-11 Sumitomo Metal Mining Co Ltd Covered hexaboride particle and optical member using the same
JP2004267985A (en) * 2003-03-12 2004-09-30 Sumitomo Electric Fine Polymer Inc Photocatalyst carrier and method for producing the same
JP2005261997A (en) * 2004-03-16 2005-09-29 Nbc Inc Method for producing photocatalytic body
JP2006193376A (en) * 2005-01-14 2006-07-27 Sumitomo Metal Mining Co Ltd Surface-coated hexaboride particulate and method for producing the same
JP2006213576A (en) * 2005-02-04 2006-08-17 Sumitomo Metal Mining Co Ltd Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716525B (en) * 2009-12-10 2012-08-29 南京大学 Anion resin-based loaded CdS composite material and preparation method thereof
CN101708464B (en) * 2009-12-10 2012-08-29 南京大学 Cation resin matrix CdS-loaded composite material and preparation method thereof
US20120168666A1 (en) * 2010-12-31 2012-07-05 Eternal Chemical Co., Ltd. Coating composition and uses thereof
JP2012140621A (en) * 2010-12-31 2012-07-26 Eternal Chemical Co Ltd Coating composition and uses thereof
JP2019089706A (en) * 2014-01-29 2019-06-13 コーニング インコーポレイテッド Bendable glass stack assembly, article and manufacturing method therefor
US10809766B2 (en) 2014-01-29 2020-10-20 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US10824200B2 (en) 2014-01-29 2020-11-03 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US11358372B2 (en) 2014-01-29 2022-06-14 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US11745471B2 (en) 2014-01-29 2023-09-05 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
CN109423206A (en) * 2017-06-20 2019-03-05 金伟明 A kind of nano ecological paint and preparation method thereof
CN112028259A (en) * 2020-08-27 2020-12-04 无锡阿尔美环保科技有限公司 Multilayer composite functional material and preparation method and application thereof

Also Published As

Publication number Publication date
TWI370014B (en) 2012-08-11
TW200848156A (en) 2008-12-16
JP5068592B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
CA2371166C (en) Photocatalyst composite comprising fluorinated polymer and process for producing same
JP5784481B2 (en) Coating composition and use thereof
JP5068592B2 (en) COMPOSITE MATERIAL AND COMPOSITION CONTAINING THE SAME
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP6283922B1 (en) Photocatalyst material and photocatalyst coating composition
CN101070442B (en) Composite material and composition containing same
KR20030037050A (en) Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst
JP5022561B2 (en) Environmental purification materials
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP4540971B2 (en) Neutral titanium oxide sol and method for producing the same
JP6198921B1 (en) Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same
JP4107512B1 (en) Photocatalyst coating liquid and photocatalyst film forming method
JP2013192996A (en) Photocatalyst and method of manufacturing photocatalyst
JP5943128B2 (en) Photocatalyst production method
WO2014076800A1 (en) Photocatalyst, and method for producing photocatalyst
JP5888340B2 (en) Photocatalyst and method for producing photocatalyst
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
Zhang et al. The disappearance of photocatalytic properties of titanium dioxide nanoparticles formed on PET fabrics treated in a simultaneous hydrothermal-dyeing process
KR20190061691A (en) sol composition of photo-catalystic material, method of preparing the same, and Method of preparing thin layer of Photo-catalyst using the same
CN103501897A (en) Process for producing photocatalyst based on titanium dioxide
JP2000167410A (en) Photocatalyst body having adsorbing function
KR100477266B1 (en) Process of coating titanium dioxide particle on surface of substance having hydroxy group
JP2004130154A (en) Method for manufacturing visible light responsive type material
JP2012166174A (en) Photocatalyst, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees