JP2005261997A - Method for producing photocatalytic body - Google Patents

Method for producing photocatalytic body Download PDF

Info

Publication number
JP2005261997A
JP2005261997A JP2004074090A JP2004074090A JP2005261997A JP 2005261997 A JP2005261997 A JP 2005261997A JP 2004074090 A JP2004074090 A JP 2004074090A JP 2004074090 A JP2004074090 A JP 2004074090A JP 2005261997 A JP2005261997 A JP 2005261997A
Authority
JP
Japan
Prior art keywords
photocatalyst
thin film
fine particles
resin
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004074090A
Other languages
Japanese (ja)
Other versions
JP2005261997A5 (en
JP4566586B2 (en
Inventor
Tsuruo Nakayama
鶴雄 中山
Shinichi Motojima
信一 本島
Yasuyoshi Watabe
泰佳 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBC Inc
Original Assignee
NBC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NBC Inc filed Critical NBC Inc
Priority to JP2004074090A priority Critical patent/JP4566586B2/en
Publication of JP2005261997A publication Critical patent/JP2005261997A/en
Publication of JP2005261997A5 publication Critical patent/JP2005261997A5/ja
Application granted granted Critical
Publication of JP4566586B2 publication Critical patent/JP4566586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a photocatalytic body in which photocatalytic particles are firmly bonded onto a resin substrate without damaging the photocatalytic function of the particles and the particles are hardly separated from the substrate and the resin substrate is hardly deteriorated even when used for a long term. <P>SOLUTION: This method is provided for producing a fine particle-fixed body by bonding the photocatalytic fine particles onto the substrate according to chemical bonding of a silane coupling agent to the surface of the substrate, wherein a thin film of the silane coupling agent having unsaturated bonds is formed on the surface of the photocatalytic fine particle, the thin film formed on the surface of the photocatalytic fine particle is brought into contact with a resin surface of the resin substrate and the resin surface is chemically bonded to unsaturated bonds existing in the thin film. Here, it is preferable that graft polymerization is used for the chemical bonding and that radiation graft polymerization is used for the graft polymerization. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、消臭や微生物の殺菌、空気中の低濃度窒素酸化物の除去などの様々な反応を誘起する光触媒粒子を化学結合してなる光触媒体の製造方法に関する。   The present invention relates to a method for producing a photocatalyst by chemically bonding photocatalyst particles that induce various reactions such as deodorization, sterilization of microorganisms, and removal of low-concentration nitrogen oxides in the air.

光触媒粒子は、光励起により生じた電子の持つ強い還元力や正孔の持つ強い酸化力により、防汚、防曇、殺菌、消臭、空気浄化などの様々な性能を発現することから、日用品や建材、土木など、様々な分野での応用開発が進められている。また、最近では可視光でも応答する可視光応答型光触媒粒子も開発されてきており、紫外線量が少ない室内での応用展開も可能なことから、実用性に優れた応用が期待されている。そこで、光触媒粒子の持つ様々な有効な機能を、日用品や建材、土木などの様々な分野で応用するためには、光触媒粒子をあらゆる基体上に、その光触媒機能を損なうことなく、強固に、かつ、結合する基体への光触媒機能が及ぼさないように接着、結合する方法が求められている。特に、光触媒粒子を結合する基体が樹脂の場合では、光触媒粒子の持つ強い酸化力により樹脂が劣化して結合した光触媒粒子の脱離による光触媒機能の低下や、樹脂基体の本来の持つ機能が損なわれる問題があった。したがって、光触媒粒子を樹脂からなる繊維やフィルム、成型体などの表面に結合して利用する際に、樹脂の劣化が起こり難い光触媒粒子の結合法は、実用性の観点から極めて重要な技術となる。   Photocatalyst particles exhibit various performances such as antifouling, antifogging, sterilization, deodorization, and air purification by the strong reducing power of electrons generated by photoexcitation and the strong oxidizing power of holes. Application development is progressing in various fields such as building materials and civil engineering. Recently, visible light responsive photocatalyst particles that respond to visible light have also been developed, and can be applied to indoor applications where the amount of ultraviolet rays is small. Therefore, in order to apply various effective functions of photocatalyst particles in various fields such as daily necessities, building materials, and civil engineering, photocatalyst particles can be firmly and without impairing the photocatalytic function on any substrate. Therefore, there is a demand for a method of bonding and bonding so that the photocatalytic function does not exert on the substrate to be bonded. In particular, when the substrate to which the photocatalyst particles are bonded is a resin, the photocatalyst function is deteriorated due to desorption of the bonded photocatalyst particles due to the strong oxidizing power of the photocatalyst particles, and the original function of the resin substrate is impaired. There was a problem. Therefore, when the photocatalyst particles are used by being bonded to the surface of a fiber, a film, or a molded body made of a resin, the photocatalyst particle bonding method in which the resin hardly deteriorates is an extremely important technique from the viewpoint of practicality. .

従来、光触媒粒子の樹脂基体上への結合としては、光触媒粒子が持つ強い酸化力でも劣化し難いとされる、フッ素樹脂などの有機系バインダーを用いる方法(例えば、特許文献1参照。)、シリコーン樹脂などの有機系バインダーを用いる方法(例えば、特許文献2参照。)などが提案されている。また、基体樹脂と光触媒微粒子の接触を防ぐ方法も提案されており、例えば、光触媒微粒子表面を水ガラスやメチルシリケートなどの無機物で被覆してバインダー樹脂で繊維表面に固定する方法(例えば、特許文献3参照。)、スパッタリング法で樹脂表面にケイ素酸化物や酸化アルミニウムなどの無機皮膜を形成する方法(例えば、特許文献4,5参照。)などがある。
特開平10−216210号公報 特開平10−001879号公報 特開平11−269760号公報 特開平10−017614号公報 特開2002−248355号公報
Conventionally, as a method for bonding photocatalyst particles to a resin substrate, a method using an organic binder such as a fluororesin, which is hardly deteriorated even by a strong oxidizing power of photocatalyst particles (see, for example, Patent Document 1), silicone. A method using an organic binder such as a resin (see, for example, Patent Document 2) has been proposed. In addition, a method for preventing contact between the base resin and the photocatalyst fine particles has also been proposed. For example, a method in which the surface of the photocatalyst fine particles is coated with an inorganic substance such as water glass or methyl silicate and fixed to the fiber surface with a binder resin (for example, Patent Documents). 3), and a method of forming an inorganic film such as silicon oxide or aluminum oxide on the resin surface by a sputtering method (see, for example, Patent Documents 4 and 5).
JP-A-10-216210 JP-A-10-001879 JP-A-11-269760 Japanese Patent Laid-Open No. 10-017614 JP 2002-248355 A

前述のフッ素樹脂をバインダーに使用する場合、最も耐酸化性に優れた4フッ化エチレンでは樹脂基体表面に接着し難く、そのため、接着性を改善するために熱硬化性樹脂などを混合して用いられている。しかしながら、フッ素樹脂以外に炭化水素からなる樹脂が混合されるため、光触媒粒子が持つ強い酸化力で炭化水素からなる樹脂が分解されることから、着色や悪臭などが発生する問題があった。また、シリコーン樹脂の場合、使用するシリコーン樹脂の種類によっては樹脂基体との密着性や均一な光触媒粒子の固定層を形成することが困難であるなどの問題があった。   When using the above-mentioned fluororesin as a binder, it is difficult to adhere to the resin substrate surface with tetrafluoroethylene having the most excellent oxidation resistance. Therefore, in order to improve the adhesion, a thermosetting resin is mixed and used. It has been. However, since a resin made of hydrocarbon is mixed in addition to the fluororesin, the resin made of hydrocarbon is decomposed by the strong oxidizing power of the photocatalyst particles, so that there is a problem that coloring, malodor, etc. occur. Further, in the case of a silicone resin, there are problems such that it is difficult to form a fixed layer of uniform photocatalyst particles and adhesion to a resin substrate depending on the type of silicone resin used.

他方、光触媒粒子と樹脂基体との接触を防ぐために、光触媒微粒子表面を他の無機物で被覆する方法も提案されているが、光触媒活性が低下するなどの問題があり、さらには、スパッタリング法により樹脂基体表面にバリヤ性に優れた緻密なケイ素酸化物や酸化アルミニウムなどの無機皮膜を形成する方法も提案されているが、樹脂基体と無機皮膜の熱膨張係数の違いや樹脂の種類によっては、接着性に優れた無機皮膜を形成することは困難であり、また、スパッタリングにより発生する熱による樹脂基体の変形や、生産性が低いなど、様々な解決しなければならない問題が残されていた。   On the other hand, in order to prevent the contact between the photocatalyst particles and the resin substrate, a method of coating the surface of the photocatalyst fine particles with other inorganic substances has also been proposed, but there are problems such as a decrease in photocatalytic activity. A method of forming an inorganic coating such as dense silicon oxide or aluminum oxide with excellent barrier properties on the substrate surface has also been proposed, but depending on the difference in thermal expansion coefficient between the resin substrate and the inorganic coating and the type of resin It is difficult to form an inorganic film having excellent properties, and there are still various problems that need to be solved, such as deformation of the resin substrate due to heat generated by sputtering and low productivity.

本発明は、上述した従来技術の問題を解決し、繊維やフィルム、布などからなる少なくとも表面が樹脂からなる基材の光触媒による劣化が起こり難く、且つ、消臭や微生物の殺菌、空気中の低濃度窒素酸化物の除去など、様々な目的に適合した光触媒体を製造するための方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, is difficult to cause degradation by a photocatalyst of a substrate having at least a surface made of resin, such as fibers, films, cloths, etc., and deodorizing, sterilizing microorganisms, in the air An object is to provide a method for producing a photocatalyst suitable for various purposes such as removal of low-concentration nitrogen oxides.

本発明者らは、鋭意研究を重ねた結果、反応性に優れた不飽和結合を有するシランカップリング剤を用いることにより、光触媒微粒子を、光触媒活性を極力損なわずに、基材の表面に強固に、且つ、基体樹脂の光触媒微粒子による劣化が起こり難く結合させる方法を見出し、これにより結合させた光触媒微粒子の活性を最大限に発揮できることが可能となる知見を得るに至り、新規な光触媒体の製造方法を創出した。   As a result of intensive studies, the present inventors have used a silane coupling agent having an unsaturated bond with excellent reactivity, and thus the photocatalyst fine particles are firmly adhered to the surface of the substrate without losing the photocatalytic activity as much as possible. In addition, the inventors have found a method for bonding the base resin so that the deterioration due to the photocatalyst fine particles hardly occurs, thereby obtaining knowledge that the activity of the combined photocatalyst fine particles can be maximized. Created a manufacturing method.

すなわち、第一の発明は、少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記基体表面の樹脂と前記光触媒微粒子表面に形成した薄膜とを接触させ、前記樹脂表面と前記薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法を提供するものである。   That is, the first invention is a method for producing a photocatalyst having at least a substrate surface made of a resin, wherein a thin film of a silane coupling agent having an unsaturated bond is formed on the photocatalyst fine particles, and the resin on the substrate surface and the photocatalyst are formed. The present invention provides a method for producing a photocatalyst by contacting a thin film formed on the surface of fine particles and chemically bonding the resin surface and an unsaturated bond present on the thin film.

また、第二の発明は、少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、無機微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記薄膜を形成した無機微粒子からなるコーティング薄膜を前記基体表面に形成し、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記コーティング薄膜と薄膜を形成した光触媒微粒子とを接触させて、前記基体樹脂表面と前記無機微粒子のコーティング薄膜に存在する不飽和結合および光触媒微粒子の薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法を提供するものである。   The second invention is a method for producing a photocatalyst having at least a substrate surface made of a resin, wherein a thin film of a silane coupling agent having an unsaturated bond is formed on the inorganic fine particles, and the inorganic fine particles formed with the thin film Forming a coating thin film on the substrate surface, forming a thin film of a silane coupling agent having an unsaturated bond on the photocatalyst fine particles, contacting the coating thin film with the photocatalyst fine particles forming the thin film, The present invention provides a method for producing a photocatalyst by chemically bonding an unsaturated bond present in a coating thin film of inorganic fine particles and an unsaturated bond present in a thin film of photocatalytic fine particles.

さらに、本発明は、上記第二の発明方法において、前記無機微粒子からなるコーティング薄膜に不飽和結合を有するシランカップリング剤及び/又はシラン化合物が含まれていることを特徴とする光触媒体の製造方法を提供するものである。   Furthermore, the present invention provides the photocatalyst according to the second invention method, wherein the coating thin film comprising the inorganic fine particles contains a silane coupling agent and / or a silane compound having an unsaturated bond. A method is provided.

さらにまた、第三の発明は、少なくとも不飽和結合を有するシランカップリング剤からなるコーティング薄膜を基体表面(樹脂面)にグラフト重合で形成し、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記コーティング薄膜表面と前記薄膜を形成した光触媒微粒子とを接触させ、前記シランカップリング剤で形成されたコーティング薄膜表面と、光触媒微粒子の薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法を提供するものである。   Furthermore, the third invention is a method for forming a coating thin film comprising a silane coupling agent having at least an unsaturated bond on a substrate surface (resin surface) by graft polymerization, and for producing a silane coupling agent having an unsaturated bond on a photocatalyst fine particle. A thin film is formed, and the surface of the coating thin film and the photocatalyst fine particles formed with the thin film are brought into contact with each other, and the coating thin film surface formed with the silane coupling agent and the unsaturated bond existing in the thin film of the photocatalytic fine particles are chemically The present invention provides a method for producing a photocatalyst that is bonded.

さらにまた、本発明は、上記第三の発明方法において、前記不飽和結合を有するシランカップリング剤からなるコーティング薄膜に無機微粒子が含まれていることを特徴とする光触媒体の製造方法を提供するものである。   Furthermore, the present invention provides the method for producing a photocatalyst according to the third invention method, wherein the coating thin film comprising the silane coupling agent having an unsaturated bond contains inorganic fine particles. Is.

さらにまた、第四の発明は、少なくとも不飽和結合を有するシランカップリング剤からなるコーティング薄膜を基体表面(樹脂面)にグラフト重合で形成し、前記コーティング薄膜に光触媒微粒子を接触させてコーティング薄膜に存在するシラノール基と光触媒微粒子の表面に存在する官能基とを脱水縮合反応により結合させてなる光触媒体の製造方法を提供するものである。   Furthermore, in the fourth invention, a coating thin film made of a silane coupling agent having at least an unsaturated bond is formed on the substrate surface (resin surface) by graft polymerization, and photocatalyst fine particles are brought into contact with the coating thin film to form a coating thin film. The present invention provides a method for producing a photocatalyst by combining an existing silanol group and a functional group present on the surface of a photocatalyst fine particle by a dehydration condensation reaction.

さらにまた、本発明は、上記第一乃至第三のいずれかの発明方法において、前記化学結合がグラフト重合であることを特徴とする光触媒体の製造方法を提供するものである。   Furthermore, the present invention provides a method for producing a photocatalyst according to any one of the first to third inventions, wherein the chemical bond is graft polymerization.

さらにまた、本発明は、上記第三又は第四の発明方法において、グラフト重合として放射線グラフト重合を用いることを特徴とする光触媒体の製造方法を提供するものである。   Furthermore, the present invention provides a method for producing a photocatalyst, wherein radiation graft polymerization is used as graft polymerization in the third or fourth invention method.

本発明によれば、少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、基体の表面に対して、光触媒微粒子が、シランカップリング剤を介した化学結合によって固定化され、さらに、樹脂表面と光触媒微粒子の間にはアルコキシ基の加水分解で形成したシラノール基が縮合して形成された酸化ケイ素の緻密な薄膜や無機微粒子からなる緻密な薄膜が形成されていることから、この緻密な酸化ケイ素や無機微粒子の薄膜は光触媒粒子と樹脂基体との直接接触を阻止するため、樹脂基体表面は光触媒粒子の持つ強い酸化、還元作用を受けないので、充分な耐久性を保持した光触媒体を製造して提供することが可能となる。   According to the present invention, there is provided a method for producing a photocatalyst body having at least a substrate surface made of a resin, wherein photocatalyst fine particles are immobilized on the surface of the substrate by chemical bonding via a silane coupling agent, A dense thin film of silicon oxide formed by condensation of silanol groups formed by hydrolysis of alkoxy groups or a dense thin film of inorganic fine particles is formed between the surface and the photocatalyst fine particles. Since the thin film of silicon oxide or inorganic fine particles prevents direct contact between the photocatalyst particles and the resin substrate, the resin substrate surface does not receive the strong oxidation and reduction action of the photocatalyst particles. It can be manufactured and provided.

したがって、本発明の製造方法によれば、光触媒微粒子が様々な樹脂基材の表面に強固に結合された耐久性に優れた光触媒体を提供することが可能となる。また、光触媒微粒子はバインダーで覆われることなく基材の表面に配置されるので、光触媒微粒子の活性が損なわれることが少なく、さらに、光触媒微粒子は島状、単粒子膜状や多層粒子膜状にも繊維やフィルム、布などからなる基材に固定化できるので、これらの基材の風合いを損なわないことから、様々な分野で応用できる光触媒体を提供することが可能となる。   Therefore, according to the production method of the present invention, it is possible to provide a photocatalyst body excellent in durability in which the photocatalyst fine particles are firmly bonded to the surfaces of various resin substrates. In addition, since the photocatalyst fine particles are arranged on the surface of the base material without being covered with the binder, the activity of the photocatalyst fine particles is hardly impaired, and the photocatalyst fine particles are in an island shape, a single particle film shape or a multilayer particle film shape. Since it can be immobilized on a substrate made of fiber, film, cloth, etc., the texture of these substrates is not impaired, and therefore it is possible to provide a photocatalyst that can be applied in various fields.

なお、本発明方法において、基体は、例えば、フィルム状、繊維状、布状、メッシュ状、ハニカム状など、使用目的に合った様々な形態(形状、大きさ等)とすることが可能である。したがって、本発明の製造方法によれば、これら様々な形態の各種基体に光触媒微粒子が持つ機能を付加することが可能となり、外壁材、サッシ、ドア、ブラインドなどの建装材、壁紙、カーペット、樹脂タイルなどの内装材、衣類、インナーウェア、靴下、手袋、靴等の履物、該履物用の中敷、パジャマ、マット、シーツ、枕、枕カバー、毛布、タオルケット、蒲団および蒲団カバーなどの寝装材、帽子、ハンカチ、タオル、絨毯、カーテン、空気清浄機やエアコン、換気扇、電気掃除機、扇風機などのフィルターまたは防虫網などの製品へ応用が可能となる。   In the method of the present invention, the substrate can have various forms (shape, size, etc.) suitable for the purpose of use, such as film, fiber, cloth, mesh, and honeycomb. . Therefore, according to the production method of the present invention, it is possible to add the function of the photocatalyst fine particles to various bases of these various forms, building materials such as outer wall materials, sashes, doors, blinds, wallpaper, carpets, Interior materials such as resin tiles, clothing, innerwear, socks, gloves, shoes and other footwear, insoles for the footwear, pajamas, mats, sheets, pillows, pillowcases, blankets, towels, quilts and quilts It can be applied to products such as filters, insect nets, etc., such as accessories, hats, handkerchiefs, towels, carpets, curtains, air purifiers, air conditioners, ventilation fans, electric vacuum cleaners, and electric fans.

以下に本発明についてさらに詳述する。   The present invention is described in further detail below.

本発明で用いられる光触媒微粒子とは、そのバンドギャップ以上のエネルギーを持つ波長の光を照射することで、光触媒機能を発現する粒子のことであり、酸化チタン、酸化亜鉛、酸化タングステン、酸化鉄、チタン酸ストロンチウム、硫化カドミウム、セレン化カドミウムなどの公知の金属化合物半導体を、単一または2種以上組み合わせて用いることができる。これらの光触媒微粒子のうち、透明性、耐久性に優れ、無害である酸化チタンが好ましく用いられる。   The photocatalyst fine particles used in the present invention are particles that exhibit a photocatalytic function by irradiating light with a wavelength having energy equal to or greater than the band gap. Titanium oxide, zinc oxide, tungsten oxide, iron oxide, Known metal compound semiconductors such as strontium titanate, cadmium sulfide, and cadmium selenide can be used singly or in combination of two or more. Of these photocatalyst fine particles, titanium oxide that is excellent in transparency, durability, and harmless is preferably used.

酸化チタンの結晶構造はルチル型、アナダーセ型、ブルーカイト型、その他、無定形であっても本発明では問わない。また、酸化チタンの一部の酸素原子がアニオンである窒素原子で置換されたTiO2-xxや酸素原子が欠落して化学量論比から著しく外れたTiO2-x(Xは1.0以下)なども用いられる。 The crystal structure of titanium oxide is not limited in the present invention even if it is a rutile type, an anadase type, a brookite type, or an amorphous type. Further, TiO 2-x (X which part of oxygen atoms deviates significantly from the TiO 2-x N x or oxygen atom substituted with a nitrogen atom is missing stoichiometric ratio is the anion of titanium oxide 1.0 ) Etc. are also used.

光触媒微粒子の内部やその表面に、光触媒機能を増す目的で、バナジウム、銅、ニッケル、コバルト、クロム、パラジウム、銀、白金、金などの金属や金属化合物を含有させても良い。   A metal or a metal compound such as vanadium, copper, nickel, cobalt, chromium, palladium, silver, platinum, or gold may be contained in the photocatalyst fine particles or the surface thereof for the purpose of increasing the photocatalytic function.

また、光触媒微粒子とともに吸着剤を用いても良く、消臭性能や環境大気中の汚染物質除去性能は、光触媒微粒子と吸着剤を併用することで向上できる。吸着剤としては、活性炭などの炭素系吸着剤、ゼオライト系吸着剤、モレキュラシーブ、アパタイト、アルミナ、酸化ケイ素などの金属酸化物系吸着剤、キレート樹脂などが好適である。   Further, an adsorbent may be used together with the photocatalyst fine particles, and the deodorizing performance and the pollutant removal performance in the ambient air can be improved by using the photocatalyst fine particles and the adsorbent in combination. Suitable adsorbents include carbon-based adsorbents such as activated carbon, zeolite-based adsorbents, molecular sieves, apatite, alumina, silicon oxide and other metal oxide-based adsorbents, and chelate resins.

また、光触媒微粒子とともに、銀、銅、亜鉛などの金属およびそれらの化合物から選ばれる1種以上の抗菌性を有する材料からなる微粒子、デービト鉱、センウラン鉱、ブランネル石、ニンギョウ石、リンカイウラン石、カルノー石、ツャムン石、メタチャムン石、フランセビル石、トール石、コフィン石、サマルスキー石、トリウム石、トロゴム石、サマルスキー石、トリウム石、トロゴム石、モナズ石、タンタル石、バデライト、イルメナイトなどの放射性希有元素を微量含有する天然放射性稀有元素鉱物や、これらの鉱物の一部を精製して得られる電融ジルコニアなどのマイナスイオンを発生する材料からなる微粒子、Al23、TiO2、ZrO2、SiO2、Fe23、CoO、CuO、MgOなどの金属酸化物やこれらの混合物、例えば、コージライト、βスポジューメン、チタン酸アルミニウムなどの遠赤外線を放出する材料の微粒子、LaB6、CeB6、NdB6、SnO2、In23、酸化ルテニウム、酸化レニウムなどの近赤外線を吸収する材料からなる微粒子など、様々な機能を有する材料からなる微粒子を複数混合して用いても良い。 In addition to fine particles of photocatalyst, fine particles composed of one or more kinds of antibacterial materials selected from metals such as silver, copper, and zinc, and compounds thereof, dabitite, senurite, blannelite, nymphite, lincaite, Radioactive rare, such as carnotite, thamumite, metachamunite, francesville stone, toll stone, coffin stone, samarsky stone, thorium stone, tro rubber stone, samarsky stone, thorium stone, tro rubber stone, monazite, tantalum stone, badelite, ilmenite Natural radioactive rare element minerals containing trace amounts of elements, fine particles made of materials that generate negative ions such as fused zirconia obtained by refining some of these minerals, Al 2 O 3 , TiO 2 , ZrO 2 , Metal oxides such as SiO 2 , Fe 2 O 3 , CoO, CuO, MgO and mixtures thereof For example, fine particles of materials emitting far infrared rays such as cordierite, β-spodumene, aluminum titanate, near infrared rays such as LaB 6 , CeB 6 , NdB 6 , SnO 2 , In 2 O 3 , ruthenium oxide, rhenium oxide A plurality of fine particles made of materials having various functions, such as fine particles made of a material that absorbs water, may be used.

なお、光触媒微粒子の径、及びその他上記各種材料の微粒子径については特に限定されないが、後述するグラフト重合を好適に行うには、これらの微粒子径につき平均の粒子径が500nm以下とすることが好ましく、さらに平均の粒子径が300nm以下であれば、基体へのより強固な結合が達成されるため、耐久性の点より一層好適である。   The diameter of the photocatalyst fine particles and the fine particle sizes of the other various materials are not particularly limited, but in order to suitably perform graft polymerization described later, the average particle size is preferably 500 nm or less. Furthermore, if the average particle size is 300 nm or less, a stronger bond to the substrate is achieved, which is more preferable from the viewpoint of durability.

本発明では、光触媒微粒子を、不飽和結合を有するシランカップリング剤により、樹脂基体の表面、無機微粒子からなるコーティング薄膜の表面、シランカップリング剤からなるコーティング薄膜の表面の何れかに化学結合により固定化するものである。具体的なシランカップリング剤が有する不飽和結合としては、ビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基、イソシアネート基などが挙げられる。本発明は、反応性に優れたシランカップリング剤を用いることで、光触媒微粒子を、シランカップリング剤が有するシラノール基の脱水縮合反応による光触媒微粒子の化学結合と前記官能基の基体樹脂表面へのグラフト重合による化学結合または、無機微粒子で形成されたコーティング薄膜に存在する不飽和結合とを介して基体表面に結合せしめた微粒子固定化体の製造方法である。   In the present invention, the photocatalyst fine particles are chemically bonded to the surface of the resin substrate, the surface of the coating thin film made of inorganic fine particles, or the surface of the coating thin film made of the silane coupling agent with a silane coupling agent having an unsaturated bond. It is to be fixed. Specific examples of the unsaturated bond of the silane coupling agent include a vinyl group, an epoxy group, a styryl group, a methacrylo group, an acryloxy group, and an isocyanate group. In the present invention, by using a silane coupling agent having excellent reactivity, the photocatalyst fine particles are converted into a chemical bond of the photocatalyst fine particles by a dehydration condensation reaction of silanol groups of the silane coupling agent and the functional group to the substrate resin surface. This is a method for producing a fine particle immobilization body bonded to the surface of a substrate through chemical bonding by graft polymerization or unsaturated bond present in a coating thin film formed of inorganic fine particles.

本発明で用いられるシランカップリング剤の一例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどが挙げられる。   Examples of the silane coupling agent used in the present invention include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, N- (Vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldie G Shishiran, 3-methacryloxypropyl triethoxysilane, 3-acryloxy propyl trimethoxy silane, 3-isocyanate propyl triethoxysilane and the like.

これらのシランカップリング剤は一種もしくは二種以上混合して用いられる。その使用形態としては、必要量のシランカップリング剤をメタノールやエタノール、アセトン、トルエン、キシレンなどの有機溶剤に溶解し、必要に応じて加水分解に必要な水を加えて用いられる。また、分散性を改善するために塩酸、硝酸などの鉱酸などが加えられる。用いられる溶剤としては、エタノール、メタノール、プロパノールやブタノールなどの低級アルコール類、蟻酸やプロピオン酸などの低級アルキルカルボン酸類、トルエンやキシレンなどの芳香族化合物、酢酸エチルや酢酸ブチルなどのエステル類、メチルセルソルブやエチルセルソルブなどのセロソルブ類を単独または複数組み合わせて用いても良い。さらに、シランカップリング剤を水溶液の状態で使用しても良く、水への溶解性が悪い場合では、酢酸を添加してpHを弱酸性に調整してアルコキシシランの加水分解性を促進し、水溶性を上げて用いられる。   These silane coupling agents are used alone or in combination. As a form of use, a necessary amount of a silane coupling agent is dissolved in an organic solvent such as methanol, ethanol, acetone, toluene, xylene, and water necessary for hydrolysis is added as necessary. In addition, mineral acids such as hydrochloric acid and nitric acid are added to improve dispersibility. Solvents used include ethanol, methanol, lower alcohols such as propanol and butanol, lower alkyl carboxylic acids such as formic acid and propionic acid, aromatic compounds such as toluene and xylene, esters such as ethyl acetate and butyl acetate, methyl Cellosolves such as cellosolve and ethylcellosolve may be used alone or in combination. Furthermore, the silane coupling agent may be used in the state of an aqueous solution, and in the case where the solubility in water is poor, acetic acid is added to adjust the pH to weak acidity to promote the hydrolyzability of alkoxysilane, Used with increased water solubility.

本発明に用いられる光触媒微粒子は、前述したシランカップリング剤の溶液に分散した状態で製造に用いられる。様々な機能を有する微粒子の分散は、ホモミキサーやマグネットスターラーなどを用いた撹拌分散や、ボールミル、サンドミル、高速回転ミル、ジェットミルなどを用いた粉砕・分散、超音波を用いた分散などにより行われる。   The photocatalyst fine particles used in the present invention are used for production in a state of being dispersed in the above-mentioned solution of the silane coupling agent. Dispersion of fine particles having various functions is performed by stirring and dispersing using a homomixer or a magnetic stirrer, pulverizing / dispersing using a ball mill, sand mill, high-speed rotating mill, jet mill, etc., or using ultrasonic waves. Is called.

また、光触媒微粒子は分散したコロイド状分散液や、粉砕により微粒子化して得られた分散液の状態で微粒子固定体の製造に用いられる。光触媒微粒子分散液は、コロイド状分散液や粉砕して得られた分散液にシランカップリング剤を加え、その後、還流下で加熱させながら光触媒微粒子表面にシランカップリング剤を脱水縮合反応により結合させてシランカップリング剤からなる薄膜を形成する。還流下で光触媒微粒子に反応結合させるシランカップリング剤の量は微粒子の平均粒子径にもよるが、反応結合させる微粒子の重量に対して0.01%重量から5.0重量%であれば光触媒微粒子の結合強度は実用上問題ない。また、結合に預からない余剰のシランカップリング剤があっても良い。   The photocatalyst fine particles are used in the production of a fine particle fixed body in the form of a dispersed colloidal dispersion or a dispersion obtained by pulverization. The photocatalyst fine particle dispersion is prepared by adding a silane coupling agent to a colloidal dispersion or a dispersion obtained by pulverization, and then bonding the silane coupling agent to the surface of the photocatalyst fine particles by a dehydration condensation reaction while heating under reflux. A thin film made of a silane coupling agent is formed. The amount of the silane coupling agent that is reactively bonded to the photocatalyst fine particles under reflux depends on the average particle diameter of the fine particles, but is 0.01% to 5.0% by weight with respect to the weight of the fine particles to be reactively bonded. There is no practical problem with the bonding strength of the fine particles. Moreover, there may be an excess silane coupling agent that is not deposited in the bond.

特に光触媒微粒子からなる薄膜が厚くなると、前記薄膜の応力や使用環境によっては凝集破壊により光触媒薄膜が劣化することもあるので、還流処理後必要に応じて不飽和結合を有するシランカップリング剤や、Si(OR14(式中、R1は炭素数1〜4のアルキル基を示す)で示されるアルコキシシラン化合物、一例として、テトラメトキシシラン、テトラエトキシシランなどや、R2nSi(OR34-n(式中、R2は炭素数1〜6の炭化水素基、R3は炭素数1〜4のアルキル基、nは1〜3の整数を示す)で示されるアルコキシシラン化合物、一例として、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシランなど、他にアルコキシオリゴマーなどが添加されて用いられる。 In particular, when the thin film made of photocatalyst fine particles becomes thick, the photocatalytic thin film may be deteriorated due to cohesive failure depending on the stress and use environment of the thin film. An alkoxysilane compound represented by Si (OR 1 ) 4 (wherein R 1 represents an alkyl group having 1 to 4 carbon atoms), for example, tetramethoxysilane, tetraethoxysilane, etc., R 2n Si (OR 3 ) 4-n (wherein R 2 is a hydrocarbon group having 1 to 6 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 3), Examples include methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, etc. Such as carboxymethyl oligomer used is added.

次に、光触媒微粒子の基体樹脂表面への酸化や還元などによる影響を阻害させるための無機微粒子からなる緻密なコーティング薄膜およびシランカップリング剤からなる緻密なコーティング薄膜について詳述する。   Next, a detailed coating thin film made of inorganic fine particles and a dense coating thin film made of a silane coupling agent for inhibiting the influence of photocatalyst fine particles on the surface of the base resin by oxidation or reduction will be described in detail.

本発明に用いられる無機微粒子としては、光触媒微粒子に光が照射された際に発生するヒドロキシラジカルなどの活性種に影響されない材料から構成されていれば良い。具体的に用いられる材料としては酸化ケイ素、酸化アルミナ、酸化ジルコニア、酸化インジウム、酸化錫などの金属酸化物、窒化チタン、窒化クロム、窒化タンタルなどの窒化物、炭化ケイ素、炭化クロム、炭化タングステンなどの炭化物など、無機化合物が挙げられる。   The inorganic fine particles used in the present invention may be made of a material that is not affected by active species such as hydroxy radicals generated when light is irradiated to the photocatalyst fine particles. Specifically used materials include metal oxides such as silicon oxide, alumina oxide, zirconia oxide, indium oxide and tin oxide, nitrides such as titanium nitride, chromium nitride and tantalum nitride, silicon carbide, chromium carbide, tungsten carbide, etc. Inorganic compounds such as carbides of

また、吸着性を有する材料、活性炭、フラーレン、カーボンナノチューブなどの炭素化合物、アパタイト、γ−アルミナなどの活性アルミナ、酸化ケイ素、ゼオライト系吸着剤、モレキュラシーブなども用いられる。さらに、前述したマイナスイオンを発生させる材料や遠赤外線を放出する材料、近赤外線を吸収する材料なども微粒子状態で用いられる。これら材料からなる微粒子には前述した不飽和結合を有したシランカップリング剤の薄膜が脱水縮合反応により形成されていても良い。さらに、前記無機微粒子からなるコーティング薄膜を形成する際には、過剰の不飽和結合を有するシランカップリング剤が含まれていても良い。   Further, materials having adsorptivity, carbon compounds such as activated carbon, fullerene and carbon nanotubes, activated alumina such as apatite and γ-alumina, silicon oxide, zeolite adsorbent, molecular sieve and the like are also used. Furthermore, the above-described materials that generate negative ions, materials that emit far-infrared rays, and materials that absorb near-infrared rays are also used in the form of fine particles. The fine particles made of these materials may be formed by a dehydration condensation reaction with the above-described thin film of a silane coupling agent having an unsaturated bond. Furthermore, when forming the coating thin film which consists of the said inorganic fine particle, the silane coupling agent which has an excess unsaturated bond may be contained.

さらに、前記無機微粒子からなるコーティング薄膜を形成する際には、過剰の不飽和結合を有するシランカップリング剤が含まれていても良く、その他に、シラン化合物が含まれていても良い。用いられるシラン化合物としては、不飽和結合を有しないシランカップリング剤、例えば、ビニルトリクロロシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミンップロピルメチルジメトキシシランなどのアミノシラン、3−クロロプロピルトリメトキシシラン、メルカプトプロピルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィドなどが挙げられる。   Furthermore, when forming the coating thin film which consists of the said inorganic fine particle, the silane coupling agent which has an excess unsaturated bond may be contained, and the silane compound may be contained in addition. Examples of the silane compound used include silane coupling agents having no unsaturated bond, such as vinyltrichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-amino. Examples include aminosilanes such as methylpropyldimethoxysilane, 3-chloropropyltrimethoxysilane, mercaptopropyldimethoxysilane, and bis (triethoxysilylpropyl) tetrasulfide.

また、その他のシラン化合物としては、Si(OR14(式中、R1は炭素数1〜4のアルキル基を示す)で示されるアルコキシシラン化合物、一例として、テトラメトキシシラン、テトラエトキシシランなどや、R2nSi(OR34-n(式中、R2は炭素数1〜6の炭化水素基、R3は炭素数1〜4のアルキル基、nは1〜3の整数を示す)で示されるアルコキシシラン化合物、一例として、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシランなど、さらには、アルコキシオリゴマーなどが挙げられる。 Further, as other silane compounds, alkoxysilane compounds represented by Si (OR 1 ) 4 (wherein R 1 represents an alkyl group having 1 to 4 carbon atoms), for example, tetramethoxysilane, tetraethoxysilane R 2n Si (OR 3 ) 4-n (wherein R 2 is a hydrocarbon group having 1 to 6 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 3) As an example, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, and further, an alkoxy oligomer, etc. Can be mentioned.

さらに、シランカップリング剤からなるコーティング薄膜は、不飽和結合を有するシランカップリング剤を主体に、他に、前述した無機化合物からなる微粒子や不飽和結合を有しないシランカップリング剤、さらには前述したアルコキシシラン化合物やアルコキシオリゴマーが必要に応じて含まれる。   Furthermore, the coating thin film made of a silane coupling agent is mainly composed of a silane coupling agent having an unsaturated bond, in addition to the above-mentioned fine particles made of an inorganic compound, a silane coupling agent not having an unsaturated bond, and the aforementioned An alkoxysilane compound and an alkoxy oligomer are included as necessary.

シランカップリング剤からなるコーティング薄膜は、シランカップリング剤に含まれるアルコキシ基が加水分解し、加水分解により生成したシラノール基が脱水縮合反応により結合して緻密な酸化ケイ素の薄膜を形成することから、形成された緻密な酸化ケイ素薄膜は光触媒により発生するヒドロキシラジカルなどの活性種の基体樹脂への接触を阻害するために、基体樹脂が劣化し難くなることから、経時安定性に優れた光触媒体の製造が可能となる。   A coating thin film made of a silane coupling agent is formed by hydrolyzing an alkoxy group contained in the silane coupling agent, and forming a dense silicon oxide thin film by combining silanol groups generated by hydrolysis through a dehydration condensation reaction. The formed dense silicon oxide thin film inhibits the contact of the active species such as hydroxy radicals generated by the photocatalyst with the base resin, so that the base resin is hardly deteriorated. Can be manufactured.

本発明の光触媒体の製造に用いられる基体を構成する材料としては、不飽和結合を有するシランカップリング剤による化学結合が可能なものであれば良く、このような材料としては、例えば、各種樹脂や、合成繊維、天然繊維などが挙げられる。また、本発明の光触媒体の製造に用いられる基体は、少なくともその表面が樹脂からなるものであれば良い。   The material constituting the substrate used in the production of the photocatalyst of the present invention may be any material that can be chemically bonded by a silane coupling agent having an unsaturated bond. Examples of such a material include various resins. And synthetic fibers and natural fibers. Moreover, the base | substrate used for manufacture of the photocatalyst body of this invention should just be that the surface consists of resin at least.

ここで、基体の表面乃至全体を構成する樹脂としては、合成樹脂や天然樹脂が用いられ、その一例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、PTFEなどの熱可塑性樹脂や、ポリ乳酸樹脂、ポリヒドロキシブチレート樹脂、修飾でんぷん樹脂、ポリカプロラクト樹脂、ポリブチレンサクシネート樹脂、ポリブチレンアジペートテレフタレート樹脂、ポリブチレンサクシネートテレフタレート樹脂、ポリエチレンサクシネート樹脂などの生分解性樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、エポキシアクリレート樹脂、ケイ素樹脂、アクリルウレタン樹脂、ウレタン樹脂などの熱硬化性樹脂や、シリコーン樹脂、ポリスチレンエラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマー、ポリウレタンエラストマーなどのエラストマー、漆などの天然樹脂、などが挙げられる。   Here, synthetic resin or natural resin is used as the resin constituting the surface or the whole of the substrate, and examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, AS resin, EVA resin, and polymethylpentene. Resin, polyvinyl chloride resin, polyvinylidene chloride resin, polymethyl acrylate resin, polyvinyl acetate resin, polyamide resin, polyimide resin, polycarbonate resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyacetal resin, polyarylate resin, polysulfone resin , Thermoplastic resins such as polyvinylidene fluoride resin and PTFE, polylactic acid resin, polyhydroxybutyrate resin, modified starch resin, polycaprolacto resin, polybutylene succinate resin, polybutylene adip Biodegradable resins such as terephthalate resin, polybutylene succinate terephthalate resin, polyethylene succinate resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, diallyl phthalate resin, epoxy resin, epoxy acrylate resin, silicon resin, Thermosetting resins such as acrylic urethane resins and urethane resins, elastomers such as silicone resins, polystyrene elastomers, polyethylene elastomers, polypropylene elastomers and polyurethane elastomers, natural resins such as lacquer, and the like can be mentioned.

本発明方法では、これらの樹脂の形態は、板状、フィルム状、繊維状、布状、メッシュ状、ハニカム状など、使用目的に合った種々の形状及びサイズ等のものが適用でき、特に制限されるものではない。また、これらの樹脂は、基体の主要部がアルミニウムやマグネシウム、鉄などの金属材料や、ガラス、セラミックスなどの無機材料である場合には、これら各材料の表面に、フィルム状に積層されたり、吹き付け塗装や浸漬塗装、静電塗装などの塗装法や、スクリーン印刷やオフセット印刷などの印刷法により薄膜として形成されたものであっても良い。さらに、これらの樹脂は、顔料や染料などにより着色されてあっても良く、シリカ、アルミナ、珪藻土、マイカなどの無機材料が充填されたものであっても良い。   In the method of the present invention, these resins can be applied in various shapes and sizes suitable for the purpose of use, such as plate, film, fiber, cloth, mesh, and honeycomb. Is not to be done. In addition, these resins are laminated in the form of a film on the surface of each material when the main part of the base is a metal material such as aluminum, magnesium, iron, or an inorganic material such as glass or ceramics. It may be formed as a thin film by a coating method such as spray coating, immersion coating or electrostatic coating, or a printing method such as screen printing or offset printing. Furthermore, these resins may be colored with pigments or dyes, or may be filled with inorganic materials such as silica, alumina, diatomaceous earth, mica and the like.

また、基体は、合成樹脂からなる繊維(合成繊維、化学繊維)であっても良く、基体を構成する合成繊維の例としては、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維、アクリル繊維、塩化ビニル繊維、塩化ビニリデン繊維、ポリオレフィン繊維、ポリカーボネイト繊維、フッソ繊維、ポリ尿素繊維、エラストマー繊維、また、これら繊維を構成する材料と前記樹脂材料との複合繊維などが挙げられる。なお、本願発明方法においては、上述のように基体表面が樹脂であれば良いので、基体材料に合成樹脂以外の繊維を用いる場合には、樹脂を上述した各種塗装法で繊維表面に塗装することで、樹脂を薄膜として形成しておけば良い。したがって、天然繊維の例として、綿、麻、絹、天然繊維から得られた和紙なども、基体の材料として用いることが可能である。   The substrate may be a fiber made of synthetic resin (synthetic fiber, chemical fiber). Examples of the synthetic fiber constituting the substrate include polyester fiber, polyamide fiber, polyvinyl alcohol fiber, acrylic fiber, and vinyl chloride fiber. , Vinylidene chloride fiber, polyolefin fiber, polycarbonate fiber, fluorine fiber, polyurea fiber, elastomer fiber, and composite fiber of the material constituting these fibers and the resin material. In the method of the present invention, since the substrate surface may be a resin as described above, when a fiber other than a synthetic resin is used as the substrate material, the resin is applied to the fiber surface by the various coating methods described above. Thus, the resin may be formed as a thin film. Therefore, as examples of natural fibers, cotton, hemp, silk, Japanese paper obtained from natural fibers, and the like can be used as the base material.

さらに、本発明方法におけるグラフト重合としては、例えばパーオキサイド触媒を用いるグラフト重合、熱や光エネルギーを用いるグラフト重合、放射線によるグラフト重合、などが挙げられ、このうち重合プロセスの簡便性、生産スピード等の観点より、放射線グラフト重合が特に適している。ここで、グラフト重合において用いられる放射線としては、α線、β線、γ線、電子線、紫外線などを挙げることができるが、本発明において用いるのには、γ線、電子線、紫外線が特に適している。   Furthermore, examples of the graft polymerization in the method of the present invention include graft polymerization using a peroxide catalyst, graft polymerization using heat and light energy, and graft polymerization by radiation. Among these, the simplicity of the polymerization process, production speed, etc. From the above viewpoint, radiation graft polymerization is particularly suitable. Here, examples of the radiation used in the graft polymerization include α rays, β rays, γ rays, electron rays, ultraviolet rays, and the like. In the present invention, γ rays, electron rays, and ultraviolet rays are particularly used. Are suitable.

本発明でのグラフト重合を用いた光触媒体の製造方法は、以下に記した方法により好適に製造される。第一の発明における第一の好適な方法としては、不飽和結合を有するシランカップリング剤の薄膜が形成された光触媒微粒子が分散した溶液を、結合しようとする基体表面に塗布し、必要に応じて溶剤を加熱乾燥などの方法により除去した後、γ線、電子線、紫外線などの放射線を、前記シランカップリング剤の薄膜が形成された光触媒微粒子の混合物が塗布された基体表面に照射することで、前記シランカップリング剤を基体表面にグラフト重合させると同時に光触媒微粒子を結合させることで行われる所謂同時照射グラフト重合により製造される。   The method for producing a photocatalyst using graft polymerization in the present invention is preferably produced by the method described below. In a first preferred method of the first invention, a solution in which photocatalyst fine particles in which a thin film of an unsaturated bond-containing silane coupling agent is formed is applied to the surface of the substrate to be bonded, and if necessary After removing the solvent by a method such as heat drying, the substrate surface coated with the mixture of photocatalyst fine particles on which a thin film of the silane coupling agent is formed is irradiated with radiation such as γ rays, electron beams, or ultraviolet rays. Thus, the silane coupling agent is produced by so-called simultaneous irradiation graft polymerization, which is carried out by graft polymerization of the silane coupling agent onto the substrate surface and at the same time bonding the photocatalyst fine particles.

また、第一の発明における第二の好適な方法としては、光触媒微粒子を結合しようとする基体表面にγ線、電子線、紫外線などの放射線を照射した後、不飽和結合を有するシランカップリング剤の薄膜が形成された光触媒微粒子が分散した溶液を塗布して、前記シランカップリング剤と基体とを反応させると同時に光触媒微粒子を結合させる所謂前照射グラフト重合により製造される。   In addition, as a second preferred method in the first invention, a silane coupling agent having an unsaturated bond after irradiating the surface of the substrate to which the photocatalyst fine particles are bound with a radiation such as γ-ray, electron beam or ultraviolet ray. It is produced by so-called pre-irradiation graft polymerization in which a solution in which the photocatalyst fine particles in which the thin film is formed is applied is applied, the silane coupling agent and the substrate are reacted and the photocatalyst fine particles are bonded at the same time.

第二の発明における好適な方法としては、予め基体表面に不飽和結合を有するシランカップリング剤の薄膜が形成された無機微粒子からなるコーティング薄膜を形成した後、必要に応じて乾燥により溶剤を除去したり、或いは放射線を照射してグラフト重合により基体表面にシランカップリング剤を介して結合させ、次に、不飽和結合を有するシランカップリング剤の薄膜を形成した光触媒微粒子が分散した溶液を前記無機微粒子からなるコーティング薄膜表面に形成して、放射線を照射することにより、前記無機微粒子に形成されたコーティング薄膜と基材および光触媒微粒子に形成したシランカップリング剤とを基体とを反応させることにより光触媒粒子を結合させる方法により製造される。   As a preferred method in the second invention, after forming a coating thin film composed of inorganic fine particles in which a thin film of a silane coupling agent having an unsaturated bond is formed on the substrate surface in advance, the solvent is removed by drying as necessary. Or by irradiating with radiation and bonding to the surface of the substrate through graft polymerization via a silane coupling agent, and then dispersing the solution in which the photocatalyst fine particles in which a thin film of a silane coupling agent having an unsaturated bond is formed are dispersed By forming the coating thin film surface made of inorganic fine particles and irradiating with radiation, the coating thin film formed on the inorganic fine particles reacts with the substrate and the silane coupling agent formed on the substrate and the photocatalyst fine particles. It is produced by a method of combining photocatalyst particles.

第三の発明における好適な方法としては、予め基体表面にシランカップリング剤を、γ線、電子線、紫外線などの放射線の同時照射法や前照射法によりグラフト重合してシランカップリング剤からなるコーティング被膜を形成した後、シランカップリング剤が結合された微粒子が分散した溶液を、前記基体表面のコーティング被膜上に塗布し、その後、放射線を照射することにより、グラフト重合により微粒子を基体表面に結合させる方法により製造される。この場合でも、シランカップリング剤を基体表面に塗布し、必要に応じて溶剤を加熱乾燥などの方法により除去したコーティング被膜上に、シランカップリング剤が結合された微粒子が分散した溶液を塗布し、放射線を照射することにより、グラフト重合により微粒子を基体表面に結合させる方法で製造することも可能である。   As a preferred method in the third invention, a silane coupling agent is previously formed by graft polymerization of a silane coupling agent on the surface of a substrate in advance by a simultaneous irradiation method or pre-irradiation method of radiation such as γ rays, electron beams, and ultraviolet rays. After forming the coating film, a solution in which fine particles to which the silane coupling agent is bonded is dispersed is applied onto the coating film on the surface of the substrate, and then irradiated with radiation, whereby the fine particles are applied to the surface of the substrate by graft polymerization. Manufactured by a method of bonding. Even in this case, the silane coupling agent is applied to the surface of the substrate, and if necessary, a solution in which the fine particles with the silane coupling agent are dispersed is applied onto the coating film from which the solvent has been removed by a method such as heat drying. It is also possible to manufacture by a method in which fine particles are bonded to the substrate surface by graft polymerization by irradiating with radiation.

第四の発明における好適な方法としては、予め基体表面(樹脂面)に不飽和結合を有するシランカップリング剤を、γ線、電子線、紫外線などの放射線の同時照射法や前照射法によりグラフト重合した後、光触媒微粒子が分散した溶液を、前記シランカップリング剤がグラフト重合された基体表面に塗布し、その後、加熱などのエネルギーを加えて、グラフト重合により基体表面に導入したシラノール基と光触媒微粒子表面に存在する水酸基との脱水縮合反応により、光触媒微粒子を基体表面に結合させる方法により製造される。   As a preferred method in the fourth invention, a silane coupling agent having an unsaturated bond on the substrate surface (resin surface) in advance is grafted by a simultaneous irradiation method or a pre-irradiation method of radiation such as γ rays, electron beams or ultraviolet rays. After the polymerization, a solution in which the photocatalyst fine particles are dispersed is applied to the surface of the substrate on which the silane coupling agent is graft-polymerized, and then energy such as heating is applied to introduce the silanol groups and photocatalyst introduced onto the surface of the substrate by graft polymerization. It is produced by a method in which the photocatalyst fine particles are bonded to the substrate surface by a dehydration condensation reaction with hydroxyl groups present on the fine particle surfaces.

本実施形態では、上述したように、固定化する光触媒微粒子が分散した溶液を、固定化する基体表面に塗布して光触媒固定化体を製造するが、具体的な光触媒微粒子の分散液の塗布方法としては、一般に行われているスピンコート法、ディップコート法、スプレーコート法、キャストコート法、バーコート法、マイクログラビアコート法、グラビアコート法、または部分的に塗布する方法として、スクリーン印刷法、パッド印刷法、オフセット印刷法、ドライオフセット印刷法、フレキソ印刷法、インクジェット印刷法などの様々な方法が用いられ、目的に合った塗布ができれば特に限定されない。   In the present embodiment, as described above, the solution in which the photocatalyst fine particles to be immobilized are dispersed is applied to the surface of the substrate to be immobilized to produce a photocatalyst immobilized body. As a commonly performed spin coating method, dip coating method, spray coating method, cast coating method, bar coating method, micro gravure coating method, gravure coating method, or a method of partially coating, screen printing method, Various methods such as a pad printing method, an offset printing method, a dry offset printing method, a flexographic printing method, and an ink jet printing method are used, and there is no particular limitation as long as a coating suitable for the purpose can be performed.

また、シランカップリング剤のグラフト重合を効率良く、かつ、均一に行わせるためには、予め、樹脂基体表面がコロナ放電処理やプラズマ放電処理、火炎処理、クロム酸や過塩素酸などの酸化性酸水溶液や水酸化ナトリウムなどを含むアルカリ性水溶液による化学的な処理などにより親水化処理されてあっても良い。   In addition, in order to carry out graft polymerization of the silane coupling agent efficiently and uniformly, the surface of the resin substrate is previously subjected to corona discharge treatment, plasma discharge treatment, flame treatment, oxidizing properties such as chromic acid and perchloric acid. Hydrophilic treatment may be performed by chemical treatment with an alkaline aqueous solution containing an acid aqueous solution or sodium hydroxide.

本発明によれば、前述したように、フィルム状、繊維状、布状、メッシュ状、ハニカム状など、使用目的に合った様々な形態(形状、大きさ等)に光触媒微粒子が固定化できるので、外壁材、サッシ、ドア、ブラインドなどの建装材、壁紙、カーペット、樹脂タイルなどの内装材、衣類、インナーウェア、靴下、手袋、靴等の履物、該履物用の中敷、パジャマ、マット、シーツ、枕、枕カバー、毛布、タオルケット、蒲団および蒲団カバーなどの寝装材、帽子、ハンカチ、タオル、絨毯、カーテン、空気清浄機やエアコン、換気扇、電気掃除機、扇風機などのフィルターまたは防虫網などに様々な機能を付加できることが可能となる。従って、本発明は、様々な分野に優れた各種製品を提供することができる有用な方法である。   According to the present invention, as described above, the photocatalyst fine particles can be fixed in various forms (shape, size, etc.) suitable for the purpose of use, such as film, fiber, cloth, mesh, and honeycomb. , Exterior wall materials, sashes, doors, blinds and other building materials, wallpaper, carpets, interior materials such as resin tiles, clothing, innerwear, socks, gloves, shoes and other footwear, insoles for such footwear, pajamas, mats Bedding, sheets, pillows, pillowcases, blankets, towels, quilts and quilt covers, hats, handkerchiefs, towels, carpets, curtains, air purifiers and air conditioners, ventilation fans, vacuum cleaners, fan filters or insect repellents Various functions can be added to the network. Therefore, the present invention is a useful method capable of providing various products excellent in various fields.

また、本発明によれば、光触媒微粒子を化学結合により基体上に強固に固定できることから、紡糸後に製品形状とした後で、または、製品化の過程で行うことが可能であり、このため、光触媒微粒子の存在が紡糸性に影響しない、というメリットがある。   In addition, according to the present invention, since the photocatalyst fine particles can be firmly fixed on the substrate by chemical bonding, the photocatalyst fine particles can be formed after being spun into a product shape or in the process of commercialization. There is an advantage that the presence of fine particles does not affect the spinnability.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

<光触媒体の作製>
本発明方法による下記実施例1〜実施例15の光触媒体の製造にあたっては、岩崎電気株式会社製、エレクトロカーテン型電子線照射装置、CB250/15/180L、を用い、電子線グラフト重合により実施した。これに対して、各比較例の光触媒体の製造にあたっては、電子線は用いず、塗布後加熱、乾燥の方法とした。
<Production of photocatalyst>
In the production of the photocatalysts of the following Examples 1 to 15 according to the method of the present invention, an electrocurtain type electron beam irradiation device, CB250 / 15 / 180L, manufactured by Iwasaki Electric Co., Ltd. was used, and the photocatalyst body was subjected to electron beam graft polymerization. . On the other hand, in the production of the photocatalyst of each comparative example, an electron beam was not used, and a post-application heating and drying method was used.

実施例1:
市販の光触媒微粒子(エコデバイス株式会社製、BA−PW25)をメタノールに5.0重量%分散してpHを1.5に塩酸で調製した後、ビーズミルにより平均粒子径18nmに粉砕分散した。得られた光触媒微粒子粉砕分散溶液に不飽和結合を有する3−メタクリロキシプロピルトリメトキシシランを光触媒微粒子に対して1.0重量%加えた後、前記粉砕分散溶液を、冷却管を備えたフラスコに移してフラスコをオイルバスで加熱し、4時間還流下で処理することにより光触媒微粒子表面に前記シランカップリング剤を脱水縮合反応により結合させて薄膜を形成した。得られた光触媒微粒子分散溶液中の光触媒微粒子の平均粒子径は14nmであった。
Example 1:
Commercially available photocatalyst fine particles (BA-PW25, manufactured by Eco Device Co., Ltd.) were dispersed in methanol by 5.0% by weight and adjusted to pH 1.5 with hydrochloric acid, and then pulverized and dispersed with a bead mill to an average particle size of 18 nm. After adding 1.0% by weight of 3-methacryloxypropyltrimethoxysilane having an unsaturated bond to the photocatalyst fine particle pulverized dispersion solution to the photocatalyst fine particles, the pulverized dispersion solution is added to a flask equipped with a cooling tube. Then, the flask was heated in an oil bath and treated under reflux for 4 hours to bond the silane coupling agent to the surface of the photocatalyst fine particles by a dehydration condensation reaction to form a thin film. The average particle diameter of the photocatalyst fine particles in the obtained photocatalyst fine particle dispersion was 14 nm.

また、125μmのポリエステルフィルム(パナック株式会社製、ルミラー)の表面に、前記光触媒微粒子分散溶液をバーコーターで塗布し、120℃、3分間乾燥した。次に、光触媒微粒子分散液を塗布したポリエステルフィルムに電子線を200kVの加速電圧で5Mrad照射することで、光触媒微粒子をシランカップリング剤のグラフト重合によりポリエステルフィルム表面に結合させた光触媒体を得た。   Further, the photocatalyst fine particle dispersion was applied to the surface of a 125 μm polyester film (Plumac Corp., Lumirror) with a bar coater and dried at 120 ° C. for 3 minutes. Next, the polyester film coated with the photocatalyst fine particle dispersion was irradiated with an electron beam at an acceleration voltage of 200 kV for 5 Mrad to obtain a photocatalyst in which the photocatalyst fine particles were bonded to the surface of the polyester film by graft polymerization of a silane coupling agent. .

実施例2:
実施例1で基体に用いたポリエステルフィルムに、電子線を200kVの加速電圧で10Mrad照射した後、実施例1で調整した光触媒微粒子分散溶液に電子線を照射したポリエステルフィルムを浸漬して電子線照射によりフィルム表面および内部に発生したラジカルによりシランカップリング剤をポリエステルフィルム表面にグラフト重合させることで光触媒微粒子を結合させ、その後、余分の分散液を洗浄により除去することで光触媒体を得た。
Example 2:
The polyester film used for the substrate in Example 1 was irradiated with an electron beam at an acceleration voltage of 200 kV for 10 Mrad, and then the polyester film irradiated with the electron beam was immersed in the photocatalyst fine particle dispersion prepared in Example 1 to irradiate the electron beam. The photocatalyst particles were bonded by graft polymerization of the silane coupling agent to the polyester film surface by radicals generated on the surface and inside of the film, and then the excess dispersion was removed by washing to obtain a photocatalyst.

実施例3:
不飽和結合を有する3−グリシドキシプロピルトリエトキシシランの5.0重量%のイソプロピルアルコール溶液を実施例1で用いたポリエステルフィルム表面にバーコーターにより塗布した。120℃、5分間乾燥した後、電子線を200kVの加速電圧で3Mrad照射することでシランカップリング剤をグラフト重合によりポリエステルフィルム表面に結合させてなるコーティング薄膜を形成した。次に、コーティング薄膜表面に実施例1で用いた光触媒微粒子分散溶液をバーコーターで塗布し、120℃、3分間乾燥した後、電子線を200kVの加速電圧で5Mrad照射することで、光触媒微粒子をシランカップリング剤のグラフト重合によりコーティング薄膜表面に結合させた光触媒体を得た。
Example 3:
A 5.0 wt% isopropyl alcohol solution of 3-glycidoxypropyltriethoxysilane having an unsaturated bond was applied to the surface of the polyester film used in Example 1 by a bar coater. After drying at 120 ° C. for 5 minutes, an electron beam was irradiated at an acceleration voltage of 200 kV for 3 Mrad to form a coating thin film in which the silane coupling agent was bonded to the polyester film surface by graft polymerization. Next, the photocatalyst fine particle dispersion solution used in Example 1 was applied to the coating thin film surface with a bar coater, dried at 120 ° C. for 3 minutes, and then irradiated with an electron beam at an acceleration voltage of 200 kV for 5 Mrad, whereby the photocatalyst fine particles were obtained. A photocatalyst bonded to the surface of the coating thin film was obtained by graft polymerization of a silane coupling agent.

実施例4:
実施例1で基体に用いたポリエステルフィルムに、電子線を200kVの加速電圧で10Mrad照射した後、不飽和結合を有する3−アクリロキシプロピルトリメトキシシランを1.0重量%含んだイソプロピルアルコール溶液に浸漬し、電子線照射によりフィルム表面および内部に発生したラジカルによりシランカップリング剤をポリエステルフィルム表面にグラフト重合してコーティング薄膜を形成した。次に、市販の光触媒微粒子が分散した水溶液(昭和電工株式会社製NTB−200)をコーティング薄膜表面にバーコーターにて塗布した後、120℃、20分間乾燥することで、コーティング薄膜に存在するシラノール基と光触媒微粒子表面に存在するヒドロキシル基とを脱水縮合反応により結合させた光触媒体を得た。
Example 4:
The polyester film used for the substrate in Example 1 was irradiated with an electron beam at an acceleration voltage of 200 kV for 10 Mrad, and then an isopropyl alcohol solution containing 1.0% by weight of 3-acryloxypropyltrimethoxysilane having an unsaturated bond. A coating thin film was formed by immersing and graft-polymerizing a silane coupling agent onto the polyester film surface by radicals generated on the film surface and inside by electron beam irradiation. Next, an aqueous solution (NTB-200 manufactured by Showa Denko KK) in which commercially available photocatalyst fine particles are dispersed is applied to the surface of the coating thin film with a bar coater, and then dried at 120 ° C. for 20 minutes, whereby silanol present in the coating thin film is present. A photocatalyst was obtained in which a group and a hydroxyl group present on the surface of the photocatalyst fine particles were bonded by a dehydration condensation reaction.

実施例5:
平均粒子径10nmのシリカ微粒子がイソプロピルアルコールに分散したコロイダルシリカ溶液(日産化学工業株式会社製IPA−SZ−S)に不飽和結合を有する3−メタクリロキシプロピルトリエトキシシランをシリカ微粒子に対して2.0重量%加えた後、冷却管を備えたフラスコに移し、その後フラスコをオイルバスで加熱し、4時間還流下で処理することによりシリカ微粒子表面にシランカップリング剤を脱水縮合反応により薄膜を形成した。
Example 5:
2-methacryloxypropyltriethoxysilane having an unsaturated bond in a colloidal silica solution (IPA-SZ-S manufactured by Nissan Chemical Industries, Ltd.) in which silica fine particles having an average particle diameter of 10 nm are dispersed in isopropyl alcohol is added to the silica fine particles. After adding 0.0% by weight, it is transferred to a flask equipped with a cooling tube, and then the flask is heated in an oil bath and treated under reflux for 4 hours to form a thin film by dehydration condensation reaction of the silane coupling agent on the surface of the silica fine particles. Formed.

また、実施例1で用いたポリエステルフィルム表面をコロナ処理することで親水化した後、前記シランカップリング剤の薄膜が形成されたシリカ微粒子分散溶液の固形分を5.0重量%に調整し、調整した分散液を前記ポリエステルフィルム表面にバーコーターで被覆し、120℃、5分間乾燥することで無機微粒子からなるコーティング薄膜を形成した。その後、実施例1で用いた光触媒微粒子分散溶液を前記コーティング薄膜表面にバーコーターで塗布し、120℃、3分間乾燥後、電子線を200kVの加速電圧で5Mrad照射することで、光触媒微粒子をシランカップリング剤のグラフト重合によりコーティング薄膜表面に結合させた光触媒体を得た。   Moreover, after hydrophilizing the polyester film surface used in Example 1 by corona treatment, the solid content of the silica fine particle dispersion in which the thin film of the silane coupling agent is formed is adjusted to 5.0% by weight, The prepared dispersion was coated on the surface of the polyester film with a bar coater, and dried at 120 ° C. for 5 minutes to form a coating thin film composed of inorganic fine particles. Thereafter, the photocatalyst fine particle dispersion solution used in Example 1 was applied to the coating thin film surface with a bar coater, dried at 120 ° C. for 3 minutes, and then irradiated with an electron beam at an acceleration voltage of 200 kV for 5 Mrad, whereby the photocatalyst fine particles were converted to silane. A photocatalyst bonded to the surface of the coating thin film was obtained by graft polymerization of a coupling agent.

実施例6:
実施例1で用いたポリエステルフィルムに電子線を200kVの加速電圧で10Mrad照射した後、実施例5で用いたシランカップリング剤の薄膜が形成されたシリカ微粒子が分散したイソプロピルアルコール溶液に前記ポリエステルフィルムを浸漬し、電子線照射によりフィルム表面および内部に発生したラジカルにより前記薄膜が形成されたシリカ微粒子からなるコーティング薄膜をポリエステルフィルム表面にグラフト重合により形成した。余分の無機微粒子分散溶液を洗浄により除去した後、実施例1で用いた光触媒微粒子分散溶液を前記無機微粒子からなるコーティング薄膜表面にバーコーターで塗布し、120℃、3分間乾燥した後、電子線を200kVの加速電圧で5Mrad照射することで、光触媒微粒子をグラフト重合により無機微粒子からなるコーティング薄膜表面に結合させた光触媒体を得た。
Example 6:
The polyester film used in Example 1 was irradiated with an electron beam at an acceleration voltage of 200 kV for 10 Mrad, and then the polyester film was dispersed in an isopropyl alcohol solution in which silica fine particles on which a thin film of the silane coupling agent used in Example 5 was dispersed. Was coated on the surface of the polyester film by graft polymerization. The coating film was made of silica fine particles on which the thin film was formed by radicals generated on the film surface and inside by electron beam irradiation. After removing the excess inorganic fine particle dispersion by washing, the photocatalyst fine particle dispersion used in Example 1 was applied to the surface of the coating thin film composed of the inorganic fine particles with a bar coater, dried at 120 ° C. for 3 minutes, and then electron beam Was irradiated with 5 Mrad at an acceleration voltage of 200 kV to obtain a photocatalyst in which the photocatalyst fine particles were bonded to the coating thin film surface made of inorganic fine particles by graft polymerization.

実施例7:
実施例3で用いた不飽和結合を有する3−グリシドキシプロピルトリエトキシシランの濃度を10.0重量%とし、これに平均粒子径100nmのアルミナをシランカップリング剤に対して30重量%分散した以外は、実施例3と同様の条件で光触媒体を得た。
Example 7:
The concentration of 3-glycidoxypropyltriethoxysilane having an unsaturated bond used in Example 3 was 10.0% by weight, and alumina having an average particle diameter of 100 nm was dispersed by 30% by weight with respect to the silane coupling agent. A photocatalyst was obtained under the same conditions as in Example 3 except that.

実施例8:
実施例3で用いた不飽和結合を有する3−グリシドキシプロピルトリエトキシシランの5.0重量%のイソプロピルアルコール溶液にシラン化合物としてテトラエトキシシランをシランカップリング剤に対して30重量%分散した以外は、実施例3と同様の条件で光触媒体を得た。
Example 8:
30 wt% of tetraethoxysilane as a silane compound was dispersed in a 5.0 wt% isopropyl alcohol solution of 3-glycidoxypropyltriethoxysilane having an unsaturated bond used in Example 3 with respect to the silane coupling agent. Except for this, a photocatalyst was obtained under the same conditions as in Example 3.

実施例9:
実施例5で用いたシランカップリング剤の薄膜が形成されたシリカ微粒子が5重量%分散した溶液に3−メタクリロキシプロピルトリエトキシシランを固形分に対して20重量%加えた以外は、実施例5と同様の条件で光触媒体を得た。
Example 9:
Except that 20% by weight of 3-methacryloxypropyltriethoxysilane was added to the solid content in a solution in which 5% by weight of silica fine particles on which a thin film of the silane coupling agent used in Example 5 was formed was dispersed. A photocatalyst was obtained under the same conditions as in No. 5.

実施例10:
実施例5で用いたシランカップリング剤の薄膜が形成されたシリカ微粒子5重量%分散溶液に3−メタクリロキシプロピルトリエトキシシランとテトラエトキシシランのそれぞれを固形分に対して10重量%加えた以外は、実施例5と同様の条件で光触媒体を得た。
Example 10:
Except for adding 10% by weight of each of 3-methacryloxypropyltriethoxysilane and tetraethoxysilane to the 5% by weight dispersion of silica fine particles on which the thin film of the silane coupling agent used in Example 5 was formed. Obtained a photocatalyst under the same conditions as in Example 5.

実施例11:
実施例1で用いた光触媒微粒子分散溶液に3−メタクリロキシプロピルトリメトキシシランを分散溶液の固形分に対して10重量%加え、実施例1で用いたバーコーターよりも5倍程度厚く光触媒微粒子薄膜が形成できるバーコーターを用いた以外は、実施例1と同様の条件で光触媒体を得た。
Example 11:
10% by weight of 3-methacryloxypropyltrimethoxysilane is added to the photocatalyst fine particle dispersion used in Example 1 based on the solid content of the dispersion, and the photocatalyst fine particle thin film is about 5 times thicker than the bar coater used in Example 1. A photocatalyst was obtained under the same conditions as in Example 1 except that a bar coater capable of forming was used.

実施例12:
実施例1で用いた光触媒微粒子分散溶液にテトラエトキシシランを分散溶液の固形分に対して10重量%加え、実施例1で用いたバーコーターよりも5倍程度厚く光触媒微粒子薄膜が形成できるバーコーターを用いた以外は、実施例1と同様の条件で光触媒体を得た。
Example 12:
A bar coater capable of forming a photocatalyst fine particle thin film about 5 times thicker than the bar coater used in Example 1 by adding 10% by weight of tetraethoxysilane to the solid content of the dispersion solution in the photocatalyst fine particle dispersion used in Example 1. A photocatalyst was obtained under the same conditions as in Example 1 except that was used.

実施例13:
実施例1で用いた光触媒微粒子分散溶液に実施例5で用いたシランカップリング剤の薄膜を形成したシリカ粒子が分散したイソプロピルアルコール溶液を、光触媒微粒子とシリカ微粒子の混合比が8:2の重量比になるように混合した。得られた混合液を実施例1で用いたポリエステルフィルムにバーコーターで塗布し、120℃、3分間乾燥した。次に、前記混合液を塗布したポリエステルフィルムに電子線を200kVの加速電圧で10Mrad照射することで、光触媒微粒子にシリカ微粒子を混在させてシランカップリング剤のグラフト重合によりポリエステルフィルム表面に結合させた光触媒体を得た。
Example 13:
The isopropyl alcohol solution in which the silica particles in which the silane coupling agent thin film used in Example 5 was dispersed in the photocatalyst fine particle dispersion used in Example 1 was dispersed in a weight ratio of photocatalyst fine particles and silica fine particles of 8: 2. Mixed to a ratio. The obtained mixed solution was applied to the polyester film used in Example 1 with a bar coater and dried at 120 ° C. for 3 minutes. Next, the polyester film coated with the mixed solution is irradiated with an electron beam at an acceleration voltage of 200 kV for 10 Mrad, so that the photocatalyst fine particles are mixed with silica fine particles and bonded to the polyester film surface by graft polymerization of a silane coupling agent. A photocatalyst was obtained.

実施例14:
可視光応答型光触媒(石原産業株式会社製MTP621)とヒドロキシアパタイトの粉末(富田製薬株式会社製)を7:3の重量比で混合してメタノールに5重量%加えた。塩酸を加えてpHを3.0に調製した後、ビーズミルにより平均粒子径30nmに粉砕分散した。得られた粉砕分散メタノール溶液に不飽和結合を有するN−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩を前記粉砕分散メタノール溶液の固形分に対して2.0重量%加えた後、冷却管を備えたフラスコに移してフラスコをオイルバスで加熱し、4時間還流下で処理することにより光触媒微粒子とヒドロキシアパタイト微粒子表面に前記シランカップリング剤を脱水縮合反応により結合させて薄膜を形成した。得られた粉砕分散メタノール溶液中の微粒子の平均粒子径は25nmであった。次に、実施例1で用いたポリエステルフィルムにバーコーターでシランカップリング剤の薄膜が形成された光触媒微粒子とヒドロキシアパタイト微粒子が分散したメタノール溶液を塗布した後、実施例13と同様の条件で乾燥および電子線を照射することで光触媒微粒子にヒドロキシアパタイト微粒子を混在させてシランカップリング剤によりポリエステルフィルム表面に結合させた光触媒体を得た。
Example 14:
A visible light responsive photocatalyst (MTP621 manufactured by Ishihara Sangyo Co., Ltd.) and hydroxyapatite powder (manufactured by Tomita Pharmaceutical Co., Ltd.) were mixed at a weight ratio of 7: 3, and 5% by weight was added to methanol. Hydrochloric acid was added to adjust the pH to 3.0, and the mixture was pulverized and dispersed to an average particle size of 30 nm by a bead mill. N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride having an unsaturated bond was added to the obtained pulverized dispersed methanol solution at 2.0% relative to the solid content of the pulverized dispersed methanol solution. After adding wt%, transfer to a flask equipped with a cooling tube, heat the flask in an oil bath, and treat it under reflux for 4 hours, thereby dehydrating and condensing the silane coupling agent on the surface of the photocatalyst fine particles and hydroxyapatite fine particles. A thin film was formed by bonding. The average particle size of the fine particles in the obtained pulverized dispersed methanol solution was 25 nm. Next, the polyester film used in Example 1 was coated with a methanol solution in which photocatalyst fine particles on which a silane coupling agent thin film was formed and hydroxyapatite fine particles were dispersed by a bar coater, and then dried under the same conditions as in Example 13. The photocatalyst was obtained by irradiating the photocatalyst fine particles with hydroxyapatite fine particles by being irradiated with an electron beam and bonded to the surface of the polyester film with a silane coupling agent.

実施例15:
実施例14で用いたヒドロキシアパタイトを酸化アルミニウム微粒子(昭和タイタニウム株式会社製UFA−150)に替えた以外は、実施例14と同様の条件で光触媒微粒子にγ−アルミナ微粒子を混在させてシランカップリング剤によりポリエステルフィルム表面に結合させた光触媒体を得た。
Example 15:
Silane coupling by mixing γ-alumina fine particles with photocatalyst fine particles under the same conditions as in Example 14 except that the hydroxyapatite used in Example 14 was replaced with aluminum oxide fine particles (UFA-150 manufactured by Showa Titanium Co., Ltd.). A photocatalyst bonded to the surface of the polyester film with an agent was obtained.

比較例1:
実施例1で得られた光触媒微粒子粉砕分散溶液に不飽和結合がない3−アミノプロピルトリエトキシシランを固形分に対して10重量%加えた溶液を実施例1で用いたポリエステルフィルム表面にバーコーターで被覆し、120℃、60分間乾燥することで光触媒体を得た。
Comparative Example 1:
A bar coater was used on the surface of the polyester film used in Example 1 with a solution obtained by adding 10% by weight of 3-aminopropyltriethoxysilane having no unsaturated bond to the photocatalyst fine particle pulverized dispersion solution obtained in Example 1 to the solid content. And photocatalyst was obtained by drying at 120 ° C. for 60 minutes.

比較例2:
フッ素系樹脂溶液(旭硝子株式会社製、CTX−102A)に実施例1で用いた光触媒微粒子をフッ素樹脂溶液の固形分に対して50重量%加え、ビーズミルで粉砕分散した。得られた光触媒分散フッ素樹脂溶液中の光触媒微粒子の平均粒子径は580nmであり、粉砕分散時間を2倍以上にしても光触媒微粒子の平均粒子径はほとんど変化しなかった。次に、実施例1で用いたポリエステルフィルム表面にバーコーターで前記光触媒分散フッ素樹脂溶液を塗布し、120℃、30分乾燥することで光触媒体を得た。
Comparative Example 2:
The photocatalyst fine particles used in Example 1 were added to a fluororesin solution (CTX-102A manufactured by Asahi Glass Co., Ltd.) at 50% by weight based on the solid content of the fluororesin solution, and pulverized and dispersed with a bead mill. The average particle size of the photocatalyst fine particles in the obtained photocatalyst-dispersed fluororesin solution was 580 nm, and the average particle size of the photocatalyst fine particles hardly changed even when the pulverization dispersion time was doubled or more. Next, the photocatalyst-dispersed fluororesin solution was applied to the surface of the polyester film used in Example 1 with a bar coater and dried at 120 ° C. for 30 minutes to obtain a photocatalyst.

<光触媒体の評価>
得られた光触媒体の外観は目視で観察した。また、光触媒体の触媒活性は、アセトアルデヒドガスの光触媒体による分解性により評価した。まず、作製した光触媒体をテドラーパックに入れた後、100ppm程度の濃度のアセトアルデヒドを同テドラーパック内に3L注入した。次に、テドラーパック内のアセトアルデヒド濃度が一定になるように30分間程度放置した後、試料表面での紫外線光強度が1.0mW/cm2となるように20Wのブラックライト(東芝ライテック株式会社製、FL20SBLB)を用いて、紫外線を120分間光触媒体に照射した。テドラーパック内のアセトアルデヒドの濃度はアセトアルデヒドガス検知管(株式会社ガステック製)を用いて測定した。触媒活性は紫外線照射前のアセトアルデヒド濃度を100とした場合での相対値でガス分解率として示した。
<Evaluation of photocatalyst>
The appearance of the obtained photocatalyst was visually observed. Moreover, the catalytic activity of the photocatalyst was evaluated by the decomposability of acetaldehyde gas by the photocatalyst. First, after putting the prepared photocatalyst into a Tedlar pack, 3 L of acetaldehyde having a concentration of about 100 ppm was injected into the Tedlar pack. Next, after standing for about 30 minutes so that the concentration of acetaldehyde in the Tedlar pack becomes constant, a 20 W black light (manufactured by Toshiba Lighting & Technology Corporation, manufactured by Toshiba Lighting & Technology Corporation, so that the ultraviolet light intensity on the sample surface is 1.0 mW / cm 2) . FL20SBLB) was used to irradiate the photocatalyst with ultraviolet rays for 120 minutes. The concentration of acetaldehyde in the Tedlar pack was measured using an acetaldehyde gas detector tube (manufactured by Gastec Co., Ltd.). The catalytic activity was shown as a gas decomposition rate as a relative value when the concentration of acetaldehyde before ultraviolet irradiation was 100.

さらに、耐久性は、耐候性試験により評価した。具体的には、耐候性試験機(岩崎電気株式会社製、アイスーパーUVテスター)を用いて2時間毎にイオン交換水を2分間噴霧しながら連続して紫外線を照射した後、外観を目視で観察し、また、試験後の触媒活性をアセトアルデヒドガスの分解により評価した。それらの結果を表1に示す。
Further, the durability was evaluated by a weather resistance test. Specifically, using a weather resistance tester (Iwasaki Electric Co., Ltd., iSuper UV Tester), after continuously irradiating ultraviolet rays while spraying ion exchange water every 2 hours for 2 minutes, the appearance is visually observed. The catalytic activity after the test was evaluated by decomposition of acetaldehyde gas. The results are shown in Table 1.

Figure 2005261997
Figure 2005261997

本発明で得られた光触媒体は、実施例1〜15の結果が示すように、極めて透明性に優れたものであり、均一性に優れた光触媒であることが確認され、また、ガス分解率も非常に高いことから触媒活性に優れていることが示された。これにより、本発明の製造方法は、均一性に優れ、且つ、触媒活性に優れた光触媒体が提供できることが確認された。さらに、耐候性試験では、基体表面にシランカップリング剤からなる薄膜や無機微粒子からなる薄膜が形成された本実施例の光触媒体では外観的な変化は認められず、光触媒体の劣化や光触媒活性の低下も認められないことから、耐久性に優れた光触媒体が製造できることが実証された。これらの結果に対し、本発明方法によらない比較例では、基体に対する固着強度が低いことに起因して耐久性が低く、さらに、フッ素樹脂をバインダーに用いた場合では、均一性、密着性、触媒活性が低いことが確認され、実用性に乏しいことが確認された。   As the results of Examples 1 to 15 show, the photocatalyst obtained in the present invention is extremely excellent in transparency, confirmed to be a photocatalyst excellent in uniformity, and has a gas decomposition rate. Was very high, indicating that the catalyst activity was excellent. Thereby, it was confirmed that the manufacturing method of this invention can provide the photocatalyst body which was excellent in the uniformity and excellent in the catalyst activity. Further, in the weather resistance test, no change in appearance was observed in the photocatalyst of this example in which a thin film composed of a silane coupling agent or a thin film composed of inorganic fine particles was formed on the surface of the substrate. From the above, it was demonstrated that a photocatalyst having excellent durability can be produced. In contrast to these results, in the comparative example not according to the method of the present invention, the durability is low due to low adhesion strength to the substrate. Furthermore, when a fluororesin is used as the binder, the uniformity, adhesion, It was confirmed that the catalytic activity was low, and it was confirmed that the practicality was poor.

以上説明したように、本発明の製造方法は、シランカップリング剤のグラフト重合等の化学結合により光触媒微粒子を樹脂表面に固定化する方法であり、シランカップリング剤のアルコキシ基の加水分解により生成したシラノール基が、光触媒微粒子の表面に脱水縮合反応で強固に化学的に結合し、さらに、シランカップリング剤のビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基、イソシアネート基などの不飽和二重結合を有する官能基が、例えば放射線の照射により生成したラジカルによるグラフト重合等の化学結合で樹脂基体表面に化学的に結合することによってなされている。よって、製造された光触媒微粒子は樹脂基体表面にシランカップリング剤により化学的な結合で強固に結合させることから、本発明方法によれば、過酷な環境で使用しても様々な機能を有する微粒子の脱離などが起こり難い耐久性に優れた微粒子固定化体を供給することが可能となる。さらに、光触媒粒子と樹脂基体との間には、シランカップリング剤に存在するアルコキシ基の加水分解で形成したシラノール基が、縮合して酸化ケイ素の緻密な薄膜を形成していることから、これらの薄膜は光触媒粒子表面に発生したヒドロキシラジカルの樹脂基体との直接接触を阻害するため、樹脂基体表面は光触媒粒子の持つ強い酸化、還元作用を受けない。また、本発明では、透明性に優れた光触媒体が製造できることから、様々な分野に応用しても、それらの外観意匠性を損なうことがなく、処理条件を選択することにより繊維やそれらからなる構造体の風合いを損なうことも無いなど、様々な分野に応用できる実用性に優れた有用な光触媒体の製造方法を提供することが可能となる。   As described above, the production method of the present invention is a method of immobilizing photocatalyst fine particles on the resin surface by chemical bonding such as graft polymerization of a silane coupling agent, and is produced by hydrolysis of the alkoxy group of the silane coupling agent. The silanol group is firmly chemically bonded to the surface of the photocatalyst fine particles by a dehydration condensation reaction, and further, the vinyl group, epoxy group, styryl group, methacrylo group, acryloxy group, isocyanate group, etc. of the silane coupling agent are unsaturated. The functional group having a double bond is formed by chemically bonding to the surface of the resin substrate by a chemical bond such as graft polymerization by a radical generated by irradiation of radiation. Therefore, since the produced photocatalyst fine particles are firmly bonded to the resin substrate surface by a chemical bond with a silane coupling agent, the fine particles having various functions even when used in a harsh environment according to the method of the present invention. It is possible to supply a fine particle immobilization body excellent in durability, in which detachment or the like hardly occurs. Furthermore, between the photocatalyst particles and the resin substrate, silanol groups formed by hydrolysis of alkoxy groups present in the silane coupling agent are condensed to form a dense silicon oxide thin film. This thin film inhibits the direct contact of the hydroxyl radicals generated on the surface of the photocatalyst particles with the resin substrate, so that the resin substrate surface does not receive the strong oxidation and reduction action of the photocatalyst particles. Further, in the present invention, since a photocatalyst body excellent in transparency can be produced, even if applied to various fields, the appearance design properties thereof are not impaired, and the fibers and the like are selected by selecting treatment conditions. It is possible to provide a method for producing a useful photocatalyst body excellent in practicality that can be applied to various fields, for example, without damaging the texture of the structure.

Claims (8)

少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記基体表面の樹脂と前記光触媒微粒子表面に形成した薄膜とを接触させ、前記樹脂表面と前記薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法。   A method for producing a photocatalyst having at least a substrate surface made of a resin, wherein a thin film of a silane coupling agent having an unsaturated bond is formed on the photocatalyst fine particles, and the resin on the substrate surface and the thin film formed on the surface of the photocatalyst fine particles A method for producing a photocatalyst, wherein the photocatalyst is produced by bringing the resin surface into contact with an unsaturated bond present in the thin film. 少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、無機微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記薄膜を形成した無機微粒子からなるコーティング薄膜を前記基体表面に形成し、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記コーティング薄膜と薄膜を形成した光触媒微粒子とを接触させて、前記基体樹脂表面と前記無機微粒子のコーティング薄膜に存在する不飽和結合および光触媒微粒子の薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法。   A method for producing a photocatalyst comprising at least a substrate surface comprising a resin, wherein a thin film of a silane coupling agent having an unsaturated bond is formed on the inorganic fine particles, and a coating thin film comprising the inorganic fine particles formed with the thin film is formed on the substrate surface. Forming a thin film of a silane coupling agent having an unsaturated bond on the photocatalyst fine particles, contacting the coating thin film with the photocatalyst fine particles on which the thin film is formed, and existing on the substrate resin surface and the coating thin film of the inorganic fine particles A method for producing a photocatalyst by chemically bonding an unsaturated bond and an unsaturated bond present in a thin film of photocatalyst fine particles. 前記無機微粒子からなるコーティング薄膜に不飽和結合を有するシランカップリング剤及び/又はシラン化合物が含まれていることを特徴とする請求項2に記載の光触媒体の製造方法。   The method for producing a photocatalyst according to claim 2, wherein the coating thin film comprising the inorganic fine particles contains a silane coupling agent and / or a silane compound having an unsaturated bond. 少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、少なくとも不飽和結合を有するシランカップリング剤からなるコーティング薄膜を前記基体表面にグラフト重合で形成し、光触媒微粒子に不飽和結合を有するシランカップリング剤の薄膜を形成し、前記コーティング薄膜表面と前記薄膜を形成した光触媒微粒子とを接触させ、前記シランカップリング剤で形成されたコーティング薄膜表面と、光触媒微粒子の薄膜に存在する不飽和結合とを、化学結合させてなる光触媒体の製造方法。   A method for producing a photocatalyst comprising at least a substrate surface comprising a resin, wherein a coating thin film comprising a silane coupling agent having at least an unsaturated bond is formed on the substrate surface by graft polymerization, and a silane having an unsaturated bond on a photocatalyst fine particle A thin film of a coupling agent is formed, and the surface of the coating thin film and the photocatalyst fine particles that form the thin film are brought into contact with each other. The coating thin film surface formed of the silane coupling agent and the unsaturated bond existing in the thin film of the photocatalytic fine particles And a method for producing a photocatalyst body obtained by chemical bonding. 前記不飽和結合を有するシランカップリング剤からなるコーティング薄膜に無機微粒子が含まれていることを特徴とする請求項4に記載の光触媒体の製造方法。   The method for producing a photocatalyst according to claim 4, wherein the coating thin film made of the silane coupling agent having an unsaturated bond contains inorganic fine particles. 少なくとも基体表面が樹脂からなる光触媒体の製造方法であって、前記基体表面に不飽和結合を有するシランカップリング剤からなるコーティング薄膜をグラフト重合により形成し、前記コーティング薄膜に光触媒微粒子を接触させてコーティング薄膜に存在するシラノール基と光触媒微粒子の表面に存在する官能基とを脱水縮合反応により結合させてなる光触媒体の製造方法。   A method for producing a photocatalyst comprising at least a substrate surface made of a resin, wherein a coating thin film made of a silane coupling agent having an unsaturated bond is formed on the substrate surface by graft polymerization, and photocatalyst fine particles are brought into contact with the coating thin film. A method for producing a photocatalyst, wherein a silanol group present in a coating thin film and a functional group present on the surface of a photocatalyst fine particle are bonded by a dehydration condensation reaction. 前記化学結合がグラフト重合であることを特徴とする請求項1乃至5のいずれか1項に記載の光触媒体の製造方法。   The method for producing a photocatalyst according to any one of claims 1 to 5, wherein the chemical bond is graft polymerization. 前記グラフト重合が、放射線グラフト重合であることを特徴とする請求項4乃至7のいずれか1項に記載の光触媒体の製造方法。   The method for producing a photocatalyst according to any one of claims 4 to 7, wherein the graft polymerization is radiation graft polymerization.
JP2004074090A 2004-03-16 2004-03-16 Method for producing photocatalyst body Expired - Lifetime JP4566586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074090A JP4566586B2 (en) 2004-03-16 2004-03-16 Method for producing photocatalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074090A JP4566586B2 (en) 2004-03-16 2004-03-16 Method for producing photocatalyst body

Publications (3)

Publication Number Publication Date
JP2005261997A true JP2005261997A (en) 2005-09-29
JP2005261997A5 JP2005261997A5 (en) 2007-04-26
JP4566586B2 JP4566586B2 (en) 2010-10-20

Family

ID=35087097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074090A Expired - Lifetime JP4566586B2 (en) 2004-03-16 2004-03-16 Method for producing photocatalyst body

Country Status (1)

Country Link
JP (1) JP4566586B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080804A1 (en) * 2006-01-13 2007-07-19 Nbc, Inc. Composite material having antifouling property
KR100836705B1 (en) 2006-11-02 2008-06-10 한국에너지기술연구원 Synthesis of chemically bonded dye-ceramic photo-catalyst
JP2008161838A (en) * 2006-12-28 2008-07-17 Nbc Inc Catalyst carrier
JP2008212831A (en) * 2007-03-05 2008-09-18 Nbc Inc Catalyst carrier body having dust-proof property
JP2008302351A (en) * 2007-06-06 2008-12-18 Eternal Chemical Co Ltd Composite material and composition containing the same
JP2009061392A (en) * 2007-09-06 2009-03-26 Creative Life:Kk Photocatalyst body and coating composition using the same
WO2009116516A1 (en) * 2008-03-18 2009-09-24 国立大学法人東京大学 Visible-light-responsive photocatalyst material and method for producing the same
JP2010005568A (en) * 2008-06-27 2010-01-14 Nbc Meshtec Inc Composite catalyst carrier and its manufacturing method
JP2010036500A (en) * 2008-08-06 2010-02-18 Nbc Meshtec Inc Fine particulate-immobilizing inorganic material, and manufacturing method therefor
WO2011059101A1 (en) * 2009-11-16 2011-05-19 タムネットワーク株式会社 Photocatalyst coating
JP2012016646A (en) * 2010-07-07 2012-01-26 Nbc Meshtec Inc Cerium oxide catalyst carrier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101570B2 (en) * 2018-08-31 2022-07-15 シャープ株式会社 Photocatalyst paint, method for manufacturing photocatalyst paint, and method for manufacturing photocatalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225301A (en) * 1990-12-27 1992-08-14 Seiko Epson Corp Optical product having clouding preventive performance
JPH08313705A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Anti-clouding article and its production
JPH09313948A (en) * 1996-05-28 1997-12-09 Nippon Parkerizing Co Ltd Resin having photocatalyst surface, resin coating material and its production
JP2000017230A (en) * 1998-07-02 2000-01-18 Showa Denko Kk Coating composition containing photocatalyst and method for forming coating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225301A (en) * 1990-12-27 1992-08-14 Seiko Epson Corp Optical product having clouding preventive performance
JPH08313705A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Anti-clouding article and its production
JPH09313948A (en) * 1996-05-28 1997-12-09 Nippon Parkerizing Co Ltd Resin having photocatalyst surface, resin coating material and its production
JP2000017230A (en) * 1998-07-02 2000-01-18 Showa Denko Kk Coating composition containing photocatalyst and method for forming coating film

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314287B1 (en) * 2006-01-13 2013-10-02 가부시키가이샤 엔비씨 메슈테크 Composite material having antifouling property
US8349447B2 (en) 2006-01-13 2013-01-08 Nbc Meshtec, Inc. Antifouling composite material
JP5171266B2 (en) * 2006-01-13 2013-03-27 株式会社Nbcメッシュテック Composite material with antifouling properties
RU2453441C2 (en) * 2006-01-13 2012-06-20 ЭнБиСи МЕШТЕК, Инк Anti-contamination composite material
CN101341025B (en) * 2006-01-13 2012-05-30 株式会社Nbc纱网技术 Composite material having antifouling property
WO2007080804A1 (en) * 2006-01-13 2007-07-19 Nbc, Inc. Composite material having antifouling property
KR100836705B1 (en) 2006-11-02 2008-06-10 한국에너지기술연구원 Synthesis of chemically bonded dye-ceramic photo-catalyst
JP2008161838A (en) * 2006-12-28 2008-07-17 Nbc Inc Catalyst carrier
JP2008212831A (en) * 2007-03-05 2008-09-18 Nbc Inc Catalyst carrier body having dust-proof property
JP2008302351A (en) * 2007-06-06 2008-12-18 Eternal Chemical Co Ltd Composite material and composition containing the same
JP2009061392A (en) * 2007-09-06 2009-03-26 Creative Life:Kk Photocatalyst body and coating composition using the same
WO2009116516A1 (en) * 2008-03-18 2009-09-24 国立大学法人東京大学 Visible-light-responsive photocatalyst material and method for producing the same
JP2009220055A (en) * 2008-03-18 2009-10-01 Univ Of Tokyo Photocatalytic material exhibiting activity to visible light and its manufacturing method
JP2010005568A (en) * 2008-06-27 2010-01-14 Nbc Meshtec Inc Composite catalyst carrier and its manufacturing method
JP2010036500A (en) * 2008-08-06 2010-02-18 Nbc Meshtec Inc Fine particulate-immobilizing inorganic material, and manufacturing method therefor
WO2011059101A1 (en) * 2009-11-16 2011-05-19 タムネットワーク株式会社 Photocatalyst coating
CN102821944A (en) * 2009-11-16 2012-12-12 塔姆网络株式会社 Photocatalyst Coating
EP2502741A1 (en) * 2009-11-16 2012-09-26 Tam Network Co., Ltd. Photocatalyst coating
US20120225770A1 (en) * 2009-11-16 2012-09-06 Tam Network Co., Ltd. Photocatalyst coating
EP2502741A4 (en) * 2009-11-16 2013-04-24 Tam Network Co Ltd Photocatalyst coating
JP2012016646A (en) * 2010-07-07 2012-01-26 Nbc Meshtec Inc Cerium oxide catalyst carrier

Also Published As

Publication number Publication date
JP4566586B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5171266B2 (en) Composite material with antifouling properties
JP4542990B2 (en) Photocatalyst
JP4566586B2 (en) Method for producing photocatalyst body
JPWO2007039984A1 (en) Organic material containing photocatalyst
JP4965628B2 (en) Method for producing antibacterial member
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
JP5022561B2 (en) Environmental purification materials
JP2004262941A (en) Deodorizing, antibacterial and antifungal coating composition
JP4823497B2 (en) Composite member having hydrophilicity
JP3990951B2 (en) Photocatalyst-containing substrate
JP5596910B2 (en) Composite oxidation catalyst carrier and method for producing the same
JP4585188B2 (en) Antibacterial component
JP4447354B2 (en) Manufacturing method of fine particle fixed body
WO2008018178A1 (en) Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
JP4965627B2 (en) Manufacturing method of far-infrared radiator
JP4585185B2 (en) Far-infrared radiator
JP5245150B2 (en) Photocatalyst coating method for polyester molding
JP4390181B2 (en) Negative ion generator
JP2006116449A (en) Photocatalyst fiber and porous photocatalyst fiber derived from it
JP5008359B2 (en) Non-woven fabric supporting photocatalyst
JP2000167410A (en) Photocatalyst body having adsorbing function
JP2001000868A (en) Photocatalytic body and production thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250