WO2008018178A1 - Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition - Google Patents

Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition Download PDF

Info

Publication number
WO2008018178A1
WO2008018178A1 PCT/JP2007/000855 JP2007000855W WO2008018178A1 WO 2008018178 A1 WO2008018178 A1 WO 2008018178A1 JP 2007000855 W JP2007000855 W JP 2007000855W WO 2008018178 A1 WO2008018178 A1 WO 2008018178A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
substrate
silicon oxide
oxide film
compound
Prior art date
Application number
PCT/JP2007/000855
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nabeta
Satoru Miyazoe
Nobuhiko Horiuchi
Hiroshi Suizu
Toru Nonami
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Publication of WO2008018178A1 publication Critical patent/WO2008018178A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • Photocatalyst process for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
  • the present invention relates to a photocatalyst, and in its use, a photocatalyst characterized by protecting an organic polymer as a substrate from the photocatalytic function, a method for producing the photocatalyst, a photocatalyst dispersion containing the photocatalyst, and a photocatalyst Concerning photocatalyst coating composition
  • the pollutants and odor components include nitrogen oxides, inorganic compounds such as ammonia, organic compounds such as organic halogens, aldehydes, and lower fatty acids.
  • crystalline titanium oxide particularly anatase-type titanium oxide, exhibits various excellent actions based on the photocatalytic reaction. These functions are applied to exterior materials such as building materials, tiles, and bricks, wallpaper materials, interior materials such as ceiling materials, ceiling materials, or base materials represented by textiles such as clothes and strength materials, binders, etc.
  • the photocatalyst is expressed in a state in which the photocatalyst is fixed. For this reason, a technique for immobilizing a photocatalyst on a base material has been developed that maintains antifouling, deodorization, and antibacterial action, and does not peel or lose for a long period of time.
  • the base material is an organic polymer such as a resin plate, a film, or a fiber
  • the base material itself is oxidatively decomposed by the photocatalytic action. If these base materials are decomposed and deteriorated, cracks and cracks may occur, and the photocatalyst may be peeled off from the base material. As a result, adverse effects such as the loss of photocatalysis, the physical properties of the substrate itself being reduced, and the appearance of the surface being damaged due to the creation of holes that are chewy or worm-like are generated.
  • rutile titanium oxide with a low photocatalytic activity is used, or the surface is made of silica or alumina for rutile titanium oxide.
  • the device has been devised to prevent the development of photocatalytic action by coating with.
  • an active blocking layer made of a silicone resin, a fluororesin, or other inorganic compound is installed between the organic base material and the photocatalyst layer to prevent direct contact between the organic base material and the photocatalyst.
  • a method for suppressing the deterioration of the organic base material has also been studied (Patent Documents 4 and 5). According to this method, it is possible to suppress deterioration of the organic base material.
  • Patent Documents 4 and 5 According to this method, it is possible to suppress deterioration of the organic base material.
  • the processing cost will be expensive.
  • problems remain in the adhesion stability of the organic substrate and the active blocking layer, and the active blocking layer and the photocatalytic layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-27 6 7 06
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 10-2-4 4 1 6 6
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 3 _ 2 4 7 9 7
  • Patent Document 4 Japanese Patent Laid-Open No. 08-8-14 1 500 3
  • Patent Document 5 Japanese Patent Laid-Open No. 09-9-2 2 9 4 9 3
  • Patent Document 6 Japanese Patent Application Laid-Open No. 11-0 1 0 8 0 3
  • Patent Document 7 Japanese Patent Laid-Open No. 2 00 0 _ 0 7 1 3 60
  • the present invention has been made in view of the situation as described above, and while maintaining sufficiently photocatalytic functions such as antifouling, deodorizing, and antibacterial, an organic polymerization serving as a base material in use thereof
  • the present invention relates to a photocatalyst capable of suppressing deterioration of a product, a production method thereof, a photocatalyst dispersion containing a photocatalyst, and a photocatalyst coating composition containing a photocatalyst.
  • the compound containing phosphorus and calcium is formed on the surface of the silicon oxide film and / or on the surface of the substrate not covered with the silicon oxide film as an immobilized product containing the compound.
  • step (F) a step of heat-treating the photocatalyst obtained in the step (E) at 50 ° C to 700 ° C;
  • a pH of the mixed solution containing both the substrate and the silicate in the step (A) is maintained at 5 or less.
  • the simulated body fluid is Na +: 1 20 to 1 60 mM, K +: 1 to 20 mM, Ca 2+ : 0.5 to 50 mM, Mg 2+ : 0.5 to 50 mM, CI _: 80 to 2 O OmM, H C0 3 -: 0. 5 ⁇ 30mM, HP 0 4 2 _: "! ⁇ 20mM, S 0 4 2 -: 0."!
  • the method for producing a photocatalyst according to [1 2] which is an aqueous solution containing ⁇ 2 OmM and F ⁇ : 0 to 5 mM.
  • a photocatalyst dispersion comprising the photocatalyst according to [1], a liquid medium, and a dispersion stabilizer.
  • a photocatalyst coating composition comprising the photocatalyst according to [1], a liquid medium, and a binder.
  • the present invention it is possible to reduce the degradation and deterioration of an organic polymer that comes into contact with the photocatalyst while maintaining the photocatalytic function, which is difficult when using a commercially available photocatalyst made of titanium oxide or the previously reported technology. It is possible to provide a photocatalyst capable of being suppressed, a production method thereof, a photocatalyst dispersion containing the photocatalyst, and a photocatalyst coating composition containing the photocatalyst.
  • FIG. 2-A is a diagram showing the photodegradation activity of photoaldehyde 1 to photoacetaldehyde.
  • FIG. 2-B is a diagram showing the photodegradation activity of photoaldehyde 1 to 5 with acetaldehyde.
  • FIG. 3 is a graph showing the weight residual ratio of a film made of photocatalysts 1 to 5 and polyacrylic acid.
  • the photocatalyst according to the present invention includes a substrate having photocatalytic activity, a silicon oxide film covering the substrate, and a compound containing phosphorus and calcium, and the following conditions (a) and (b) (A) Phosphorus content is 0.1 wt% or more and 10 wt% or less, (b) Calcium content is 0.2 wt% or more and 20 wt% or less.
  • photocatalyst coated with a silicon oxide film has a photocatalytic function. This means that the surface of the substrate is coated with a film made of silicon oxide. Therefore, the photocatalyst is formed later in the presence of silicon oxide, which includes the photocatalyst immobilized on silicon oxide, and the complex in which silicon oxide and photocatalyst are formed in parallel in the same container are included. I can't.
  • the aspect in which the silicon oxide film covers the substrate is not particularly limited, and includes both an aspect in which a part of the substrate is covered and an aspect in which the whole is covered. From the viewpoint of obtaining higher photolytic activity, it is preferable that the surface of the substrate is uniformly coated with a film made of silicon oxide.
  • the silicon oxide film may be in the form of an unfired film or a fired film.
  • a fired film of silicon oxide after firing is preferred.
  • a metal compound photo-semiconductor As the substrate having photocatalytic activity (hereinafter abbreviated as “substrate” as appropriate), a metal compound photo-semiconductor can be used.
  • the metal compound optical semiconductor include titanium oxide, zinc oxide, tungsten oxide, and titanium titanate. Of these, titanium oxide is preferable because of its excellent photocatalytic activity, harmlessness and excellent stability.
  • titanium oxide include amorphous, anatase type, rutile type, and brookite type. Of these, the anatase type or rutile type, which are excellent in photocatalytic activity, or a mixture thereof is more preferred, and these may contain a small amount of amorphous material.
  • one or more transition metals added to a metal compound optical semiconductor one or more typical elements of group 14, 15 and / or 16 added to a metal compound semiconductor
  • An optical semiconductor composed of two or more metal compounds and a mixture of two or more metal compound semiconductors may be used.
  • particles of a metal compound optical semiconductor as the substrate.
  • a molded body, a fiber, a coating film, or the like in which a part of the surface of the metal compound optical semiconductor is exposed can be used.
  • the substrate preferably contains a metal compound optical semiconductor having a specific surface area of 30 m 2 / g or more.
  • the substrate can be clearly recognized as particles
  • the specific surface area of the substrate fixed on a molded body, fiber, coating film, etc. Cannot be used for the T method.
  • the primary particle diameter obtained from X-ray diffraction analysis and Sierra set calculation or primary particle observation using an electron microscope is used as the basis.
  • the “surface area” is calculated in spherical form.
  • the crystal phase is grasped from diffraction analysis of X-rays and electron beams, and the “weight” is calculated from the true density of the crystal phase and the volume obtained from the above spherical conversion. This makes it possible to determine the specific surface area.
  • the silicon oxide film has no pores is used as a raw material when producing a photocatalyst coated with a silicon oxide film.
  • the substrate having photocatalytic activity and the photocatalyst coated with a silicon oxide film prepared using the substrate having photocatalytic activity are oxidized. It means that there are substantially no pores in the silicon film.
  • the pore size distribution of a photocatalyst including a substrate having photocatalytic activity and a substrate provided with a silicon oxide film is grasped by pore distribution measurement such as a nitrogen adsorption method. Then, by comparing these, it can be determined whether or not there are substantially no pores in the silicon oxide film.
  • the grasping method in the nitrogen adsorption method can determine the presence or absence of pores in the silicon oxide film by the following methods (1) to (4).
  • an example using photocatalyst particles as a substrate will be described.
  • the I og differential pore volume of the photocatalyst coated with the silicon oxide film is less than the I og differential pore volume of the photocatalyst particle. If there is no area larger than 1 ml / g, it is determined that the silicon oxide film has no substantial pores. If there is an area larger than 0.1 mI / g, silicon oxide It is determined that the membrane has pores. It should be noted that 0.1 ml / g or more is because, in the pore distribution measurement by the nitrogen adsorption method, an Iog differential pore volume value often causes a measurement error of about 0.1 m I / g width. It is.
  • the two I og differential pore volume distribution curves were compared, and the I og differential pore volume of the photocatalyst coated with the silicon oxide film in the region of 10 to 1 000 angstroms More preferably, there is no region larger than the differential pore volume by 0.1 mI / g or more.
  • the silicon oxide film has pores, it is difficult to improve the photolytic activity. The reason for this is not necessarily clear, but the presence of pores facilitates light scattering and reflection at the silicon oxide film, reducing the amount of ultraviolet light reaching the substrate having photocatalytic activity, and increasing the positive polarity due to photocatalytic excitation. This is presumably due to a decrease in the generation of holes and electrons.
  • the thickness of the silicon oxide film increases by the volume of the pores for those with pores compared to those without pores. It is assumed that sufficient photolytic activity cannot be obtained because the physical distance from the organic substance that is the target of decomposition increases.
  • Silicon supported amount per surface area of 1 m 2 of the photocatalyst and the silicon oxide film coated according to the present invention, a silicon content containing photocatalyst coated silicon oxide film, the surface area of the photocatalyst coated with a silicon oxide film Is a calculated value calculated from
  • the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst coated with the silicon oxide film is 0.1 mg or more and 2. Omg or less, preferably 0.1 mg per 1 m 2 of the surface area. 2 mg or more and 1.5 mg or less, more preferably 0.16 ⁇ or more and 1.25 mg or less, and further preferably 0.18 mg or more and 1.25 mg or less.
  • the photocatalytic activity improvement effect by the silicon oxide film is small. Meanwhile, 2. Om If it exceeds g, the ratio of the substrate to the photocatalyst coated with the silicon oxide film is too low, so that the photocatalytic function is hardly improved. By making the silicon loading in the above range, the effect of improving the photocatalytic activity by the silicon oxide film becomes remarkable.
  • the surface area of the photocatalyst was measured using a BET specific surface area measuring device using nitrogen adsorption / desorption after heat treatment at 15 ° C for 15 minutes in a dry gas stream with a dew point of -195.8 ° C or less. Can be measured.
  • the conventional method for producing a photocatalyst having a structure covered with a silicon oxide film has the following problems.
  • (E) A silicon oxide film having pores is formed to cover the pH region where the silicate compound gels quickly.
  • the raw material for the silicon oxide film can be made inexpensive.
  • no alcohol is produced as a by-product during manufacturing.
  • no organic medium or alcohol is used. As a result, expensive explosion-proof specialized equipment is not required, and waste liquid treatment is not complicated.
  • the treatment can be performed in the liquid phase, it is relatively easy to arbitrarily control the amount of silicon supported.
  • the PH of the mixed solution containing both the substrate and silicate is set to 5 or less. Therefore, silicidation A solution containing the compound can be stably present, and silicon oxide having substantially no pores can be formed on the surface of the substrate.
  • examples of the aqueous medium include water or a mixed liquid containing water as a main component and containing an organic solvent that is soluble in water among aliphatic alcohols, aliphatic ethers, and the like.
  • Specific examples of the aqueous medium include water and a mixed liquid of water and methyl alcohol, water and ethyl alcohol, water and isopropanol, and the like. Of these, water is preferred. In addition, these water and mixed liquids can be used alone or in combination of two or more.
  • the aqueous medium includes an organic solvent that can be dissolved in water among aliphatic alcohols, aliphatic ethers, etc., and aliphatic amines, Surfactants such as aromatic polyethers and gelatins can also be mixed.
  • silicate silicic acid and / or an oligomer thereof may be used, and two or more kinds may be mixed and used.
  • Sodium salt and potassium salt are preferable from the viewpoint of easy industrial availability, and a sodium silicate aqueous solution (JISK 140 8 "water glass") is more preferable because the dissolution step can be omitted.
  • a coating method comprising a step of mixing at least one of the above and a step of aging the mixed solution. In the aging process, the coating of the silicon oxide film on the substrate gradually proceeds.
  • the acidic region having a pH of 5 or less is a region in which a solution containing a silicic acid compound can be stably present and silicon oxide can be formed into a film on the surface of the substrate.
  • the pH of the aqueous medium is always measured when the substrate, the silicate, and the aqueous solvent are mixed and aged.
  • a method of adjusting by adding an acid and a base may be used as appropriate. However, it is easy to neutralize the total amount of the base components contained in the silicate used in the production and to have an amount of acid sufficient to be lower than pH 5 in the aqueous medium in advance.
  • any acid can be used as the acid
  • mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferably used. Only one kind of acid may be used, or two or more kinds of acids may be mixed and used. Of these, hydrochloric acid and nitric acid are preferred.
  • sulfuric acid is used, if a large amount of sulfur remains in the photocatalyst, the adsorption efficiency may deteriorate over time.
  • photocatalyst The sulfur content therein is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, based on the total weight of the photocatalyst.
  • the base the total amount of the base components contained in the silicate is neutralized, and a sufficient amount of acid is previously present in the aqueous medium so that the pH is 5 or less. There is no need to use it separately.
  • any base can be used. Of these, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferably used.
  • the reaction conditions such as reaction temperature and reaction time when the mixed solution is aged and the silicon oxide film is coated on the substrate are conditions that do not adversely affect the formation of the target silicon oxide film. If there is no particular limitation.
  • the reaction temperature is preferably 10 ° C. or higher and 20 ° C. or lower, more preferably 20 ° C. or higher and 80 ° C. or lower. When the reaction temperature is too low, the condensation of the silicate compound is difficult to proceed, so that the formation of the silicon oxide film is remarkably delayed and the productivity may be deteriorated. If the reaction temperature is too high, a condensate of a silicate compound, that is, silicon oxide fine particles and / or gel, etc. is likely to be generated, so that the silicon oxide film becomes porous or silicon oxide is locally formed on the substrate surface. It may be done.
  • the aging time is preferably 10 minutes or more and 500 hours or less, and more preferably 1 hour or more and 100 hours or less. If the aging time is too short, the coating with the silicon oxide film does not proceed sufficiently, and the effect of improving the photolytic activity by the coating may not be sufficiently obtained. When the aging time is too long, the substrate having photocatalytic activity is sufficiently covered with the silicon oxide film and the photodegradation activity is improved, but the productivity may be deteriorated.
  • the concentration of the substrate having photocatalytic activity contained in the mixed solution is preferably 1% by weight or more and 50% by weight or less, and more preferably 5% by weight or more and 30% by weight or less. If the substrate concentration is too low, productivity may deteriorate. On the other hand, if the substrate concentration is too high, the coating of the silicon oxide film on the substrate may not proceed uniformly, and the effect of improving the photolytic activity may not be sufficiently obtained.
  • the concentration of silicon contained in the mixture is 0.05 to 5% by weight It is preferably 0.1% by weight or more and 3% by weight or less. If the silicon concentration is too low, the condensation of the silicate compound is delayed and the substrate may not be sufficiently covered with the silicon oxide film. If the silicon concentration is too high, the coating of the silicon oxide film on the substrate may not proceed uniformly.
  • the ratio of the amount of substrate and silicates having a photocatalytic activity as the surface area 1 m 2 per silicon atom of the substrate, 0. 0 1 mg / m 2 or more, 0. It is preferably 5 mg / m 2 or less. If the ratio is within this range, in the step of forming a silicon oxide film on the surface of the substrate, that is, an aqueous medium containing the substrate and a silicate, an aqueous medium containing a silicate, the substrate, and the substrate.
  • a desired silicon oxide film can be formed on the surface of the substrate in the step of mixing and aging at least one of an aqueous medium containing silicate and an aqueous medium containing silicate.
  • a silicon oxide film having pores can be formed. Few. In the range of 0.5 mg / m 2 or more and 5. Omg / m 2 or less, as the ratio increases, the amount of unreacted substances increases and a silicon oxide film having pores may be formed. However, it is possible to avoid the formation of pores due to the progress of condensation of unreacted substances by shortening the treatment time.
  • Step a Mixing at least one set selected from the group consisting of an aqueous medium containing a substrate and a silicate, an aqueous medium containing a silicate and a substrate, and an aqueous medium containing a substrate and an aqueous medium containing a silicate.
  • Step b The step of aging this mixed solution and coating the substrate with a silicon oxide film
  • Step c A step of separating and washing the photocatalyst coated with the silicon oxide film from the aqueous medium without neutralizing the mixed solution
  • Step d comprising a step of drying and / or firing the photocatalyst coated with the silicon oxide film, and in steps a and b, both the substrate and the silicate
  • the manufacturing method of maintaining the aqueous medium containing the pH at PH 5 or lower is mentioned.
  • the method for separating the photocatalyst coated with the silicon oxide film from the mixed solution is not particularly limited.
  • known methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal separation can be suitably used. .
  • the method for cleaning the photocatalyst coated with the silicon oxide film is not particularly limited. For example, redispersion in pure water and repeated filtration, desalting and washing by ion exchange treatment, and repeated decantation can be suitably used. Also, depending on the use of the photocatalyst coated with a silicon oxide film, the cleaning step can be omitted.
  • the drying method of the photocatalyst coated with the silicon oxide film is not particularly limited, and for example, air drying, reduced pressure drying, heat drying, spray drying, and the like can be suitably used. Also, depending on the use of the photocatalyst coated with a silicon oxide film, the drying step can be omitted.
  • the method for firing the photocatalyst coated with the silicon oxide film is not particularly limited, and, for example, reduced-pressure firing, air firing, nitrogen firing and the like can be suitably used. Usually, firing can be carried out at a temperature of 200 ° C. or more and 120 ° C. or less, but preferably 400 ° C. or more and 100 ° C. or less, preferably 400 ° C. or more and 80 ° C. or more. C or less is more preferable. If the firing temperature is too low, a desired fired silicon oxide film may not be formed on the substrate surface, and sufficient photolytic activity may not be obtained. If the firing temperature is too high, sintering of the photocatalyst coated with the silicon oxide film may proceed too much, and sufficient photolysis activity may not be obtained. The
  • the water content contained in the photocatalyst coated with the silicon oxide film is preferably 7% by weight or less. 5% by weight or less is more preferable, and 4% by weight or less is most preferable. If the water content is too high, there is a possibility that a large amount of water is present around the silicon oxide, so that the gas adsorption performance is not sufficiently exhibited, and at the same time, sufficient photolytic activity cannot be obtained.
  • the photocatalyst coated with the silicon oxide film thus obtained can adsorb both acidic gas such as acetic acid, basic gas such as ammonia, and nonpolar gas such as toluene, and has excellent photocatalytic performance. Yes.
  • the pH is lowered, the concentration of silicate, It is important to appropriately select the conditions such as the concentration of the substrate, the acidic solution to be used, the firing temperature after film formation, and the firing time.
  • the “compound containing phosphorus and calcium” is a compound containing phosphorus and calcium as its constituent substances.
  • the shape, structure, composition, production method, etc. are not limited, but as an example of a compound containing phosphorus and calcium, apatite can be mentioned.
  • Apatite is known as a general term for a group of minerals with a composition of M 1 0 (Z 0 4 ) 6 X 2 , and the main components of M and Z are generally calcium and phosphorus, respectively.
  • X is selected from the group consisting of F, C l, OH, and C 0 3 —or more.
  • the aperture usually has a hexagonal columnar shape, a plate shape, or the like.
  • the "compound containing phosphorus and calcium” indicates that the photocatalyst contains phosphorus and calcium, and the containing form, the content, and the preparation method are not particularly limited.
  • the phosphorus content and calcium content contained in the photocatalyst of the present invention are as follows.
  • the phosphorus content is preferably 0.1% by weight or more and 10% by weight or less, more preferably 1% by weight or more and 10% by weight or 0 / o based on the total weight of the photocatalyst. It is as follows.
  • the calcium content is preferably 0.2% by weight or more and 20% by weight or less, more preferably 2% by weight or more and 20% by weight or less, based on the total weight of the photocatalyst.
  • the coating amount of the compound containing phosphorus and calcium on the substrate having photocatalytic activity is not sufficient, and the protective effect of the organic substrate is not sufficiently exhibited.
  • the phosphorus content or the strength lucum content is too high, the coating amount of the compound containing phosphorus and the strength lucum on the substrate having photocatalytic activity is too large, and the ultraviolet light reaches the substrate having sufficient photocatalytic activity. Disappear. As a result, the photocatalytic activity is significantly reduced.
  • the step of producing a compound containing phosphorus and calcium is not particularly limited, but a compound containing phosphorus and calcium is produced and immobilized on a photocatalyst coated with a silicon oxide film produced in advance.
  • the method is the simplest and most effective method.
  • the method for producing a compound containing phosphorus and calcium and immobilizing the compound as a fixed product on the photocatalyst coated with a silicon oxide film is not particularly limited, but a method for producing a protein can be applied. It is. In the production of the powder candy, there are a precipitation method, a wet method, a hydrothermal method, a mechanochemical method, etc., but a precipitation method characterized by precipitation in a simulated body fluid is most desirable.
  • the simulated body fluid used in the present invention includes N a CI, N a H C0 3 , N a 2 H P0 4 , N a H 2 P0 4 , KC I, KH C0 3 , K 2 H P0 4 , KH the 2 P0 4, Mg CI 2, C a CI 2, N a 2 S0 4, and N a F any compound selected from like by dissolving in water, can be prepared. However, it is essential to add a compound containing calcium and a compound containing phosphorus. If necessary, HCI, (CH 2 OH) 3 CN H 2 or the like can be added.
  • the compound in the preparation of the simulated body fluid, may be prepared in a single simulated body fluid, or a solution containing each compound is prepared separately and added as appropriate, and finally, You may prepare so that it may become a simulated body fluid. For example, prepare a solution containing calcium and a solution containing phosphorus separately, and then mix the two solutions A method of finally preparing a simulated body fluid can be performed.
  • the order in which the photocatalyst coated with a silicon oxide film is added to the simulated body fluid is not particularly limited. After preparing the simulated body fluid, a photocatalyst coated with a silicon oxide film may be added, or after adding a photocatalyst coated with a silicon oxide film to a solution containing calcium, a solution containing phosphorus may be added. Alternatively, a solution containing calcium may be added after adding a photocatalyst coated with a silicon oxide film to a solution containing phosphorus. Any order can produce the desired photocatalyst
  • composition of the simulated body fluid used in the present invention N a +: 1 20 ⁇ 1 60mM , K +: 1 ⁇ 20mM, C a 2+: 0. 5 ⁇ 50mM, M g 2+: 0. 5 ⁇ 50mM, CI _: 80 ⁇ 200mM, H CO 3 _: 0. 5 ⁇ 30mM, H P0 4 2 _: "! ⁇ 20mM, S0 4 2 -: 0."! ⁇ 20 mM, F—: 0 to 5 mM, are preferable. If these concentrations are too low, the formation of calcium phosphate can take a long time. Also, if these concentrations are too high, calcium phosphate formation may occur rapidly, making it difficult to control the porosity and film thickness.
  • the immersion time for mixing and holding the simulated body fluid and the photocatalyst coated with the silicon oxide film is preferably 1 second to 10 days, more preferably 1 minute to 5 days.
  • the immersion temperature when mixing and holding the simulated body fluid and the photocatalyst coated with the silicon oxide film is not particularly limited, but is preferably 0 ° C or higher and 100 ° C or lower, and 30 ° C or higher and 80 ° C or higher. The following is more preferable. If the temperature is too low, it may take a long time to produce a compound composed of phosphorus and calcium. If the temperature is too high, it may be difficult to control the production of a compound composed of phosphorus and calcium due to evaporation of the simulated body fluid. is there.
  • the above-described production method can produce a photocatalyst containing a compound containing phosphorus and calcium as an immobilized product.
  • This photocatalyst can be subjected to desired post-treatments such as a heat treatment step and a surface treatment step depending on the application.
  • desired post-treatments such as a heat treatment step and a surface treatment step depending on the application.
  • the compound containing phosphorus and calcium is immobilized, and from the viewpoint of crystallization, 50 It is desirable to carry out at a temperature of 750C to 700 ° C.
  • the immobilized product containing the compound containing phosphorus and calcium exhibits an effect as an adsorbent or a spacer.
  • a photocatalyst is excellent in adsorption performance and hardly deteriorates an organic base material (a base material made of an organic substance such as a resin).
  • “deterioration of the organic base material” means that when the photocatalyst is added to the organic base material, the organic base material is decomposed and deteriorated by the decomposing power of the photocatalyst.
  • the spacer effect of the immobilized substance in the photocatalyst is due to the structure in which the titanium oxide particles do not directly contact the organic base material. Therefore, it is difficult for the organic base material to be decomposed while maintaining the decomposing power of the photocatalyst.
  • the immobilization product containing the phosphorus- and calcium-containing compound of the present invention is not particularly limited as long as it has an effect as a spacer.
  • the titanium oxide particles are organic. Any structure that can prevent direct contact with the substrate is acceptable.
  • the photocatalyst of the present invention includes the above-described immobilized product that is immobilized on the surface thereof by a method such as the above-described precipitation.
  • the immobilized product contains a compound containing phosphorus and calcium and is located on the surface of the silicon oxide film and / or on the surface of the substrate not covered with the silicon oxide film, and is immobilized on the surface. It shall mean.
  • the shape of the immobilization material examples include protrusions such as rods, needles, and cones, membranes, and surface layers.
  • the immobilization product has a smaller shape than the substrate.
  • the immobilization product of the compound containing phosphorus and calcium is thicker than the thickness of the silicon oxide film formed on the substrate or has a shape protruding from the surface of the photocatalyst.
  • the photocatalyst according to the present invention can be used for the following applications, for example. However, the described use is an applicable example, and does not limit the present invention.
  • Antibacterial purposes include: car seats, seat covers, force—pets, handles, handle covers, shift knobs, dash pods, room lamps, train straps, net racks, linings, instrument panels, Door knob, inner wall, floor, ceiling, flooring such as indoor flooring, tatami mats, blinds, mouth scrub Furniture, decorative panels, blinds, bathroom components, handrails, tablecloths, wallpaper, wall materials, rock wool and other ceiling materials, bran, shoji, refrigerators, cookers, hand dryers, personal computers, mice, keyboards, etc.
  • plastering materials such as building rubber, curtains, cloth, clothing, bedding, rugs, upholstery,
  • the organic material may contain a photocatalyst directly.
  • a masterbatch containing a photocatalyst with a high concentration may be produced and then applied to a desired resin.
  • paint such as phenol resin, vinyl resin, epoxy resin, paint, ink, coating agent, wallpaper surface finishing agent, ceiling building material finishing agent, etc.
  • a layer may be coated.
  • the photocatalyst according to the present invention can be used in the form of a dispersion or a coating composition, if necessary. Furthermore, high activation, imparting visible light response, compounding with antibacterial metal compounds, imparting dispersibility by surface modification, or suppressing degradation of photocatalyst-containing materials by compounding with compounds that are inactive as photocatalysts, etc. It can also be used as a raw material for photocatalyst improvement methods.
  • the photocatalyst dispersion liquid containing the photocatalyst according to the present invention includes the photocatalyst and the liquid medium according to the present invention. Body, and a dispersion stabilizer.
  • the method of using this dispersion liquid is not particularly limited, but it may be used after being mixed with a base material to which a photocatalytic function is to be imparted, or may be applied to the surface of the base material and optionally dried. And / or after firing. Alternatively, it can be used after spraying on the substrate in a spray form.
  • the target base materials can be used for ceramics, glass, film, wallpaper, building materials, timber, clothing, ceiling materials, tableware, etc.
  • the photocatalyst according to the present invention can protect the organic base material, the wallpaper, curtain, clothing, nonwoven fabric, cloth, film, organic paint, organic interior material, organic building material mainly composed of an organic polymer In addition, it is desirable to use it for textile products, etc. in that the effect of the present invention is exhibited. It can also be used as a raw material for photocatalyst-containing materials and photocatalyst coating compositions.
  • liquid medium examples include water, alcohols such as methyl alcohol and ethyl alcohol, aromatics such as benzene, toluene and xylene, esters such as ethyl acetate, and ketones such as acetone. These can be suitably used alone or in combination of two or more according to the application. However, it is more desirable to use water from the viewpoint of environmental harmony.
  • the dispersion stabilizer ionic surfactants, wetting agents, thickeners, acids, bases and the like can be suitably used.
  • the surfactant is preferably an ionic surfactant such as a carbonate, a sulfonate, a sulfate ester salt, a phosphate ester salt, an alkylamine salt, or a quaternary ammonium salt.
  • the concentration of the photocatalyst contained in the photocatalyst dispersion liquid is not particularly limited, but it is preferably 2% by weight or more and 50% by weight or less with respect to the entire photocatalyst dispersion liquid. More preferably, it is 30% by weight or less. If the concentration of the photocatalyst is too low, the concentration of the photocatalyst contained in the dispersion may decrease and the economic efficiency may deteriorate. If the concentration of the photocatalyst is too high, the dispersibility of the photocatalyst contained in the dispersion may deteriorate.
  • the concentration of the dispersion stabilizer contained in the photocatalyst dispersion liquid is not particularly limited, but the total amount of the dispersion stabilizer is desirably 1% by weight or more and 100% by weight or less based on the photocatalyst. It is more desirable that it be 2 wt% or more and 200 wt% or less. If the concentration of the dispersion stabilizer is too low, the dispersion of the photocatalyst by the dispersion stabilizer may not proceed sufficiently. If the concentration of the dispersion stabilizer is too high, the active ingredient exhibiting a photocatalytic action may be reduced when the dispersion is actually used.
  • the equipment to be used is not particularly limited. Force Wet dispersion equipment such as a pole mill pulverizer, a bead mill pulverizer, an ultrasonic pulverizer, and a high-pressure wet atomizer can be suitably used. It is. When dispersing, these wet dispersion devices may be used alone or a plurality of devices may be used in succession. In addition, before the dispersion by the wet pulverizer, coarse pulverization may be performed by a pulverizer such as a dry pulverizer.
  • the photocatalyst coating composition containing the photocatalyst according to the present invention includes the photocatalyst according to the present invention, a liquid medium, and a binder.
  • the method of using this photocatalyst coating composition is not particularly limited, but it may be used after being applied to the surface of a base material to which a photocatalytic function is to be imparted and subjected to any drying and / or baking treatment. At this time, it may be applied directly to the target substrate, or it may be applied after coating one or more intermediate layers to improve adhesion or protect the substrate. I do not care. Alternatively, it can be used after spraying on the substrate.
  • the target substrate the same ones as described above can be used.
  • the photocatalyst according to the present invention can protect the organic base material, the effect of the present invention can be exerted mainly by using it for a product made of an organic polymer as exemplified above. This is desirable.
  • liquid medium for example, the same ones as those used in the photocatalyst dispersion liquid exemplified above can be used. These can be suitably used singly or in combination of two or more according to the application. However, from the viewpoint of environmental harmony, it is preferable to use water as the liquid medium.
  • binder examples include colloidal silica, silicone resin, and alkoxy.
  • a block polymer body or a gradient polymer having two or more types of partial structures in one molecule can be used. Of these, titanium compounds, silicon compounds, and fluororesins are preferred because they are hardly decomposable.
  • a titanium compound and a silicon compound are preferable because restrictions on heat treatment after coating are not severe.
  • colloidal silica, orthotitanic acid, titanium peroxide, and titanium oxide sol, which are completely composed of inorganic substances, are more preferable.
  • the photocatalyst coating composition according to the present invention is not particularly limited in the production method, and any method may be used as long as it is a wet treatment method having a dispersion or grinding effect.
  • the constituent components may be mixed and then subjected to dispersion, pulverization treatment, or stepwise treatment. Further, a method of mixing a binder with the photocatalyst dispersion can also be used.
  • photocatalyst an uncoated photocatalyst, a photocatalyst coated with a silicon oxide film, and a photocatalyst containing a compound composed of phosphorus and calcium are all referred to as “photocatalyst”.
  • the calcium content was quantified using a fluorescent X-ray analysis method (LAB CENTR XR E-1700, Shimadzu Corporation).
  • the silicon content was quantified using X-ray fluorescence analysis (LAB CENTER XRE— 1700, Shimadzu Corporation).
  • the specific surface area was measured by a BET method specific surface area measuring device.
  • Liquid A Water 200 g and 1 N aqueous hydrochloric acid 66. 9 g was added to a glass flask, titanium dioxide (S T_01, Ishihara Sangyo Co., adsorbed water content 9 wt%, specific surface area by BET method specific surface area measuring apparatus 300m 2 / g) 24.5 g was dispersed to prepare Liquid A. Beaker one in water 1 00 g of water glass No. 1 (S i O 2 content of 35 to 3 8 wt 0/0, JIS- K 1 408 ) 1 0. 7 g was added and the stirred solution B. Liquid A was maintained at 35 ° C and stirred while liquid B was added dropwise at 2 ml / min to obtain liquid mixture C.
  • the pH of mixture C at this time was 2.3. Stirring was continued for 3 days while maintaining the mixture C at 35 ° C. Thereafter, the mixture C was subjected to pressure reduction filtration, and the obtained residue was washed by repeating redispersion in 50 mL of water and filtration under reduced pressure four times, and then allowed to stand at room temperature for 2 days.
  • the obtained solid was pulverized in a mortar and then subjected to a baking treatment at 600 ° C. for 3 hours to obtain photocatalyst 1.
  • the photocatalyst 1 had a phosphorus content of 0.05% by weight or less, a calcium content of 0.05% by weight or less, and a silicon content of 6.9% by weight.
  • the specific surface area of this photocatalyst 1 was 212.8 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 1 was 0.32 mg.
  • OmM, S 0 4 2 _: 0.5 mM Prepare an aqueous solution, add Photocatalyst 1 to it, and leave it at 50 ° C for 14 days did. After standing, it was filtered and heat-treated at 100 ° C for 3 hours to obtain photocatalyst 2. Phosphorus content of this photocatalyst 2 was 0.8% by weight, calcium content was 1.8% by weight The silicon content was 6.5% by weight. Further, the specific surface area of the photocatalyst 2 was measured by a BET specific surface area measuring apparatus, and found to be 199.1 m 2 / g. Therefore, silicon supported amount per surface area of 1 m 2 of photocatalytic 2 0. 33 mg der ivy.
  • the photocatalyst 3 had a phosphorus content of 1.7% by weight, a calcium content of 3.9% by weight, and a silicon content of 6.1% by weight. Further, the specific surface area of the photocatalyst 3 was measured by a BET specific surface area measuring apparatus, and found to be 207.0 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 3 was 0.29 mg.
  • Titanium dioxide (S T_0 1, Ishihara Sangyo Co., adsorbed water content 9 wt%, a specific surface area of 300 m 2 / g) and, in the air, and the photocatalyst 4 was dried at 200 ° C.
  • the photocatalyst 4 had a phosphorus content of 0.05% by weight or less, a calcium content of 0.05% by weight or less, and a silicon content of 0.0% by weight. Further, when the specific surface area of this photocatalyst 4 was measured with a BET specific surface area measuring device, 2 1 4. 3 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 4 was 0. Omg.
  • OmM, S 0 4 2 _: 0.5 mM Prepare an aqueous solution, and add photocatalyst 4 to it. And left at 50 ° C for 14 days. After standing, it was filtered and heat-treated at 100 ° C for 3 hours to obtain photocatalyst 5.
  • the photocatalyst 5 had a phosphorus content of 1.9% by weight, a calcium content of 4.3% by weight, and a silicon content of 0.0% by weight.
  • the specific surface area of the photocatalyst 5 was measured by a BET method specific surface area measuring apparatus, 1 88. 2m 2 / g der ivy. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 5 was 0.0 mg.
  • the slide glass (2.6 cm X 7.6 cm, thickness 1 mm) whose weight was measured in advance was immersed in the ethanol dispersion A of the photocatalyst 2 and pulled up. Every 90 seconds, two-thirds of the slide glass was submerged 12 times at a speed of 0.4 cm per second. Thereafter, the slide glass was dried at room temperature. Next, the photocatalyst 2 adhering to the other surface was removed by rubbing with a glass plate except for one side of the slide glass of 2.6 cm ⁇ 7.6 cm (one surface of the slide glass).
  • a photocatalyst sample plate A was produced by subjecting the slide glass to firing at 400 ° C for 3 hours in an air atmosphere in an electric furnace.
  • photocatalyst 2 applied weight was 6. Omg, coated area was 11.8 cm 2 , per area The coating weight was 5.1 g / m 2 .
  • Photocatalyst sample plate B was prepared in the same manner as described above except that photocatalyst 3 was used instead of photocatalyst 2 and dipping and pulling were performed once.
  • photocatalyst 3 applied weight was 5.9 mg
  • coated area was 11.7 cm 2
  • per area The coating weight was 5. O g / m 2 .
  • Photocatalyst sample plate C was produced in the same manner as described above except that photocatalyst 4 was used instead of photocatalyst 2 and dipping and lifting were performed only once.
  • photocatalyst 4 applied weight was 5.9 mg
  • application area was 11.8 cm 2
  • per area coating weight was 5. O g / m 2.
  • Photocatalyst sample plate D was prepared in the same manner as described above except that photocatalyst 5 was used instead of photocatalyst 2 and dipping and lifting were performed only once.
  • photocatalyst 5 applied weight was 5.8 mg
  • the application area was 11.8 cm 2
  • the coating weight was 4.9 g / m 2 .
  • Photocatalyst sample plate E was produced in the same manner as described above except that photocatalyst 1 was used instead of photocatalyst 2 and dipping and lifting were performed only once.
  • photocatalyst 1 applied weight was 5.9 mg
  • coated area was 11.7 cm 2
  • per area The coating weight was 5. O g / m 2 .
  • Photocatalyst sample plates A, B, C, D, and ⁇ ⁇ prepared in the above were irradiated with ultraviolet rays of 5.4 mW / cm 2 for 3 hours in an air atmosphere.
  • a 27W black light bull light (Sankyo Electric, FPL 27 BLB) was used as the light source, and UVA-365 (manufactured by Custom Corp.) was used for the UV intensity measurement.
  • a wet mixed gas in which a mixed gas of 20% oxygen and 80% nitrogen was immersed in 15 ° C ion-exchange water and a mixed gas of 1% acetoaldehyde / nitrogen were mixed.
  • a gas with a cetaldehyde concentration of 101 ppm was prepared. 600 mL of this gas was sampled and injected into a bag containing a photocatalyst sample plate, and then the bag was left in the dark for 20 hours. After that, the cetaldehyde concentration and carbon dioxide concentration of the gas inside the bag were measured.
  • a gas chromatograph with a methanizer (Shimadzu Corporation, GC—14) was used for concentration measurement.
  • the photocatalyst sample plate stored in the bag was irradiated with light using a full-white fluorescent lamp (Matsushita Electric Works, 1 OW, FL 1 ON), and the gas inside the bag was irradiated every 2 hours. Analysis was carried out. At this time, the surface of the photocatalyst sample plate on which the photocatalyst was immobilized was placed at a distance of 4 cm from the fluorescent lamp. The UV intensity measured at the same place with the same film as the bag as the filter was 1 1 W / cm 2 .
  • Figure 2-A shows the change over time in the concentration of acetonitrile in the gas inside the bag.
  • Figure 2_B shows the change over time in the carbon dioxide concentration in the gas inside the bag.
  • the ethanol dispersion of photocatalyst 2 and the polyacrylic acid solution were mixed in equal amounts, and stirred for 30 minutes to obtain a photocatalyst-polyacrylic acid coating solution.
  • a slide glass (2. 6 cm x 7.6 cm, 1 mm thick) photocatalyst-polyacrylic acid coating solution was immersed and pulled up. Every 90 seconds, two-thirds of the slide glass was submerged 12 times at a speed of 0.4 cm per second.
  • the slide glass is then air-dried at room temperature, and then the photocatalyst and polyacrylic adhering to the other side of the slide glass is removed except for one side of the slide glass (2.6 cm x 7.6 cm).
  • the acid was removed by rubbing with a glass plate to obtain a photocatalyst sample plate F.
  • the total coating weight of the photocatalyst 2 and polyacrylic acid was 0.8 1 mg.
  • Photocatalyst sample plate G was prepared in the same manner as described above except that photocatalyst 3 was used instead of photocatalyst 2, and dipping and lifting were performed only once. When the weight was measured before and after immobilization of photocatalyst, the total coating weight of photocatalyst 3 and polyacrylic acid was 0.79 mg.
  • Photocatalyst sample plate H was prepared in the same manner as described above except that photocatalyst 4 was used instead of photocatalyst 2 and dipping and lifting were performed only once. Before and after photocatalyst immobilization When the weight was measured, the total coating weight of the photocatalyst 4 and polyacrylic acid was 0.84 mg.
  • Photocatalyst sample plate I was prepared in the same manner as described above except that photocatalyst 5 was used instead of photocatalyst 2 and dipping and lifting were performed only once. When the weight was measured before and after immobilization of the photocatalyst, the total coating weight of photocatalyst 5 and polyacrylic acid was 0.78 mg.
  • Photocatalyst sample plate J was prepared in the same manner as described above, except that photocatalyst 1 was used instead of photocatalyst 2, and dipping and lifting were performed only once. When the weight was measured before and after immobilization of the photocatalyst, the total coating weight of photocatalyst 1 and polyacrylic acid was 0.83 mg.
  • the photocatalyst sample plates F, G, H, I, and J prepared in the above were irradiated with ultraviolet rays of 4. OmW / cm 2 for a predetermined time in an air atmosphere.
  • a 27 W black light bull light (Sankyo Electric, FP L 27 B LB) was used as the light source, and UVA-365 (manufactured by Custom Corp.) was used for the ultraviolet intensity measurement.
  • Figure 3 shows the change in coating weight over time.
  • the photocatalysts 2 and 3 which are the photocatalysts of the present invention showed excellent photocatalytic activity.
  • the photocatalyst 5 having no silicon oxide film showed no significant change in the acetonitrile concentration and the co 2 production concentration even after 8 hours. Therefore, photocatalyst 5 was inferior in photocatalytic activity.
  • the photocatalysts 2 and 3 have a weight residual ratio of 60% or more even after 12 hours of ultraviolet irradiation, that is, 20% of polyacrylic acid.
  • the mixing ratio of the photocatalyst and polyacrylic acid was 1: 1, and the weight residual ratio of 50% indicates that the entire amount of polyacrylic acid was photolyzed.
  • photocatalyst 1 or 4 weight remaining after 12 hours The rate was 50% or less, that is, polyacrylic acid was completely decomposed and was inferior in suppressing deterioration of the organic base material.
  • the photocatalyst of the present invention was excellent in the balance of both the photocatalytic activity and the organic substrate suppressing effect.

Abstract

Disclosed is a photocatalyst comprising a base having a photocatalytic activity and a silicon oxide film covering the base. The photocatalyst further comprises a compound containing phosphorus and calcium, while satisfying the following conditions (a) and (b): (a) the phosphorus content is not less than 0.1% by weight but not more than 10% by weight; and (b) the calcium content is not less than 0.2% by weight but not more than 20% by weight.

Description

明 細 書  Specification
光触媒、 その製法、 光触媒を含有する光触媒分散液、 および光触媒 塗料組成物  Photocatalyst, process for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
技術分野  Technical field
[0001 ] 本発明は、 光触媒に関し、 その使用に際して、 基材となる有機重合物を光 触媒機能から保護することを特徴とする光触媒、 その製法、 光触媒を含有す る光触媒分散液、 および光触媒を含有する光触媒塗料組成物に関するもので [0001] The present invention relates to a photocatalyst, and in its use, a photocatalyst characterized by protecting an organic polymer as a substrate from the photocatalytic function, a method for producing the photocatalyst, a photocatalyst dispersion containing the photocatalyst, and a photocatalyst Concerning photocatalyst coating composition
COる。 CO
背景技術  Background art
[0002] 結晶性酸化チタンにバンドギャップ以上のエネルギーを有する波長の光を 照射すると、 光励起されて電子と正孔が生成する。 この電子及び正孔により 酸化チタン表面にスーパーォキシドイオンや水酸ラジカル等の活性酸素種が 発生し、 強い酸化力が発現する。 この光触媒反応を利用して、 酸化チタンに 吸着された汚染成分や悪臭成分を酸化分解し無害化したり、 さらには油等の 有機物を分解して二酸化炭素と水に変えるといういわゆる防汚効果や殺菌効 果を基材に付与することが知られている。  [0002] When crystalline titanium oxide is irradiated with light having a wavelength greater than the band gap, it is photoexcited to generate electrons and holes. These electrons and holes generate active oxygen species such as superoxide ions and hydroxyl radicals on the surface of titanium oxide, and develop strong oxidizing power. Using this photocatalytic reaction, the so-called antifouling effect and sterilization of contaminating components and malodorous components adsorbed on titanium oxide by oxidizing and detoxifying them, or by decomposing organic substances such as oil into carbon dioxide and water It is known to impart an effect to a substrate.
[0003] ここで、 汚染物質や臭気成分とは、 窒素酸化物、 アンモニア等の無機化合 物、 有機ハロゲン、 アルデヒド類、 低級脂肪酸等の有機化合物などが挙げら れる。  Here, the pollutants and odor components include nitrogen oxides, inorganic compounds such as ammonia, organic compounds such as organic halogens, aldehydes, and lower fatty acids.
[0004] このように結晶性酸化チタン、 特にアナターゼ型の酸化チタンは、 光触媒 反応に基づいて種々の優れた作用を示す。 これらの作用は、 建材、 タイル、 レンガ等の外装材、 壁紙、 力一テン、 天井材等の内装材、 あるいは衣服、 力 一テン等の繊維製品に代表される基材の表面に、 バインダー等を用いて光触 媒を固定させた状態で発現させることが一般的である。 その為、 防汚、 脱臭 、 抗菌作用を維持し、 かつ長期間にわたって、 剥離、 欠落が生じない、 光触 媒の基材への固定化技術が開発されている。  [0004] As described above, crystalline titanium oxide, particularly anatase-type titanium oxide, exhibits various excellent actions based on the photocatalytic reaction. These functions are applied to exterior materials such as building materials, tiles, and bricks, wallpaper materials, interior materials such as ceiling materials, ceiling materials, or base materials represented by textiles such as clothes and strength materials, binders, etc. In general, the photocatalyst is expressed in a state in which the photocatalyst is fixed. For this reason, a technique for immobilizing a photocatalyst on a base material has been developed that maintains antifouling, deodorization, and antibacterial action, and does not peel or lose for a long period of time.
[0005] しかしながら、 基材が樹脂板、 フィルムあるいは繊維等の有機重合体の場 合には、 光触媒作用により、 基材自体 酸化的に分解されてしまう。 これら 基材が分解、 劣化すると、 ひび割れ、 き裂が生じて光触媒が基材から剥離し てしまう可能性がある。 その結果、 光触媒作用が消失する、 基材自身の物性 が低減する、 表面がチヨ一キングあるいは虫食い状の穴の生成により景観を 損ねる等の悪影響が生じる。 [0005] However, when the base material is an organic polymer such as a resin plate, a film, or a fiber, In some cases, the base material itself is oxidatively decomposed by the photocatalytic action. If these base materials are decomposed and deteriorated, cracks and cracks may occur, and the photocatalyst may be peeled off from the base material. As a result, adverse effects such as the loss of photocatalysis, the physical properties of the substrate itself being reduced, and the appearance of the surface being damaged due to the creation of holes that are chewy or worm-like are generated.
[0006] 従って、 塗料の白色顔料など、 光触媒作用を必要としない用途では、 光触 媒活性が低いルチル型の酸化チタンを使用したり、 ルチル型の酸化チタンに 対して、 表面をシリカやアルミナで被覆することにより光触媒作用の発現を 防止するような工夫がなされている。  [0006] Therefore, in applications that do not require photocatalytic action, such as white pigments for paints, rutile titanium oxide with a low photocatalytic activity is used, or the surface is made of silica or alumina for rutile titanium oxide. The device has been devised to prevent the development of photocatalytic action by coating with.
[0007] 一方、 防汚、 脱臭、 抗菌を目的とする、 すなわち、 光触媒作用の発現を必 要とする場合は、 光触媒の使用に際し、 様々な工夫がなされている。 例えば 、 多孔質無機物質、 あるいは結晶性無機物質を光触媒の表面上に被覆し、 有 機基材と光触媒の直接接触を防止し、 有機基材の分解を抑制する方法が報告 されている (特許文献 1、 2、 及び 3 ) 。 これらの報告例では、 確かに、 有 機基材の分解が抑制されるものの、 多孔質無機物質あるいは結晶性無機物質 により、 酸化チタンが吸収する紫外線量の減少、 また、 酸化チタン上の活性 点の減少を招くこととなる。 そして、 結果的に光触媒作用が低下する。  [0007] On the other hand, when antifouling, deodorizing, and antibacterial purposes are required, that is, when the development of a photocatalytic action is required, various measures have been taken when using the photocatalyst. For example, a method has been reported in which a porous inorganic substance or a crystalline inorganic substance is coated on the surface of a photocatalyst to prevent direct contact between the organic base material and the photocatalyst and to suppress decomposition of the organic base material (patent) References 1, 2, and 3). In these reported examples, although the decomposition of the organic substrate is suppressed, the amount of ultraviolet rays absorbed by the titanium oxide is reduced by the porous inorganic material or the crystalline inorganic material, and the active points on the titanium oxide are also reduced. Will be reduced. As a result, the photocatalytic action decreases.
[0008] また、 有機基材と光触媒層の間に、 シリコーン樹脂、 フッ素樹脂、 その他 無機化合物等からなる活性遮断層を設置し、 有機基材と光触媒が直接接触す ることを防止することで、 有機基材の劣化を抑制する方法も検討されている (特許文献 4及び 5 ) 。 この方法によれば、 確かに有機基材の劣化は抑制可 能である。 しかしながら、 多層構造となる為、 加工費が高価となることに懸 念がある。 また、 有機基材と活性遮断層、 活性遮断層と光触媒層の接着安定 性にも課題を残す。  [0008] In addition, an active blocking layer made of a silicone resin, a fluororesin, or other inorganic compound is installed between the organic base material and the photocatalyst layer to prevent direct contact between the organic base material and the photocatalyst. A method for suppressing the deterioration of the organic base material has also been studied (Patent Documents 4 and 5). According to this method, it is possible to suppress deterioration of the organic base material. However, due to the multi-layer structure, there is a concern that the processing cost will be expensive. In addition, problems remain in the adhesion stability of the organic substrate and the active blocking layer, and the active blocking layer and the photocatalytic layer.
[0009] また、 バインダーを含む光触媒層を有機基材上に塗布する際に、 バインダ 一を含む光触媒層中に含まれる光触媒を傾斜配置することにより、 基材の分 解■劣化を抑制する方法も報告されている (特許文献 6及び 7 ) 。 すなわち 、 基材との接着面から外表面に近づくに従い、 光触媒濃度を高め、 基材の安 定性を向上させる方法である。 この方法においても、 基材と光触媒との接触 を完全に防止するわけではなく、 従って、 有機基材の劣化を完全に抑制可能 しているとは言い難い。 [0009] Also, when applying a photocatalyst layer containing a binder onto an organic base material, a method of suppressing decomposition / deterioration of the base material by tilting the photocatalyst contained in the photocatalyst layer containing the binder. Have also been reported (Patent Documents 6 and 7). That is, as it approaches the outer surface from the adhesion surface with the base material, the photocatalyst concentration is increased, and the base material is reduced. This is a method for improving qualitative properties. Even in this method, the contact between the substrate and the photocatalyst is not completely prevented, and therefore, it cannot be said that the deterioration of the organic substrate can be completely suppressed.
特許文献 1 :特開平 0 9— 2 7 6 7 0 6号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 09-27 6 7 06
特許文献 2:特開平 1 0— 2 4 4 1 6 6号公報  Patent Document 2: Japanese Laid-Open Patent Publication No. 10-2-4 4 1 6 6
特許文献 3:特開 2 0 0 3 _ 2 4 7 9 7号公報  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 3 _ 2 4 7 9 7
特許文献 4:特開平 0 8— 1 4 1 5 0 3号公報  Patent Document 4: Japanese Patent Laid-Open No. 08-8-14 1 500 3
特許文献 5:特開平 0 9— 2 2 9 4 9 3号公報  Patent Document 5: Japanese Patent Laid-Open No. 09-9-2 2 9 4 9 3
特許文献 6:特開平 1 1—0 1 0 8 0 3号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 11-0 1 0 8 0 3
特許文献 7:特開 2 0 0 0 _ 0 7 1 3 6 0号公報  Patent Document 7: Japanese Patent Laid-Open No. 2 00 0 _ 0 7 1 3 60
発明の開示  Disclosure of the invention
[0010] 本発明は、 以上のような状況に鑑みてなされたものであり、 防汚、 脱臭、 抗菌を始めとする光触媒機能を充分に保持しつつ、 その使用に際して、 基材 となる有機重合物の劣化を抑制可能な光触媒、 その製法、 光触媒を含有する 光触媒分散液、 および光触媒を含有する光触媒塗料組成物に関するものであ る。  [0010] The present invention has been made in view of the situation as described above, and while maintaining sufficiently photocatalytic functions such as antifouling, deodorizing, and antibacterial, an organic polymerization serving as a base material in use thereof The present invention relates to a photocatalyst capable of suppressing deterioration of a product, a production method thereof, a photocatalyst dispersion containing a photocatalyst, and a photocatalyst coating composition containing a photocatalyst.
[001 1 ] 本発明者らは、 前記の課題を解決するため鋭意検討した結果、 光触媒活性 を有する基体を酸化珪素膜により被覆し、 さらにリン酸カルシウムクラスタ 一が存在する擬似体液中でリンとカルシウムからなる化合物を析出させた光 触媒を見出した。 すなわちかかる光触媒が、 外装材■内装材■繊維製品等へ 使用した際に、 充分な光触媒機能を保持しつつ、 かつ、 基材となる有機重合 物の劣化を抑制可能であることを見出し、 本発明を完成させるに至った。  [001 1] As a result of diligent studies to solve the above-mentioned problems, the present inventors have coated a substrate having photocatalytic activity with a silicon oxide film, and further, from phosphorus and calcium in a simulated body fluid in which a calcium phosphate cluster exists. The photocatalyst which precipitated the compound which becomes was discovered. That is, when this photocatalyst is used for exterior materials, interior materials, textile products, etc., it has been found that it can maintain the sufficient photocatalytic function and can suppress deterioration of the organic polymer as the base material. The invention has been completed.
[0012] すなわち、 本発明として [ 1 ] 〜 [ 2 0 ] を提供する。  [0012] That is, the present invention provides [1] to [20].
[ 1 ] 光触媒活性を有する基体と、  [1] a substrate having photocatalytic activity;
該基体を被覆する、 酸化珪素膜を有し、  A silicon oxide film covering the substrate;
さらにリンおよびカルシウムを含む化合物を含み、  Further including compounds containing phosphorus and calcium,
以下に示す条件 (a ) および (b ) を満たすことを特徴とする光触媒: ( a ) リン含有量が 0 . 1重量%以上、 1 0重量%以下である。 (b) カルシウム含有量が 0. 2重量%以上、 20重量0 /o以下である。 A photocatalyst satisfying the following conditions (a) and (b): (a) The phosphorus content is 0.1 wt% or more and 10 wt% or less. (b) The calcium content is 0.2 wt% or more and 20 wt 0 / o or less.
[0013] なお、 ここで上記のリンおよびカルシウムの含有量は、 光触媒全体の重量 を基準として重量%で表したものである。 [0013] Here, the contents of phosphorus and calcium described above are expressed in wt% based on the weight of the entire photocatalyst.
[0014] [2] リンおよびカルシウムを含む前記化合物が、 前記化合物を含有する固 定化物として、 前記酸化珪素膜の表面上および/または前記酸化珪素膜で覆 われていない前記基体の表面上に位置する、 [1 ] に記載の光触媒。 [2] The compound containing phosphorus and calcium is formed on the surface of the silicon oxide film and / or on the surface of the substrate not covered with the silicon oxide film as an immobilized product containing the compound. The photocatalyst according to [1], which is located.
[3] 前記酸化珪素膜が、 焼成膜である、 [2] に記載の光触媒。  [3] The photocatalyst according to [2], wherein the silicon oxide film is a fired film.
[4] 前記焼成膜が、 400°C以上で焼成された焼成膜である、 [3] に記 載の光触媒。  [4] The photocatalyst according to [3], wherein the fired film is a fired film fired at 400 ° C or higher.
[5] 窒素吸着法による 20〜 500オングストロームの領域の細孔径分布 測定において、 前記酸化珪素膜が細孔を有しない、 [4] に記載の光触媒。  [5] The photocatalyst according to [4], wherein the silicon oxide film has no pores in a pore diameter distribution measurement in a region of 20 to 500 angstroms by a nitrogen adsorption method.
[6] 前記酸化珪素膜を有する前記基体の表面積 1 m2当りの珪素担持量が、 0. 1 0mg以上、 2. Omg以下である、 [5] に記載の光触媒。 [6] The photocatalyst according to [5], wherein the amount of silicon supported per 1 m 2 of the surface area of the substrate having the silicon oxide film is 0.1 mg or more and 2. Omg or less.
[7] 前記基体が、 アナターゼ型、 ルチル型、 またはこれらの混合物を含む 酸化チタンである、 [6] に記載の光触媒。  [7] The photocatalyst according to [6], wherein the substrate is an anatase type, a rutile type, or a titanium oxide containing a mixture thereof.
[8] 前記基体が粒子である、 [7] に記載の光触媒。  [8] The photocatalyst according to [7], wherein the substrate is a particle.
[9] [1 ] に記載の光触媒の製造方法であって、 以下の工程:  [9] A method for producing a photocatalyst according to [1], comprising the following steps:
(A) 前記基体を含む水系媒体と珪酸塩、 珪酸塩を含む水系媒体と前記基体 、 および  (A) an aqueous medium containing the substrate and a silicate, an aqueous medium containing a silicate, the substrate, and
前記基体を含む水系媒体と珪酸塩を含む水系媒体からなる群より選ばれる少 なくとも一組を混合し、 前記基体上に酸化珪素膜を有する光触媒を得る工程  Mixing at least one set selected from the group consisting of an aqueous medium containing the substrate and an aqueous medium containing silicate, and obtaining a photocatalyst having a silicon oxide film on the substrate
(B) 前記工程 (A) で得られた光触媒を前記水系媒体から分離する工程、(B) a step of separating the photocatalyst obtained in the step (A) from the aqueous medium,
(C) 前記工程 (B) で得られた光触媒に対して 400°C以上で焼成を行う 工程、 (C) a step of firing the photocatalyst obtained in the step (B) at 400 ° C or higher,
(D) リンを含む化合物およびカルシウムを含む化合物の水溶液を用いて、 前記工程 (C) で得られた光触媒の表面にリンおよびカルシウムを含む化合 物を含有する固定化物を形成する工程、 (E) 前記工程 (D) で得られた光触媒を前記水溶液から分離する工程、(D) forming an immobilized product containing a compound containing phosphorus and calcium on the surface of the photocatalyst obtained in the step (C) using an aqueous solution of a compound containing phosphorus and a compound containing calcium; (E) separating the photocatalyst obtained in the step (D) from the aqueous solution,
(F) 前記工程 (E) で得られた光触媒に対して 50°C〜700°Cで熱処理 を行う工程、 (F) a step of heat-treating the photocatalyst obtained in the step (E) at 50 ° C to 700 ° C;
を含み、 かつ前記工程 (A) において前記基体および前記珪酸塩の両方を含 む混合液の p Hを 5以下に維持する、 光触媒の製造方法。 And a pH of the mixed solution containing both the substrate and the silicate in the step (A) is maintained at 5 or less.
[1 0] 前記工程 (C) において、 前記工程 (B) で得られた光触媒を乾燥 し、 その後に焼成を行う、 [9] に記載の光触媒の製造方法。  [10] The method for producing a photocatalyst according to [9], wherein, in the step (C), the photocatalyst obtained in the step (B) is dried and then calcined.
[1 1 ] 前記工程 (C) において、 1 200°C以下で前記工程 (B) で得ら れた光触媒を焼成する、 [1 0] に記載の光触媒の製造方法。  [1 1] The method for producing a photocatalyst according to [1 0], wherein in the step (C), the photocatalyst obtained in the step (B) is calcined at 1 200 ° C. or less.
[1 2] リンを含む化合物およびカルシウムを含む化合物の前記水溶液とし て、 N a C I、 N a HC03、 N a2H P04、 N a H2P04、 KC I、 K H C 03、 K2H P04、 KH2P04、 Mg C I 2、 Ca C I 2、 N a2S04、 N a F、 HC I、 および (CH2OH) 3C N H2からなる群から選ばれる少なくと も 1の化合物を水に溶解した擬似体液を用いる、 [1 1 ] に記載の光触媒の 製造方法。 [1 2] and with the aqueous solution of the compound and compounds containing calcium containing phosphorus, N a CI, N a HC0 3, N a 2 H P0 4, N a H 2 P0 4, KC I, KHC 0 3, K 2 H P0 4 , KH 2 P0 4 , Mg CI 2 , Ca CI 2 , Na 2 S 0 4 , Na F, HC I, and (CH 2 OH) 3 CNH 2 [1 1] The method for producing a photocatalyst according to [1 1], wherein a simulated body fluid obtained by dissolving the compound in water is used.
[1 3] 前記擬似体液が、 N a+ : 1 20〜1 60mM、 K+: 1〜20mM 、 Ca2+ : 0. 5〜50mM、 Mg2+ : 0. 5〜50mM、 C I _ : 80〜2 O OmM、 H C03-: 0. 5〜30mM、 H P 04 2_: "!〜 20mM、 S 04 2 - : 0. "!〜 2 OmM、 および F- : 0〜5mMを含む水溶液である、 [1 2 ] に記載の光触媒の製造方法。 [1 3] The simulated body fluid is Na +: 1 20 to 1 60 mM, K +: 1 to 20 mM, Ca 2+ : 0.5 to 50 mM, Mg 2+ : 0.5 to 50 mM, CI _: 80 to 2 O OmM, H C0 3 -: 0. 5~30mM, HP 0 4 2 _: "! ~ 20mM, S 0 4 2 -: 0."! The method for producing a photocatalyst according to [1 2], which is an aqueous solution containing ˜2 OmM and F−: 0 to 5 mM.
[1 4] [1 ] に記載の光触媒、 液状媒体、 および分散安定剤を含む光触媒 分散液。  [1 4] A photocatalyst dispersion comprising the photocatalyst according to [1], a liquid medium, and a dispersion stabilizer.
[1 5] 前記液状媒体が水である、 [1 4] に記載の光触媒分散液。  [1 5] The photocatalyst dispersion liquid according to [1 4], wherein the liquid medium is water.
[1 6] 前記分散安定剤がイオン性界面活性剤である、 [1 4] に記載の光 触媒分散液。  [16] The photocatalyst dispersion liquid according to [14], wherein the dispersion stabilizer is an ionic surfactant.
[1 7] [1 ] に記載の光触媒、 液状媒体、 および結着剤を含む光触媒塗料 組成物。  [1 7] A photocatalyst coating composition comprising the photocatalyst according to [1], a liquid medium, and a binder.
[1 8] 前記結着剤としてチタンまたは珪素を含有する化合物を含む、 [1 7] に記載の光触媒塗料組成物。 [1 8] Including a compound containing titanium or silicon as the binder, [1 [7] The photocatalytic coating composition according to [7].
[ 1 9] 前記チタンを含有する化合物が、 過酸化チタンを含有する化合物で ある、 [ 1 8] に記載の光触媒塗料組成物。  [19] The photocatalyst coating composition according to [18], wherein the titanium-containing compound is a compound containing titanium peroxide.
[20] 前記液状媒体として水および/またはアルコールを含む、 [ 1 7] に記載の光触媒塗料組成物。  [20] The photocatalyst coating composition according to [17], which contains water and / or alcohol as the liquid medium.
[0015] 本発明によれば、 酸化チタンからなる市販光触媒、 あるいは既報技術を用 いた際には困難とされる、 光触媒機能を保持しながら、 光触媒と接触する有 機重合物の分解、 劣化を抑制可能な光触媒、 その製法、 該光触媒を含有する 光触媒分散液、 および該光触媒を含有する光触媒塗料組成物を提供すること ができる。 [0015] According to the present invention, it is possible to reduce the degradation and deterioration of an organic polymer that comes into contact with the photocatalyst while maintaining the photocatalytic function, which is difficult when using a commercially available photocatalyst made of titanium oxide or the previously reported technology. It is possible to provide a photocatalyst capable of being suppressed, a production method thereof, a photocatalyst dispersion containing the photocatalyst, and a photocatalyst coating composition containing the photocatalyst.
図面の簡単な説明  Brief Description of Drawings
[0016] 上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の画面によってさらに明らかに なる。  [0016] The above-described object and other objects, features, and advantages will be further clarified by the preferred embodiments described below and the following screens that accompany it.
[図 1]光触媒 1の I o g微分細孔容積分布曲線 (実線) と、 この光触媒の基体 に該当する酸化珪素膜を有しない光触媒 (光触媒 4) の I o g微分細孔容積 分布曲線 (点線) とを示す図である。  [Figure 1] Iog differential pore volume distribution curve (solid line) of photocatalyst 1 and Iog differential pore volume distribution curve (dotted line) of photocatalyst (photocatalyst 4) that does not have a silicon oxide film corresponding to the base of this photocatalyst FIG.
[図 2-A]光触媒 1〜5のァセトアルデヒド光分解活性を示す図である。  FIG. 2-A is a diagram showing the photodegradation activity of photoaldehyde 1 to photoacetaldehyde.
[図 2-B]光触媒 1〜5のァセトアルデヒド光分解活性を示す図である。  FIG. 2-B is a diagram showing the photodegradation activity of photoaldehyde 1 to 5 with acetaldehyde.
[図 3]光触媒 1〜5及びポリアクリル酸からなる膜の重量残存率を示す図であ る。  FIG. 3 is a graph showing the weight residual ratio of a film made of photocatalysts 1 to 5 and polyacrylic acid.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明における光触媒は、 光触媒活性を有する基体と、 該基体を被覆する 、 酸化珪素膜を有し、 さらにリンおよびカルシウムを含む化合物を含み、 以 下に示す条件 (a) および (b) を満たす: (a) リン含有量が 0. 1重量 %以上、 1 0重量%以下、 (b) カルシウム含有量が 0. 2重量%以上、 2 0重量%以下である。  [0017] The photocatalyst according to the present invention includes a substrate having photocatalytic activity, a silicon oxide film covering the substrate, and a compound containing phosphorus and calcium, and the following conditions (a) and (b) (A) Phosphorus content is 0.1 wt% or more and 10 wt% or less, (b) Calcium content is 0.2 wt% or more and 20 wt% or less.
[0018] 本願明細書で 「酸化珪素膜を被覆した光触媒」 とは、 光触媒機能を有する 基体の表面を酸化珪素からなる膜で被覆したものを意味する。 したがって、 酸化珪素の存在下で後から光触媒を形成して製造される、 酸化珪素に光触媒 を固定化したものや、 酸化珪素と光触媒とを同一容器中で並行して形成させ た複合体は含まれない。 In the present specification, “photocatalyst coated with a silicon oxide film” has a photocatalytic function. This means that the surface of the substrate is coated with a film made of silicon oxide. Therefore, the photocatalyst is formed later in the presence of silicon oxide, which includes the photocatalyst immobilized on silicon oxide, and the complex in which silicon oxide and photocatalyst are formed in parallel in the same container are included. I can't.
[0019] 酸化珪素膜が基体を被覆する態様は特に制限されず、 基体の一部を被覆す る態様、 全部を被覆する態様のいずれをも含む。 より高い光分解活性を得る 観点からは、 基体の表面が酸化珪素からなる膜で一様に被覆されていること が好ましい。  [0019] The aspect in which the silicon oxide film covers the substrate is not particularly limited, and includes both an aspect in which a part of the substrate is covered and an aspect in which the whole is covered. From the viewpoint of obtaining higher photolytic activity, it is preferable that the surface of the substrate is uniformly coated with a film made of silicon oxide.
[0020] ここで、 酸化珪素膜とは、 未焼成の膜および焼成後の膜いずれの形態でも よい。 本発明においては、 焼成後の酸化珪素の焼成膜が好ましい。  Here, the silicon oxide film may be in the form of an unfired film or a fired film. In the present invention, a fired film of silicon oxide after firing is preferred.
[0021 ] 光触媒活性を有する基体 (以下、 適宜 「基体」 と略記する。 ) としては、 金属化合物光半導体を用いることができる。 金属化合物光半導体としては、 例えば、 酸化チタン、 酸化亜鉛、 酸化タングステン、 およびチタン酸スト口 ンチウムなどがある。 このうち、 光触媒活性に優れており、 無害かつ安定性 にも優れる酸化チタンが好ましい。 酸化チタンとしては、 例えば、 非晶質、 アナターゼ型、 ルチル型、 ブルッカイ ト型等が挙げられる。 このうち、 光触 媒活性に優れているアナターゼ型あるいはルチル型、 または、 これらの混合 物がより好ましく、 これらに非晶質が少量含まれていても構わない。  As the substrate having photocatalytic activity (hereinafter abbreviated as “substrate” as appropriate), a metal compound photo-semiconductor can be used. Examples of the metal compound optical semiconductor include titanium oxide, zinc oxide, tungsten oxide, and titanium titanate. Of these, titanium oxide is preferable because of its excellent photocatalytic activity, harmlessness and excellent stability. Examples of titanium oxide include amorphous, anatase type, rutile type, and brookite type. Of these, the anatase type or rutile type, which are excellent in photocatalytic activity, or a mixture thereof is more preferred, and these may contain a small amount of amorphous material.
[0022] 基体として、 金属化合物光半導体に 1種以上の遷移金属を添加したもの、 金属化合物半導体に 1 4族、 1 5族、 および/または 1 6族の典型元素を 1 種以上添加したもの、 2種以上の金属化合物からなる光半導体、 および 2種 以上の金属化合物半導体の混合物を使用してもよい。  [0022] As a substrate, one or more transition metals added to a metal compound optical semiconductor, one or more typical elements of group 14, 15 and / or 16 added to a metal compound semiconductor An optical semiconductor composed of two or more metal compounds and a mixture of two or more metal compound semiconductors may be used.
[0023] さらに、 基体としては、 金属化合物光半導体の粒子を用いることが好まし し、。 また、 例えば、 金属化合物光半導体の表面の一部が露出している成形体 、 繊維、 および塗膜等を用いることも可能である。 また、 基体としては、 比 表面積が 3 0 m 2 / g以上の金属化合物光半導体を含有するものが好ましい。 [0023] Furthermore, it is preferable to use particles of a metal compound optical semiconductor as the substrate. In addition, for example, a molded body, a fiber, a coating film, or the like in which a part of the surface of the metal compound optical semiconductor is exposed can be used. The substrate preferably contains a metal compound optical semiconductor having a specific surface area of 30 m 2 / g or more.
[0024] なお、 基体が粒子として明確に認識できる場合を除き、 成形体、 繊維、 塗 膜等に固定化された基体の比表面積は、 比表面積測定法として一般的な B E T法に供することが出来ない。 このような場合には、 X線回折分析とシエラ 一式による算出、 あるいは電子顕微鏡を用いた一次粒子の観察から求まる一 次粒子径を元にする。 そして、 球形換算で 「表面積」 を算出する。 かつ、 X 線や電子線の回折分析から結晶相を把握してその結晶相の真密度と前記球形 換算から求まる体積とから 「重量」 を算出する。 これによつて、 比表面積を 求めることが可能である。 [0024] Unless the substrate can be clearly recognized as particles, the specific surface area of the substrate fixed on a molded body, fiber, coating film, etc. Cannot be used for the T method. In such a case, the primary particle diameter obtained from X-ray diffraction analysis and Sierra set calculation or primary particle observation using an electron microscope is used as the basis. Then, the “surface area” is calculated in spherical form. In addition, the crystal phase is grasped from diffraction analysis of X-rays and electron beams, and the “weight” is calculated from the true density of the crystal phase and the volume obtained from the above spherical conversion. This makes it possible to determine the specific surface area.
[0025] 「窒素吸着法による 20〜500オングストロームの領域の細孔径分布測 定において、 酸化珪素膜が細孔を有しない」 とは、 酸化珪素膜を被覆した光 触媒を製造する際に原料として使用する光触媒活性を有する基体と、 この光 触媒活性を有する基体を用いて調製した、 酸化珪素膜を被覆した光触媒とに ついて、 20〜500オングストロームの領域で細孔径分布を比較した場合 に、 酸化珪素膜に細孔が実質的に存在しないことを意味する。 具体的には、 光触媒活性を有する基体、 および酸化珪素膜が設けられた該基体を含む光触 媒の細孔径分布を、 窒素吸着法等の細孔分布測定によって把握する。 そして 、 これらを比較することによって酸化珪素膜に細孔が実質的に存在しないか 否かを判定できる。  [0025] In the measurement of the pore size distribution in the region of 20 to 500 angstroms by the nitrogen adsorption method, the silicon oxide film has no pores is used as a raw material when producing a photocatalyst coated with a silicon oxide film. When comparing the pore size distribution in the region of 20 to 500 angstroms, the substrate having photocatalytic activity and the photocatalyst coated with a silicon oxide film prepared using the substrate having photocatalytic activity are oxidized. It means that there are substantially no pores in the silicon film. Specifically, the pore size distribution of a photocatalyst including a substrate having photocatalytic activity and a substrate provided with a silicon oxide film is grasped by pore distribution measurement such as a nitrogen adsorption method. Then, by comparing these, it can be determined whether or not there are substantially no pores in the silicon oxide film.
[0026] 窒素吸着法での把握方法をより具体的に述べると、 以下の (1 ) 〜 (4) の手法によって酸化珪素膜の細孔の有無を判定することができる。 ここでは 、 基体として、 光触媒粒子を用いる例を挙げて説明する。  More specifically, the grasping method in the nitrogen adsorption method can determine the presence or absence of pores in the silicon oxide film by the following methods (1) to (4). Here, an example using photocatalyst particles as a substrate will be described.
( 1 ) 光触媒粒子を、 200°Cで乾燥した後、 脱着過程での N2吸着等温線を 測定する。 (1) After drying the photocatalyst particles at 200 ° C, measure the N 2 adsorption isotherm during the desorption process.
( 2 ) 酸化珪素膜を被覆した光触媒の脱着過程での N 2吸着等温線を測定する (2) Measure the N 2 adsorption isotherm during the desorption process of the photocatalyst coated with a silicon oxide film
(3) B J H (B a r r e t t— J o y n e r— H a l e n d a) 法で、 前 記二つの N 2吸着等温線を解析して、 20〜500オングストロ一ムの領域の(3) Analyzing the two N 2 adsorption isotherms by the BJH (Barrett-Joyner-H alenda) method, the region of 20 to 500 angstroms is analyzed.
I o g微分細孔容積分布曲線を求める。 Obtain an I o g differential pore volume distribution curve.
(4) 二つの I o g微分細孔容積分布曲線を比較し、 酸化珪素膜を被覆した 光触媒の I o g微分細孔容積が、 光触媒粒子の I o g微分細孔容積よりも 0 . 1 m l /g以上大きい領域が存在しない場合には、 酸化珪素膜に細孔が実 質的にないと判定し、 0. 1 m I /g以上大きい領域が存在する場合には、 酸化珪素膜に細孔が有ると判定する。 なお、 0. 1 m l /g以上とするのは 、 窒素吸着法による細孔分布測定では、 I o g微分細孔容積値で約 0. 1 m I / g幅の測定誤差が生じることが多いためである。 (4) Comparing the two I og differential pore volume distribution curves, the I og differential pore volume of the photocatalyst coated with the silicon oxide film is less than the I og differential pore volume of the photocatalyst particle. If there is no area larger than 1 ml / g, it is determined that the silicon oxide film has no substantial pores. If there is an area larger than 0.1 mI / g, silicon oxide It is determined that the membrane has pores. It should be noted that 0.1 ml / g or more is because, in the pore distribution measurement by the nitrogen adsorption method, an Iog differential pore volume value often causes a measurement error of about 0.1 m I / g width. It is.
[0027] 20〜500オングストロームの範囲で 2つの I o g微分細孔容積分布曲 線を比較すれば、 酸化珪素膜の細孔の有無を実質的に判定することができる [0027] By comparing two I og differential pore volume distribution curves in the range of 20 to 500 angstroms, the presence or absence of pores in the silicon oxide film can be substantially determined.
[0028] なお、 二つの I o g微分細孔容積分布曲線を比較し、 1 0〜 1 000オン グストロームの領域で酸化珪素膜を被覆した光触媒の I o g微分細孔容積が 、 光触媒粒子の I o g微分細孔容積よりも 0. 1 m I /g以上大きい領域が 存在しないことがより好ましい。 [0028] It should be noted that the two I og differential pore volume distribution curves were compared, and the I og differential pore volume of the photocatalyst coated with the silicon oxide film in the region of 10 to 1 000 angstroms More preferably, there is no region larger than the differential pore volume by 0.1 mI / g or more.
[0029] ここで、 酸化珪素膜に細孔が存在する場合、 光分解活性が向上し難い。 こ の理由は必ずしも明らかではないが、 細孔の存在によって酸化珪素膜での光 の散乱や反射が起こりやすくなり、 光触媒活性を有する基体に到達する紫外 線の光量が減少し、 光触媒励起による正孔と電子の生成量が減少することに よるものと推察される。 また、 同じ酸化珪素量で被覆した場合、 細孔有りの ものは、 細孔無しのものに比べ、 細孔の容積の分だけ酸化珪素膜の厚さが増 す結果、 光触媒活性を有する基体と分解対象物である有機物との物理的距離 が大きくなるため、 充分な光分解活性が得られないものと推察される。  [0029] Here, when the silicon oxide film has pores, it is difficult to improve the photolytic activity. The reason for this is not necessarily clear, but the presence of pores facilitates light scattering and reflection at the silicon oxide film, reducing the amount of ultraviolet light reaching the substrate having photocatalytic activity, and increasing the positive polarity due to photocatalytic excitation. This is presumably due to a decrease in the generation of holes and electrons. In addition, when coated with the same amount of silicon oxide, the thickness of the silicon oxide film increases by the volume of the pores for those with pores compared to those without pores. It is assumed that sufficient photolytic activity cannot be obtained because the physical distance from the organic substance that is the target of decomposition increases.
[0030] 本発明に係る酸化珪素膜を被覆した光触媒の表面積 1 m2当りの珪素担持量 は、 酸化珪素膜を被覆した光触媒が含有する珪素量と、 酸化珪素膜を被覆し た光触媒の表面積から算出される計算値である。 酸化珪素膜を被覆した光触 媒の表面積 1 m2当りの珪素担持量は、 その表面積 1 m2当りの珪素担持量が 0. 1 0mg以上、 2. Omg以下であり、 好ましくは 0. 1 2 m g以上、 1. 5m g以下、 より好ましくは 0. 1 6 §以上、 1. 25m g以下、 さ らに好ましくは 0. 1 8mg以上、 1. 25mg以下である。 0. 1 0mg 未満では、 酸化珪素膜による光触媒活性向上効果が小さい。 一方、 2. Om gを超えると、 酸化珪素膜を被覆した光触媒に占める基体の割合が低下しす ぎるので、 光触媒機能がほとんど向上しない。 珪素担持量を上記範囲とする ことで、 酸化珪素膜による光触媒活性向上効果が顕著になる。 [0030] Silicon supported amount per surface area of 1 m 2 of the photocatalyst and the silicon oxide film coated according to the present invention, a silicon content containing photocatalyst coated silicon oxide film, the surface area of the photocatalyst coated with a silicon oxide film Is a calculated value calculated from The amount of silicon supported per 1 m 2 of the surface area of the photocatalyst coated with the silicon oxide film is 0.1 mg or more and 2. Omg or less, preferably 0.1 mg per 1 m 2 of the surface area. 2 mg or more and 1.5 mg or less, more preferably 0.16 § or more and 1.25 mg or less, and further preferably 0.18 mg or more and 1.25 mg or less. If it is less than 0.1 mg, the photocatalytic activity improvement effect by the silicon oxide film is small. Meanwhile, 2. Om If it exceeds g, the ratio of the substrate to the photocatalyst coated with the silicon oxide film is too low, so that the photocatalytic function is hardly improved. By making the silicon loading in the above range, the effect of improving the photocatalytic activity by the silicon oxide film becomes remarkable.
[0031 ] 光触媒の表面積は、 露点— 1 9 5 . 8 °C以下の乾燥ガス気流下、 1 5 0 °C で 1 5分加熱処理した後に、 窒素吸脱着による B E T法比表面積測定装置を 用いて測定することができる。  [0031] The surface area of the photocatalyst was measured using a BET specific surface area measuring device using nitrogen adsorption / desorption after heat treatment at 15 ° C for 15 minutes in a dry gas stream with a dew point of -195.8 ° C or less. Can be measured.
[0032] 本発明における酸化珪素膜の被覆方法は、 水系媒体中に存在させた基体に 珪酸塩を用いて酸化珪素膜を被覆する際、 基体と珪酸塩の両方を含む混合液 の P Hを 5以下に維持することを特徴とする。 [0032] In the method for coating a silicon oxide film according to the present invention, when a silicon oxide film is coated on a substrate existing in an aqueous medium using a silicate, the pH of the mixed solution containing both the substrate and the silicate is 5 The following is maintained.
[0033] 酸化珪素膜で被覆された構造の光触媒を製造する従来の方法は、 以下に示 す課題を有していた。 [0033] The conventional method for producing a photocatalyst having a structure covered with a silicon oxide film has the following problems.
( A ) 酸化珪素膜の原料が高価であること。  (A) The raw material for the silicon oxide film is expensive.
( B ) 製造時にアルコールが副生するため、 および/または有機媒体を用い るため、 防爆型の高価な専用設備を必要とすること。  (B) Explosion-proof expensive dedicated equipment is required because alcohol is produced as a by-product during production and / or because organic media are used.
( C ) 気相で処理することから、 珪素の担持量を任意に制御することが困難 であり、 安定的に担持量を制御しての製造が難しいこと。  (C) Since the treatment is performed in the gas phase, it is difficult to arbitrarily control the amount of silicon supported, and it is difficult to manufacture by stably controlling the amount of silicon supported.
( D ) アルコール等の危険物を含む廃液が生じるため、 その処理が煩雑とな ること。  (D) Since waste liquid containing dangerous substances such as alcohol is generated, the treatment becomes complicated.
( E ) 珪酸化合物が速やかにゲル化する p H領域で被覆するため、 細孔を有 する酸化珪素膜が形成されること。  (E) A silicon oxide film having pores is formed to cover the pH region where the silicate compound gels quickly.
[0034] これに対し、 本発明に係る製造方法では、 珪酸塩を原料としているため、 酸化珪素膜の原料を安価なものとすることができる。 その上、 製造時にアル コールが副生することがない。 また、 水系媒体として水のみを使用した場合 には、 有機媒体や、 アルコール等を用いない。 そのため、 防爆型の高価な専 用設備が不要となるとともに、 廃液処理が煩雑化しない。  On the other hand, in the manufacturing method according to the present invention, since silicate is used as a raw material, the raw material for the silicon oxide film can be made inexpensive. In addition, no alcohol is produced as a by-product during manufacturing. Also, when only water is used as the aqueous medium, no organic medium or alcohol is used. As a result, expensive explosion-proof specialized equipment is not required, and waste liquid treatment is not complicated.
[0035] さらには、 液相で処理することができるので、 珪素の担持量を任意に制御 することが比較的容易となる。 また、 基体に酸化珪素膜を被覆する際、 基体 と珪酸塩の両方を含む混合液の P Hを 5以下としている。 そのため、 珪酸化 合物を含む溶液を安定に存在させることができ、 かつ、 基体の表面に、 細孔 を実質的に有しない酸化珪素を形成することができる。 [0035] Furthermore, since the treatment can be performed in the liquid phase, it is relatively easy to arbitrarily control the amount of silicon supported. In addition, when the silicon oxide film is coated on the substrate, the PH of the mixed solution containing both the substrate and silicate is set to 5 or less. Therefore, silicidation A solution containing the compound can be stably present, and silicon oxide having substantially no pores can be formed on the surface of the substrate.
[0036] 上記製造方法において、 水系媒体としては、 水、 あるいは水を主成分とし 、 脂肪族アルコール類、 脂肪族エーテル類等のうち、 水に溶解可能な有機溶 媒を含む混合液が挙げられる。 水系媒体を具体的に例示するとすれば、 水、 および水とメチルアルコール、 水とエチルアルコール、 水とイソプロパノ一 ル等の混合液が挙げられる。 これらの中では水が好ましい。 また、 これらの 水および混合液は、 1種単独で、 または 2種以上組み合わせて用いることが できる。 更に、 水系媒体には、 基体の分散性あるいは溶解性を向上させるた めに、 脂肪族アルコール類、 脂肪族エーテル類等のうち、 水に溶解可能な有 機溶媒、 並びに脂肪族ァミン類、 脂肪族ポリエーテル類およびゼラチン類等 の界面活性剤を混ぜることもできる。  [0036] In the above production method, examples of the aqueous medium include water or a mixed liquid containing water as a main component and containing an organic solvent that is soluble in water among aliphatic alcohols, aliphatic ethers, and the like. . Specific examples of the aqueous medium include water and a mixed liquid of water and methyl alcohol, water and ethyl alcohol, water and isopropanol, and the like. Of these, water is preferred. In addition, these water and mixed liquids can be used alone or in combination of two or more. Further, in order to improve the dispersibility or solubility of the substrate, the aqueous medium includes an organic solvent that can be dissolved in water among aliphatic alcohols, aliphatic ethers, etc., and aliphatic amines, Surfactants such as aromatic polyethers and gelatins can also be mixed.
[0037] 珪酸塩としては、 珪酸および/またはそのオリゴマーの塩を用い、 2種以 上を混合して用いてもよい。 ナトリウム塩およびカリウム塩は、 工業的に入 手容易である点から好ましく、 溶解工程を省略できるので珪酸ナトリゥム水 溶液 (J I S K 1 4 0 8 "水ガラス") がさらに好ましい。  [0037] As the silicate, silicic acid and / or an oligomer thereof may be used, and two or more kinds may be mixed and used. Sodium salt and potassium salt are preferable from the viewpoint of easy industrial availability, and a sodium silicate aqueous solution (JISK 140 8 "water glass") is more preferable because the dissolution step can be omitted.
[0038] 水系媒体中に存在させた基体に珪酸塩を用いて酸化珪素膜を被覆する際に は、 水系媒体、 基体、 および珪酸塩を混合し、 続けてこの混合液を熟成する  [0038] When a silicon oxide film is coated with a silicate on a substrate existing in an aqueous medium, the aqueous medium, the substrate, and the silicate are mixed, and then this mixed solution is aged.
[0039] 具体的に示すと、 [0039] Specifically,
( i )基体を含む水系媒体と珪酸塩、  (i) an aqueous medium containing a substrate and a silicate,
( i i )珪酸塩を含む水系媒体と基体、 および  (i i) an aqueous medium and substrate containing silicate, and
( i i i )基体を含む水系媒体と珪酸塩を含む水系媒体、  (ii) an aqueous medium containing a substrate and an aqueous medium containing a silicate,
の少なくともいずれか一組を混合する工程、 並びにこの混合液を熟成するェ 程からなる被覆方法である。 熟成する工程では、 基体に対する酸化珪素膜の 被覆が徐々に進むこととなる。  A coating method comprising a step of mixing at least one of the above and a step of aging the mixed solution. In the aging process, the coating of the silicon oxide film on the substrate gradually proceeds.
[0040] この際、 基体および珪酸塩の両方を含む混合液の p Hを 5以下に維持する ことが必要であり、 p H 0以上、 p H 4以下の酸性領域とすることがより好 ましい。 基体の非存在下で p H 5以下を維持した場合、 珪酸、 珪酸イオンお よび/またはこれらのオリゴマーから、 珪酸化合物の縮合物が単独では析出 しにくい。 一方、 基体の存在下で p H 5以下を維持した場合、 基体の表面が 珪酸化合物の縮合触媒として作用し、 酸化珪素膜が基体の表面にのみ速やか に生成される。 すなわち、 p Hが 5以下の酸性領域は、 珪酸化合物を含む溶 液を安定に存在させることができ、 かつ、 基体の表面に酸化珪素を膜状に形 成可能な領域である。 [0040] At this time, it is necessary to maintain the pH of the mixed solution containing both the substrate and the silicate at 5 or less, and it is more preferable to set the acidic region to pH 0 or more and pH 4 or less. Good. When the pH is maintained at 5 or less in the absence of the substrate, the condensate of silicic acid compounds hardly precipitates alone from silicic acid, silicic acid ions and / or oligomers thereof. On the other hand, when the pH is maintained below 5 in the presence of the substrate, the surface of the substrate acts as a condensation catalyst for the silicate compound, and a silicon oxide film is rapidly formed only on the surface of the substrate. That is, the acidic region having a pH of 5 or less is a region in which a solution containing a silicic acid compound can be stably present and silicon oxide can be formed into a film on the surface of the substrate.
[0041 ] p H 1 1以上の塩基性領域においても、 p H 5以下の酸性領域と同様に珪 酸、 珪酸イオンおよび/またはこれらのオリゴマーを含む液を熟成した際に 、 珪酸化合物の縮合物は析出しにくい。 しかしながら、 用いた珪酸塩のうち の一部しか酸化珪素膜を形成しないので、 好ましくない。 また、 p H 6〜 1 1の領域は、 珪酸化合物の縮合物、 すなわち、 酸化珪素微粒子および/また はゲル等が生じやすいため、 酸化珪素膜が多孔質となったり、 基体の表面上 で局所的に酸化珪素が形成される可能性がある。  [0041] Also in the basic region of pH 11 or higher, when a solution containing silicic acid, silicate ions and / or oligomers thereof is ripened as in the acidic region of pH 5 or lower, the condensate of the silicic acid compound Is difficult to precipitate. However, since only a part of the used silicate forms a silicon oxide film, it is not preferable. Further, since the pH range of 6 to 11 is likely to produce a condensate of a silicate compound, that is, silicon oxide fine particles and / or gel, the silicon oxide film becomes porous or locally on the surface of the substrate. In particular, silicon oxide may be formed.
[0042] 水系媒体中にアルコール等の有機媒体が存在する場合には、 水用の p H電 極では p Hを正確に測定できないので、 有機媒体を含む水溶液用の p H電極 を用いて測定する。 別途、 有機媒体を同体積の水で置き換えて p Hを測定す ることも可能である。  [0042] When an organic medium such as alcohol is present in an aqueous medium, the pH cannot be accurately measured with a pH electrode for water. Therefore, measurement is performed using a pH electrode for an aqueous solution containing an organic medium. To do. Separately, it is possible to measure the pH by replacing the organic medium with the same volume of water.
[0043] 基体と珪酸塩の両方を含む混合液を、 p H 5以下に維持する方法としては 、 基体、 珪酸塩、 および水系溶媒の混合および熟成を行う際、 水系媒体の p Hを常時測定し、 適宜、 酸および塩基を加えて調整する方法でも構わない。 しかし、 製造に用いる珪酸塩に含まれる塩基成分の総量を中和した上で p H 5以下となるに十分な量の酸を予め水系媒体中に存在させておくことが簡便 である。  [0043] As a method of maintaining the mixed solution containing both the substrate and the silicate at a pH of 5 or less, the pH of the aqueous medium is always measured when the substrate, the silicate, and the aqueous solvent are mixed and aged. In addition, a method of adjusting by adding an acid and a base may be used as appropriate. However, it is easy to neutralize the total amount of the base components contained in the silicate used in the production and to have an amount of acid sufficient to be lower than pH 5 in the aqueous medium in advance.
[0044] 酸は、 どのような酸でも使用可能であるが、 塩酸、 硝酸、 硫酸等の鉱酸が 好適に用いられる。 酸は、 1種のみを用いても、 2種以上を混合して用いて も良い。 この中で塩酸、 硝酸が好ましい。 硫酸を使用する場合、 光触媒中の 硫黄含有量が多く残存すると、 吸着効率が経時劣化することがある。 光触媒 中の硫黄含有量は、 光触媒の全重量を基準として、 0 . 5重量%以下が好ま しく、 0 . 4重量%以下がより好ましい。 [0044] Although any acid can be used as the acid, mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferably used. Only one kind of acid may be used, or two or more kinds of acids may be mixed and used. Of these, hydrochloric acid and nitric acid are preferred. When sulfuric acid is used, if a large amount of sulfur remains in the photocatalyst, the adsorption efficiency may deteriorate over time. photocatalyst The sulfur content therein is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, based on the total weight of the photocatalyst.
[0045] 塩基は、 珪酸塩に含まれる塩基成分の総量を中和した上で p H 5以下とな るのに十分な量の酸を予め水系媒体中に存在させておく前述した方法を使用 する場合には、 特に別途用いる必要は無い。 しかしながら、 塩基を用いる場 合は、 どのような塩基でも使用可能である。 なかでも、 水酸化カリウム、 水 酸化ナトリゥム等のアル力リ金属水酸化物が好適に用いられる。  [0045] For the base, the total amount of the base components contained in the silicate is neutralized, and a sufficient amount of acid is previously present in the aqueous medium so that the pH is 5 or less. There is no need to use it separately. However, when using a base, any base can be used. Of these, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferably used.
[0046] 混合溶液を熟成し、 基体に対して酸化珪素膜を被覆する際の反応温度およ び反応時間等の反応条件は、 目的とする酸化珪素膜の生成に悪影響を与えな い条件であれば特に限定されない。 反応温度は 1 0 °C以上 2 0 0 °C以下であ ることが好ましく、 2 0 °C以上 8 0 °C以下であることがより好ましい。 反応 温度が低すぎると、 珪酸化合物の縮合が進行し難くなることにより、 酸化珪 素膜の生成が著しく遅延し、 生産性の悪化を招くことがある。 反応温度が高 すぎると、 珪酸化合物の縮合物、 すなわち、 酸化珪素微粒子および/または ゲル等が生じやすいため、 酸化珪素膜が多孔質となったり、 基体表面上で局 所的に酸化珪素が形成されてしまうことがある。  [0046] The reaction conditions such as reaction temperature and reaction time when the mixed solution is aged and the silicon oxide film is coated on the substrate are conditions that do not adversely affect the formation of the target silicon oxide film. If there is no particular limitation. The reaction temperature is preferably 10 ° C. or higher and 20 ° C. or lower, more preferably 20 ° C. or higher and 80 ° C. or lower. When the reaction temperature is too low, the condensation of the silicate compound is difficult to proceed, so that the formation of the silicon oxide film is remarkably delayed and the productivity may be deteriorated. If the reaction temperature is too high, a condensate of a silicate compound, that is, silicon oxide fine particles and / or gel, etc. is likely to be generated, so that the silicon oxide film becomes porous or silicon oxide is locally formed on the substrate surface. It may be done.
[0047] 熟成時間は、 1 0分以上、 5 0 0時間以下であることが好ましく、 1時間 以上、 1 0 0時間以下であることがより好ましい。 熟成時間が短すぎると、 酸化珪素膜による被覆が充分に進行せず、 被膜による光分解活性の向上効果 が充分に得られない場合がある。 熟成時間が長すぎると、 光触媒活性を有す る基体は、 酸化珪素膜により充分に被覆され、 光分解活性も向上するが、 生 産性が悪化することがある。  [0047] The aging time is preferably 10 minutes or more and 500 hours or less, and more preferably 1 hour or more and 100 hours or less. If the aging time is too short, the coating with the silicon oxide film does not proceed sufficiently, and the effect of improving the photolytic activity by the coating may not be sufficiently obtained. When the aging time is too long, the substrate having photocatalytic activity is sufficiently covered with the silicon oxide film and the photodegradation activity is improved, but the productivity may be deteriorated.
[0048] また、 混合液中に含まれる光触媒活性を有する基体の濃度は 1重量%以上 5 0重量%以下であることが好ましく、 5重量%以上 3 0重量%以下である ことがより好ましい。 基体濃度が低すぎると、 生産性が悪くなる可能性があ る。 一方、 基体濃度が高すぎると基体に対する酸化珪素膜の被覆が均一に進 行せず、 光分解活性の向上効果が充分に得られないことがある。  [0048] The concentration of the substrate having photocatalytic activity contained in the mixed solution is preferably 1% by weight or more and 50% by weight or less, and more preferably 5% by weight or more and 30% by weight or less. If the substrate concentration is too low, productivity may deteriorate. On the other hand, if the substrate concentration is too high, the coating of the silicon oxide film on the substrate may not proceed uniformly, and the effect of improving the photolytic activity may not be sufficiently obtained.
混合液中に含まれる珪素の濃度は 0 . 0 5重量%以上5重量%以下でぁる ことが好ましく、 0. 1重量%以上 3重量%以下であることがより好ましい 。 珪素濃度が低すぎると、 珪酸化合物の縮合が遅延し、 基体に対する酸化珪 素膜の被覆が充分でなくなることがある。 珪素濃度が高すぎると、 基体に対 する酸化珪素膜の被覆が均一に進行しないことがある。 The concentration of silicon contained in the mixture is 0.05 to 5% by weight It is preferably 0.1% by weight or more and 3% by weight or less. If the silicon concentration is too low, the condensation of the silicate compound is delayed and the substrate may not be sufficiently covered with the silicon oxide film. If the silicon concentration is too high, the coating of the silicon oxide film on the substrate may not proceed uniformly.
[0049] 本発明の製造方法において、 光触媒活性を有する基体および珪酸塩の使用 量の比率は、 前記基体の表面積 1 m2当りの珪素原子として、 0. 0 1 mg/ m2以上、 0. 5m g/m2以下であることが好ましい。 この範囲の比率で製 造すれば、 前記基体の表面に酸化珪素膜を形成する工程において、 すなわち 、 前記基体を含む水系媒体と珪酸塩、 珪酸塩を含む水系媒体と前記基体、 お よび前記基体を含む水系媒体と珪酸塩を含む水系媒体、 の少なくともいずれ か一組を混合し熟成する工程において、 基体の表面に所望の酸化珪素膜を形 成できる。 それと共に、 基体の表面で縮合せずに未反応で残った、 珪酸、 珪 酸イオン、 および/またはこれらのオリゴマーの量を少なく抑えられるので 、 細孔を有する酸化珪素膜が形成されることが少ない。 0. 5mg/m2以上 、 5. Omg/m2以下の範囲では、 比率が大きくなるほど、 未反応物の量が 増え、 細孔を有する酸化珪素膜が形成されることがある。 しかしながら、 未 反応物の縮合が進行して細孔が生じることは、 処理時間を短くすることで回 避することが可能である。 [0049] In the production method of the present invention, the ratio of the amount of substrate and silicates having a photocatalytic activity, as the surface area 1 m 2 per silicon atom of the substrate, 0. 0 1 mg / m 2 or more, 0. It is preferably 5 mg / m 2 or less. If the ratio is within this range, in the step of forming a silicon oxide film on the surface of the substrate, that is, an aqueous medium containing the substrate and a silicate, an aqueous medium containing a silicate, the substrate, and the substrate. A desired silicon oxide film can be formed on the surface of the substrate in the step of mixing and aging at least one of an aqueous medium containing silicate and an aqueous medium containing silicate. At the same time, since the amount of silicic acid, silicate ions, and / or oligomers thereof remaining unreacted without condensing on the surface of the substrate can be suppressed, a silicon oxide film having pores can be formed. Few. In the range of 0.5 mg / m 2 or more and 5. Omg / m 2 or less, as the ratio increases, the amount of unreacted substances increases and a silicon oxide film having pores may be formed. However, it is possible to avoid the formation of pores due to the progress of condensation of unreacted substances by shortening the treatment time.
[0050] 本発明の酸化珪素膜の被覆方法をより具体的に示すとすれば、 例えば、  [0050] If the silicon oxide film coating method of the present invention is shown more specifically, for example,
(工程 a) 基体を含む水系媒体と珪酸塩、 珪酸塩を含む水系媒体と基体、 お よび基体を含む水系媒体と珪酸塩を含む水系媒体、 からなる群より選ばれる 少なくともいずれか一組を混合する工程、  (Step a) Mixing at least one set selected from the group consisting of an aqueous medium containing a substrate and a silicate, an aqueous medium containing a silicate and a substrate, and an aqueous medium containing a substrate and an aqueous medium containing a silicate. The process of
(工程 b) この混合液を熟成し、 前記基体に対して酸化珪素膜を被覆するェ 程、  (Step b) The step of aging this mixed solution and coating the substrate with a silicon oxide film,
(工程 c) 混合液を中和せずに、 酸化珪素膜を被覆した光触媒を水系媒体か ら分離および洗浄する工程、  (Step c) A step of separating and washing the photocatalyst coated with the silicon oxide film from the aqueous medium without neutralizing the mixed solution,
(工程 d ) 酸化珪素膜を被覆した光触媒を乾燥および/または焼成する工程 からなり、 かつ、 工程 a並びに工程 bにおいて、 前記基体および珪酸塩の両 方を含む水系媒体の P H 5以下に維持する製造方法が挙げられる。 (Step d) comprising a step of drying and / or firing the photocatalyst coated with the silicon oxide film, and in steps a and b, both the substrate and the silicate The manufacturing method of maintaining the aqueous medium containing the pH at PH 5 or lower is mentioned.
[0051 ] 水系媒体から酸化珪素膜を被覆した光触媒を分離する際に、 中和すると、 以下の点が問題となる。 すなわち、 洗浄工程でのアルカリ金属分の低減効率 が悪くなる点、 および水系媒体中に溶解したまま残った珪素化合物が縮合、 ゲル化して多孔質シリカ膜が形成される点が問題となる。 上記の問題は、 予 め珪酸塩溶液を脱アル力リし、 この脱アル力リした液を調製して製造に用い ること、 および光触媒活性を有する基体および珪酸塩の使用量の比率を小さ くすること、 によって回避あるいは極小化することも可能である。 しかしな 力《ら、 中和せずに酸化珪素膜を被覆した光触媒を水系媒体から分離すると、 上記問題を回避でき、 かつ製法が簡便なので好ましい。 [0051] When the photocatalyst coated with the silicon oxide film is separated from the aqueous medium, neutralization causes the following problems. That is, there are problems in that the efficiency of reducing the alkali metal content in the washing step is deteriorated, and that the silicon compound remaining dissolved in the aqueous medium is condensed and gelled to form a porous silica film. The problems described above are that the silicate solution should be dealt with in advance, and the dealued solution should be prepared and used for production, and the ratio of the substrate having photocatalytic activity and the amount of silicate used should be reduced. It is possible to avoid or minimize it. However, it is preferable to separate the photocatalyst coated with the silicon oxide film without neutralization from the aqueous medium because the above problems can be avoided and the production method is simple.
[0052] 酸化珪素膜を被覆した光触媒の混合液からの分離方法は特に限定されない 力 例えば、 自然濾過法、 減圧濾過法、 加圧濾過法、 遠心分離法などの公知 の方法が好適に利用できる。 [0052] The method for separating the photocatalyst coated with the silicon oxide film from the mixed solution is not particularly limited. For example, known methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal separation can be suitably used. .
酸化珪素膜を被覆した光触媒の洗浄方法は特に限定されないが、 例えば、 純水への再分散化とろ過の繰り返し、 イオン交換処理による脱塩洗浄、 デカ ンテーシヨンの繰り返しなどが好適に利用できる。 また、 酸化珪素膜を被覆 した光触媒の用途によっては、 洗浄工程を省略することも可能である。  The method for cleaning the photocatalyst coated with the silicon oxide film is not particularly limited. For example, redispersion in pure water and repeated filtration, desalting and washing by ion exchange treatment, and repeated decantation can be suitably used. Also, depending on the use of the photocatalyst coated with a silicon oxide film, the cleaning step can be omitted.
[0053] 酸化珪素膜を被覆した光触媒の乾燥方法は特に限定されないが、 例えば、 風乾、 減圧乾燥、 加熱乾燥、 噴霧乾燥、 などが好適に利用できる。 また、 酸 化珪素膜を被覆した光触媒の用途によっては、 乾燥工程を省略することも可 能である。 [0053] The drying method of the photocatalyst coated with the silicon oxide film is not particularly limited, and for example, air drying, reduced pressure drying, heat drying, spray drying, and the like can be suitably used. Also, depending on the use of the photocatalyst coated with a silicon oxide film, the drying step can be omitted.
[0054] 酸化珪素膜を被覆した光触媒の焼成方法は特に限定されないが、 例えば、 減圧焼成、 空気焼成、 窒素焼成等が好適に利用できる。 通常、 焼成は 2 0 0 °C以上 1 2 0 0 °C以下の温度で実施できるが、 4 0 0 °C以上 1 0 0 0 °C以下 が好ましく、 4 0 0 °C以上 8 0 0 °C以下がより好ましい。 焼成温度が低すぎ ると、 基体表面上に所望する酸化珪素の焼成膜が生成せず、 充分な光分解活 性が得られない可能性がある。 焼成温度が高すぎると、 酸化珪素膜を被覆し た光触媒の焼結が進行しすぎて、 充分な光分解活性が得られない可能性があ る。 [0054] The method for firing the photocatalyst coated with the silicon oxide film is not particularly limited, and, for example, reduced-pressure firing, air firing, nitrogen firing and the like can be suitably used. Usually, firing can be carried out at a temperature of 200 ° C. or more and 120 ° C. or less, but preferably 400 ° C. or more and 100 ° C. or less, preferably 400 ° C. or more and 80 ° C. or more. C or less is more preferable. If the firing temperature is too low, a desired fired silicon oxide film may not be formed on the substrate surface, and sufficient photolytic activity may not be obtained. If the firing temperature is too high, sintering of the photocatalyst coated with the silicon oxide film may proceed too much, and sufficient photolysis activity may not be obtained. The
[0055] 酸化珪素膜を被覆した光触媒に含有される水分含有量は、 7重量%以下で あることが好ましい。 5重量%以下がさらに好ましく、 4重量%以下が最も 好ましい。 水分含有量が高すぎると、 多量の水が酸化珪素周辺に存在するこ とにより、 ガスに対する吸着性能が充分に発揮されず、 同時に充分な光分解 活性も得られない可能性がある。  [0055] The water content contained in the photocatalyst coated with the silicon oxide film is preferably 7% by weight or less. 5% by weight or less is more preferable, and 4% by weight or less is most preferable. If the water content is too high, there is a possibility that a large amount of water is present around the silicon oxide, so that the gas adsorption performance is not sufficiently exhibited, and at the same time, sufficient photolytic activity cannot be obtained.
[0056] このようにして得られた酸化珪素膜を被覆した光触媒は、 酢酸等の酸性ガ ス、 アンモニア等の塩基性ガス、 トルエン等の非極性ガスいずれも吸着でき 、 光触媒性能にも優れている。  [0056] The photocatalyst coated with the silicon oxide film thus obtained can adsorb both acidic gas such as acetic acid, basic gas such as ammonia, and nonpolar gas such as toluene, and has excellent photocatalytic performance. Yes.
[0057] 上記のように、 本発明の酸化珪素膜を被覆した光触媒の製造方法は、 細孔 を有さない酸化珪素膜を得るために、 p Hを低くするとともに、 珪酸塩の濃 度、 基体の濃度、 使用する酸性溶液、 膜形成後の焼成温度、 焼成時間等の条 件を適宜選択することが重要となる。  [0057] As described above, in the method for producing a photocatalyst coated with a silicon oxide film of the present invention, in order to obtain a silicon oxide film having no pores, the pH is lowered, the concentration of silicate, It is important to appropriately select the conditions such as the concentration of the substrate, the acidic solution to be used, the firing temperature after film formation, and the firing time.
[0058] 本発明において、 「リンとカルシウムを含む化合物」 とは、 その構成物質 として、 リンおよびカルシウムを含有してなる化合物である。 その形状、 構 造、 組成、 製造法等は限定されるものではないが、 リンとカルシウムを含む 化合物として、 アパタイ トを一例として挙げることができる。 アパタイ トと は、 M 1 0 ( Z 0 4) 6 X 2の組成を持った鉱物群の総称として知られており、 M と Zの主成分は、 それぞれ、 カルシウムとリンであることが一般的に知られ ている。 また、 Xは F、 C l、 O H、 および C 0 3からなる群より選択される —以上である。 ここで、 ァパタイ トは通常、 六角柱状の棒状、 板状等の形状 を有することが知られている。 In the present invention, the “compound containing phosphorus and calcium” is a compound containing phosphorus and calcium as its constituent substances. The shape, structure, composition, production method, etc. are not limited, but as an example of a compound containing phosphorus and calcium, apatite can be mentioned. Apatite is known as a general term for a group of minerals with a composition of M 1 0 (Z 0 4 ) 6 X 2 , and the main components of M and Z are generally calcium and phosphorus, respectively. Known to. X is selected from the group consisting of F, C l, OH, and C 0 3 —or more. Here, it is known that the aperture usually has a hexagonal columnar shape, a plate shape, or the like.
[0059] 「リンとカルシウムを含む化合物」 とは光触媒中に、 リンとカルシウムを 含むことを示しており、 含有形態、 含有量、 および調製方法については特に 限定されるものではない。  [0059] The "compound containing phosphorus and calcium" indicates that the photocatalyst contains phosphorus and calcium, and the containing form, the content, and the preparation method are not particularly limited.
[0060] 本発明における光触媒中に含まれるリン含有量およびカルシウム含有量は 、 以下の通りである。 リン含有量は、 光触媒全体の重量に対して好ましくは 0 . 1重量%以上 1 0重量%以下、 より好ましくは 1重量%以上 1 0重量0 /o 以下である。 また、 カルシウム含有量は、 光触媒全体の重量に対して好まし くは 0. 2重量%以上 20重量%以下、 より好ましくは 2重量%以上 20重 量%以下である。 リン含有量またはカルシウム含有量が少なすぎると、 光触 媒活性を有する基体に対するリンとカルシウムを含む化合物の被覆量が充分 でなく、 有機基材の保護効果が充分に現れない。 一方、 リン含有量または力 ルシゥム含有量が高すぎると、 光触媒活性を有する基体に対する、 リンと力 ルシゥムを含む化合物の被覆量が多すぎて、 紫外光が充分に光触媒活性を有 する基体に届かなくなる。 その結果、 光触媒活性の著しい低下を招くことと なる。 [0060] The phosphorus content and calcium content contained in the photocatalyst of the present invention are as follows. The phosphorus content is preferably 0.1% by weight or more and 10% by weight or less, more preferably 1% by weight or more and 10% by weight or 0 / o based on the total weight of the photocatalyst. It is as follows. The calcium content is preferably 0.2% by weight or more and 20% by weight or less, more preferably 2% by weight or more and 20% by weight or less, based on the total weight of the photocatalyst. If the phosphorus content or calcium content is too small, the coating amount of the compound containing phosphorus and calcium on the substrate having photocatalytic activity is not sufficient, and the protective effect of the organic substrate is not sufficiently exhibited. On the other hand, if the phosphorus content or the strength lucum content is too high, the coating amount of the compound containing phosphorus and the strength lucum on the substrate having photocatalytic activity is too large, and the ultraviolet light reaches the substrate having sufficient photocatalytic activity. Disappear. As a result, the photocatalytic activity is significantly reduced.
[0061] 本発明において、 リンとカルシウムを含む化合物を製造する段階は特に限 定しないが、 予め製造した酸化珪素膜を被覆した光触媒に対してリンとカル シゥムを含む化合物を製造、 固定化する方法が、 最も簡便かつ効果的な手法 である。  In the present invention, the step of producing a compound containing phosphorus and calcium is not particularly limited, but a compound containing phosphorus and calcium is produced and immobilized on a photocatalyst coated with a silicon oxide film produced in advance. The method is the simplest and most effective method.
[0062] リンとカルシウムを含む化合物を製造し、 酸化珪素膜を被覆した光触媒へ 固定化物として固定化する方法は特に限定されるものではないが、 ァパタイ トを製造する方法を応用することが可能である。 ァパタイ 卜の製造に際して は、 析出法、 湿式法、 水熱法、 メカノケミカル法等を挙げることが出来るが 、 擬似体液中で析出させることを特徴とする析出法が最も望ましい。  [0062] The method for producing a compound containing phosphorus and calcium and immobilizing the compound as a fixed product on the photocatalyst coated with a silicon oxide film is not particularly limited, but a method for producing a protein can be applied. It is. In the production of the powder candy, there are a precipitation method, a wet method, a hydrothermal method, a mechanochemical method, etc., but a precipitation method characterized by precipitation in a simulated body fluid is most desirable.
[0063] 本発明で用いられる擬似体液は、 N a C I、 N a H C03、 N a 2H P04、 N a H2 P04、 KC I、 KH C03、 K2H P04、 KH2P04、 Mg C I 2、 C a C I 2、 N a 2S04、 および N a Fなどから選ばれる任意の化合物を水に 溶解させることにより、 調製可能である。 しかしながら、 カルシウムを含む 化合物およびリンを含む化合物を添加することは必須である。 また、 必要に 応じて H C I、 (CH2OH) 3CN H2等を添加することも可能である。 [0063] The simulated body fluid used in the present invention includes N a CI, N a H C0 3 , N a 2 H P0 4 , N a H 2 P0 4 , KC I, KH C0 3 , K 2 H P0 4 , KH the 2 P0 4, Mg CI 2, C a CI 2, N a 2 S0 4, and N a F any compound selected from like by dissolving in water, can be prepared. However, it is essential to add a compound containing calcium and a compound containing phosphorus. If necessary, HCI, (CH 2 OH) 3 CN H 2 or the like can be added.
[0064] 擬似体液の調製に際しては、 前記化合物を単一の擬似体液中に調製しても 良いし、 各化合物を含む溶液を別々に調製した上で、 適宜、 添加していき、 最終的に擬似体液となるように調製しても良い。 例えば、 カルシウムを含む 溶液と、 リンを含む溶液とを別々に調製し、 後から、 2つの溶液を混合して 、 最終的に擬似体液を調製する等の方法が実施可能である。 [0064] In the preparation of the simulated body fluid, the compound may be prepared in a single simulated body fluid, or a solution containing each compound is prepared separately and added as appropriate, and finally, You may prepare so that it may become a simulated body fluid. For example, prepare a solution containing calcium and a solution containing phosphorus separately, and then mix the two solutions A method of finally preparing a simulated body fluid can be performed.
[0065] 擬似体液に対して、 酸化珪素膜を被覆した光触媒を添加する順序は特に限 定するものではない。 擬似体液を調製した後、 酸化珪素膜を被覆した光触媒 を添加しても良いし、 カルシウムを含む溶液に対して酸化珪素膜を被覆した 光触媒を添加した後に、 リンを含む溶液を添加しても良いし、 リンを含む溶 液に対して酸化珪素膜を被覆した光触媒を添加した後に、 カルシウムを含む 溶液を添加しても良い。 いずれの順序でも、 所望の光触媒を製造可能である  [0065] The order in which the photocatalyst coated with a silicon oxide film is added to the simulated body fluid is not particularly limited. After preparing the simulated body fluid, a photocatalyst coated with a silicon oxide film may be added, or after adding a photocatalyst coated with a silicon oxide film to a solution containing calcium, a solution containing phosphorus may be added. Alternatively, a solution containing calcium may be added after adding a photocatalyst coated with a silicon oxide film to a solution containing phosphorus. Any order can produce the desired photocatalyst
[0066] 本発明に用いられる擬似体液の組成は、 N a+ : 1 20〜1 60mM、 K + : 1〜20mM、 C a 2+: 0. 5〜50mM、 M g 2+: 0. 5〜50mM、 C I _ : 80〜200mM、 H CO3_ : 0. 5〜30mM、 H P04 2_: "!〜 20mM、 S04 2— : 0. "!〜 20mM、 F— : 0〜5mM、 が好ましい。 こ れらの濃度が低すぎると、 リン酸カルシウムの生成に時間がかかる可能性が ある。 また、 これらの濃度が高すぎると、 リン酸カルシウムの生成が急激に 起こって、 多孔質度や膜厚の制御が困難となる可能性がある。 [0066] The composition of the simulated body fluid used in the present invention, N a +: 1 20~1 60mM , K +: 1~20mM, C a 2+: 0. 5~50mM, M g 2+: 0. 5~ 50mM, CI _: 80~200mM, H CO 3 _: 0. 5~30mM, H P0 4 2 _: "! ~ 20mM, S0 4 2 -: 0."! ˜20 mM, F—: 0 to 5 mM, are preferable. If these concentrations are too low, the formation of calcium phosphate can take a long time. Also, if these concentrations are too high, calcium phosphate formation may occur rapidly, making it difficult to control the porosity and film thickness.
[0067] 前記擬似体液と酸化珪素膜で被覆した光触媒を混合してから保持させる浸 漬時間は特に限定されないが、 1秒間〜 1 0日間が好ましく、 1分間〜 5日 間がより好ましい。  [0067] There is no particular limitation on the immersion time for mixing and holding the simulated body fluid and the photocatalyst coated with the silicon oxide film, but it is preferably 1 second to 10 days, more preferably 1 minute to 5 days.
[0068] 前記擬似体液と酸化珪素膜で被覆した光触媒を混合してから保持させる際 の浸漬温度は特に限定されないが、 0°C以上 1 00°C以下が好ましく、 30 °C以上 80°C以下がより好ましい。 温度が低すぎるとリンとカルシウムから なる化合物の生成に時間がかかる可能性があり、 温度が高すぎると擬似体液 の蒸発により、 リンとカルシウムからなる化合物の生成の制御が困難になる 可能性がある。  [0068] The immersion temperature when mixing and holding the simulated body fluid and the photocatalyst coated with the silicon oxide film is not particularly limited, but is preferably 0 ° C or higher and 100 ° C or lower, and 30 ° C or higher and 80 ° C or higher. The following is more preferable. If the temperature is too low, it may take a long time to produce a compound composed of phosphorus and calcium. If the temperature is too high, it may be difficult to control the production of a compound composed of phosphorus and calcium due to evaporation of the simulated body fluid. is there.
[0069] 上述の製造方法により、 リンとカルシウムを含む化合物を固定化物として を含む光触媒を製造可能である。 この光触媒は用途に応じて、 熱処理工程、 表面処理工程等、 所望の後処理を施すことが可能である。 熱処理に際しては 、 リンとカルシウムを含む化合物の固定化、 および結晶化の観点から、 50 °C〜7 0 0 °Cで行うことが望ましい。 [0069] The above-described production method can produce a photocatalyst containing a compound containing phosphorus and calcium as an immobilized product. This photocatalyst can be subjected to desired post-treatments such as a heat treatment step and a surface treatment step depending on the application. In the heat treatment, the compound containing phosphorus and calcium is immobilized, and from the viewpoint of crystallization, 50 It is desirable to carry out at a temperature of 750C to 700 ° C.
[0070] 本発明の光触媒において、 上記のリンとカルシウムを含む化合物を含有す る固定化物は、 吸着剤、 あるいはスぺーサ一としての効果を示す。 かかる光 触媒は、 吸着性能に優れ、 および有機基材 (樹脂等の有機物からなる基材) の劣化が起こりにくい。 ここで 「有機基材の劣化」 とは、 有機基材に光触媒 を添加した場合に、 光触媒の分解力によって有機基材が分解されて劣化する ことである。 光触媒における、 固定化物のスぺ一サ一効果とは、 酸化チタン 粒子が直接有機基材に接触しない構造によるものである。 したがって、 光触 媒の分解力を保ちつつ、 有機基材が分解されにくい。  [0070] In the photocatalyst of the present invention, the immobilized product containing the compound containing phosphorus and calcium exhibits an effect as an adsorbent or a spacer. Such a photocatalyst is excellent in adsorption performance and hardly deteriorates an organic base material (a base material made of an organic substance such as a resin). Here, “deterioration of the organic base material” means that when the photocatalyst is added to the organic base material, the organic base material is decomposed and deteriorated by the decomposing power of the photocatalyst. The spacer effect of the immobilized substance in the photocatalyst is due to the structure in which the titanium oxide particles do not directly contact the organic base material. Therefore, it is difficult for the organic base material to be decomposed while maintaining the decomposing power of the photocatalyst.
[0071 ] 本発明のリンとカルシウムを含む化合物を含有する固定化物は、 その形状 は、 スぺーサ一としての効果を示すものであれば特に限定されるものではな <、 酸化チタン粒子が有機基材に直接接触することを防止できる構造であれ ばよい。 例えば、 本発明の光触媒は、 その表面に上述の析出等の方法により 固定化された上述の固定化物を含む。 固定化物とは、 リンとカルシウムを含 む化合物を含有し、 酸化珪素膜の表面上および/または酸化珪素膜で覆われ ていない基体の表面上に位置し、 かかる表面に固定化されたものを意味する ものとする。 固定化物の形状としては、 例えば、 棒状、 針状、 円錐状等の突 出物、 膜、 または表層が挙げられる。 また、 固定化物は基体より小形の形状 を有する。 さらに、 好ましくは、 リンとカルシウムを含む化合物の固定化物 は、 基体上に形成された酸化珪素膜の厚みよりも厚く、 または粒径が大きく 、 光触媒表面から突出した形状を有する。  [0071] The immobilization product containing the phosphorus- and calcium-containing compound of the present invention is not particularly limited as long as it has an effect as a spacer. <The titanium oxide particles are organic. Any structure that can prevent direct contact with the substrate is acceptable. For example, the photocatalyst of the present invention includes the above-described immobilized product that is immobilized on the surface thereof by a method such as the above-described precipitation. The immobilized product contains a compound containing phosphorus and calcium and is located on the surface of the silicon oxide film and / or on the surface of the substrate not covered with the silicon oxide film, and is immobilized on the surface. It shall mean. Examples of the shape of the immobilization material include protrusions such as rods, needles, and cones, membranes, and surface layers. The immobilization product has a smaller shape than the substrate. Further preferably, the immobilization product of the compound containing phosphorus and calcium is thicker than the thickness of the silicon oxide film formed on the substrate or has a shape protruding from the surface of the photocatalyst.
[0072] 本発明に関わる光触媒は、 例えば次のような用途に用いることが可能であ る。 ただし、 記載した用途は、 適用可能な例であって、 本発明を限定するも のではない。  [0072] The photocatalyst according to the present invention can be used for the following applications, for example. However, the described use is an applicable example, and does not limit the present invention.
抗菌性を目的とするものとしては、 自動車のシート地、 シートカバ一、 力 —ペット、 ハンドル、 ハンドルカバ一、 シフトノブ、 ダッシュポ一ド、 ル一 ムランプ、 電車のつり革、 網棚、 内張り、 メーターパネル、 ドアノブ、 内壁 、 床、 天井、 室内のフローリング等床材、 畳、 ブラインド、 口一ルスクリ一 ン、 家具、 化粧板、 すだれ、 浴室用部材、 手すり、 テーブルクロス、 壁紙、 壁材、 ロックウール等の天井材、 ふすま、 障子、 冷蔵庫、 調理器、 手乾燥器 、 パソコン、 マウス、 キーボード等の電化製品、 めがね部材、 人工観葉植物 、 医療用器具、 照明器具の蛍光灯カバー、 シーリング材、 建築用ゴム等の左 官材料、 カーテン、 クロス、 衣類、 寝具、 敷物、 椅子張り、 のれん、 糸、 布 、 ロープ、 網, 不織布等の繊維製品、 上着、 ズボン、 シャツ、 靴下等の衣類 、 シーツ、 ふとん、 毛布等の寝具類、 力一テン、 シートカバ一、 ハンカチ、 タオル、 書道用紙、 障子紙、 新聞用紙、 非塗工印刷用紙 (上級印刷紙、 中級 印刷紙、 下級印刷紙、 薄葉印刷紙) 、 塗工印刷用紙 (アート紙、 コート紙、 軽量コート紙など) 、 特殊印刷用紙 (色上質紙、 その他特殊印刷用紙) 、 情 報用紙 (コピー用紙、 ノーカーボンペーパーなど) 、 包装用紙 (未晒し包装 紙、 晒し包装紙) 、 衛生用紙 (ティシュペーパー、 ちり紙など) 、 雑種紙 ( 工業用雑種紙、 家庭用雑種紙) 等へ適用することができる。 Antibacterial purposes include: car seats, seat covers, force—pets, handles, handle covers, shift knobs, dash pods, room lamps, train straps, net racks, linings, instrument panels, Door knob, inner wall, floor, ceiling, flooring such as indoor flooring, tatami mats, blinds, mouth scrub Furniture, decorative panels, blinds, bathroom components, handrails, tablecloths, wallpaper, wall materials, rock wool and other ceiling materials, bran, shoji, refrigerators, cookers, hand dryers, personal computers, mice, keyboards, etc. Electric appliances, glasses members, artificial foliage plants, medical equipment, fluorescent lamp covers for lighting equipment, sealing materials, plastering materials such as building rubber, curtains, cloth, clothing, bedding, rugs, upholstery, goodwill, yarn, Textile products such as cloth, ropes, nets, non-woven fabrics, outerwear, pants, shirts, socks and other clothing, sheets, futons, blankets and other beddings, tenacity, sheet covers, handkerchiefs, towels, calligraphy paper, shoji paper Newspaper paper, non-coated printing paper (advanced printing paper, intermediate printing paper, lower printing paper, thin leaf printing paper), coated printing paper (art paper, coated paper, lightweight coat) ), Special printing paper (color fine paper, other special printing paper), information paper (copy paper, carbonless paper, etc.), packaging paper (unbleached wrapping paper, bleached wrapping paper), sanitary paper (tissue paper, dust paper) Etc.), hybrid paper (industrial hybrid paper, household hybrid paper), etc.
また、 防汚を目的として、 自動車、 電車のランプカバー、 自動二輪メータ ―、 ヘルメットシールド、 外装用サイジング材として適用することができる  For anti-fouling purposes, it can be applied as a lamp cover for automobiles, trains, motorcycle meters, helmet shields, and exterior sizing materials.
[0073] 上記の用途には、 有機材に直接光触媒を含有させても良い。 その際、 高濃 度で光触媒を含有するマスターバッチを製造した後に、 所望の樹脂に応用さ せてもよい。 あるいは、 フヱノール樹脂、 ビニル樹脂、 エポキシ樹脂等の接 着剤や、 ペンキ、 インク、 コート剤、 壁紙表面仕上げ剤、 天井用建材仕上げ 剤、 等の塗料に光触媒を混合させた後、 各機材に光触媒層を被覆させて用い てもよい。 [0073] For the above applications, the organic material may contain a photocatalyst directly. At that time, a masterbatch containing a photocatalyst with a high concentration may be produced and then applied to a desired resin. Or after mixing photocatalyst with paint such as phenol resin, vinyl resin, epoxy resin, paint, ink, coating agent, wallpaper surface finishing agent, ceiling building material finishing agent, etc. A layer may be coated.
[0074] また、 本発明に係る光触媒は必要に応じ、 分散液または塗料組成物の形態 で利用することも可能である。 更に、 高活性化、 可視光応答性付与、 抗菌性 金属化合物との複合化、 表面変性による分散性付与、 あるいは光触媒として 不活性な化合物との複合化による光触媒含有材料の劣化抑制など、 公知の光 触媒改良法の原料として用いることも可能である。  [0074] Further, the photocatalyst according to the present invention can be used in the form of a dispersion or a coating composition, if necessary. Furthermore, high activation, imparting visible light response, compounding with antibacterial metal compounds, imparting dispersibility by surface modification, or suppressing degradation of photocatalyst-containing materials by compounding with compounds that are inactive as photocatalysts, etc. It can also be used as a raw material for photocatalyst improvement methods.
[0075] 本発明に係る光触媒を含む光触媒分散液は、 本発明に係る光触媒、 液状媒 体、 および分散安定剤を含有する。 この分散液を使用する方法は特に限定し ないが、 光触媒機能を付与させたい対象である基材に混ぜ込んだ後に成形し て用いてもよいし、 基材の表面に塗布、 および任意の乾燥および/または焼 成処理を施した後に用いてもよい。 あるいは基材に対して、 スプレー状に噴 霧した後に用いることも可能である。 対象とする基材としては、 陶磁器、 ガ ラス、 フィルム、 壁紙、 建材、 力一テン、 衣料、 天井材、 食器等に用いるこ とができる。 本発明に係る光触媒は有機基材を保護可能であることから、 主 として有機重合体からなる、 壁紙、 カーテン、 衣料、 不織布、 クロス、 フィ ルム、 有機系塗料、 有機系内装材、 有機系建材その他繊維製品、 等に用いる ことがより本発明の効果が発揮される点で望ましい。 また、 光触媒含有材料 および光触媒塗料組成物等の原料として用いることも可能である。 [0075] The photocatalyst dispersion liquid containing the photocatalyst according to the present invention includes the photocatalyst and the liquid medium according to the present invention. Body, and a dispersion stabilizer. The method of using this dispersion liquid is not particularly limited, but it may be used after being mixed with a base material to which a photocatalytic function is to be imparted, or may be applied to the surface of the base material and optionally dried. And / or after firing. Alternatively, it can be used after spraying on the substrate in a spray form. The target base materials can be used for ceramics, glass, film, wallpaper, building materials, timber, clothing, ceiling materials, tableware, etc. Since the photocatalyst according to the present invention can protect the organic base material, the wallpaper, curtain, clothing, nonwoven fabric, cloth, film, organic paint, organic interior material, organic building material mainly composed of an organic polymer In addition, it is desirable to use it for textile products, etc. in that the effect of the present invention is exhibited. It can also be used as a raw material for photocatalyst-containing materials and photocatalyst coating compositions.
[0076] 液状媒体としては、 例えば、 水、 メチルアルコール、 エチルアルコール等 のアルコール類、 ベンゼン、 トルエン、 キシレン等の芳香族類、 酢酸ェチル 等のエステル類、 アセトン等のケトン類が挙げられる。 これらは用途に合わ せ 1種単独あるいは 2種以上を混合して好適に使用できる。 しかしながら、 環境調和の観点から、 水を用いることがより望ましい。  [0076] Examples of the liquid medium include water, alcohols such as methyl alcohol and ethyl alcohol, aromatics such as benzene, toluene and xylene, esters such as ethyl acetate, and ketones such as acetone. These can be suitably used alone or in combination of two or more according to the application. However, it is more desirable to use water from the viewpoint of environmental harmony.
[0077] 分散安定剤としては、 イオン性界面活性剤、 湿潤剤、 増粘剤、 酸、 塩基等 を好適に使用可能である。 これらの分散安定剤のうち、 1種を含んでいても よいし、 2種以上を含んでいてもよい。 界面活性剤としては、 分散性の観点 から、 カルポン酸塩、 スルホン酸塩、 硫酸エステル塩、 リン酸エステル塩、 アルキルアミン塩、 4級アンモニゥム塩等のイオン性界面活性剤であること がより望ましい。  [0077] As the dispersion stabilizer, ionic surfactants, wetting agents, thickeners, acids, bases and the like can be suitably used. Among these dispersion stabilizers, one kind may be contained, or two or more kinds may be contained. From the viewpoint of dispersibility, the surfactant is preferably an ionic surfactant such as a carbonate, a sulfonate, a sulfate ester salt, a phosphate ester salt, an alkylamine salt, or a quaternary ammonium salt. .
[0078] 光触媒分散液中に含まれる光触媒の濃度は特に限定されないが、 光触媒分 散液全体に対して、 2重量%以上5 0重量%以下でぁることが望まし<、 5 重量%以上 3 0重量%以下であることがより望ましい。 光触媒の濃度が低す ぎると、 分散液中に含まれる光触媒の濃度が低下し、 経済性が悪化すること がある。 光触媒の濃度が高すぎると、 分散液中に含まれる光触媒の分散性が 悪化することがある。 [0079] 光触媒分散液中に含まれる分散安定剤の濃度は特に限定しないが、 分散安 定剤の総量が、 光触媒に対して 1重量%以上 1 0 0 0重量%以下であること が望ましく、 2重量%以上 2 0 0重量%以下であることがより望ましい。 分 散安定剤の濃度が低すぎると、 分散安定剤による光触媒の分散が充分に進行 しないことがある。 分散安定剤の濃度が高すぎると、 分散液を実際に使用す る際に、 光触媒作用を示す有効成分が低下することがある。 [0078] The concentration of the photocatalyst contained in the photocatalyst dispersion liquid is not particularly limited, but it is preferably 2% by weight or more and 50% by weight or less with respect to the entire photocatalyst dispersion liquid. More preferably, it is 30% by weight or less. If the concentration of the photocatalyst is too low, the concentration of the photocatalyst contained in the dispersion may decrease and the economic efficiency may deteriorate. If the concentration of the photocatalyst is too high, the dispersibility of the photocatalyst contained in the dispersion may deteriorate. [0079] The concentration of the dispersion stabilizer contained in the photocatalyst dispersion liquid is not particularly limited, but the total amount of the dispersion stabilizer is desirably 1% by weight or more and 100% by weight or less based on the photocatalyst. It is more desirable that it be 2 wt% or more and 200 wt% or less. If the concentration of the dispersion stabilizer is too low, the dispersion of the photocatalyst by the dispersion stabilizer may not proceed sufficiently. If the concentration of the dispersion stabilizer is too high, the active ingredient exhibiting a photocatalytic action may be reduced when the dispersion is actually used.
[0080] 本発明に係る光触媒の分散に際しては、 使用する機器を特に限定はしない 力 ポールミル粉砕機、 ビーズミル粉砕機、 超音波粉砕機、 高圧湿式微粒化 装置等の湿式分散機器が好適に使用可能である。 分散に際してはこれらの湿 式分散機器を単独で用いても良いし、 複数の機器を連続して使用しても良い 。 また、 湿式粉砕機器にて分散を施す前に、 乾式粉砕機器等の粉砕機器によ り粗粉砕を行っても良い。  [0080] When dispersing the photocatalyst according to the present invention, the equipment to be used is not particularly limited. Force Wet dispersion equipment such as a pole mill pulverizer, a bead mill pulverizer, an ultrasonic pulverizer, and a high-pressure wet atomizer can be suitably used. It is. When dispersing, these wet dispersion devices may be used alone or a plurality of devices may be used in succession. In addition, before the dispersion by the wet pulverizer, coarse pulverization may be performed by a pulverizer such as a dry pulverizer.
[0081 ] 本発明に係る光触媒を含む光触媒塗料組成物は、 本発明に係る光触媒、 液 状媒体、 および結着剤を含む。 この光触媒塗料組成物を使用する方法は特に 限定しないが、 光触媒機能を付与させたい対象である基材の表面に塗布、 及 び任意の乾燥及び/または焼成処理を施した後に用いてもよい。 この際、 対 象となる基材に対し直接塗布してもよいし、 また、 接着性の改善や、 基材の 保護のために一層以上の中間層を塗膜した上に、 塗布しても構わない。 ある いは、 基材に対して、 スプレー状に噴霧した後に用いることも可能である。 対象とする基材としては、 上記と同様のものを用いることができる。 しかし ながら、 本発明に係る光触媒は有機基材を保護可能であることから、 主とし て例えば上記に例示したような有機重合体からなる製品等に用いることがよ り本発明の効果が発揮される点で望ましい。  [0081] The photocatalyst coating composition containing the photocatalyst according to the present invention includes the photocatalyst according to the present invention, a liquid medium, and a binder. The method of using this photocatalyst coating composition is not particularly limited, but it may be used after being applied to the surface of a base material to which a photocatalytic function is to be imparted and subjected to any drying and / or baking treatment. At this time, it may be applied directly to the target substrate, or it may be applied after coating one or more intermediate layers to improve adhesion or protect the substrate. I do not care. Alternatively, it can be used after spraying on the substrate. As the target substrate, the same ones as described above can be used. However, since the photocatalyst according to the present invention can protect the organic base material, the effect of the present invention can be exerted mainly by using it for a product made of an organic polymer as exemplified above. This is desirable.
[0082] 液状媒体としては、 例えば、 上記に例示した光触媒分散液に用いられるも のと同様のものを用いることができる。 これらは、 用途に合わせ 1種単独あ るいは 2種以上を混合して好適に使用できる。 しかしながら、 環境調和の観 点から、 液状媒体として水を用いることが好ましい。  [0082] As the liquid medium, for example, the same ones as those used in the photocatalyst dispersion liquid exemplified above can be used. These can be suitably used singly or in combination of two or more according to the application. However, from the viewpoint of environmental harmony, it is preferable to use water as the liquid medium.
[0083] 結着剤としては、 例えばコロイダルシリカ、 シリコーン樹脂、 アルコキシ シラン、 およびその部分加水分解物、 炭化水素基で一部置換されたアルコキ シシランであるオルガノアルコキシシラン、 といった珪素化合物、 オルトチ タン酸、 過酸化チタン、 チタンアルコキシド、 チタンのァセチルァセトネ一 ト、 酸化チタンのゾル等のチタン化合物、 アクリル、 ウレタン、 フッ素樹脂 等の有機重合物、 などを 1種単独で使用してもよく、 また、 2種以上を混用し てもよい。 また、 一分子内に 2種以上の部分構造を持つブロックポリマー体 や傾斜ポリマー等を用いることもできる。 このうちチタン化合物、 珪素化合 物、 並びにフッ素樹脂は難分解性なので好ましい。 特に、 チタン化合物およ び珪素化合物は、 塗布後の加熱処理に対する制約が厳しくないため好ましい 。 特に環境調和の観点から完全に無機物のみである、 コロイダルシリカ、 ォ ルトチタン酸、 過酸化チタン、 酸化チタンゾルがより好ましい。 [0083] Examples of the binder include colloidal silica, silicone resin, and alkoxy. Silane, and its partial hydrolysates, organoalkoxysilanes, which are alkoxysilanes partially substituted with hydrocarbon groups, silicon compounds such as orthotitanic acid, titanium peroxide, titanium alkoxide, titanium acetylylacetonate, titanium oxide Titanium compounds such as sol, organic polymers such as acrylic, urethane, and fluororesin may be used singly or in combination of two or more. In addition, a block polymer body or a gradient polymer having two or more types of partial structures in one molecule can be used. Of these, titanium compounds, silicon compounds, and fluororesins are preferred because they are hardly decomposable. In particular, a titanium compound and a silicon compound are preferable because restrictions on heat treatment after coating are not severe. Particularly, from the viewpoint of environmental harmony, colloidal silica, orthotitanic acid, titanium peroxide, and titanium oxide sol, which are completely composed of inorganic substances, are more preferable.
[0084] 本発明に係る光触媒塗料組成物は、 特に製造方法に制限は無く、 分散や粉 砕効果を有する湿式の処理方法であればどのような方法でも構わない。 また 、 構成成分を一度に混合した後に、 分散、 粉砕処理に供しても、 段階的に処 理を行ってもよい。 また、 前記の光触媒分散液に結着剤を混合する方法も利 用できる。 [0084] The photocatalyst coating composition according to the present invention is not particularly limited in the production method, and any method may be used as long as it is a wet treatment method having a dispersion or grinding effect. In addition, the constituent components may be mixed and then subjected to dispersion, pulverization treatment, or stepwise treatment. Further, a method of mixing a binder with the photocatalyst dispersion can also be used.
実施例  Example
[0085] 以下、 本発明を実施例および比較例によって更に詳述するが、 本発明はこ れによって限定されるものではない。 なお、 以下では、 未被覆の光触媒、 酸 化珪素膜を被覆した光触媒、 リンとカルシウムからなる化合物を含む光触媒 、 いずれも 「光触媒」 という。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following, an uncoated photocatalyst, a photocatalyst coated with a silicon oxide film, and a photocatalyst containing a compound composed of phosphorus and calcium are all referred to as “photocatalyst”.
[0086] はじめに、 実施例で用いた評価方法について説明する。 ここで、 特に示さ ない限り、 リン含有量およびカルシウム含有量は光触媒全体を基準として重 量%を示すものとする。  [0086] First, the evaluation method used in the examples will be described. Here, unless otherwise indicated, the phosphorus content and calcium content are expressed in weight% based on the whole photocatalyst.
( i )カルシウム含有量  (i) Calcium content
カルシウム含有量は、 蛍光 X線分析法 (L A B C E N T E R X R E - 1 7 0 0 , 島津製作所) を用いて定量した。  The calcium content was quantified using a fluorescent X-ray analysis method (LAB CENTR XR E-1700, Shimadzu Corporation).
( i i )リン含有量 リン含有量は、 蛍光 X線分析法 (LAB CEN T ER XRE— 1 70 0, 島津製作所) を用いて定量した。 (ii) Phosphorus content The phosphorus content was quantified using a fluorescent X-ray analysis method (LAB CENTER XRE— 1700, Shimadzu Corporation).
(i i i)珪素含有量  (i i i) Silicon content
珪素含有量は、 蛍光 X線分析法 (LAB CEN T ER XRE— 1 70 0, 島津製作所) を用いて定量した。  The silicon content was quantified using X-ray fluorescence analysis (LAB CENTER XRE— 1700, Shimadzu Corporation).
(iv)比表面積  (iv) Specific surface area
比表面積は B E T法比表面積測定装置により測定した。  The specific surface area was measured by a BET method specific surface area measuring device.
(実施例 1 )  (Example 1)
ガラスフラスコに水 200 gと 1 N塩酸水溶液 66. 9 gを加え、 二酸化 チタン (S T_01、 石原産業株式会社、 吸着水分量 9重量%、 BET法比 表面積測定装置による比表面積 300m2/g) 24. 5 gを分散させて、 A 液とした。 ビーカ一内に水 1 00 gと水ガラス 1号 (S i O 2含有量 35〜3 8重量0 /0、 J I S— K 1 408) 1 0. 7 gを加え、 攪拌し B液とした。 A 液を 35°Cに保持し、 攪拌しているところに、 B液を 2m I /分で滴下し、 混合液 Cを得た。 この時点における混合液 Cの p Hは 2. 3であった。 混合 液 Cを 35°Cに保持したまま 3日間攪拌を継続した。 この後、 混合液 Cを減 圧ろ過し、 得られた濾物を、 50 Om Lの水への再分散化、 および減圧ろ過 を 4回繰り返して洗浄した後、 室温で 2日間放置した。 得られた固形物を乳 鉢で粉砕した後、 600°C、 3時間焼成処理を施し、 光触媒 1を得た。 この 光触媒 1のリン含有量は 0. 05重量%以下、 カルシウム含有量は 0. 05 重量%以下、 珪素含有量は 6. 9重量%であった。 また、 この光触媒 1の比 表面積は 21 2. 8m2/gであった。 よって、 光触媒 1の表面積 1 m2当り の珪素担持量は 0. 32m gであった。 Water 200 g and 1 N aqueous hydrochloric acid 66. 9 g was added to a glass flask, titanium dioxide (S T_01, Ishihara Sangyo Co., adsorbed water content 9 wt%, specific surface area by BET method specific surface area measuring apparatus 300m 2 / g) 24.5 g was dispersed to prepare Liquid A. Beaker one in water 1 00 g of water glass No. 1 (S i O 2 content of 35 to 3 8 wt 0/0, JIS- K 1 408 ) 1 0. 7 g was added and the stirred solution B. Liquid A was maintained at 35 ° C and stirred while liquid B was added dropwise at 2 ml / min to obtain liquid mixture C. The pH of mixture C at this time was 2.3. Stirring was continued for 3 days while maintaining the mixture C at 35 ° C. Thereafter, the mixture C was subjected to pressure reduction filtration, and the obtained residue was washed by repeating redispersion in 50 mL of water and filtration under reduced pressure four times, and then allowed to stand at room temperature for 2 days. The obtained solid was pulverized in a mortar and then subjected to a baking treatment at 600 ° C. for 3 hours to obtain photocatalyst 1. The photocatalyst 1 had a phosphorus content of 0.05% by weight or less, a calcium content of 0.05% by weight or less, and a silicon content of 6.9% by weight. The specific surface area of this photocatalyst 1 was 212.8 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 1 was 0.32 mg.
この光触媒 1の細孔分布を測定した結果を図 1に示す。 The results of measuring the pore distribution of this photocatalyst 1 are shown in FIG.
次に、 擬似体液として、 N a C I、 N a HC03、 KC I、 K2 H P 04■ 3 H20、 M g C I 2■ 6 H2O Ca C I 2と、 N a2S04、 HC I、 (CH2 OH) 3CN H2と、 蒸留水とを用いて、 N a+ : 1 47mM、 K+ : 5mM、 C a 2+ : 2. 5mM、 M g 2+ : 1. 5mM、 C l _ : 1 47mM、 HC03_ : 4. 2mM、 H P 04 2_ : 1. OmM、 S 04 2_ : 0. 5mMの組成の水溶 液を調整し、 その中に光触媒 1を添加し、 50°Cで 1 4日間放置した。 放置 後、 濾別し、 1 00°Cで 3時間、 熱処理を施すことにより、 光触媒 2を得た この光触媒 2のリン含有量は 0. 8重量%、 カルシウム含有量は 1. 8重 量%、 珪素含有量は 6. 5重量%であった。 また、 この光触媒 2の比表面積 を B E T法比表面積測定装置により測定したところ、 1 99. 1 m2/gであ つた。 よって、 光触媒 2の表面積 1 m2当りの珪素担持量は 0. 33mgであ つた。 Then, as a pseudo body fluid, N a CI, N a HC0 3, KC I, K 2 HP 0 4 ■ 3 H 2 0, and M g CI 2 ■ 6 H 2 O Ca CI 2, N a 2 S0 4, HC I, and (CH 2 OH) 3 CN H 2, using distilled water, N a +: 1 47mM, K +: 5mM, C a 2+: 2. 5mM, M g 2 +: 1. 5mM, C l _: 1 47mM, HC0 3 _ : 4.2 mM, HP 0 4 2 _: 1. OmM, S 0 4 2 _: 0.5 mM Prepare an aqueous solution, add Photocatalyst 1 to it, and leave it at 50 ° C for 14 days did. After standing, it was filtered and heat-treated at 100 ° C for 3 hours to obtain photocatalyst 2. Phosphorus content of this photocatalyst 2 was 0.8% by weight, calcium content was 1.8% by weight The silicon content was 6.5% by weight. Further, the specific surface area of the photocatalyst 2 was measured by a BET specific surface area measuring apparatus, and found to be 199.1 m 2 / g. Therefore, silicon supported amount per surface area of 1 m 2 of photocatalytic 2 0. 33 mg der ivy.
(実施例 2)  (Example 2)
[0088] 擬似体液として、 N a C I、 N a H C03、 KC I、 K2H P04 ■ 3 H20 、 M g C I 2 ■ 6 H 2O C a C I 2と、 N a 2S04、 H C I、 (C H20 H) 3 C N H2と、 蒸留水とを用いて、 N a+ : 1 47mM、 K+: 5mM、 C a 2 + : 7. 5mM、 Mg2+ : 1. 5mM、 C I " : 1 47mM、 H C03_ : 4. 2 mM、 H P 04 2_ : 1 5. OmM、 SO4 2_ : 0. 5mMの組成の水溶液を調 整し、 その中に光触媒 1を添加し、 50°Cで 1 4日間放置した。 放置後、 濾 別し、 1 00°Cで 3時間、 熱処理を施すことにより、 光触媒 3を得た。 [0088] As the simulated body fluid, N a CI, N a H C0 3, KC I, and K 2 H P0 4 ■ 3 H 2 0, M g CI 2 ■ 6 H 2 OC a CI 2, N a 2 S0 4 , HCI, (CH 2 0 H) 3 CNH 2 and distilled water, N a +: 1 47 mM, K +: 5 mM, C a 2 + : 7.5 mM, Mg 2+ : 1.5 mM, CI " : 1 47 mM, H C0 3 _: 4.2 mM, HP 0 4 2 _: 1 5. OmM, SO 4 2 _: 0.5 mM of aqueous solution was prepared, and Photocatalyst 1 was added to it. It was left for 14 days at 50 ° C. After standing, it was filtered and subjected to heat treatment at 100 ° C. for 3 hours to obtain photocatalyst 3.
この光触媒 3のリン含有量は 1. 7重量%、 カルシウム含有量は 3. 9重量 %、 珪素含有量は 6. 1重量%であった。 また、 この光触媒 3の比表面積を B E T法比表面積測定装置により測定したところ、 207. 0m2/gであつ た。 よって、 光触媒 3の表面積 1 m2当りの珪素担持量は 0. 29m gであつ た。 The photocatalyst 3 had a phosphorus content of 1.7% by weight, a calcium content of 3.9% by weight, and a silicon content of 6.1% by weight. Further, the specific surface area of the photocatalyst 3 was measured by a BET specific surface area measuring apparatus, and found to be 207.0 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 3 was 0.29 mg.
[0089] [比較例 1 ]  [0089] [Comparative Example 1]
二酸化チタン (S T_0 1、 石原産業株式会社、 吸着水分量 9重量%、 比 表面積 300 m2/ g) を、 空気中、 200°Cで乾燥して光触媒 4とした。 こ の光触媒 4のリン含有量は 0. 05重量%以下、 カルシウム含有量は 0. 0 5重量%以下、 珪素含有量は 0. 0重量%であった。 また、 この光触媒 4の 比表面積を B E T法比表面積測定装置により測定したところ、 2 1 4. 3m2 /gであった。 よって、 光触媒 4の表面積 1 m2当りの珪素担持量は 0. Om gであった。 Titanium dioxide (S T_0 1, Ishihara Sangyo Co., adsorbed water content 9 wt%, a specific surface area of 300 m 2 / g) and, in the air, and the photocatalyst 4 was dried at 200 ° C. The photocatalyst 4 had a phosphorus content of 0.05% by weight or less, a calcium content of 0.05% by weight or less, and a silicon content of 0.0% by weight. Further, when the specific surface area of this photocatalyst 4 was measured with a BET specific surface area measuring device, 2 1 4. 3 m 2 / g. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 4 was 0. Omg.
[0090] [比較例 2] [0090] [Comparative Example 2]
擬似体液として、 N a C I、 N a H C03、 KC I、 K2H P04 ■ 3 H20 、 M g C I 2 ■ 6 H 2O C a C I 2と、 N a 2S04、 H C I、 (C H20 H) 3 C N H2と、 蒸留水とを用いて、 N a+ : 1 47mM、 K+: 5mM、 C a 2 + : 2. 5mM、 M g 2+: 1. 5mM、 C l _ : 1 47mM、 H C03_ : 4. 2 mM、 H P 04 2_ : 1. OmM、 S 04 2_ : 0. 5 m Mの組成の水溶液を調整 し、 その中に光触媒 4を添加し、 50°Cで 1 4日間放置した。 放置後、 濾別 し、 1 00°Cで 3時間、 熱処理を施すことにより、 光触媒 5を得た。 As simulated body fluids, N a CI, N a H C0 3 , KC I, K 2 H P0 4 ■ 3 H 2 0, Mg CI 2 ■ 6 H 2 OC a CI 2 and N a 2 S0 4 , HCI, and (CH 2 0 H) 3 CNH 2, using distilled water, N a +: 1 47mM, K +: 5mM, C a 2 +: 2. 5mM, M g 2 +: 1. 5mM, C l _: 1 47 mM, H C0 3 _: 4.2 mM, HP 0 4 2 _: 1. OmM, S 0 4 2 _: 0.5 mM Prepare an aqueous solution, and add photocatalyst 4 to it. And left at 50 ° C for 14 days. After standing, it was filtered and heat-treated at 100 ° C for 3 hours to obtain photocatalyst 5.
この光触媒 5のリン含有量は 1. 9重量%、 カルシウム含有量は 4. 3重 量%、 珪素含有量は 0. 0重量%であった。 また、 この光触媒 5の比表面積 を B E T法比表面積測定装置により測定したところ、 1 88. 2m2/gであ つた。 よって、 光触媒 5の表面積 1 m2当りの珪素担持量は 0. Omgであつ た。 The photocatalyst 5 had a phosphorus content of 1.9% by weight, a calcium content of 4.3% by weight, and a silicon content of 0.0% by weight. In addition, as a result of the specific surface area of the photocatalyst 5 was measured by a BET method specific surface area measuring apparatus, 1 88. 2m 2 / g der ivy. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 5 was 0.0 mg.
[0091 ] (光分解活性評価用光触媒試料板の作成)  [0091] (Preparation of photocatalyst sample plate for photolysis activity evaluation)
1 0 Om Lポリエチレン製広口瓶中に、 光触媒 2を 5. 0 g、 直径 1 mm のガラスビーズ 50. O g、 エタノール 44. O g、 1規定塩酸 0. 5 g、 並びに、 界面活性剤 (T r i t o n X_ 1 00、 ユニオン■力一バイ ド社 登録商標) 0. 5 gを加え、 密封した。 これを、 内容積 300m Lのステン レス製ポールミルポッ卜に入れ、 広口瓶がポールミルポッ卜の中央になるよ うに、 隙間に布を詰めた。 そして、 ポールミルポットを密封した後、 ポール ミル回転台に載せて、 毎分 60回転の速度で 1 8時間分散化処理を施した。 処理後、 広口瓶を取り出し、 ナイロン製メッシュシートでガラスビーズをろ 別して、 光触媒 2のエタノール分散液 Aを得た。 次に、 予め重量を測定した スライ ドガラス (2. 6 c m X 7. 6 c m, 厚さ 1 mm) の光触媒 2のエタ ノール分散液 Aに対する浸漬および引き上げを行なった。 90秒毎に、 毎秒 0. 4 cmの速度で 1 2回、 スライ ドガラスの 3分の 2が浸るようにした。 その後、 このスライ ドガラスを室温で乾燥した。 次に、 スライ ドガラスの 2. 6 cmx 7. 6 cmの一方の面 (スライ ドガラスの一方の表面) を除き 、 他の面に付着した光触媒 2を、 ガラス板で擦って全て除去した。 In a 10 Om L polyethylene jar, 5.0 g of photocatalyst 2 and glass beads with a diameter of 1 mm 50. O g, ethanol 44. O g, 1 N hydrochloric acid 0.5 g, and a surfactant ( Triton X_1 00, Union ■ Rikiichi Baid Co., Ltd.) 0.5 g was added and sealed. This was put into a stainless steel pole mill pot with an internal volume of 300 mL, and cloth was packed in the gap so that the wide-mouthed bottle was in the center of the pole mill pot. After sealing the pole mill pot, it was placed on a pole mill turntable and dispersed for 18 hours at a speed of 60 revolutions per minute. After the treatment, the wide-mouth bottle was taken out, and the glass beads were filtered with a nylon mesh sheet to obtain an ethanol dispersion A of photocatalyst 2. Next, the slide glass (2.6 cm X 7.6 cm, thickness 1 mm) whose weight was measured in advance was immersed in the ethanol dispersion A of the photocatalyst 2 and pulled up. Every 90 seconds, two-thirds of the slide glass was submerged 12 times at a speed of 0.4 cm per second. Thereafter, the slide glass was dried at room temperature. Next, the photocatalyst 2 adhering to the other surface was removed by rubbing with a glass plate except for one side of the slide glass of 2.6 cm × 7.6 cm (one surface of the slide glass).
さらに、 電気炉で空気雰囲気下、 400°C、 3時間焼成処理をスライ ドガ ラスに対して行なうことによって、 光触媒試料板 Aを作製した。  Furthermore, a photocatalyst sample plate A was produced by subjecting the slide glass to firing at 400 ° C for 3 hours in an air atmosphere in an electric furnace.
光触媒固定化の前後の重量測定、 並びに光触媒 2を固定化した部分の長さ 寸法の計測をしたところ、 光触媒 2の塗布重量は 6. Omg、 塗布面積は 1 1. 8 c m2、 面積当りの塗布重量は、 5. 1 g/m2であった。 When weighed before and after immobilization of photocatalyst, and measured the length and dimension of the part where photocatalyst 2 was immobilized, photocatalyst 2 applied weight was 6. Omg, coated area was 11.8 cm 2 , per area The coating weight was 5.1 g / m 2 .
[0092] 光触媒 2のかわりに光触媒 3を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Bを作製した。 光触媒固定化の前後の 重量測定、 並びに光触媒 3を固定化した部分の長さ寸法の計測をしたところ 、 光触媒 3の塗布重量は 5. 9mg、 塗布面積は 1 1. 7 cm2、 面積当りの 塗布重量は、 5. O g/m2であった。 [0092] Photocatalyst sample plate B was prepared in the same manner as described above except that photocatalyst 3 was used instead of photocatalyst 2 and dipping and pulling were performed once. When weighed before and after immobilization of photocatalyst, and measured the length of the part where photocatalyst 3 was immobilized, photocatalyst 3 applied weight was 5.9 mg, coated area was 11.7 cm 2 , per area The coating weight was 5. O g / m 2 .
[0093] 光触媒 2のかわりに光触媒 4を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Cを作製した。 光触媒固定化の前後の 重量測定、 並びに光触媒 4を固定化した部分の長さ寸法の計測をしたところ 、 光触媒 4の塗布重量は 5. 9mg、 塗布面積は 1 1. 8 cm2、 面積当りの 塗布重量は、 5. O g/m2であった。 [0093] Photocatalyst sample plate C was produced in the same manner as described above except that photocatalyst 4 was used instead of photocatalyst 2 and dipping and lifting were performed only once. When weighed before and after photocatalyst immobilization, and measured the length of the part where photocatalyst 4 was immobilized, photocatalyst 4 applied weight was 5.9 mg, application area was 11.8 cm 2 , per area coating weight was 5. O g / m 2.
[0094] 光触媒 2のかわりに光触媒 5を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Dを作製した。 光触媒固定化の前後の 重量測定、 並びに光触媒 5を固定化した部分の長さ寸法の計測をしたところ 、 光触媒 5の塗布重量は 5. 8mg、 塗布面積は 1 1. 8 cm2、 面積当りの 塗布重量は、 4. 9 g/m2であった。 [0094] Photocatalyst sample plate D was prepared in the same manner as described above except that photocatalyst 5 was used instead of photocatalyst 2 and dipping and lifting were performed only once. When weighed before and after photocatalyst immobilization, and measured the length of the photocatalyst 5 immobilization part, the photocatalyst 5 applied weight was 5.8 mg, the application area was 11.8 cm 2 , per area The coating weight was 4.9 g / m 2 .
[0095] 光触媒 2のかわりに光触媒 1を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Eを作製した。 光触媒固定化の前後の 重量測定、 並びに光触媒 1を固定化した部分の長さ寸法の計測をしたところ 、 光触媒 1の塗布重量は 5. 9mg、 塗布面積は 1 1. 7 cm2、 面積当りの 塗布重量は、 5. O g/m2であった。 [0096] (ァセトアルデヒド光分解試験) [0095] Photocatalyst sample plate E was produced in the same manner as described above except that photocatalyst 1 was used instead of photocatalyst 2 and dipping and lifting were performed only once. When weighed before and after immobilization of photocatalyst, and measured the length of the part where photocatalyst 1 was immobilized, photocatalyst 1 applied weight was 5.9 mg, coated area was 11.7 cm 2 , per area The coating weight was 5. O g / m 2 . [0096] (Acetaldehyde photolysis test)
上記 (光触媒試料板の調製) で作製した光触媒試料板 A、 B、 C、 D、 お よび巳に、 空気雰囲気下、 5. 4 mW/ cm 2の紫外線を 3時間照射した。 光 源には 27Wのブラックライ トブル一灯 (三共電気、 F P L 27 B L B) を 用い、 紫外線強度測定には、 UVA—365 (カスタム社製) を用いた。 そして、 シリコンパッキン付きコネクタ一およびミニコックが一つずつ付 属した、 容積 1 リットルのテドラー (デュポン社登録商標) バッグを 3つ用 意し、 このテドラー (デュポン社登録商標) バッグの一辺を切り、 先に紫外 線照射処理を施した光触媒試料板 A〜 Cをそれぞれ入れ、 5 mm角の両面テ —プでバッグの中央に貼付けた。 そして、 ヒ一トシ一ラーで密封した。 続い て、 真空ポンプを用いてミニコックから内部の空気を抜き出してからコック を閉じ、 暗所に一晩放置した。 Photocatalyst sample plates A, B, C, D, and 作 製 prepared in the above (Preparation of photocatalyst sample plate) were irradiated with ultraviolet rays of 5.4 mW / cm 2 for 3 hours in an air atmosphere. A 27W black light bull light (Sankyo Electric, FPL 27 BLB) was used as the light source, and UVA-365 (manufactured by Custom Corp.) was used for the UV intensity measurement. Then, prepare three 1-liter Tedlar (DuPont registered trademark) bags with one silicone packing connector and one minicock, cut one side of the Tedlar (DuPont registered trademark) bag, Each of the photocatalyst sample plates A to C which had been previously irradiated with ultraviolet rays was placed and attached to the center of the bag with a 5 mm square double-sided tape. And it was sealed with a hitler. Subsequently, the internal air was extracted from the mini-cock using a vacuum pump, the cock was closed, and left in the dark overnight.
[0097] 次に、 酸素 20%、 窒素 80%の混合ガスを 1 5°Cのイオン交換水に潜ら せた湿潤混合ガスと、 1 %ァセトアルデヒド/窒素混合ガスとを、 混合して 、 ァセトアルデヒド濃度 1 0 1 p pmのガスを調製した。 このガスを 600 m L採取して、 光触媒試料板入りのバッグに注入した後、 バッグを暗所に 2 0時間放置した。 その後、 バッグ内部のガスのァセトアルデヒド濃度および 二酸化炭素濃度を測定した。 濃度測定には、 メタナイザー付きのガスクロマ トグラフ (島津製作所、 GC— 1 4) を使用した。 分析後、 バッグに収納さ れた光触媒試料板に対し、 フルホワイ ト蛍光灯 (松下電工製、 1 OW、 F L 1 O N) を用いて光照射を行い、 光照射 2時間毎にバッグ内部のガスの分析 を行った。 この時、 光触媒試料板の光触媒を固定化してある面は、 蛍光灯か ら 4 cmの距離に置いた。 バッグと同じフィルム 1枚をフィルタ一として同 —の場所で測定した紫外線強度は、 1 1 W/cm2であった。 [0097] Next, a wet mixed gas in which a mixed gas of 20% oxygen and 80% nitrogen was immersed in 15 ° C ion-exchange water and a mixed gas of 1% acetoaldehyde / nitrogen were mixed. A gas with a cetaldehyde concentration of 101 ppm was prepared. 600 mL of this gas was sampled and injected into a bag containing a photocatalyst sample plate, and then the bag was left in the dark for 20 hours. After that, the cetaldehyde concentration and carbon dioxide concentration of the gas inside the bag were measured. A gas chromatograph with a methanizer (Shimadzu Corporation, GC—14) was used for concentration measurement. After the analysis, the photocatalyst sample plate stored in the bag was irradiated with light using a full-white fluorescent lamp (Matsushita Electric Works, 1 OW, FL 1 ON), and the gas inside the bag was irradiated every 2 hours. Analysis was carried out. At this time, the surface of the photocatalyst sample plate on which the photocatalyst was immobilized was placed at a distance of 4 cm from the fluorescent lamp. The UV intensity measured at the same place with the same film as the bag as the filter was 1 1 W / cm 2 .
[0098] 図 2—Aに、 バッグ内部のガス中のァセトアルデヒド濃度の経時変化を示 す。 また、 図 2 _Bにバッグ内部のガス中の二酸化炭素濃度の経時変化を示 す。  [0098] Figure 2-A shows the change over time in the concentration of acetonitrile in the gas inside the bag. Figure 2_B shows the change over time in the carbon dioxide concentration in the gas inside the bag.
[0099] (有機基材劣化評価用試料板の作成) 1 0 Om Iポリエチレン製広口瓶中に、 光触媒 2を 5 g、 直径 1 mmのガ ラス製ポール 50 g、 エタノール 45 g、 を順に加え、 密閉した。 これを、 内容積 30 Om Lのステンレス製ポールミルポッ卜に入れ、 広口瓶がポール ミルポットの中央になるように、 隙間に布を詰めた。 そして、 ポールミルポ ットを密封した後、 ポールミル回転台に載せて、 毎分 60回転の速度で 1 8 時間分散化処理を施した。 処理後、 広口瓶を取り出し、 ナイロン製メッシュ シートでガラスビーズをろ別して、 光触媒 2のエタノール分散液を得た。 1 0 Om I ガラス製ビーカ一中に、 ポリアクリル酸 25000 (平均分子量: 25000) 5 g、 エタノール 45 gを加えた後、 30分間スターラ一攪拌 し、 ポリアクリル酸溶液を得た。 [0099] (Preparation of sample plate for organic substrate deterioration evaluation) In a 10 Om I polyethylene jar, 5 g of photocatalyst 2, 50 g of glass pole with a diameter of 1 mm, and 45 g of ethanol were added in this order and sealed. This was put into a stainless steel pole mill pot with an internal volume of 30 Om L, and cloth was packed in the gap so that the wide-mouthed bottle was in the center of the pole mill pot. After sealing the pole mill pot, it was placed on a pole mill turntable and dispersed for 18 hours at a speed of 60 revolutions per minute. After the treatment, the wide-mouth bottle was taken out, and the glass beads were filtered off with a nylon mesh sheet to obtain a photocatalyst 2 ethanol dispersion. In a 10 Om I glass beaker, 5 g of polyacrylic acid 25000 (average molecular weight: 25000) and 45 g of ethanol were added, followed by stirring with a stirrer for 30 minutes to obtain a polyacrylic acid solution.
上記の光触媒 2のエタノール分散液、 及びポリアクリル酸溶液を等量混合 した後、 30分間スターラー攪拌し、 光触媒—ポリアクリル酸塗布液を得た 次に、 予め重量を測定したスライ ドガラス (2. 6 cmx 7. 6 cm, 厚 さ 1 mm) の光触媒—ポリアクリル酸塗布液に対する浸漬および引き上げを 行なった。 90秒毎に、 毎秒 0. 4 cmの速度で 1 2回、 スライ ドガラスの 3分の 2が浸るようにした。  The ethanol dispersion of photocatalyst 2 and the polyacrylic acid solution were mixed in equal amounts, and stirred for 30 minutes to obtain a photocatalyst-polyacrylic acid coating solution. Next, a slide glass (2. 6 cm x 7.6 cm, 1 mm thick) photocatalyst-polyacrylic acid coating solution was immersed and pulled up. Every 90 seconds, two-thirds of the slide glass was submerged 12 times at a speed of 0.4 cm per second.
その後、 このスライ ドガラスを室温で風乾し、 次に、 スライ ドガラスの 2. 6 cmx 7. 6 cmの一方の面 (スライ ドガラスの一方の表面) を除き、 他 の面に付着した光触媒及びポリアクリル酸を、 ガラス板で擦って全て除去し 、 光触媒試料板 Fを得た。 光触媒固定化の前後の重量測定を行ったところ、 光触媒 2、 及びポリアクリル酸の合計塗布重量は 0. 8 1 mgであった。  The slide glass is then air-dried at room temperature, and then the photocatalyst and polyacrylic adhering to the other side of the slide glass is removed except for one side of the slide glass (2.6 cm x 7.6 cm). The acid was removed by rubbing with a glass plate to obtain a photocatalyst sample plate F. When the weight was measured before and after the photocatalyst immobilization, the total coating weight of the photocatalyst 2 and polyacrylic acid was 0.8 1 mg.
[0100] 光触媒 2のかわりに光触媒 3を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Gを作製した。 光触媒固定化の前後の 重量測定を行ったところ、 光触媒 3、 及びポリアクリル酸の合計塗布重量は 0. 79mgであった。  [0100] Photocatalyst sample plate G was prepared in the same manner as described above except that photocatalyst 3 was used instead of photocatalyst 2, and dipping and lifting were performed only once. When the weight was measured before and after immobilization of photocatalyst, the total coating weight of photocatalyst 3 and polyacrylic acid was 0.79 mg.
[0101] 光触媒 2のかわりに光触媒 4を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Hを作製した。 光触媒固定化の前後の 重量測定を行ったところ、 光触媒 4、 及びポリアクリル酸の合計塗布重量は 0. 84m gであった。 [0101] Photocatalyst sample plate H was prepared in the same manner as described above except that photocatalyst 4 was used instead of photocatalyst 2 and dipping and lifting were performed only once. Before and after photocatalyst immobilization When the weight was measured, the total coating weight of the photocatalyst 4 and polyacrylic acid was 0.84 mg.
[0102] 光触媒 2のかわりに光触媒 5を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Iを作製した。 光触媒固定化の前後の 重量測定を行ったところ、 光触媒 5、 及びポリアクリル酸の合計塗布重量は 0. 78mgであった。  [0102] Photocatalyst sample plate I was prepared in the same manner as described above except that photocatalyst 5 was used instead of photocatalyst 2 and dipping and lifting were performed only once. When the weight was measured before and after immobilization of the photocatalyst, the total coating weight of photocatalyst 5 and polyacrylic acid was 0.78 mg.
[0103] 光触媒 2のかわりに光触媒 1を用い、 浸漬および引き上げを 1回とした以 外は上記と同様にして、 光触媒試料板 Jを作製した。 光触媒固定化の前後の 重量測定を行ったところ、 光触媒 1、 及びポリアクリル酸の合計塗布重量は 0. 83m gであった。  [0103] Photocatalyst sample plate J was prepared in the same manner as described above, except that photocatalyst 1 was used instead of photocatalyst 2, and dipping and lifting were performed only once. When the weight was measured before and after immobilization of the photocatalyst, the total coating weight of photocatalyst 1 and polyacrylic acid was 0.83 mg.
[0104] (有機基材劣化抑制能評価試験)  [0104] (Organic substrate degradation inhibitory evaluation test)
上記 (有機基材劣化評価用試料板の作成) で作製した光触媒試料板 F、 G 、 H、 I、 および Jに、 空気雰囲気下、 4. OmW/ cm2の紫外線を所定時 間照射した。 光源には 27Wのブラックライ トブル一灯 (三共電気、 FP L 27 B LB) を用い、 紫外線強度測定には、 UVA—365 (カスタム社製 ) を用いた。 The photocatalyst sample plates F, G, H, I, and J prepared in the above (preparation of organic substrate deterioration evaluation sample plate) were irradiated with ultraviolet rays of 4. OmW / cm 2 for a predetermined time in an air atmosphere. A 27 W black light bull light (Sankyo Electric, FP L 27 B LB) was used as the light source, and UVA-365 (manufactured by Custom Corp.) was used for the ultraviolet intensity measurement.
各光触媒試料板に対し、 紫外線照射前後の塗布重量変化を秤量した。  For each photocatalyst sample plate, the change in coating weight before and after UV irradiation was weighed.
図 3に、 塗布重量の経時変化を示す。  Figure 3 shows the change in coating weight over time.
[0105] 図 2 _ Aおよび図 2 _Bから、 本発明の光触媒である光触媒 2および 3は 、 優れた光触媒活性を示した。 ここで、 酸化珪素膜を有さない光触媒 5は 8 時間後においてもァセトアルデヒド濃度および co2生成濃度に大きな変化が 見られなかった。 したがって、 光触媒 5は光触媒活性に劣るものであった。 また、 有機基材劣化抑制能を評価した結果、 図 3に示すように、 光触媒 2 および 3では紫外線照射 1 2時間後においても重量残存率が 60 %以上、 す なわち、 ポリアクリル酸が 20%以上残存し、 有機基材劣化抑制能に優れて いることがわかった。 ここで、 光触媒とポリアクリル酸の混合比は 1 : 1で あり、 重量残存率 50 %とはポリアクリル酸の全量が光分解したことを示し ている。 一方、 光触媒 1、 あるいは 4を用いた場合、 1 2時間後の重量残存 率は 5 0 %以下、 すなわち、 ポリアクリル酸は完全に分解されており、 有機 基材劣化抑制に劣るものであった。 From FIG. 2 _A and FIG. 2 _B, the photocatalysts 2 and 3 which are the photocatalysts of the present invention showed excellent photocatalytic activity. Here, the photocatalyst 5 having no silicon oxide film showed no significant change in the acetonitrile concentration and the co 2 production concentration even after 8 hours. Therefore, photocatalyst 5 was inferior in photocatalytic activity. In addition, as a result of evaluating the ability to suppress deterioration of the organic base material, as shown in FIG. 3, the photocatalysts 2 and 3 have a weight residual ratio of 60% or more even after 12 hours of ultraviolet irradiation, that is, 20% of polyacrylic acid. % Or more remained, and was found to have excellent ability to suppress deterioration of the organic base material. Here, the mixing ratio of the photocatalyst and polyacrylic acid was 1: 1, and the weight residual ratio of 50% indicates that the entire amount of polyacrylic acid was photolyzed. On the other hand, when photocatalyst 1 or 4 is used, weight remaining after 12 hours The rate was 50% or less, that is, polyacrylic acid was completely decomposed and was inferior in suppressing deterioration of the organic base material.
以上の結果から、 本発明の光触媒は、 光触媒活性と有機基材抑制効果の両 方のバランスに優れるものであった。  From the above results, the photocatalyst of the present invention was excellent in the balance of both the photocatalytic activity and the organic substrate suppressing effect.

Claims

請求の範囲 The scope of the claims
[1] 光触媒活性を有する基体と、  [1] a substrate having photocatalytic activity;
該基体を被覆する、 酸化珪素膜を有し、  A silicon oxide film covering the substrate;
さらにリンおよびカルシウムを含む化合物を含み、  Further including compounds containing phosphorus and calcium,
以下に示す条件 (a) および (b) を満たすことを特徴とする光触媒: A photocatalyst characterized by satisfying the following conditions (a) and (b):
(a) リン含有量が 0. 1重量%以上、 1 0重量%以下である。 (a) The phosphorus content is 0.1 wt% or more and 10 wt% or less.
(b) カルシウム含有量が 0. 2重量%以上、 20重量0 /0以下である。 (b) calcium content of 0.2 wt% or more, 20 weight 0/0 or less.
[2] リンおよびカルシウムを含む前記化合物が、 前記化合物を含有する固定化 物として、 前記酸化珪素膜の表面上および/または前記酸化珪素膜で覆われ ていない前記基体の表面上に位置する、 請求項 1に記載の光触媒。  [2] The compound containing phosphorus and calcium is located on the surface of the silicon oxide film and / or on the surface of the substrate not covered with the silicon oxide film as an immobilization product containing the compound. The photocatalyst according to claim 1.
[3] 前記酸化珪素膜が、 焼成膜である、 請求項 2に記載の光触媒。 [3] The photocatalyst according to claim 2, wherein the silicon oxide film is a fired film.
[4] 前記焼成膜が、 400°C以上で焼成された焼成膜である、 請求項 3に記載 の光触媒。 [4] The photocatalyst according to claim 3, wherein the fired film is a fired film fired at 400 ° C or higher.
[5] 窒素吸着法による 20〜 500オングストロームの領域の細孔径分布測定 において、 前記酸化珪素膜が細孔を有しない、 請求項 4に記載の光触媒。  [5] The photocatalyst according to claim 4, wherein the silicon oxide film has no pores in a pore size distribution measurement in a 20 to 500 angstrom region by a nitrogen adsorption method.
[6] 前記酸化珪素膜を有する前記基体の表面積 1 m2当りの珪素担持量が、 0. [6] The amount of silicon supported per 1 m 2 of the surface area of the substrate having the silicon oxide film is 0.
1 0mg以上、 2. Omg以下である、 請求項 5に記載の光触媒。  The photocatalyst according to claim 5, which is 10 mg or more and 2. Omg or less.
[7] 前記基体が、 アナターゼ型、 ルチル型、 またはこれらの混合物を含む酸化 チタンである、 請求項 6に記載の光触媒。  7. The photocatalyst according to claim 6, wherein the substrate is an anatase type, a rutile type, or titanium oxide containing a mixture thereof.
[8] 前記基体が粒子である、 請求項 7に記載の光触媒。  8. The photocatalyst according to claim 7, wherein the substrate is a particle.
[9] 請求項 1に記載の光触媒の製造方法であって、 以下の工程:  [9] The method for producing a photocatalyst according to claim 1, comprising the following steps:
(A) 前記基体を含む水系媒体と珪酸塩、 珪酸塩を含む水系媒体と前記基体 、 および  (A) an aqueous medium containing the substrate and a silicate, an aqueous medium containing a silicate, the substrate, and
前記基体を含む水系媒体と珪酸塩を含む水系媒体からなる群より選ばれる少 なくとも一組を混合し、 前記基体上に酸化珪素膜を有する光触媒を得る工程  Mixing at least one set selected from the group consisting of an aqueous medium containing the substrate and an aqueous medium containing silicate, and obtaining a photocatalyst having a silicon oxide film on the substrate
(B) 前記工程 (A) で得られた光触媒を前記水系媒体から分離する工程、(B) a step of separating the photocatalyst obtained in the step (A) from the aqueous medium,
(C) 前記工程 (B) で得られた光触媒に対して 400°C以上で焼成を行う 工程、 (C) Firing the photocatalyst obtained in step (B) above 400 ° C Process,
(D) リンを含む化合物およびカルシウムを含む化合物の水溶液を用いて、 前記工程 (C) で得られた光触媒の表面にリンおよびカルシウムを含む化合 物を含有する固定化物を形成する工程、  (D) forming an immobilized product containing a compound containing phosphorus and calcium on the surface of the photocatalyst obtained in the step (C) using an aqueous solution of a compound containing phosphorus and a compound containing calcium;
(E) 前記工程 (D) で得られた光触媒を前記水溶液から分離する工程、 (E) separating the photocatalyst obtained in the step (D) from the aqueous solution,
(F) 前記工程 (E) で得られた光触媒に対して 50°C〜700°Cで熱処理 を行う工程、 (F) a step of heat-treating the photocatalyst obtained in the step (E) at 50 ° C to 700 ° C;
を含み、 かつ前記工程 (A) において前記基体および前記珪酸塩の両方を含 む混合液の p Hを 5以下に維持する、 光触媒の製造方法。  And a pH of the mixed solution containing both the substrate and the silicate in the step (A) is maintained at 5 or less.
[10] 前記工程 (C) において、 前記工程 (B) で得られた光触媒を乾燥し、 そ の後に焼成を行う、 請求項 9に記載の光触媒の製造方法。  10. The method for producing a photocatalyst according to claim 9, wherein in the step (C), the photocatalyst obtained in the step (B) is dried and then calcined.
[11] 前記工程 (C) において、 1 200°C以下で前記工程 (B) で得られた光 触媒を焼成する、 請求項 1 0に記載の光触媒の製造方法。  11. The method for producing a photocatalyst according to claim 10, wherein in the step (C), the photocatalyst obtained in the step (B) is calcined at 1 200 ° C. or lower.
[12] リンを含む化合物およびカルシウムを含む化合物の前記水溶液として、 N a C I、 N a HC03、 N a2H P04、 N a H2P04、 KC I、 KHC03、 K2H P04、 KH2P04、 Mg C I 2、 Ca C I 2、 N a2S04、 N a F、 H C l、 および (CH2OH) 3CN H2からなる群から選ばれる少なくとも 1の 化合物を水に溶解した擬似体液を用いる、 請求項 1 1に記載の光触媒の製造 方法。 As the aqueous solution of the compound compounds and containing calcium containing [12] phosphorus, N a CI, N a HC0 3, N a 2 H P0 4, N a H 2 P0 4, KC I, KHC0 3, K 2 H P0 4 , at least one compound selected from the group consisting of KH 2 P0 4 , Mg CI 2 , Ca CI 2 , Na 2 S 0 4 , NaF, HC 1, and (CH 2 OH) 3 CN H 2 The method for producing a photocatalyst according to claim 11, wherein a simulated body fluid dissolved in is used.
[13] 前記擬似体液が、 N a+ : 1 20〜1 60mM、 K+: 1〜20mM、 C a 2 +: 0. 5〜50mM、 Mg2+ : 0. 5〜50mM、 C I _ : 80〜200m M、 H C03-: 0. 5〜30mM、 H P 04 2_: "!〜 20mM、 S 04 2_: 0 . 1〜20mM、 および F_ : 0〜5mMを含む水溶液である、 請求項 1 2に 記載の光触媒の製造方法。 [13] The simulated body fluid is, N a +: 1 20~1 60mM , K +: 1~20mM, C a 2 +: 0. 5~50mM, Mg 2+: 0. 5~50mM, CI _: 80~200m M, H C0 3 -:! . 0. 5~30mM, HP 0 4 2 _: "~ 20mM, S 0 4 2 _: 0 1~20mM, and F_: an aqueous solution containing 0-5 mM, claim 1. A method for producing a photocatalyst according to 2.
[14] 請求項 1に記載の光触媒、 液状媒体、 および分散安定剤を含む光触媒分散 液。  [14] A photocatalyst dispersion liquid comprising the photocatalyst according to claim 1, a liquid medium, and a dispersion stabilizer.
[15] 前記液状媒体が水である、 請求項 1 4に記載の光触媒分散液。  15. The photocatalyst dispersion liquid according to claim 14, wherein the liquid medium is water.
[16] 前記分散安定剤がイオン性界面活性剤である、 請求項 1 4に記載の光触媒 分散液。 16. The photocatalyst according to claim 14, wherein the dispersion stabilizer is an ionic surfactant. Dispersion.
[1 7] 請求項 1に記載の光触媒、 液状媒体、 および結着剤を含む光触媒塗料組成 物。  [1 7] A photocatalyst coating composition comprising the photocatalyst according to claim 1, a liquid medium, and a binder.
[18] 前記結着剤としてチタンまたは珪素を含有する化合物を含む、 請求項 1 7 に記載の光触媒塗料組成物。  18. The photocatalytic coating composition according to claim 17, comprising a compound containing titanium or silicon as the binder.
[19] 前記チタンを含有する化合物が、 過酸化チタンを含有する化合物である、 請求項 1 8に記載の光触媒塗料組成物。 [19] The photocatalyst coating composition according to [18], wherein the titanium-containing compound is a compound containing titanium peroxide.
[20] 前記液状媒体として水および/またはアルコールを含む、 請求項 1 7に記 載の光触媒塗料組成物。 [20] The photocatalyst coating composition according to claim 17, comprising water and / or alcohol as the liquid medium.
PCT/JP2007/000855 2006-08-10 2007-08-08 Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition WO2008018178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218632A JP2009268943A (en) 2006-08-10 2006-08-10 Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
JP2006-218632 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018178A1 true WO2008018178A1 (en) 2008-02-14

Family

ID=39032719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000855 WO2008018178A1 (en) 2006-08-10 2007-08-08 Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition

Country Status (3)

Country Link
JP (1) JP2009268943A (en)
TW (1) TW200831186A (en)
WO (1) WO2008018178A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041014A (en) * 2021-03-08 2022-09-13 夏普株式会社 Photocatalyst coating liquid, photocatalyst sprayer and photocatalyst coating method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129308A1 (en) 2010-04-12 2011-10-20 日東電工株式会社 Ion-conducting organic-inorganic composite particles, particle-containing resin composition, and ion-conducting molded body
JP5612953B2 (en) 2010-04-12 2014-10-22 日東電工株式会社 Particle, particle dispersion, particle-dispersed resin composition, and resin molded body
KR101334145B1 (en) * 2013-01-08 2013-11-28 주식회사 케이엠티알 Manufacturing method of composition for generating superoxide and composition for generating superoxide using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2001040245A (en) * 1999-07-30 2001-02-13 Toto Ltd Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
WO2001017680A1 (en) * 1999-09-08 2001-03-15 Showa Denko Kabushiki Kaisha Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2003095805A (en) * 2001-09-27 2003-04-03 National Institute Of Advanced Industrial & Technology Antimicrobial material and antimicrobial product using the same
JP2003275601A (en) * 2002-03-22 2003-09-30 Janis Ltd Photocatalyst coating agent
JP2004035672A (en) * 2002-07-02 2004-02-05 Menogaia:Kk Composition for coating agent, coating agent and coating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2001040245A (en) * 1999-07-30 2001-02-13 Toto Ltd Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
WO2001017680A1 (en) * 1999-09-08 2001-03-15 Showa Denko Kabushiki Kaisha Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2003095805A (en) * 2001-09-27 2003-04-03 National Institute Of Advanced Industrial & Technology Antimicrobial material and antimicrobial product using the same
JP2003275601A (en) * 2002-03-22 2003-09-30 Janis Ltd Photocatalyst coating agent
JP2004035672A (en) * 2002-07-02 2004-02-05 Menogaia:Kk Composition for coating agent, coating agent and coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041014A (en) * 2021-03-08 2022-09-13 夏普株式会社 Photocatalyst coating liquid, photocatalyst sprayer and photocatalyst coating method

Also Published As

Publication number Publication date
JP2009268943A (en) 2009-11-19
TW200831186A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP6197162B2 (en) Method for inactivating virus and antiviral property-imparting article
US10327445B2 (en) Antiviral material, antiviral film, antiviral fiber, and antiviral product
US9517459B2 (en) Photocatalytic coating film and method for producing same
Shi et al. Application of fly ash supported titanium dioxide for phenol photodegradation in aqueous solution
JP2002285691A (en) Interior material
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
WO2006088022A1 (en) Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
Pham et al. Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver-doped TiO 2/PU under visible light irradiation
JPWO2007039984A1 (en) Organic material containing photocatalyst
JP5127134B2 (en) Deodorant comprising tubular titanium oxide particles
WO2008018178A1 (en) Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
KR102265903B1 (en) Coating composition comprising photocatalyst for visible rays and articles comprising same
JP2002138376A (en) Interior material
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP2005261997A (en) Method for producing photocatalytic body
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
KR102278891B1 (en) Terrazzo tile with photocatalytic complex consisting of titanium dioxide
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2003268945A (en) Interior finish material
Nikaido et al. Photocatalytic behavior of TiO2 nanoparticles supported on porous aluminosilicate surface modified by cationic surfactant
JP2000042320A (en) Functional filter
JP2011020033A (en) Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07790343

Country of ref document: EP

Kind code of ref document: A1