WO2001017680A1 - Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof - Google Patents

Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof Download PDF

Info

Publication number
WO2001017680A1
WO2001017680A1 PCT/JP2000/006152 JP0006152W WO0117680A1 WO 2001017680 A1 WO2001017680 A1 WO 2001017680A1 JP 0006152 W JP0006152 W JP 0006152W WO 0117680 A1 WO0117680 A1 WO 0117680A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
fine particles
support layer
photocatalyst
photocatalyst powder
Prior art date
Application number
PCT/JP2000/006152
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Hagihara
Katsura Ito
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to AU68764/00A priority Critical patent/AU6876400A/en
Publication of WO2001017680A1 publication Critical patent/WO2001017680A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Definitions

  • Titanium dioxide photocatalyst powder its production method, and its application
  • the present invention relates to a photocatalyst powder containing titanium dioxide as a photocatalyst, a method for producing the photocatalyst powder, a polymer composition containing the photocatalyst powder, a molded product of the polymer composition, and the photocatalyst powder or the powder.
  • the present invention relates to a structure having a combined composition on the surface.
  • the titanium dioxide photocatalyst powder of the present invention is used as an environmental purification material for removing odors, decomposing and removing harmful substances or dirt in the air, wastewater treatment and purification treatment, or sterilization and algicidal treatment of water.
  • it is applied to the surface of textiles, paper and plastic moldings, or kneaded with fiber or plastic media during the production process of textiles and plastic moldings, or used as an environmental purification material in the form of paints. Suitable for. Background art
  • titanium dioxide fine particles have attracted attention as environmental purification materials used for antibacterial, deodorant, antifouling, air purification, and water purification purposes.
  • the photocatalytic mechanism of titanium dioxide is such that when light is applied to the titanium dioxide fine particles, electrons and holes generated inside the titanium dioxide fine particles convert water and oxygen near the surface of the titanium dioxide fine particles into hydroxyl radicals and hydrogen peroxide. It is considered to convert harmful substances into harmless substances such as carbon dioxide by the strong redox effect of hydroxyradical and hydrogen peroxide. It is said that the photocatalytic action of titanium dioxide particles lasts semi-permanently as long as titanium dioxide particles, light, water, and oxygen are present.
  • Japanese Patent Application No. 9-22539 / 1992 and Japanese Patent Application Laid-Open No. 9-239277 disclose the use of dioxidation in order to suppress the deterioration of the resin medium and binder due to the action of titanium dioxide particles.
  • a method has been proposed in which a photoinactive compound is supported in the form of islands distributed on the surface of titanium particles to suppress the photocatalytic action. According to this method, the deterioration of the resin medium and the binder is reduced, but the activity as a photocatalyst is reduced because the photoinactive compound directly adheres to the active point on the surface of the titanium dioxide particles. Is required.
  • H10-244416 proposes a photocatalyst in which titanium dioxide particles are coated with porous calcium phosphate on the surface.
  • the photocatalytic performance of these coated titanium dioxide particles is reduced by the calcium phosphate coating layer, and there is still a problem in durability under strong ultraviolet rays such as sunlight.
  • An object of the present invention is to improve the environment in view of the above-mentioned conventional technologies, such as removing odors, decomposing and removing harmful substances or dirt in the air, treating wastewater and purifying water, and imparting antibacterial and antifungal properties. It can be performed effectively, economically and safely, especially when applied to fibers, paper, plastic moldings, etc., or when mixed with fibers or plastic moldings, or when used in the form of paint, etc.
  • a photocatalyst powder having good long-term durability without causing deterioration of a medium a method for producing the photocatalyst powder, a polymer composition containing the photocatalyst powder, a molded article of the polymer composition, and An object of the present invention is to provide a structure having the polymer composition on the surface.
  • a main object of the present invention is to provide a photocatalyst powder exhibiting excellent durability under a strong light irradiation environment such as sunlight, a polymer composition containing the photocatalyst powder, and a molding of the polymer composition. And a structure having the polymer composition on the surface.
  • the present inventor has conducted intensive studies to achieve the above object, and has found that titanium dioxide A first support layer for supporting a calcium compound is formed on the surface of the fine particles, and a porous second support layer for supporting, on the surface of the titanium dioxide fine particles, a water-insoluble substance inert as a photocatalyst. It has been found that the formation of is a photocatalyst with excellent durability without hardly impairing the high photocatalytic action of the titanium dioxide fine particles and without deteriorating the medium.
  • a titanium oxide fine particle has a first support layer containing a calcium compound on the surface thereof, and the first support layer is formed on the surface of the titanium dioxide fine particle as a photocatalyst.
  • a titanium dioxide photocatalyst powder characterized by having a porous second support layer that is inert and contains a substance that is hardly soluble in water.
  • the poorly soluble substance preferably has a solubility product in water of 10 to 25 or less.
  • a calcium compound is supported on the surface of the titanium dioxide fine particles to form a first support layer, and the surface of the titanium dioxide fine particles on which the first support layer is formed is hardly inactive as a photocatalyst.
  • a method for producing a titanium dioxide photocatalyst powder comprising:
  • a calcium compound is supported on the surface of the titanium dioxide fine particles to form a first support layer, and the surface of the titanium dioxide fine particles on which the first support layer is formed is further coated with an alkali aqueous solution containing metal ions. Then, the aqueous solution is neutralized, and the surface of the titanium dioxide fine particles on which the first support layer has been formed is contacted with a porous second support containing an insoluble hardly-soluble substance as a photocatalyst.
  • a method for producing a titanium dioxide photocatalyst powder characterized by forming a layer;
  • a calcium compound is supported on the surface of the titanium dioxide fine particles to form a first supporting layer, and further, a metal alkoxide is hydrolyzed on the surface of the titanium dioxide fine particles on which the first supporting layer is formed.
  • a photocatalyst on the surface of the titanium dioxide particles Forming a porous second supporting layer containing an inert hardly soluble substance, thereby providing a method for producing a titanium dioxide photocatalyst powder.
  • a polymer composition comprising an organic polymer as a medium and the above titanium dioxide photocatalyst powder; a polymer molded article obtained by molding the polymer composition; and a photocatalyst powder A body or a structure having the polymer composition on a surface is provided.
  • the titanium dioxide fine particles used in the present invention are not particularly limited as long as they have a photocatalytic action.However, those having a crystal form mainly composed of ana-yuzuze zebrockite are preferable because of their high photocatalytic ability. .
  • the average particle diameter of the primary particles of the titanium dioxide fine particles is preferably from 0.01 to 0.2 micron, particularly preferably from 0.01 to 0.1 micron. If the average particle size of the primary particles is less than 0.001 micron, it is difficult to produce efficiently and it is not practical. If it exceeds 0.2 micron, the performance as a photocatalyst is greatly reduced.
  • the production method of the titanium dioxide fine particles used in the present invention is not particularly limited as long as they basically have a photocatalytic activity.
  • those prepared by a gas phase reaction using titanium halide as a raw material, or Either a titanium halide solution or titanyl sulfate hydrolyzed by a wet method or a calcined product thereof may be used.
  • the calcium compound carried on the surface of the titanium dioxide fine particles a compound which is hardly soluble in water is used so as not to be easily eluted.
  • a compound which is hardly soluble in water is used so as not to be easily eluted.
  • calcium oxides, phosphates, sulfates, nitrates, carbonates, and salts with organic acids are applicable.
  • calcium phosphate, organic carboxylic acid calcium salt and oxidizing calcium are preferable.
  • titanium dioxide fine particles are dispersed in a solution of a soluble calcium salt (for example, an aqueous solution of calcium chloride), and the calcium compound is added by adding a precipitation agent.
  • a soluble calcium salt for example, an aqueous solution of calcium chloride
  • titanium Precipitate on the surface of fine particles for example, adding calcium phosphate by adding Na 2 HP (L etc.) Method. If desired, this operation can be repeated to form two or more calcium compound coating layers.
  • the form of the first supporting layer containing the calcium compound is not particularly limited as long as the photocatalytic function of the titanium dioxide fine particles is maintained.
  • a porous calcium compound is dispersed and supported on the surface of titanium dioxide fine particles in the form of islands, or a porous calcium compound is supported on the entire surface of titanium dioxide fine particles. You may.
  • the weight of the first support layer containing the calcium compound is preferably from 0.01 to 10% by weight, more preferably from 0.1 to 5% by weight, based on the weight of titanium dioxide. If the amount is less than 0.01% by weight, the durability as a photocatalyst deteriorates when added to plastics and the like, while if it is more than 10% by weight, the photocatalytic function deteriorates.
  • the titanium dioxide photocatalyst powder of the present invention comprises, on the surface of the titanium dioxide fine particles on which the first support layer containing a calcium compound is formed, a porous second water-insoluble substance which is inactive as a photocatalyst. Is formed.
  • the substance supported as the second supporting layer is a substance that does not substantially exhibit a catalytic action by light and is hardly soluble in porous water.
  • its solubility product at 25 ° C also referred to as solubility constant
  • the “porous second support layer” means that the second support layer is made of a solid substance having a large number of pores, and the size of the pores and the thickness of the support layer are: without inhibiting the movement of the gas or organic low molecular substances such as NO x, and is of a degree that allows the light transparently.
  • the second support layer may not only exist on the outer surface of the first support layer but may have a portion supported on the exposed surface of the titanium dioxide fine particles where the first support layer does not exist.
  • Examples of the poorly water-soluble substance supported as the second support layer include, for example, Be, B, M g, Al, Si, V, Cr, Mn, Fe, Co, Cu, Zn, Ge, Zr, Ag, In, Sn, Pb, Sb, Ba, Ta, Ce Hardly water-soluble substances containing at least one element.
  • poorly water-soluble material is a metal oxide B E_ ⁇ , B 2 ⁇ 3, MgO, A 1 2 0 3, S i OS i 0, V 2 ⁇ 5, C rO, C r 20 3, MnO, Mn 2 0 3, Mn_ ⁇ 2, Mn 3 0 4, Fe 2 ⁇ 3, F e 3 0 4 CoO , Co 3 ⁇ 4, Cu 2 ⁇ , CuO, ZnO, Ge0 2, Z R_ ⁇ 2, Ag 2 ⁇ , I nO, I n 2 0 3, Sn_ ⁇ , Sn_ ⁇ 2, Pb 3 0 4, Pb_ ⁇ 2, PbO, S B_ ⁇ 2, S b 2 0 3, S b 2 0 5, B aT i 0 3, Ta_ ⁇ 2, Ta 2 ⁇ 5, C e 0 2, C a T i 0 3, F e T i 0 3 can be cited, and in non-metallic oxide, CuS, Cu ( ⁇ H) 2, AgC and AgB r, Ag l, Ag l
  • the method of forming the porous second support layer includes a method of directly supporting the poorly water-soluble substance on the surface of the titanium dioxide fine particles having the first support layer containing a calcium compound, and a method of forming the porous second support layer. Any of the methods of contacting or supporting a precursor of a soluble substance and converting the precursor into the above-mentioned poorly water-soluble substance can be adopted. Representative examples of the method of forming the second support layer include the following three methods.
  • a material capable of forming a sparingly water-soluble substance which is substantially inactive as a photocatalyst on the surface of titanium dioxide fine particles having the above-mentioned first supporting layer containing a calcium compound for example, a silicone oligomer or A method of attaching a silane coupling material, drying and drying or baking to convert the material into the hardly water-soluble substance, and form a second support layer containing the hardly water-soluble substance.
  • Preferred examples of the material capable of forming a substantially water-insoluble substance which is substantially inactive as a photocatalyst include a silicone oligomer or a silane coupling material. I can do it. By depositing these materials, drying and / or calcining, the materials are converted to silica, forming a second support layer containing porous silica.
  • the titanium dioxide fine particles having the first support layer are brought into contact with an aqueous solution of sodium aluminate, and then the aqueous solution is neutralized by adding an inorganic acid, and porous alumina is deposited to deposit porous alumina.
  • a carrier layer is formed.
  • metal alkoxide used in this method examples include zirconium n-butoxide, aluminum triethoxide, aluminum triisopropoxide, methyl silicate, ethyl silicate, silicon ethoxide, and zirconium isopropoxide.
  • zirconium n-butoxide aluminum triethoxide, aluminum triisopropoxide, methyl silicate, ethyl silicate, silicon ethoxide, and zirconium isopropoxide.
  • titanium dioxide fine particles having a first carrier layer are brought into contact with an alcohol slurry of zirconium n-butoxide, and ethylene glycol and water are added to the slurry and hydrolyzed to deposit porous zirconia. A quality second carrier layer is formed.
  • the method for forming the second support layer as described above can be repeated to form a porous second support layer having two or more layers.
  • the weight of the porous second carrier layer is preferably from 0.01 to 50% by weight, more preferably from 0.1 to 20% by weight, based on the weight of titanium dioxide. If less than 0.01% by weight is added to plastics as a medium, the durability as a photocatalyst Worse. On the other hand, if the content is more than 50% by weight, the photocatalytic function is reduced, and the cost is increased.
  • the titanium dioxide photocatalyst powder having an environmental purification function of the present invention has at least one metal selected from the group consisting of platinum, rhodium, ruthenium, palladium, silver, copper, zinc, and the like supported on the surface thereof. You may. When such metals are supported, the rate of oxidative decomposition of chemical substances by photocatalysis by titanium dioxide is further increased, and sterilization and algicidal actions are also increased. These metals are supported on the surface of the raw titanium dioxide fine particles, on the surface or layer of the first supporting layer containing a calcium compound, or on the surface or layer of the porous second supporting layer containing a poorly water-soluble substance. Any may be done. The loading of these metals may be carried out by a conventional method, and the loading amount is usually selected in the range of 0.001 to 10% by weight based on the weight of the titanium dioxide photocatalyst powder.
  • the titanium dioxide photocatalyst powder of the present invention can be used as a medium as a polymer composition by being added to all kinds of organic polymers.
  • organic polymer thermoplastic synthetic resins, thermosetting synthetic resins, natural resins, and the like are widely used, and the types thereof are not particularly limited. Since the titanium dioxide photocatalyst powder of the present invention has the first support layer and the second support layer on the surface, when added to the organic polymer, the organic polymer directly contacts the surface of the titanium dioxide fine particles. The decomposition of the organic polymer does not occur due to the photocatalytic activity of the titanium dioxide fine particles.
  • organic polymer used as a medium examples include polyethylene, polyamide, polyvinyl chloride, polyvinylidene chloride, polyester (polyethylene terephthalate, aramide, thermosetting unsaturated polyester, etc.), polypropylene, and polyethylene oxide.
  • the polymer composition comprising the organic polymer and the titanium dioxide photocatalyst powder of the present invention can be used as a material for environmental purification in the form of a paint, a coating composition, a compound, a masterbatch, and the like.
  • concentration of the titanium dioxide photocatalyst powder in the organic polymer composition is usually 0.01 to 80% by weight, preferably 1 to 50% by weight, based on the total weight of the composition.
  • an absorbent such as activated carbon for absorbing malodorous substances and harmful substances, or a zealite light may be added.
  • a molded article having an environmental purification function can be obtained by molding the above polymer composition.
  • molded articles of such a polymer composition include extruded articles such as fibers, films and sheets, and various injection molded articles and compression molded articles.
  • the polymer composition of the present invention since the polymer composition of the present invention has excellent durability, it can be applied as a coating composition to structures such as walls, glass, signboards, and concrete. Further, the polymer composition of the present invention can be applied to an organic structure such as paper, plastic molded article, cloth and wood product, or a structure having a coating film such as a vehicle, The photocatalyst function can be fully exhibited without destroying the coating film.
  • the method 2.8 L of the titanium dioxide slurry obtained above and 3.5 L of the salt solution were mixed, and further kept at a temperature of 40 ° C for 24 hours. Thereafter, the slurry was filtered and washed (using an adept technical membrane filter, pore size 0.2 im, used) and dried at 120 ° C for 4 hours to obtain 100 g of fine powder of titanium dioxide having calcium phosphate supported on the surface.
  • the obtained fine powder of titanium dioxide having a calcium phosphate-supporting layer on the surface was mixed with a blender (Warling), and 20% of a silicone oligomer (AFP-1 manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed thereon.
  • the obtained mixed powder was dried in the air at 120 for 2 hours, and then fired at 500 ° C for 10 hours. As a result of chemical analysis, the obtained powder was found to carry 1% of calcium phosphate and 10% of porous silica.
  • 3.5 g of the obtained fine powder of titanium dioxide having a porous silica-supporting layer was placed in a 9 Ommci) petri dish, and then placed in a 5 L Tedlar bag containing acetoaldehyde having an initial concentration of 40 ppm. Irradiation was performed with black light at 365 nm of ultraviolet light so as to have an intensity of 0.23 mWZcm 2 .
  • the concentration of acetoaldehyde was measured with a detector tube, and the residual ratio of acetoaldehyde was 5%.
  • a urethane resin for fiber coating (Rubipearl 4100, manufactured by Toyo Polymer Co., Ltd.) was mixed with 20% of the above-mentioned fine powder of titanium dioxide having a porous silica-supporting layer, and the mixture containing the photocatalyst was mixed. Ting agent was prepared. The obtained coating agent was applied to glass with a thickness of 50 im to form a coating film, which was irradiated with ultraviolet rays of 5 OmWZcm 2 , and the residual ratio of the coating film after 100 hours was measured. As a result of the measurement, the residual ratio was 93%.
  • 0.6 g of a commercially available polycarboxylic acid type polymer surfactant (manufactured by Kao Corporation, trade name: BOYS 530) is added to 2.8 L of pure water, and titanium dioxide ultrafine particles (Showa Taiyu Nimu ( 120 g of F4, manufactured by Co., Ltd., having an average primary particle size of 0.03 ⁇ m, was dispersed to obtain a titanium dioxide slurry.
  • Example 2 Using the same method as in Example 1, a titanium dioxide fine powder having a porous silica-supporting layer on its surface was prepared for the obtained calcium salt-supported titanium dioxide fine powder, and a coating film was prepared and evaluated. did. Table 1 shows the results. Analysis of the calcined coating film by infrared absorption spectroscopy (FT-IR method) revealed that the calcium salt of the surfactant had disappeared, and that calcium ions were converted to calcium oxide during the calcining process. Can be
  • Example 1 50 g of titanium dioxide fine powder having a calcium phosphate supporting layer obtained in the same manner as in Example 1 and 0.02 mol of sodium aluminate were added to 70 Oml of pure water to obtain a titanium dioxide slurry. 0.06 mol of dilute sulfuric acid was added dropwise to the obtained slurry, adjusted to pH 7.2, filtered, washed, and dried (120, 4 hours). Titanium dioxide having a porous alumina-supported layer on its surface A fine powder was obtained. A coating film was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Ethylene glycol 2 mo 1 and water 72 m 1 were added to a slurry obtained by mixing 50 g of titanium dioxide fine powder having a calcium phosphate supporting layer obtained by the same method as in Example 1, zirconium n-butoxide lmo 1 and ethanol 2.5 L. And hydrolyzed. The obtained slurry was filtered, washed, and dried (120 ° C, 4 hours) to obtain a fine titanium dioxide powder having porous zirconia on the surface.
  • a coating film was prepared in the same manner as in Example 1 and evaluated. Table 1 shows the results.
  • Example 4 Except that the fine powder of titanium dioxide having a calcium phosphate supporting layer used in Example 4 was changed to the fine powder of titanium dioxide supporting a calcium salt of a polymer surfactant obtained by the same method as in Example 2, In the same manner as in Example 4, the porous zircon A fine powder of titanium dioxide supporting nitro was prepared, and a coating film was prepared and evaluated. Table 1 shows the results. In Table 1, the calcium salt of the polymer surfactant is referred to as calcium polycarboxylate.
  • the titanium dioxide fine powder having a calcium phosphate-supporting layer obtained by the same method as in Example 1 was used without forming a porous silica-supporting layer.
  • a coating film was prepared and evaluated in the same manner. Table 1 shows the results.
  • Titanium dioxide fine powder carrying a calcium salt of a polymeric surfactant (before treatment with a silicone oligomer) obtained by the same method as in Example 2 was calcined at 500 for 10 hours, and calcium oxide was carried.
  • a titanium dioxide fine powder having a layer was obtained.
  • a coating film was prepared and evaluated by the same method as in Example 1 without forming a porous silica supporting layer. Table 1 shows the results.
  • Example 3 A method similar to that of Example 3 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Niimu Co., Ltd., average particle diameter of primary particles: 0.03 ⁇ m) without forming a calcium phosphate supporting layer. Titanium dioxide fine powder with porous alumina support layer Powder was prepared, and a coating film was further prepared and evaluated. Table 1 shows the results.
  • Example 1 A method similar to that of Example 1 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Nihon Co., Ltd., average particle diameter of primary particles: 0.03 ⁇ m) without forming a calcium phosphate supporting layer.
  • a silicone oligomer was treated to prepare a titanium dioxide fine powder having a porous silicon-carrying layer, and a coating film was prepared and evaluated. Table 1 shows the results.
  • Example 4 A method similar to that of Example 4 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Niimu Co., Ltd., average particle diameter of primary particles: 0.03 ⁇ m) without forming a calcium phosphate supporting layer.
  • a titanium dioxide fine powder having a porous zirconium-supporting layer was prepared, and a coating film was prepared and evaluated. Table 1 shows the results.
  • Table 1 Porous sparingly soluble calcium compound acetaldehyde Coating film residual carrier layer Material carrier layer Residual rate (%) Rate (%)
  • Example 1 Calcium Phosphate Silica 59 3
  • Example 2 Calcium Oxide Silica 39 2
  • Example 3 Calcium Phosphate Alumina 2 0 95 5
  • Example 4 Calcium Phosphate Zirconia 1 5 8 8
  • Example 5 Polycarboxylic Acid Zirconia 1 3 9 0
  • Comparative Example 4 Calcium Oxide 5 2 Comparative Example 5 — Alumina 7 0 8 5 Comparative Example 6 — Silica 1 0 6 0 Comparative Example 7 — Zirconia 5 0 6 8 As seen in Table 1, the calcium compound supporting layer and the porous material
  • the photocatalyst powder of the present invention (Examples 1 to 5) having a low water-soluble substance-bearing layer has a high photocatalytic performance (the residual ratio of acetoaldehyde is small), and can be used for a long time after being used for a long time. Deterioration effect is small (residual coating rate is large).
  • Photocatalyst powders having only a calcium compound-supporting layer show high photocatalytic performance, but show significant deterioration of the plastic coating medium after long use.
  • the photocatalyst powder having only the porous poorly water-soluble substance-supporting layer has low photocatalytic performance (porous silica). (With the exception of Comparative Example 6), but the deterioration of the plastic coating medium after prolonged use is also relatively large).
  • the titanium dioxide photocatalyst powder of the present invention exhibits a photocatalytic action by irradiating light, removes offensive odors, decomposes and removes harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial, antibacterial and antifungal properties. Widely used for purifying water. In addition, this environmental purification can be performed effectively, economically and safely.
  • This titanium dioxide catalyst powder is applied to fibers, paper, plastic molded products, etc., or is kneaded into a fiber or plastic medium during the manufacturing process of fibers, plastic molded products, etc., or is in the form of paint, etc. Can be used.
  • the photocatalytic performance is excellent in durability without causing deterioration of the medium.
  • the titanium dioxide photocatalyst powder of the present invention has a support layer of a calcium compound and a porous support layer of a hardly water-soluble substance which is inactive as a photocatalyst, it is used in combination with an organic polymer as a medium.
  • the high photocatalytic action of the titanium dioxide particles lasts for a long time without causing deterioration of the medium.
  • the titanium dioxide catalyst powder of the present invention exhibits exceptional durability under a strong light irradiation environment such as sunlight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A particulate titanium dioxide photocatalyst which comprises: fine titanium dioxide particles; a first deposit layer comprising a calcium compound and formed on the surface of the particles; and a second deposit layer which is a porous layer formed on the surface of the fine titanium dioxide particles having the first deposit layer and comprises an insoluble substance which is photocatalytically inactive and has a solubility product in water of 10-25 or smaller. A composition comprising this particulate titanium dioxide photocatalyst and an organic polymer is used as a molding material, coating material, or the like for producing a molding or structure for environmental purification.

Description

二酸化チタン光触媒粉体、 その製法、 およびその応用 技術分野  Titanium dioxide photocatalyst powder, its production method, and its application
本発明は、 光触媒として二酸化チタンを含む光触媒粉体、 該光触媒粉体の製造 方法、 該光触媒粉体を含む重合体組成物および該重合体組成物の成形体、 および 該光触媒粉体または該重合体組成物を表面に有する構造体に関する。  The present invention relates to a photocatalyst powder containing titanium dioxide as a photocatalyst, a method for producing the photocatalyst powder, a polymer composition containing the photocatalyst powder, a molded product of the polymer composition, and the photocatalyst powder or the powder. The present invention relates to a structure having a combined composition on the surface.
本発明の二酸化チタン光触媒粉体は、 悪臭の除去や空気中の有害物質または汚 れの分解除去、 排水処理や浄化処理、 あるいは水の殺菌や殺藻などを行うための 環境浄化材料として用いられ、 特に繊維、 紙およびプラスチック成形品表面への 塗布、 または繊維、 プラスチック成形品などの製造過程において繊維やプラスチ ックの媒体に練り込んだり、 あるいは塗料などの形態で環境浄化材料として使用 するのに適している。 背景技術  The titanium dioxide photocatalyst powder of the present invention is used as an environmental purification material for removing odors, decomposing and removing harmful substances or dirt in the air, wastewater treatment and purification treatment, or sterilization and algicidal treatment of water. In particular, it is applied to the surface of textiles, paper and plastic moldings, or kneaded with fiber or plastic media during the production process of textiles and plastic moldings, or used as an environmental purification material in the form of paints. Suitable for. Background art
近年、 二酸化チタン微粒子を使用した光触媒が、 抗菌、 消臭、 防汚、 大気の浄 化、 水質の浄化などの目的で使用される環境浄化材として注目されている。 この ような二酸化チタンの光触媒メカニズムは、 二酸化チタン微粒子に光が照射され ると、 二酸化チタン微粒子内部に発生した電子と正孔がニ酸化チタン微粒子表面 近傍の水と酸素をヒドロキシラジカルや過酸化水素に変換し、 ヒドロキシラジカ ルと過酸化水素の強力な酸化還元作用により有害な物質を炭酸ガスのような無害 な物質に浄化するためと考えられる。 こうした二酸化チタン微粒子の光触媒作用 は、 二酸化チタン微粒子、 光、 水、 酸素が存在する限り半永久的に継続すると言 われている。  In recent years, photocatalysts using titanium dioxide fine particles have attracted attention as environmental purification materials used for antibacterial, deodorant, antifouling, air purification, and water purification purposes. The photocatalytic mechanism of titanium dioxide is such that when light is applied to the titanium dioxide fine particles, electrons and holes generated inside the titanium dioxide fine particles convert water and oxygen near the surface of the titanium dioxide fine particles into hydroxyl radicals and hydrogen peroxide. It is considered to convert harmful substances into harmless substances such as carbon dioxide by the strong redox effect of hydroxyradical and hydrogen peroxide. It is said that the photocatalytic action of titanium dioxide particles lasts semi-permanently as long as titanium dioxide particles, light, water, and oxygen are present.
このような二酸化チタン光触媒の応用においては、 取り扱いの容易な繊維ゃプ ラスチック成形品などの製造過程において繊維やプラスチックの媒体に練り込ん だり、 布、 紙などの基体の表面に塗布する方法が試みられている。 しかしながら 、 二酸化チタンの強力な光触媒作用によって有害有機物や環境汚染物質だけでな く繊維、 プラスチック、 紙などの媒体自身も分解 ·劣化され易いため、 実用上障 害となっていた。 さらに、 その取り扱い易さから二酸化チタン微粒子とバインダ 一を混合した塗料が注目されているが、 そのような媒体への障害が克服されかつ 安価なバインダ一は見出されていない。 In the application of such a titanium dioxide photocatalyst, attempts have been made to knead fiber or plastic media in the process of manufacturing easily-manufactured fiber-plastic molded articles, or apply them to the surface of a substrate such as cloth or paper. Have been. However, due to the strong photocatalytic action of titanium dioxide, not only harmful organic substances and environmental pollutants, but also media such as fibers, plastics, and paper themselves are easily decomposed and deteriorated, which hinders practical use. It was harmful. Furthermore, paints in which titanium dioxide fine particles and a binder are mixed have attracted attention due to their ease of handling, but no inexpensive binder has been found that overcomes such obstacles to the medium.
特願平 9一 2 2 5 3 1 9号公報および特開平 9— 2 3 9 2 7 7号公報には、 二 酸化チタン粒子の作用による樹脂媒体やバインダーの劣化を抑制するため、 二酸 化チタン粒子の表面に光不活性化合物を島状に分布した状態で担持せしめて、 光 触媒作用を抑制する方法が提案されている。 この方法によれば、 樹脂媒体やバイ ンダーの劣化は低減されるものの、 光不活性化合物が二酸化チタン粒子表面の活 性点に直接接着するため光触媒としての活性が低下するので、 光触媒性能の制御 が求められている。 また、 特開平 1 0— 2 4 4 1 6 6号公報には、 二酸化チタン 粒子の表面に多孔質のリン酸カルシウムを被覆した光触媒が提案されている。 こ の被覆二酸化チタン粒子は、 リン酸カルシウム被覆層によって光触媒性能が低下 し、 特に太陽光のような強力な紫外線の下では耐久性になお課題が残されている  Japanese Patent Application No. 9-22539 / 1992 and Japanese Patent Application Laid-Open No. 9-239277 disclose the use of dioxidation in order to suppress the deterioration of the resin medium and binder due to the action of titanium dioxide particles. A method has been proposed in which a photoinactive compound is supported in the form of islands distributed on the surface of titanium particles to suppress the photocatalytic action. According to this method, the deterioration of the resin medium and the binder is reduced, but the activity as a photocatalyst is reduced because the photoinactive compound directly adheres to the active point on the surface of the titanium dioxide particles. Is required. In addition, Japanese Patent Application Laid-Open No. H10-244416 proposes a photocatalyst in which titanium dioxide particles are coated with porous calcium phosphate on the surface. The photocatalytic performance of these coated titanium dioxide particles is reduced by the calcium phosphate coating layer, and there is still a problem in durability under strong ultraviolet rays such as sunlight.
発明の開示 Disclosure of the invention
本発明の目的は、 上記のような従来技術に鑑み、 悪臭の除去、 空気中の有害物 質または汚れの分解除去、 排水処理や浄水処理、 抗菌ゃ抗かび性付与など、 環境 の诤化を効果的かつ経済的で安全に行うことができ、 特に繊維、 紙、 プラスチッ ク成形品などへの塗布、 または繊維、 プラスチック成形品への練り混み、 あるい は塗料などの形態で使用した際に、 媒体の劣化を生じることなくかつ良好な長期 耐久性を有する光触媒粉体、 該光触媒粉体の製造方法、 該光触媒粉体を含有する 重合体組成物、 該重合体組成物の成形品、 および該重合体組成物を表面に有する 構造体を提供することにある。  An object of the present invention is to improve the environment in view of the above-mentioned conventional technologies, such as removing odors, decomposing and removing harmful substances or dirt in the air, treating wastewater and purifying water, and imparting antibacterial and antifungal properties. It can be performed effectively, economically and safely, especially when applied to fibers, paper, plastic moldings, etc., or when mixed with fibers or plastic moldings, or when used in the form of paint, etc. A photocatalyst powder having good long-term durability without causing deterioration of a medium, a method for producing the photocatalyst powder, a polymer composition containing the photocatalyst powder, a molded article of the polymer composition, and An object of the present invention is to provide a structure having the polymer composition on the surface.
特に、 本発明の主目的は、 太陽光のような強い光照射環境下において優れた耐 久性を示す光触媒粉体、 該光触媒粉体を含有する重合体組成物、 該重合体組成物 の成形品、 および該重合体組成物を表面に有する構造体を提供することにある。 本発明者は、 上記の目的を達成するため鋭意研究を重ねた結果、 二酸化チタン 微粒子の表面に、 カルシウム化合物を担持する第 1の担持層を形成し、 さらにそ の二酸化チタン微粒子の表面上に、 光触媒として不活性な水難溶性物質を担持す る多孔質な第 2の担持層を形成すると、 二酸化チタン微粒子の高い光触媒作用が 殆ど損なわれることがなく、 かつ、 媒体の劣化を生じることなく、 耐久性に優る 光触媒となることを見出した。 In particular, a main object of the present invention is to provide a photocatalyst powder exhibiting excellent durability under a strong light irradiation environment such as sunlight, a polymer composition containing the photocatalyst powder, and a molding of the polymer composition. And a structure having the polymer composition on the surface. The present inventor has conducted intensive studies to achieve the above object, and has found that titanium dioxide A first support layer for supporting a calcium compound is formed on the surface of the fine particles, and a porous second support layer for supporting, on the surface of the titanium dioxide fine particles, a water-insoluble substance inert as a photocatalyst. It has been found that the formation of is a photocatalyst with excellent durability without hardly impairing the high photocatalytic action of the titanium dioxide fine particles and without deteriorating the medium.
かくして、 本発明によれば、 二酸化チタン微粒子の表面に、 カルシウム化合物 を含む第 1の担持層を有し、 さらに該第 1の担持層が形成された二酸化チタン微 粒子の表面上に、 光触媒として不活性であり、 かつ水に対する難溶性物質を含む 多孔質な第 2の担持層を有することを特徴とする二酸化チタン光触媒粉体が提供 される。 前記難溶性物質としては、 好ましくは、 水に対する溶解度積が 1 0一2 5 以下のものがよい。 Thus, according to the present invention, a titanium oxide fine particle has a first support layer containing a calcium compound on the surface thereof, and the first support layer is formed on the surface of the titanium dioxide fine particle as a photocatalyst. There is provided a titanium dioxide photocatalyst powder characterized by having a porous second support layer that is inert and contains a substance that is hardly soluble in water. The poorly soluble substance preferably has a solubility product in water of 10 to 25 or less.
さらに、 本発明によれば、 上記の第 1の担持層および第 2の担持層を有する二 酸化チタン光触媒粉体の製造方法、 すなわち、  Further, according to the present invention, a method for producing a titanium dioxide photocatalyst powder having the above-described first support layer and second support layer,
( 1 ) 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに該第 1の担持層が形成された二酸化チタン微粒子の表面上 に、 光触媒として不活性な難溶性物質を形成することができる材料を担持させ、 次いで、 乾燥または焼成して、 該材料を該難溶性物質に変換し、 該難溶性物質を 含む多孔質な第 2の担持層を形成することを特徴とする二酸化チタン光触媒粉体 の製造方法;  (1) A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first support layer, and the surface of the titanium dioxide fine particles on which the first support layer is formed is hardly inactive as a photocatalyst. Supporting a material capable of forming a soluble substance, followed by drying or baking to convert the material to the poorly soluble substance and forming a porous second supporting layer containing the poorly soluble substance; A method for producing a titanium dioxide photocatalyst powder, comprising:
( 2 ) 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに該第 1の担持層が形成された二酸化チタン微粒子の表面に 、 金属イオンを含有するアルカリ水溶液を接触せしめ、 次いで該水溶液を中和す ることによって、 該第 1の担持層が形成された二酸化チタン微粒子の表面に、 光 触媒として不活性な難溶性物質を含む多孔質な第 2の担持層を形成することを特 徴とする二酸化チタン光触媒粉体の製造方法;および  (2) A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first support layer, and the surface of the titanium dioxide fine particles on which the first support layer is formed is further coated with an alkali aqueous solution containing metal ions. Then, the aqueous solution is neutralized, and the surface of the titanium dioxide fine particles on which the first support layer has been formed is contacted with a porous second support containing an insoluble hardly-soluble substance as a photocatalyst. A method for producing a titanium dioxide photocatalyst powder characterized by forming a layer; and
( 3 ) 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに、 該第 1の担持層が形成された二酸化チタン微粒子の表面 上で金属アルコキシドを加水分解して、 該ニ酸化チタン微粒子の表面に光触媒と して不活性な難溶性物質を含む多孔質な第 2の担持層を形成することを特徴とす る二酸化チタン光触媒粉体の製造方法が提供される。 (3) A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first supporting layer, and further, a metal alkoxide is hydrolyzed on the surface of the titanium dioxide fine particles on which the first supporting layer is formed. A photocatalyst on the surface of the titanium dioxide particles. Forming a porous second supporting layer containing an inert hardly soluble substance, thereby providing a method for producing a titanium dioxide photocatalyst powder.
さらに、 本発明によれば、 媒体としての有機重合体と上記二酸化チタン光触媒 粉体からなる重合体組成物;該重合体組成物を成形してなる重合体成形品;およ び、 該光触媒粉体または該重合体組成物を表面に有する構造体が提供される。 発明を実施するための最良の形態  Further, according to the present invention, a polymer composition comprising an organic polymer as a medium and the above titanium dioxide photocatalyst powder; a polymer molded article obtained by molding the polymer composition; and a photocatalyst powder A body or a structure having the polymer composition on a surface is provided. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に用いられる二酸化チタン微粒子は、 光触媒作用を有する限り格別限定 されるものではないが、 光触媒能が高い点で、 アナ夕一ゼゃブルッカイトを主成 分とする結晶形をもつものが好ましい。 また、 二酸化チタン微粒子は、 一次粒子 の平均粒径が 0 . 0 0 1〜 0 . 2ミクロン、 特に 0 . 0 1〜0 . 1ミクロンであるこ とが好ましい。 一次粒子の平均粒径が 0 . 0 0 1ミクロンを下回ると効率よく生 産するのが困難であり実用的でない。 0 . 2ミクロンを超えると光触媒としての 性能が大幅に減じる。  The titanium dioxide fine particles used in the present invention are not particularly limited as long as they have a photocatalytic action.However, those having a crystal form mainly composed of ana-yuzuze zebrockite are preferable because of their high photocatalytic ability. . The average particle diameter of the primary particles of the titanium dioxide fine particles is preferably from 0.01 to 0.2 micron, particularly preferably from 0.01 to 0.1 micron. If the average particle size of the primary particles is less than 0.001 micron, it is difficult to produce efficiently and it is not practical. If it exceeds 0.2 micron, the performance as a photocatalyst is greatly reduced.
本発明において用いる二酸化チタン微粒子は、 基本的には光触媒能を有するも のであれば特にその製法は限定されるものではなく、 例えば、 ハロゲン化チタン を原料とし気相反応により調製されたもの、 またはハロゲン化チタン溶液または 硫酸チタニルを湿式で加水分解したもの、 またはそれらを焼成したもののいずれ でもよい。  The production method of the titanium dioxide fine particles used in the present invention is not particularly limited as long as they basically have a photocatalytic activity.For example, those prepared by a gas phase reaction using titanium halide as a raw material, or Either a titanium halide solution or titanyl sulfate hydrolyzed by a wet method or a calcined product thereof may be used.
二酸化チタン微粒子表面に担持されるカルシウム化合物としては、 容易に溶出 しないよう水に難溶性のものが用いられる。 水に難溶性であれば特に限定されな いが、 例えば、 カルシウムの酸化物、 リン酸塩、 硫酸塩、 硝酸塩、 炭酸塩および 有機酸との塩などが適応される。 特に、 リン酸カルシウム、 有機カルボン酸カル シゥム塩および酸化力ルシゥムが好ましい。  As the calcium compound carried on the surface of the titanium dioxide fine particles, a compound which is hardly soluble in water is used so as not to be easily eluted. There is no particular limitation as long as it is sparingly soluble in water. For example, calcium oxides, phosphates, sulfates, nitrates, carbonates, and salts with organic acids are applicable. Particularly, calcium phosphate, organic carboxylic acid calcium salt and oxidizing calcium are preferable.
二酸化チタン微粒子表面にカルシゥム化合物を担持せしめる方法としては、 一 般に、 可溶性カルシウム塩の溶液 (例えば、 塩化カルシウム水溶液) に二酸化チ タン微粒子を分散させ、 沈殿生成剤を添加してカルシウム化合物を二酸化チタン 微粒子表面に析出させる (例えば、 Na2 HP(Lなどを添加してリン酸カルシウムを 析出させる) 方法などが採用される。 所望により、 この操作を繰り返して、 二層 以上のカルシウム化合物被覆層を形成することができる。 As a method of supporting a calcium compound on the surface of titanium dioxide fine particles, generally, titanium dioxide fine particles are dispersed in a solution of a soluble calcium salt (for example, an aqueous solution of calcium chloride), and the calcium compound is added by adding a precipitation agent. Titanium Precipitate on the surface of fine particles (for example, adding calcium phosphate by adding Na 2 HP (L etc.) Method). If desired, this operation can be repeated to form two or more calcium compound coating layers.
カルシウム化合物を含む第 1の担持層は、 二酸化チタン微粒子の光触媒機能が 保持される限りその形態は格別限定されることはない。 例えば、 多孔質なカルシ ゥム化合物が二酸化チタン微粒子表面に島状に分散して担持された形態、 あるい は、 多孔質なカルシウム化合物が二酸化チタン微粒子表面の全体に担持された形 態であってもよい。  The form of the first supporting layer containing the calcium compound is not particularly limited as long as the photocatalytic function of the titanium dioxide fine particles is maintained. For example, a porous calcium compound is dispersed and supported on the surface of titanium dioxide fine particles in the form of islands, or a porous calcium compound is supported on the entire surface of titanium dioxide fine particles. You may.
カルシウム化合物を含む第 1の担持層の重量は、 二酸化チタン重量に基づき、 好ましくは 0 . 0 1〜 1 0重量%、 より好ましくは 0 . 1〜 5重量%である。 0 . 0 1重量%より少ないとプラスチックなどに添加した場合、 光触媒としての耐久 性が悪くなり、 一方、 1 0重量%より多いと光触媒機能が低下する。  The weight of the first support layer containing the calcium compound is preferably from 0.01 to 10% by weight, more preferably from 0.1 to 5% by weight, based on the weight of titanium dioxide. If the amount is less than 0.01% by weight, the durability as a photocatalyst deteriorates when added to plastics and the like, while if it is more than 10% by weight, the photocatalytic function deteriorates.
本発明の二酸化チタン光触媒粉体は、 カルシウム化合物を含む上記第 1の担持 層が形成された二酸化チタン微粒子の表面上に、 さらに、 光触媒として不活 性な水難溶性物質を含む多孔質な第 2の担持層が形成されていることを特徴とし ている。 このような第 2の担持層を形成することによって、 二酸化チタン微粒子 の高い触媒作用が殆ど損われることなく、 かつ媒体の劣化を生じることなく、 耐 久性に一段と優る光触媒となる。  The titanium dioxide photocatalyst powder of the present invention comprises, on the surface of the titanium dioxide fine particles on which the first support layer containing a calcium compound is formed, a porous second water-insoluble substance which is inactive as a photocatalyst. Is formed. By forming such a second support layer, a photocatalyst with much higher durability can be obtained without substantially impairing the high catalytic action of the titanium dioxide fine particles and without causing deterioration of the medium.
第 2の担持層として担持される物質は、 光による触媒作用を実質的に発現せず 、 かつ、 多孔質な水に難溶性の物質である。 この物質の水に対する溶解度は、 そ の 2 5 °Cにおける溶解度積 (溶解度定数ともいう) が 1 0— 2 5以下であること が特に好ましい。 ここで 「多孔質な第 2の担持層」 とは、 該第 2の担持層が、 多 数の細孔を有する固体物質からなり、 該細孔の大きさおよび該担持層の厚さが、 N Oxなどのガスや有機低分子物質の移動を抑制することがなく、 かつ、 光の透 過を許容する程度のものである。 The substance supported as the second supporting layer is a substance that does not substantially exhibit a catalytic action by light and is hardly soluble in porous water. As for the solubility of this substance in water, it is particularly preferable that its solubility product at 25 ° C (also referred to as solubility constant) is 10 to 25 or less. Here, the “porous second support layer” means that the second support layer is made of a solid substance having a large number of pores, and the size of the pores and the thickness of the support layer are: without inhibiting the movement of the gas or organic low molecular substances such as NO x, and is of a degree that allows the light transparently.
第 2の担持層は、 第 1の担持層の外表面上だけに存在するものではなく、 第 1 の担持層が存在しない二酸化チタン微粒子の露出表面に担持されている部分があ つてもよい。  The second support layer may not only exist on the outer surface of the first support layer but may have a portion supported on the exposed surface of the titanium dioxide fine particles where the first support layer does not exist.
第 2の担持層として担持される水難溶性物質としては、 例えば、 B e、 B、 M g、 A l、 S i、 V、 C r、 Mn、 F e、 Co、 Cu、 Zn、 Ge、 Z r、 Ag 、 I n、 Sn、 Pb、 S b、 B a、 Ta、 C eから選ばれる少くとも 1種の元素 を含む水難溶性物質が挙げられる。 水難溶性物質の具体例としては、 金属酸化物 系では B e〇、 B23、 MgO、 A 1203、 S i O S i 0、 V25、 C rO 、 C r 203 , MnO、 Mn203、 Mn〇2、 Mn304、 Fe23、 F e304 CoO、 Co34、 Cu2〇、 CuO、 ZnO、 Ge02、 Z r〇2、 Ag2〇、 I nO、 I n203 , Sn〇、 Sn〇2、 Pb304、 Pb〇2、 PbO、 S b〇2、 S b203 , S b205、 B aT i 03、 Ta〇2、 Ta25、 C e 02、 C a T i 03、 F e T i 03 を挙げることができ、 また、 非金属酸化物系では、 CuS、 Cu(〇H)2、 AgCし AgB r、 Ag l、 AgS、 Mg(〇H)2、 MgC03 、 CaC03、 B aC〇3、 Zn(OH)2、 ZnS、 ZnC03、 CdS、 A 1 (〇 H)3 、 Sn(OH)2、 SnS、 SnS2、 PbS、 PbC l2、 PbS03、 P b C〇3、 Sb2 S3、 F e Sが挙げられる。 上記の水難溶性物質の中でも、 シリカ 、 アルミナ、 ジルコニァ、 水酸化アルミニウム、 水酸化チタン、 リン酸アルミ二 ゥムが好ましく、 これらの中でも、 シリカ、 アルミナおよびジルコニァが特に好 ましい。 Examples of the poorly water-soluble substance supported as the second support layer include, for example, Be, B, M g, Al, Si, V, Cr, Mn, Fe, Co, Cu, Zn, Ge, Zr, Ag, In, Sn, Pb, Sb, Ba, Ta, Ce Hardly water-soluble substances containing at least one element. Specific examples of poorly water-soluble material is a metal oxide B E_〇, B 2 3, MgO, A 1 2 0 3, S i OS i 0, V 2 〇 5, C rO, C r 20 3, MnO, Mn 2 0 3, Mn_〇 2, Mn 3 0 4, Fe 2 〇 3, F e 3 0 4 CoO , Co 3 〇 4, Cu 2 〇, CuO, ZnO, Ge0 2, Z R_〇 2, Ag 2 〇, I nO, I n 2 0 3, Sn_〇, Sn_〇 2, Pb 3 0 4, Pb_〇 2, PbO, S B_〇 2, S b 2 0 3, S b 2 0 5, B aT i 0 3, Ta_〇 2, Ta 2 5, C e 0 2, C a T i 0 3, F e T i 0 3 can be cited, and in non-metallic oxide, CuS, Cu (〇 H) 2, AgC and AgB r, Ag l, AgS, Mg ( 〇_H) 2, MgC0 3, CaC0 3 , B AC_〇 3, Zn (OH) 2, ZnS, ZnC0 3, CdS, A 1 ( 〇 H ) 3, Sn (OH) 2 , SnS, SnS 2, PbS, PbC l 2, PbS0 3, P b C_〇 3, Sb 2 S 3, F e S and the like. Among the hardly water-soluble substances described above, silica, alumina, zirconia, aluminum hydroxide, titanium hydroxide, and aluminum phosphate are preferred, and among these, silica, alumina and zirconia are particularly preferred.
多孔質な第 2の担持層を形成する方法としては、 カルシウム化合物を含む第 1 の担持層を有する二酸化チタン微粒子の表面上に、 直接、 上記水難溶性物質を担 持せしめる方法、 および、 上記水難溶性物質の前駆体を接触ないし担持せしめ、 該前駆体を上記水難溶性物質に変換する方法のいずれを採ることもできる。 第 2 の担持層の形成方法の代表的な例としては、 次の 3つの方法が挙げられる。  The method of forming the porous second support layer includes a method of directly supporting the poorly water-soluble substance on the surface of the titanium dioxide fine particles having the first support layer containing a calcium compound, and a method of forming the porous second support layer. Any of the methods of contacting or supporting a precursor of a soluble substance and converting the precursor into the above-mentioned poorly water-soluble substance can be adopted. Representative examples of the method of forming the second support layer include the following three methods.
( 1 ) 前述のカルシウム化合物を含む第 1の担持層を有する二酸化チタン微粒 子の表面上に、 光触媒として実質的に不活性である水難溶性物質を形成すること ができる材料、 例えば、 シリコーンオリゴマーまたはシランカップリング材を付 着せしめ、 乾燥およびノまたは焼成することによって、 該材料を該水難溶性物質 に変換し、 該水難溶性物質を含む第 2の担持層を形成する方法。  (1) A material capable of forming a sparingly water-soluble substance which is substantially inactive as a photocatalyst on the surface of titanium dioxide fine particles having the above-mentioned first supporting layer containing a calcium compound, for example, a silicone oligomer or A method of attaching a silane coupling material, drying and drying or baking to convert the material into the hardly water-soluble substance, and form a second support layer containing the hardly water-soluble substance.
光触媒として実質的に不活性である水難溶性物質を形成することができる材料 の好ましい例としては、 シリコーンオリゴマーまたはシランカップリング材が挙 げられる。 これらの材料を付着せしめ、 乾燥および または焼成することによつ て、 該材料はシリカに変換され、 多孔質シリカを含む第 2の担持層が形成される Preferred examples of the material capable of forming a substantially water-insoluble substance which is substantially inactive as a photocatalyst include a silicone oligomer or a silane coupling material. I can do it. By depositing these materials, drying and / or calcining, the materials are converted to silica, forming a second support layer containing porous silica.
( 2 ) 前述のカルシウム化合物を含む第 1の担持層を有する二酸化チタン微粒 子表面を、 金属イオンを含むアルカリ水溶液に接触せしめ、 次いで該水溶液を中 和することによって、 光触媒として実質的に不活性である水難溶性物質を含む多 孔質な第 2の担持層を形成する方法。 (2) The surface of the titanium dioxide fine particles having the first support layer containing the above-mentioned calcium compound is brought into contact with an aqueous alkali solution containing metal ions, and then the aqueous solution is neutralized to thereby be substantially inert as a photocatalyst. Forming a porous second support layer containing a poorly water-soluble substance.
この方法において使用される金属イオンを含むアルカリ水溶液の具体例として は、 アルミン酸ソーダ、 ケィ酸ソーダ、 ジルコニウム酸ソーダなどの水溶液が挙 げられる。 例えば、 第 1の担持層を有する二酸化チタン微粒子をアルミン酸ソー ダ水溶液に接触せしめ、 次いで無機酸を加えて該水溶液を中和し、 多孔質アルミ ナを析出させることによって多孔質な第 2の担持層が形成される。  Specific examples of the aqueous alkali solution containing metal ions used in this method include aqueous solutions of sodium aluminate, sodium silicate and sodium zirconate. For example, the titanium dioxide fine particles having the first support layer are brought into contact with an aqueous solution of sodium aluminate, and then the aqueous solution is neutralized by adding an inorganic acid, and porous alumina is deposited to deposit porous alumina. A carrier layer is formed.
( 3 ) カルシウム化合物を含む第 1の担持層を有する二酸化チタン微粒子の表 面上で金属アルコキシドを加水分解して、 金属アルコキシドを金属酸化物などに 変換し、 光触媒として実質的に不活性な水難溶性物質を担持する多孔質な第 2の 担持層を形成する。  (3) Hydrolysis of metal alkoxide on the surface of titanium dioxide fine particles having a first supporting layer containing a calcium compound to convert the metal alkoxide to metal oxide or the like, which is substantially inactive as a photocatalyst. A porous second support layer for supporting a soluble substance is formed.
この方法において使用される金属アルコキシドの具体例としては、 ジルコニゥ ム n—ブトキシド、 アルミニウム卜リエトキシド、 アルミニウムトリイソプロボ キシド、 メチルシリゲート、 ェチルシリゲート、 シリコンエトキシドおよびジル コニゥムイソプロボキシドなどが挙げられる。 例えば、 第 1の担持層を有する二 酸化チタン微粒子をジルコニウム n—ブトキシドのアルコール ·スラリーと接触 せしめ、 このスラリーにエチレングリコールと水を加えて加水分解し、 多孔質ジ ルコニァを析出させることによって多孔質な第 2の担持層を形成する。  Specific examples of the metal alkoxide used in this method include zirconium n-butoxide, aluminum triethoxide, aluminum triisopropoxide, methyl silicate, ethyl silicate, silicon ethoxide, and zirconium isopropoxide. Can be For example, titanium dioxide fine particles having a first carrier layer are brought into contact with an alcohol slurry of zirconium n-butoxide, and ethylene glycol and water are added to the slurry and hydrolyzed to deposit porous zirconia. A quality second carrier layer is formed.
所望により、 上記のような第 2の担持層を形成する方法を繰り返して、 ニ層以 上の多孔質な第 2の担持層を形成することができる。  If desired, the method for forming the second support layer as described above can be repeated to form a porous second support layer having two or more layers.
多孔質な第 2の担持層の重量は、 二酸化チタン重量に基づき、 好ましくは 0 . 0 1〜5 0重量%、 より好ましくは 0 . 1〜2 0重量%である。 0 . 0 1重量%ょ り少ないと媒体としてのプラスチックなどに添加した場合、 光触媒としての耐久 性が悪くなる。 一方、 5 0重量%より多いと光触媒機能が低下し、 またコスト高 となる。 The weight of the porous second carrier layer is preferably from 0.01 to 50% by weight, more preferably from 0.1 to 20% by weight, based on the weight of titanium dioxide. If less than 0.01% by weight is added to plastics as a medium, the durability as a photocatalyst Worse. On the other hand, if the content is more than 50% by weight, the photocatalytic function is reduced, and the cost is increased.
本発明の環境浄化用機能を有する二酸化チタン光触媒粉体は、 その表面部分に 白金、 ロジウム、 ルテニウム、 パラジウム、 銀、 銅、 亜鉛などからなる群より選 ばれた少くとも一種の金属が担持されていてもよい。 そのような金属を坦持する 場合は、 二酸化チタンによる光触媒作用により化学物質を酸化分解する速度がさ らに大きくなり、 殺菌、 殺藻作用も大きくなる。 これらの金属の担持は、 原料の 二酸化チタン微粒子の表面、 カルシウム化合物を含む第 1の担持層の表面または 層中、 あるいは水難溶性物質を含む多孔質な第 2の担持層の表面または層中のい ずれになされてもよい。 これら金属の担持は常法によって行えばよく、 またその 担持量は、 通常、 二酸化チタン光触媒粉体の重量に基づき 0 . 0 0 1〜1 0重量 %の範囲で選ばれる。  The titanium dioxide photocatalyst powder having an environmental purification function of the present invention has at least one metal selected from the group consisting of platinum, rhodium, ruthenium, palladium, silver, copper, zinc, and the like supported on the surface thereof. You may. When such metals are supported, the rate of oxidative decomposition of chemical substances by photocatalysis by titanium dioxide is further increased, and sterilization and algicidal actions are also increased. These metals are supported on the surface of the raw titanium dioxide fine particles, on the surface or layer of the first supporting layer containing a calcium compound, or on the surface or layer of the porous second supporting layer containing a poorly water-soluble substance. Any may be done. The loading of these metals may be carried out by a conventional method, and the loading amount is usually selected in the range of 0.001 to 10% by weight based on the weight of the titanium dioxide photocatalyst powder.
本発明の二酸化チタン光触媒粉体は、 媒体として、 あらゆる種類の有機重合体 に添加して重合体組成物として使用できる。 有機重合体としては、 熱可塑性合成 樹脂、 熱硬化性合成樹脂、 天然樹脂などが広く用いられ、 その種類は格別限定さ れない。 本発明の二酸化チタン光触媒粉体は表面に上記第 1の担持層と第 2の担 持層を有するため、 有機重合体に添加した場合、 有機重合体と二酸化チタン微粒 子の表面とが直接接触することは実質的になく、 二酸化チタン微粒子の光触媒活 性により有機重合体の分解 ·劣化を生じることはない。  The titanium dioxide photocatalyst powder of the present invention can be used as a medium as a polymer composition by being added to all kinds of organic polymers. As the organic polymer, thermoplastic synthetic resins, thermosetting synthetic resins, natural resins, and the like are widely used, and the types thereof are not particularly limited. Since the titanium dioxide photocatalyst powder of the present invention has the first support layer and the second support layer on the surface, when added to the organic polymer, the organic polymer directly contacts the surface of the titanium dioxide fine particles. The decomposition of the organic polymer does not occur due to the photocatalytic activity of the titanium dioxide fine particles.
媒体として使用される有機重合体の具体例としては、 ポリエチレン、 ポリアミ ド、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリエステル (ポリエチレンテレフ 夕レート、 ァラミド、 熱硬化性不飽和ポリエステルなど) 、 ポリプロピレン、 ポ リエチレンオキサイド、 ポリエチレングリコール、 シリコン樹脂、 ポリビニルァ ルコール、 ビニルァセタール樹脂、 A B S樹脂、 エポキシ樹脂、 酢酸ビニル樹脂 、 セルロース、 セルロース誘導体、 再生繊維素 (レーヨンなど) 、 ポリウレタン 、 ポリカーボネート、 ポリスチレン、 尿素樹脂、 フッ素樹脂 (ポリフッ化ビニリ デン、 ポリテトラフルォロエチレンなど) 、 フエノール樹脂、 セルロイド、 キチ ン、 澱粉、 アクリル樹脂、 メラミン樹脂、 アルキド樹脂などが挙げられる。 これらの有機重合体と本発明の二酸化チタン光触媒粉体からなる重合体組成物 は、 塗料、 コーティング組成物、 コンパウンドおよびマスターバッチなどの形態 で環境浄化用材料として使用できる。 有機重合体組成物中の二酸化チタン光触媒 粉体の濃度は、 該組成物全重量に基づき、 通常 0.01〜80重量%、 好ましく は 1〜50重量%である。 Specific examples of the organic polymer used as a medium include polyethylene, polyamide, polyvinyl chloride, polyvinylidene chloride, polyester (polyethylene terephthalate, aramide, thermosetting unsaturated polyester, etc.), polypropylene, and polyethylene oxide. , Polyethylene glycol, silicone resin, polyvinyl alcohol, vinyl acetal resin, ABS resin, epoxy resin, vinyl acetate resin, cellulose, cellulose derivatives, regenerated cellulose (rayon, etc.), polyurethane, polycarbonate, polystyrene, urea resin, fluorine resin (polyfluorinated) Vinylidene, polytetrafluoroethylene, etc.), phenolic resin, celluloid, chitin, starch, acrylic resin, melamine resin, alkyd resin, etc. . The polymer composition comprising the organic polymer and the titanium dioxide photocatalyst powder of the present invention can be used as a material for environmental purification in the form of a paint, a coating composition, a compound, a masterbatch, and the like. The concentration of the titanium dioxide photocatalyst powder in the organic polymer composition is usually 0.01 to 80% by weight, preferably 1 to 50% by weight, based on the total weight of the composition.
重合体組成物の中には、 悪臭物質や有害物質などを吸収する活性炭、 ゼ才ライ 卜のような吸収剤を添加してもよい。  Into the polymer composition, an absorbent such as activated carbon for absorbing malodorous substances and harmful substances, or a zealite light may be added.
さらに、 上記の重合体組成物を成形することによって環境浄化機能を有する重 合体成形品が得られる。 そのような重合体組成物の成形品として、 繊維、 フィル ム、 シートなどの押出成形品、 および各種の射出成型品、 圧縮成型品などが挙げ られる。  Furthermore, a molded article having an environmental purification function can be obtained by molding the above polymer composition. Examples of molded articles of such a polymer composition include extruded articles such as fibers, films and sheets, and various injection molded articles and compression molded articles.
さらに、 本発明の重合体組成物は、 耐久性に優れていることから壁、 ガラス、 看板、 コンクリートなどの構造体へのコーティング組成物として適用できる。 さ らに、 本発明の重合体組成物は、 紙、 プラスチック成形品、 布および木製品など のような有機構造体や、 車両のような塗膜を有する構造体にコーティングしても 、 構造体や塗膜を破壊することがなく、 光触媒の機能を十分発揮することができ る。  Further, since the polymer composition of the present invention has excellent durability, it can be applied as a coating composition to structures such as walls, glass, signboards, and concrete. Further, the polymer composition of the present invention can be applied to an organic structure such as paper, plastic molded article, cloth and wood product, or a structure having a coating film such as a vehicle, The photocatalyst function can be fully exhibited without destroying the coating film.
以下、 本発明を実施例について具体的に説明する。 ただし、 本発明は以下の例 示によって何ら制限されるものではない。 以下の実施例および比較例において、 %は特に断らないかぎり重量基準である。  Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited at all by the following examples. In the following Examples and Comparative Examples,% is based on weight unless otherwise specified.
実施例 1  Example 1
2.8 Lの純水の中に二酸化チタン超微粒子 (昭和夕イタニゥム (株) 製 F— 4、 一次粒子の平均粒径 0.03ミクロン) 120 gを投入して分散処理を行い 、 二酸化チタンスラリーを得た。 次いで、 純水中に NaCし Na2HP04、 KH2 P〇4、 KC 1、 MgC 12 · 6H20, CaC 12を添加して、 二酸化チタ ンスラリーと混合した後の N a+が 139mM、 K+が 2.8mM、 32 +が1. 8mM、 Mg2^S0.5mM、 C I 力 144mM、 H P 04 2—と H2 P〇4—の 合計濃度が 1. ImMとなるように調整した塩溶液を 3.5 L作製した。 前記方法 によって得た二酸化チタンスラリー 2.8 Lと塩溶液 3.5 Lとを混合し、 さらに 温度 40°Cにて 24時間保持した。 その後、 スラリーをろ過、 洗浄 (アドパンテ ックメンブランフィルタ一、 孔径 0.2 im、 使用) し、 120°Cで 4時間乾燥 してリン酸カルシウムが表面に担持された二酸化チタン微粉末 100 gを得た。 得られたリン酸カルシウム担持層を表面に有する二酸化チタン微粉末をプレン ダ一 (ワーリング) で混合し、 そこへシリコーンオリゴマー (信越化学工業 (株 ) 製 AFP— 1) 20%を噴霧した。 得られた混合粉を大気中 120 で 2時間 乾燥した後、 500°Cで 10時間焼成した。 得られた粉は、 化学分析の結果、 1 %のリン酸カルシウムと 10 %の多孔質シリカを担持していることがわかった。 次に、 得られた多孔質シリカ担持層を有する二酸化チタン微粉末 3.5 gを 9 Ommci)のシャーレに入れた後、 初期濃度 40 p pmのァセトアルデヒドを封入 した 5 Lのテドラーバッグの中に入れ、 ブラックライ卜で 365 nmの紫外線を 0.23mWZcm2の強度になるように照射した。 紫外線照射開始から 1時間 後のァセトアルデヒドの濃度を検知管で測定したところァセトアルデヒドの残存 率は 5 %であった。 120 g of ultrafine titanium dioxide particles (F-4, manufactured by Showa Yu Itanim Co., Ltd., average particle size of primary particles: 0.03 micron) were put into 2.8 L of pure water and dispersed to obtain a titanium dioxide slurry. . Then, pure water To NaC by adding Na 2 HP0 4, KH 2 P_〇 4, KC 1, MgC 12 · 6H 2 0, CaC 1 2, the N a + after mixing with titanium dioxide Nsurari 139 mm, K + is 2.8 mM, 3 2 + is 1. 8mM, Mg 2 ^ S0.5mM, CI force 144 mM, HP 0 4 2 - and H 2 P_〇 4 - salt total concentration was adjusted to be 1. ImM of A 3.5 L solution was prepared. The method 2.8 L of the titanium dioxide slurry obtained above and 3.5 L of the salt solution were mixed, and further kept at a temperature of 40 ° C for 24 hours. Thereafter, the slurry was filtered and washed (using an adept technical membrane filter, pore size 0.2 im, used) and dried at 120 ° C for 4 hours to obtain 100 g of fine powder of titanium dioxide having calcium phosphate supported on the surface. The obtained fine powder of titanium dioxide having a calcium phosphate-supporting layer on the surface was mixed with a blender (Warling), and 20% of a silicone oligomer (AFP-1 manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed thereon. The obtained mixed powder was dried in the air at 120 for 2 hours, and then fired at 500 ° C for 10 hours. As a result of chemical analysis, the obtained powder was found to carry 1% of calcium phosphate and 10% of porous silica. Next, 3.5 g of the obtained fine powder of titanium dioxide having a porous silica-supporting layer was placed in a 9 Ommci) petri dish, and then placed in a 5 L Tedlar bag containing acetoaldehyde having an initial concentration of 40 ppm. Irradiation was performed with black light at 365 nm of ultraviolet light so as to have an intensity of 0.23 mWZcm 2 . One hour after the start of ultraviolet irradiation, the concentration of acetoaldehyde was measured with a detector tube, and the residual ratio of acetoaldehyde was 5%.
次に、 繊維コート用のウレタン樹脂 (ルビパール 4100、 ト一ョ一ポリマー (株) 製) に、 上記多孔質シリカ担持層を有する二酸化チタン微粉末 20%を混 合し、 光触媒を含有したコ一ティング剤を作製した。 得られたコーティング剤を 厚さ 50 imでガラスに塗布して塗膜を作製し、 5 OmWZcm2の紫外線を照 射し、 100時間後の塗膜の残存率を測定した。 測定の結果、 残存率は 93%で あった。 Next, a urethane resin for fiber coating (Rubipearl 4100, manufactured by Toyo Polymer Co., Ltd.) was mixed with 20% of the above-mentioned fine powder of titanium dioxide having a porous silica-supporting layer, and the mixture containing the photocatalyst was mixed. Ting agent was prepared. The obtained coating agent was applied to glass with a thickness of 50 im to form a coating film, which was irradiated with ultraviolet rays of 5 OmWZcm 2 , and the residual ratio of the coating film after 100 hours was measured. As a result of the measurement, the residual ratio was 93%.
実施例 2  Example 2
2.8 Lの純水の中に市販のポリカルボン酸型高分子界面活性剤 (花王 (株) 製、 商品名:ボイズ 530) を 0.6 g添加し、 そこへ二酸化チタン超微粒子 ( 昭和タイ夕ニゥム (株) 製 F4、 一次粒子の平均粒径 0.03ミクロン) 120 gを投入して分散処理を行い二酸化チタンスラリーを得た。  0.6 g of a commercially available polycarboxylic acid type polymer surfactant (manufactured by Kao Corporation, trade name: BOYS 530) is added to 2.8 L of pure water, and titanium dioxide ultrafine particles (Showa Taiyu Nimu ( 120 g of F4, manufactured by Co., Ltd., having an average primary particle size of 0.03 μm, was dispersed to obtain a titanium dioxide slurry.
別に、 純水中に CaC 12を添加して、 二酸化チタンスラリーと混合した後の C a2 +が 1.8mMとなるように調整した塩溶液を 3.5 L調製した。 前記二酸 化チタンスラリー 2.5 Lと塩溶液 3.5 Lとを混合し、 さらに温度 40°Cにて 2 4時間保持した。 その後、 スラリーを実施例 1と同様な方法によりろ過、 洗净、 乾燥して前記高分子界面活性剤のカルシウム塩を担持する二酸化チタン微粉末を 得た。 Separately, pure water was added to CaC 1 2, C a after mixing with titanium dioxide slurry 2 + was adjusted salt solution 3.5 L prepared so that 1.8 mM. The diacid 2.5 L of titanium oxide slurry and 3.5 L of salt solution were mixed, and further kept at a temperature of 40 ° C for 24 hours. Thereafter, the slurry was filtered, washed and dried in the same manner as in Example 1 to obtain a fine powder of titanium dioxide supporting the calcium salt of the polymer surfactant.
得られたカルシウム塩担持二酸化チタン微粉末に対して、 実施例 1と同様な方 法により、 表面に多孔質なシリカ担持層を有する二酸化チタン微粉末を調製し、 さらに塗膜を作製して評価した。 結果を表一 1に示す。 なお、 焼成した塗膜を赤 外線吸収スペクトル法 (FT— I R法) で分析した結果、 界面活性剤のカルシゥ ム塩は消失しており、 カルシウムイオンは焼成の過程で酸化カルシウムになった と考えられる。  Using the same method as in Example 1, a titanium dioxide fine powder having a porous silica-supporting layer on its surface was prepared for the obtained calcium salt-supported titanium dioxide fine powder, and a coating film was prepared and evaluated. did. Table 1 shows the results. Analysis of the calcined coating film by infrared absorption spectroscopy (FT-IR method) revealed that the calcium salt of the surfactant had disappeared, and that calcium ions were converted to calcium oxide during the calcining process. Can be
実施例 3  Example 3
実施例 1と同様な方法により得られたリン酸カルシウム担持層を有する二酸化 チタン微粉末 50 gとアルミン酸ソーダ 0.02mo 1を純水 70 Omlに加え 、 二酸化チタンスラリーを得た。 得られたスラリーに 0.06 mo 1ノ 1の希硫 酸を滴下し、 pH 7.2に調整し、 ろ過、 洗浄、 乾燥 (120 、 4時間) を行 レ 表面に多孔質なアルミナ担持層を有する二酸化チタン微粉末を得た。 実施例 1と同様な方法により、 塗膜を作製して評価した。 結果を表— 1に示す。  50 g of titanium dioxide fine powder having a calcium phosphate supporting layer obtained in the same manner as in Example 1 and 0.02 mol of sodium aluminate were added to 70 Oml of pure water to obtain a titanium dioxide slurry. 0.06 mol of dilute sulfuric acid was added dropwise to the obtained slurry, adjusted to pH 7.2, filtered, washed, and dried (120, 4 hours). Titanium dioxide having a porous alumina-supported layer on its surface A fine powder was obtained. A coating film was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
実施例 4  Example 4
実施例 1と同様な方法により得られたリン酸カルシウム担持層を有する二酸化 チタン微粉末 50 gとジルコニウム n—ブトキシド lmo 1とエタノール 2.5 Lを混合したスラリーに、 エチレングリコール 2 mo 1と水 72m 1を添加し加 水分解を行った。 得られたスラリーをろ過、 洗浄、 乾燥 (120°C、 4時間) し 、 表面に多孔質なジルコ二ァを担持する二酸化チタン微粉末を得た。 実施例 1と 同様な方法により塗膜を作製して評価した。 結果を表一 1に示す。  Ethylene glycol 2 mo 1 and water 72 m 1 were added to a slurry obtained by mixing 50 g of titanium dioxide fine powder having a calcium phosphate supporting layer obtained by the same method as in Example 1, zirconium n-butoxide lmo 1 and ethanol 2.5 L. And hydrolyzed. The obtained slurry was filtered, washed, and dried (120 ° C, 4 hours) to obtain a fine titanium dioxide powder having porous zirconia on the surface. A coating film was prepared in the same manner as in Example 1 and evaluated. Table 1 shows the results.
実施例 5  Example 5
実施例 4で用いたリン酸カルシウム担持層を有する二酸化チタン微粉末を、 実 施例 2と同様な方法により得られた高分子界面活性剤のカルシウム塩を担持する 二酸化チタン微粉末に変えた他は実施例 4と同様な方法により、 多孔質なジルコ 二ァを担持する二酸化チタン微粉末を調製し、 さらに塗膜を作製して評価した。 結果を表一 1に示す。 なお、 表一 1中では、 高分子界面活性剤のカルシウム塩を ポリカルボン酸カルシウム塩と記す。 Except that the fine powder of titanium dioxide having a calcium phosphate supporting layer used in Example 4 was changed to the fine powder of titanium dioxide supporting a calcium salt of a polymer surfactant obtained by the same method as in Example 2, In the same manner as in Example 4, the porous zircon A fine powder of titanium dioxide supporting nitro was prepared, and a coating film was prepared and evaluated. Table 1 shows the results. In Table 1, the calcium salt of the polymer surfactant is referred to as calcium polycarboxylate.
比較例 1  Comparative Example 1
二酸化チタン超微粉末 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒 径 0 . 0 3ミクロン) を用いて、 リン酸カルシウム担持層および多孔質シリカ担 持層を形成することなく、 実施例 1と同様な手法により、 塗膜を作製して評価し た。 結果を表— 1に示す。  Using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Niimu Co., Ltd., average particle diameter of primary particles of 0.03 μm), without forming a calcium phosphate supporting layer and a porous silica supporting layer, A coating film was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
比較例 2  Comparative Example 2
実施例 1と同様な方法により得られたリン酸カルシウム担持層を有する二酸化 チタン微粉末 (シリコーンオリゴマーで処理する前のもの) に対して、 多孔質シ リカ担持層を形成することなく、 実施例 1と同様な方法により、 塗膜を作製して 評価した。 結果を表一 1に示す。  The titanium dioxide fine powder having a calcium phosphate-supporting layer obtained by the same method as in Example 1 (before treatment with a silicone oligomer) was used without forming a porous silica-supporting layer. A coating film was prepared and evaluated in the same manner. Table 1 shows the results.
比較例 3  Comparative Example 3
実施例 2と同様な方法により得られた高分子界面活性剤のカルシウム塩を担持 する二酸化チタン微粉末 (シリコーンオリゴマーで処理する前のもの) に対して 、 多孔質シリカ担持層を形成することなく、 実施例 1と同様な方法により、 塗膜 を作製して評価した。 結果を表— 1に示す。  With respect to titanium dioxide fine powder carrying a calcium salt of a polymeric surfactant obtained by the same method as in Example 2 (before treatment with a silicone oligomer), without forming a porous silica carrying layer In the same manner as in Example 1, a coating film was prepared and evaluated. The results are shown in Table 1.
比較例 4  Comparative Example 4
実施例 2と同様な方法により得られた高分子界面活性剤のカルシウム塩を担持 する二酸化チタン微粉末 (シリコーンオリゴマーで処理する前のもの) を 5 0 0 で 1 0時間焼成し、 酸化カルシウム担持層を有する二酸化チタン微粉末を得た 。 この二酸化チタン微粉末に対して、 多孔質シリカ担持層を形成することなく、 実施例 1と同様な方法により、 塗膜を作製して評価した。 結果を表一 1に示す。  Titanium dioxide fine powder carrying a calcium salt of a polymeric surfactant (before treatment with a silicone oligomer) obtained by the same method as in Example 2 was calcined at 500 for 10 hours, and calcium oxide was carried. A titanium dioxide fine powder having a layer was obtained. With respect to this titanium dioxide fine powder, a coating film was prepared and evaluated by the same method as in Example 1 without forming a porous silica supporting layer. Table 1 shows the results.
比較例 5  Comparative Example 5
二酸化チタン超微粉末 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒 径 0 . 0 3ミクロン) を用いて、 リン酸カルシウム担持層を形成することなく、 実施例 3と同様な方法により、 多孔質アルミナ担持層を有する二酸化チタン微粉 末を調製し、 さらに塗膜を作製して評価した。 結果を表一 1に示す。 A method similar to that of Example 3 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Niimu Co., Ltd., average particle diameter of primary particles: 0.03 μm) without forming a calcium phosphate supporting layer. Titanium dioxide fine powder with porous alumina support layer Powder was prepared, and a coating film was further prepared and evaluated. Table 1 shows the results.
比較例 6  Comparative Example 6
二酸化チタン超微粉末 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒 径 0 . 0 3ミクロン) を用いて、 リン酸カルシウム担持層を形成することなく、 実施例 1と同様な方法により、 シリコーンオリゴマーの処理を行い、 多孔質シリ 力担持層を有する二酸化チタン微粉末を調製し、 さらに塗膜を作製して評価した 。 結果を表一 1に示す。  A method similar to that of Example 1 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Nihon Co., Ltd., average particle diameter of primary particles: 0.03 μm) without forming a calcium phosphate supporting layer. In this manner, a silicone oligomer was treated to prepare a titanium dioxide fine powder having a porous silicon-carrying layer, and a coating film was prepared and evaluated. Table 1 shows the results.
比較例 7  Comparative Example 7
二酸化チタン超微粉末 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒 径 0 . 0 3ミクロン) を用いて、 リン酸カルシウム担持層を形成することなく、 実施例 4と同様な方法により、 多孔質ジルコ二ァ担持層を有する二酸化チタン微 粉末を調製し、 さらに塗膜を作製して評価した。 結果を表一 1に示す。 A method similar to that of Example 4 using ultrafine titanium dioxide powder (F-4, manufactured by Showa Taiyu Niimu Co., Ltd., average particle diameter of primary particles: 0.03 μm) without forming a calcium phosphate supporting layer. Thus, a titanium dioxide fine powder having a porous zirconium-supporting layer was prepared, and a coating film was prepared and evaluated. Table 1 shows the results.
表一 1 カルシウム化合物の 多孔質な難溶性 ァセトアルデヒド 塗膜残存 担持層 物質の担持層 残存率 (%) 率 (%)Table 1 1 Porous sparingly soluble calcium compound acetaldehyde Coating film residual carrier layer Material carrier layer Residual rate (%) Rate (%)
― (第 1担持層) (第 2担持層) ― (First support layer) (Second support layer)
実施例 1 リン酸カルシウム シリカ 5 9 3 実施例 2 酸化カルシウム シリカ 3 9 2 実施例 3 リン酸カルシウム アルミナ 2 0 9 5 実施例 4 リン酸カルシウム ジルコニァ 1 5 8 8 実施例 5 ポリカルボン酸 ジルコニァ 1 3 9 0 Example 1 Calcium Phosphate Silica 59 3 Example 2 Calcium Oxide Silica 39 2 Example 3 Calcium Phosphate Alumina 2 0 95 5 Example 4 Calcium Phosphate Zirconia 1 5 8 8 Example 5 Polycarboxylic Acid Zirconia 1 3 9 0
カルシウム塩  Calcium salt
比較例 1 一 0 . 5 3 5 比較例 2 リン酸カルシウム 2 5 5 比較例 3 ポリカルボン酸 1 5 3 Comparative Example 1 0.5 3 5 Comparative Example 2 Calcium phosphate 2 5 5 Comparative Example 3 Polycarboxylic acid 1 5 3
カルシウム塩  Calcium salt
比較例 4 酸化カルシウム 5 2 比較例 5 — アルミナ 7 0 8 5 比較例 6 — シリカ 1 0 6 0 比較例 7 — ジルコニァ 5 0 6 8 表一 1に見られるように、 カルシウム化合物担持層と多孔質な水難溶性物質担 持層とを有する本発明の光触媒粉体 (実施例 1〜 5 )は、 高い光触媒性能を有し ( ァセトアルデヒド残存率が小さい) 、 長時間使用後もプラスチック塗膜媒体への 劣化影響が小さい (塗膜残存率が大きい) 。 カルシウム化合物担持層のみを有す る光触媒粉体 (比較例 2〜4 ) は、 高い光触媒性能を示すものの、 長時間使用後 のプラスチック塗膜媒体の劣化が大きい。 対照的に、 多孔質な水難溶性物質担持 層のみを有する光触媒粉体 (比較例 5〜 7 )は、 光触媒性能が低く (多孔質シリカ 層をもつもの [比較例 6 ]を除く) 、 長時間使用後のプラスチック塗膜媒体の劣化 も比較的大きい) 。 産業上の利用可能性 Comparative Example 4 Calcium Oxide 5 2 Comparative Example 5 — Alumina 7 0 8 5 Comparative Example 6 — Silica 1 0 6 0 Comparative Example 7 — Zirconia 5 0 6 8 As seen in Table 1, the calcium compound supporting layer and the porous material The photocatalyst powder of the present invention (Examples 1 to 5) having a low water-soluble substance-bearing layer has a high photocatalytic performance (the residual ratio of acetoaldehyde is small), and can be used for a long time after being used for a long time. Deterioration effect is small (residual coating rate is large). Photocatalyst powders having only a calcium compound-supporting layer (Comparative Examples 2 to 4) show high photocatalytic performance, but show significant deterioration of the plastic coating medium after long use. In contrast, the photocatalyst powder having only the porous poorly water-soluble substance-supporting layer (Comparative Examples 5 to 7) has low photocatalytic performance (porous silica). (With the exception of Comparative Example 6), but the deterioration of the plastic coating medium after prolonged use is also relatively large). Industrial applicability
本発明の二酸化チタン光触媒粉体は、 光の照射によって光触媒作用を示し、 悪 臭の除去、 空気中の有害物質または汚れの分解除去、 排水処理や浄水処理、 抗菌 ゃ抗かび性付与などの環境を浄化する目的で広く使用される。 しかも、 この環境 浄化を効果的かつ経済的で安全に行うことができる。 この二酸化チタン触媒粉体 は、 繊維、 紙、 プラスチック成形品などへの塗布、 または繊維、 プラスチック成 形品などの製造過程において繊維やプラスチックの媒体に練り込んだり、 あるい は塗料などの形態で使用することができる。 媒体の劣化を生じることなくかつそ の光触媒性能は耐久性に優れている。  The titanium dioxide photocatalyst powder of the present invention exhibits a photocatalytic action by irradiating light, removes offensive odors, decomposes and removes harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial, antibacterial and antifungal properties. Widely used for purifying water. In addition, this environmental purification can be performed effectively, economically and safely. This titanium dioxide catalyst powder is applied to fibers, paper, plastic molded products, etc., or is kneaded into a fiber or plastic medium during the manufacturing process of fibers, plastic molded products, etc., or is in the form of paint, etc. Can be used. The photocatalytic performance is excellent in durability without causing deterioration of the medium.
本発明の二酸化チタン光触媒粉体は、 カルシウム化合物の担持層と、 その上に 光触媒として不活性な水難溶性物質の多孔質な担持層を有するため、 媒体として 有機重合体と組合せて用いたときに、 媒体の劣化を生じることなく、 かつ、 二酸 化チタン微粒子の高い光触媒作用が長時間持続する。 特に、 本発明の二酸化チタ ン触媒粉体は、 太陽光のような強い光照射環境下において格別優れた耐久性を示 す。  Since the titanium dioxide photocatalyst powder of the present invention has a support layer of a calcium compound and a porous support layer of a hardly water-soluble substance which is inactive as a photocatalyst, it is used in combination with an organic polymer as a medium. The high photocatalytic action of the titanium dioxide particles lasts for a long time without causing deterioration of the medium. In particular, the titanium dioxide catalyst powder of the present invention exhibits exceptional durability under a strong light irradiation environment such as sunlight.

Claims

請求の範囲 The scope of the claims
1 . 二酸化チタン微粒子の表面に、 カルシウム化合物を含む第 1の担持層を 有し、 さらに該第 1の担持層が形成された二酸化チタン微粒子の表面上に、 光触 媒として不活性であり、 かつ水に対する溶解度積が 1 0 _ 2 5以下である難溶性物 質を含む多孔質な第 2の担持層を有することを特徴とする二酸化チタン光触媒粉 体。 1. On the surface of the titanium dioxide fine particles, a first support layer containing a calcium compound is provided, and further, on the surface of the titanium dioxide fine particles on which the first support layer is formed, the first support layer is inert as a photocatalyst; A titanium dioxide photocatalyst powder comprising a porous second support layer containing a poorly soluble substance having a solubility product in water of 10 to 25 or less.
2 . カルシウム化合物が、 リン酸カルシウム、 酸化カルシウムおよび有機力 ルボン酸のカルシウム塩の中から選ばれた少なくとも一種である請求の範囲 1に 記載の二酸化チタン光触媒粉体。  2. The titanium dioxide photocatalyst powder according to claim 1, wherein the calcium compound is at least one selected from calcium phosphate, calcium oxide, and a calcium salt of organic rubonic acid.
3 . 光触媒として不活性な水難溶性物質が、 シリカ、 アルミナおよびジルコ ニァの中から選ばれた少なくとも一種である請求の範囲 1または 2に記載の二酸 化チタン光触媒粉体。  3. The titanium dioxide photocatalyst powder according to claim 1, wherein the water-insoluble substance inactive as a photocatalyst is at least one selected from silica, alumina, and zirconia.
4. 二酸化チタン微粒子が一次粒径 0 . 0 0 1〜 0 . 2ミクロンを有する請求 の範囲 1〜 3のいずれかに記載の二酸化チタン光触媒粉体。  4. The titanium dioxide photocatalyst powder according to any one of claims 1 to 3, wherein the titanium dioxide fine particles have a primary particle size of 0.01 to 0.2 microns.
5 . 二酸化チタン微粒子の表面、 第 1の担持層の表面または層中、 および第 2の担持層の表面または層中の少くとも一つに、 白金、 ロジウム、 ルテニウム、 パラジウム、 銀、 銅、 亜鉛からなる群より選ばれる少くとも一種の金属が担持さ れている請求の範囲 1〜 4のいずれかに記載の二酸化チタン光触媒粉体。  5. Platinum, rhodium, ruthenium, palladium, silver, copper, zinc on the surface of the titanium dioxide fine particles, on the surface or in the first support layer, and at least on the surface or in the second support layer. The titanium dioxide photocatalyst powder according to any one of claims 1 to 4, wherein at least one metal selected from the group consisting of:
6 . 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに該第 1の担持層が形成された二酸化チタン微粒子の表面上 に、 光触媒として不活性であり、 力つ水に対する溶解度積が 1 0— 2 5以下である 難溶性物質を形成することができる材料を担持させ、 次いで、 乾燥または焼成し て、 該材料を該難溶性物質に変換し、 該難溶性物質を担持する多孔質な第 2の担 持層を形成することを特徴とする二酸化チタン光触媒粉体の製造方法。 6. A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first supporting layer, and further, on the surface of the titanium dioxide fine particles on which the first supporting layer is formed, inactive as a photocatalyst; A material capable of forming a hardly soluble substance having a solubility product of 10 to 25 or less in rubbing water is supported thereon, and then dried or calcined to convert the material into the hardly soluble substance. A method for producing a titanium dioxide photocatalyst powder, comprising forming a porous second carrier layer carrying a soluble substance.
7 . 光触媒として不活性な水難溶性物質を形成することができる材料が、 シ リコーンオリゴマ一またはシランカツプリング材である請求の範囲 6に記載の二 酸化チタン光触媒粉体の製造方法。 7. The method for producing a titanium dioxide photocatalyst powder according to claim 6, wherein the material capable of forming an inert hardly water-soluble substance as a photocatalyst is a silicone oligomer or a silane coupling material.
8 . 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに該第 1の担持層が形成された二酸化チタン微粒子の表面に 、 金属イオンを含有するアルカリ水溶液を接触せしめ、 次いで該水溶液を中和す ることによって、 該第 1の担持層が形成された二酸化チタン微粒子の表面に、 光 触媒として不活性であり、 かつ水に対する溶解度積が 1 0— 2 5以下である難溶性 物質を含む多孔質な第 2の担持層を形成することを特徴とする二酸化チタン光触 媒粉体の製造方法。 8. A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first support layer, and an alkali aqueous solution containing metal ions is further applied to the surface of the titanium dioxide fine particles on which the first support layer is formed. By contacting and then neutralizing the aqueous solution, the surface of the titanium dioxide fine particles on which the first supporting layer is formed is inactive as a photocatalyst and has a solubility product of 10 to 25 in water. A method for producing a titanium dioxide photocatalyst powder, comprising forming a porous second support layer containing a poorly soluble substance as described below.
9 . 金属イオンを含有するアルカリ水溶液がアルミン酸アルカリ、 珪酸アル 力リまたはジルコニウム酸アル力リの水溶液である請求の範囲 8に記載の二酸化 チタン光触媒粉体の製造方法。  9. The method for producing a titanium dioxide photocatalyst powder according to claim 8, wherein the aqueous alkali solution containing metal ions is an aqueous solution of alkali aluminate, alkali silicate or alkali zirconate.
1 0 . 二酸化チタン微粒子の表面にカルシウム化合物を担持せしめて第 1の担 持層を形成し、 さらに、 該第 1の担持層が形成された二酸化チタン微粒子の表面 上で金属アルコキシドを加水分解して、 該ニ酸化チタン微粒子の表面に光触媒と して不活性であり、 かつ水に対する溶解度積が 1 0— 2 5以下である難溶性物質を 担持する多孔質な第 2の担持層を形成することを特徴とする二酸化チタン光触媒 粉体の製造方法。 10. A calcium compound is supported on the surface of the titanium dioxide fine particles to form a first supporting layer, and the metal alkoxide is hydrolyzed on the surface of the titanium dioxide fine particles on which the first supporting layer is formed. Forming a porous second support layer on the surface of the titanium dioxide fine particles that supports a hardly soluble substance that is inactive as a photocatalyst and has a solubility product in water of 10 to 25 or less. A method for producing a titanium dioxide photocatalyst powder, comprising:
1 1 . 金属アルコキシドがアルミニウム、 珪素またはジルコニウムのアルコキ シドである請求の範囲 1 0に記載の二酸化チタン光触媒粉体の製造方法。  11. The method for producing a titanium dioxide photocatalyst powder according to claim 10, wherein the metal alkoxide is an aluminum, silicon or zirconium alkoxide.
1 2 . カルシウム化合物が、 リン酸カルシウム、 酸化カルシウムおよび有機力 ルボン酸のカルシウム塩の中から選ばれた少なくとも一種である請求の範囲 6〜 1 1のいずれかに記載の二酸化チタン光触媒粉体の製造方法。  12. The method for producing a titanium dioxide photocatalyst powder according to any one of claims 6 to 11, wherein the calcium compound is at least one selected from the group consisting of calcium phosphate, calcium oxide, and calcium salt of organic rubonic acid. .
1 3 . 二酸化チタン微粒子として一次粒径 0 . 0 0 1〜0 . 2ミクロンを有する ものを使用する請求の範囲 6〜 1 2のいずれかに記載の二酸化チタン光触媒粉体 の製造方法。  13. The method for producing a titanium dioxide photocatalyst powder according to any one of claims 6 to 12, wherein a fine particle having a primary particle size of 0.01 to 0.2 micron is used as the titanium dioxide fine particles.
1 4 . 媒体としての有機重合体と請求の範囲 1〜 5のいずれかに記載の二酸化 チタン光触媒粉体を含んでなる重合体組成物。  14. A polymer composition comprising an organic polymer as a medium and the titanium dioxide photocatalyst powder according to any one of claims 1 to 5.
1 5 . 請求の範囲 1 4に記載の重合体組成物を成形してなる重合体成形品。 15. A polymer molded article obtained by molding the polymer composition according to claim 14.
1 6 . 請求の範囲 1〜 4のいずれかに記載の光触媒粉体または請求の範囲 1 4 に記載の重合体組成物を表面に有する構造体。 1 6. The photocatalyst powder according to any one of claims 1 to 4 or the claim 1 4 A structure having on its surface the polymer composition according to item 1.
PCT/JP2000/006152 1999-09-08 2000-09-08 Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof WO2001017680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68764/00A AU6876400A (en) 1999-09-08 2000-09-08 Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/254335 1999-09-08
JP25433599 1999-09-08
US15695599P 1999-09-30 1999-09-30
US60/156,955 1999-09-30

Publications (1)

Publication Number Publication Date
WO2001017680A1 true WO2001017680A1 (en) 2001-03-15

Family

ID=26541637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006152 WO2001017680A1 (en) 1999-09-08 2000-09-08 Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof

Country Status (2)

Country Link
AU (1) AU6876400A (en)
WO (1) WO2001017680A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055836A (en) * 2004-07-22 2006-03-02 Toyota Central Res & Dev Lab Inc Inorganic oxide, catalyst carrier for purifying exhaust, and catalyst for purifying exhaust
WO2008018178A1 (en) * 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
US7910513B2 (en) 2003-12-25 2011-03-22 Taiyo Kogyo Corporation Photocatalyst sheet and methods of welding and manufacturing the same
US8242046B2 (en) 2004-07-22 2012-08-14 Toyota Jidosha Kabushiki Kaisha Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst
US10023479B2 (en) 2013-06-12 2018-07-17 Samsung Electronics Co., Ltd. Capacitive deionization apparatus and methods of treating a fluid using the same
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
US10584043B2 (en) 2012-11-29 2020-03-10 Samsung Electronics Co., Ltd. Capacitive deionization apparatus and methods of treating fluid using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910513B2 (en) 2003-12-25 2011-03-22 Taiyo Kogyo Corporation Photocatalyst sheet and methods of welding and manufacturing the same
JP2006055836A (en) * 2004-07-22 2006-03-02 Toyota Central Res & Dev Lab Inc Inorganic oxide, catalyst carrier for purifying exhaust, and catalyst for purifying exhaust
JP4545651B2 (en) * 2004-07-22 2010-09-15 株式会社豊田中央研究所 Inorganic oxide, exhaust purification catalyst carrier and exhaust purification catalyst
US8242046B2 (en) 2004-07-22 2012-08-14 Toyota Jidosha Kabushiki Kaisha Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst
WO2008018178A1 (en) * 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition
US10584043B2 (en) 2012-11-29 2020-03-10 Samsung Electronics Co., Ltd. Capacitive deionization apparatus and methods of treating fluid using the same
US10023479B2 (en) 2013-06-12 2018-07-17 Samsung Electronics Co., Ltd. Capacitive deionization apparatus and methods of treating a fluid using the same
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product

Also Published As

Publication number Publication date
AU6876400A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
TW539579B (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
KR100397659B1 (en) Photocatalyst powder for environmental purification, polymer composition containing the powder and molded article thereof, and processes for producing these
JP2918787B2 (en) Photocatalyst and method for producing the same
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
WO2000046153A1 (en) Method for producing anatase type titanium dioxide and titanium dioxide coating material
EP2316568A1 (en) Photocatlyst particles comprising a condensed phosphate
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP3949055B2 (en) Highly active photocatalyst
JP3493393B2 (en) Photocatalytic powder for environmental purification, powder-containing polymer composition and molded article thereof, and methods for producing them
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
JP2006341250A (en) High activity photo-catalyst
JP2004250239A (en) Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JP2002001125A (en) Photocatalyst powder and slurry, and polymer composition, coating material, photocatalytic functional formed body and photocatalytic functional structural body containing the powder
JP3484470B2 (en) Film material with photocatalytic function
WO2001017680A1 (en) Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2004243307A (en) High activity photocatalyst particle, manufacturing method therefor and usage thereof
JP3027739B2 (en) Photocatalyst and method for producing the same
JPWO2002053285A1 (en) Photofunctional powder and its use
JP3903167B2 (en) Active oxygen generating material
JP2001106974A (en) Photocatalytic complex, coating solution for forming photocatalytic layer and photocatalyst supporting structure
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP4079306B2 (en) Photocatalyst powder, its production method and its application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 521462

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase