JP4079306B2 - Photocatalyst powder, its production method and its application - Google Patents

Photocatalyst powder, its production method and its application Download PDF

Info

Publication number
JP4079306B2
JP4079306B2 JP2001521461A JP2001521461A JP4079306B2 JP 4079306 B2 JP4079306 B2 JP 4079306B2 JP 2001521461 A JP2001521461 A JP 2001521461A JP 2001521461 A JP2001521461 A JP 2001521461A JP 4079306 B2 JP4079306 B2 JP 4079306B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
water
photocatalyst powder
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001521461A
Other languages
Japanese (ja)
Inventor
浩行 萩原
桂 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Application granted granted Critical
Publication of JP4079306B2 publication Critical patent/JP4079306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Description

【技術分野】
【0001】
本発明は、光触媒性の二酸化チタン微粒子を含む光触媒粉体、該光触媒粉体の製造方法、該光触媒粉体を含む有機重合体組成物、ならびに該重合体組成物の成形体、および該重合体組成物を表面に有する構造体に関する。
【0002】
本発明の二酸化チタンを含む光触媒粉体は、悪臭の除去や空気中の有害物質または汚れの分解除去、排水処理や浄化処理、あるいは水の殺菌や殺藻などを行うための環境浄化材料として用いられ、特に繊維や紙およびプラスチック成形体表面への塗布、または繊維やプラスチック成形品などの製造過程において繊維やプラスチックの媒体に練り混み、あるいは塗料の形態で環境浄化用光触媒粉体に使用するのに適している。
【背景技術】
【0003】
近年、二酸化チタン微粒子を使用した光触媒が、抗菌、消臭、防汚、大気の浄化、水質の浄化などの目的で使用される環境浄化材として注目されている。このような二酸化チタンの光触媒メカニズムは、二酸化チタン微粒子に光が照射されると、二酸化チタン微粒子内部に発生した電子と正孔が二酸化チタン微粒子表面近傍の水と酸素をヒドロキシラジカルや過酸化水素に変換し、ヒドロキシラジカルと過酸化水素の強力な酸化還元作用により有害な物質を炭酸ガスと水に浄化するためと考えられている。こうした二酸化チタン微粒子の光触媒作用は、二酸化チタン微粒子、光、水、酸素が存在する限り半永久的に継続すると言われている。
【0004】
このような二酸化チタン光触媒の応用においては、取り扱いの容易な繊維やプラスチック成形体などの製造過程において繊維やプラスチックの媒体に練り込んだり、布、紙などの基体の表面に塗布する方法が試みられている。しかしながら、二酸化チタンの強力な光触媒作用によって有害有機物や環境汚染物質だけでなく繊維やプラスチック、紙などの媒体自身も分解・劣化され易いため実用上の障害になっていた。さらに、その取り扱い易さから二酸化チタン微粒子とバインダーを混合した塗料が注目されているが、そのような媒体への障害が克服されかつ安価なバインダーは見出されていない。
【0005】
特開平9−225319号公報および特開平9−239277号公報には、二酸化チタン粒子の強い光触媒作用による樹脂媒体またはバインダーの劣化に対する防止抑制策として、二酸化チタン粒子の表面にアルミニウム、珪素、ジルコニウムなどの光不活性化合物を立体的障壁のある島状に分布した状態で担持せしめて光触媒作用を抑制する方法が提案されている。この方法によれば、樹脂媒体やバインダーの劣化は全体として低減されるものの、光不活性化合物が二酸化チタン粒子の表面の活性点に直接接着されるため光触媒活性が減じることと、樹脂媒体やバインダーの特定部位は二酸化チタンの強い光触媒作用が低下するので、光触媒性能の制御が求められている。
【0006】
特開平10−244166号公報には、二酸化チタン粒子の表面に多孔質のリン酸カルシウムを被覆した光触媒が提案されている。この光触媒は被覆膜のリン酸カルシウム層によって光触媒性能が低下し、特に太陽光のような強力な紫外線の下では耐久性になお課題が残されている。
【0007】
また、国際公開WO99/33566号公報には、二酸化チタン微粒子の表面の少なくとも一部に多孔質のリン酸カルシウム被覆層が形成され、その界面に陰イオン性界面活性剤が存在する二酸化チタン微粒子粉体が開示されている。
【発明の開示】
【0008】
本発明の目的は、上記のような従来技術に鑑み、悪臭の除去、空気中の有害物質または汚れの分解除去、排水処理や浄水処理、抗菌や抗かびなど(以下、環境浄化作用と総称する。)を効果的かつ経済的に行う光触媒粉体、その製造方法、該光触媒粉体を含む有機重合体組成物、該有機重合体組成物の成形体、および該重合体組成物を表面に有する構造体を提供することにある。
【0009】
特に本発明は、繊維、紙、プラスチック素材などへの表面塗布、または該素材への練り混み、あるいは塗料組成物への使用において優れた耐久特性を有する光触媒粉体を提供するものである。
【0010】
本発明者は、鋭意研究を重ねた結果、二酸化チタン微粒子の表面に水難溶性の有機物質の皮膜を形成することにより上記目的が達成されることを見出した。
【0011】
すなわち、本発明によれば、二酸化チタン微粒子の表面が水難溶性有機物質の皮膜で被覆されていることを特徴とする光触媒粉体が提供される。
【0012】
さらに、本発明によれば、皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを含むスラリーに、不溶化剤を添加して二酸化チタン微粒子表面に有機物質の水難溶性金属塩の皮膜を形成し、所望により、さらに、有機物質の水難溶性金属塩の皮膜が形成された二酸化チタン微粒子をさらに100℃〜800℃下で焼成することを特徴とする光触媒粉体の製造方法が提供される。
【0013】
さらに、本発明によれば、有機重合体と上記特徴を有する光触媒粉体とを含む有機重合体組成物;該有機重合体組成物を成形してなる光触媒機能性成形体;および上記特徴を有する光触媒粉体を表面に具備した光触媒機能性構造体が提供される。
【発明を実施するための最良の形態】
【0014】
本発明の光触媒粉体は、有機物質の水難溶性金属塩の皮膜で表面が被覆されている二酸化チタン微粒子からなる。ここで、有機物質の水難溶性金属塩の皮膜は、皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを含むスラリーに不溶化剤を添加して、水溶性有機物質を不溶化し、二酸化チタン微粒子表面に析出せしめることにより形成されたものである。
【0015】
皮膜を構成する有機物質の水難溶性金属塩は非常に小さい溶解度積(溶解度定数ともいう)を有する。その水に対する溶解度積(測定温度25℃)は、好ましくは10-10以下、より好ましくは10-20以下、さらに好ましくは10-25以下である。
【0016】
有機物質の水難溶性金属塩の皮膜は、二酸化チタン表面の光触媒活性を許容できる範囲で形成されていればよく、その物理的構造には限定されない。また、有機物水難溶性金属塩の皮膜は、光触媒活性を発揮するうえで光触媒反応を被る化合物(悪臭物など)やその分解物(低分子、炭酸ガス、水など)の拡散移動を抑制するものではなく、また光透過を抑制するものではない。従って、前記有機物質の水難溶性金属塩の皮膜は、二酸化チタン粒子表面に部分的に担持(部分被覆)された状態または表面全体に被覆された状態のいずれであってもよい。
【0017】
有機物質の水難溶性金属塩の皮膜層は、通常、二酸化チタン重量に対して0.01重量%〜10重量%、好ましくは0.1重量%〜5重量%の範囲で形成されることが好ましい。水難溶性皮膜層が0.01重量%よりも少ないとプラスチック、紙、繊維などの媒体への二酸化チタンの光触媒的影響が大きく、媒体自身の耐久性が悪化する。水難溶性皮膜層が10重量%より多いと、二酸化チタン粒子の光触媒機能が悪化する。
【0018】
本発明の光触媒粉体は、前述のように、皮膜形成性を有する水溶性有機物質が不溶化されて、二酸化チタン微粒子表面に析出形成されたものであるが、さらに、100℃〜800℃で焼成されたものであることが好ましい。すなわち、高温で焼成された光触媒粉体は、重合体に練り込む場合には優れたコンパウンド特性、成形性、均一性を示し、また布、繊維、プラスティックなどの表面に担持させる場合には優れた担持性を示す。
【0019】
本発明の光触媒粉体の製造に用いられる二酸化チタン微粒子は、基本的には光触媒能を有するものであれば特にその製法は限定されるものではなく、例えばハロゲン化チタンを原料とし気相反応により得られるもの、またはチタン酸溶液を湿式で加水分解して得られたもの、あるいはそれらを焼成したものでもよい。
【0020】
また、本発明において用いられる二酸化チタン微粒子は、結晶形に限定されるものではないが、光触媒として高性能を期待するうえからアナターゼやブルッカイトが好ましい。二酸化チタン微粒子は、これらの結晶系微粒子もしくはこれらの結晶を含む複合結晶系微粒子であってもよい。
【0021】
また、用いられる二酸化チタン微粒子は、一次粒子の平均粒径が0.001〜0.2ミクロン、特に0.01〜0.1ミクロンであることが好ましい。0.001ミクロンを下回ると効率よく生産するのが困難であり実用的でない。0.2ミクロンを超えると光触媒性能が大幅に低下する。
【0022】
本発明の光触媒粉体は、二酸化チタン微粒子の表面に白金、ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛などの金属が担持されていてもよい。これらの金属が担持されると二酸化チタン微粒子の環境浄化作用がさらに増長し、殺菌、殺藻作用も大きくなる。
【0023】
本発明の光触媒粉体は、有機重合体に添加して組成物として使用できる。ここで、使用できる有機重合体には、熱可塑性樹脂、熱硬化性樹脂、天然樹脂などが挙げられる。前記有機物質の水難溶性金属塩の被覆膜の形成により、有機重合体と二酸化チタンの光触媒活性面(表面)が直接接触することがないために、媒体の有機重合体自身が分解劣化を受けることが少なく、光触媒能の耐久性が増大する。
【0024】
このような有機重合体の具体例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、ナイロン6、ナイロン66、アラミドなどのポリアミド、ポリエチレンテレフタレート、不飽和ポリエステルなどのポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンオキサイド、ポリエチレングリコール、シリコン樹脂、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、エポキシ樹脂、酢酸ビニル樹脂、セルロースおよびレーヨンその他のセルロース誘導体、ポリウレタン樹脂、ポリカーボネート樹脂、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、フェノール樹脂、セルロイド、キチン、澱粉シート、アクリル樹脂、メラミン樹脂、アルキド樹脂などが挙げられる。
【0025】
本発明の環境浄化用光触媒粉体を含むこれら有機重合体組成物は、塗料、コーティング組成物、コンパウンド、マスターバッチなどの形態で使用できる。有機重合体組成物中の光触媒粉体の濃度は、該組成物全重量につき、0.01〜80重量%、好ましくは1〜50重量%である。また、有機重合体組成物には、悪臭物質の除去効果を高めるために活性炭、ゼオライトのような吸収剤を添加してもよい。
【0026】
本発明においては、上記有機重合体組成物を成形することによって環境浄化機能を有する重合体成形体が得られる。このようなな組成物の成形体として、繊維、フィルム、プラスチック成形体などが挙げられる。
【0027】
さらに、本発明の有機重合体組成物は、耐久性に優れていることから壁材、ガラス、看板、道路建築用コンクリートなどの構造体のコーティング組成物として適応できる。さらに表面処理された本発明の二酸化チタン光触媒粉体および有機重合体組成物は、紙やプラスチック、布、木のような構造体(有機物)や、車両などの塗膜にコーティングされても、媒体(構造体や塗膜)を光触媒的劣化・破壊することなく、光触媒の機能を十分発揮することが可能である。
【0028】
次に、本発明の光触媒粉体の製造方法について説明する。本発明の光触媒粉体の製造方法では、皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを含むスラリーに不溶化剤を添加して、水溶性有機物質を不溶化し、二酸化チタン微粒子表面に析出せしめることにより有機物質の水難溶性金属塩の皮膜が形成される。
【0029】
ここで、使用される皮膜形成性を有する水溶性有機物質としては、ポリカルボン酸、ポリスルホン酸、陰イオン界面活性剤およびそれらのアルカリ金属塩、アンモニウム塩からなる群より選ばれた少なくとも1種の化合物が好ましく使用される。これらのうち陰イオン性界面活性剤としては、カルボン酸型もしくはスルホン酸型の化合物が好ましく使用される。
【0030】
皮膜形成性を有する水溶性有機物質として用いられるポリカルボン酸およびそのアルカリ金属塩、アンモニウム塩としては、ポリアクリル酸、ポリメタアクリル酸、ポリグルタミン酸、ポリアスパラギン酸およびそれらの繰り返し単位を含む共重合体、ならびそれらのアルカリ金属塩、アンモニウム塩が挙げられる。前記共重合体をさらに例示すれば、マレイン酸/メタアクリル酸共重合体、マレイン酸/アクリル酸共重合体などが挙げられる。
【0031】
前記ポリスルホン酸およびそのアルカリ金属塩、アンモニウム塩としてはポリスチレンスルホン酸、ポリビニル硫酸、ポリビニルスルホン酸、ポリ−α−メチルスルホン酸、ポリエチレンスルホン酸およびそれらのアルカリ金属塩、アンモニウム塩が挙げられる。
陰イオン性界面活性剤としては、一部にポリカルボン酸型の高分子界面活性剤も含まれ、好ましくは脂肪族ソーダ石鹸、アルキルエーテルカルボン酸などのカルボン酸塩型界面活性剤、ラウリル硫酸ナトリウム、高級アルコール硫酸硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどの硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、芳香族スルホン酸ナトリウム、アルカンスルホン酸ナトリウム、芳香族スルホン酸ホルマリン縮合物のナトリウム塩などの有機スルホン酸塩などが挙げられる。
【0032】
これらの陰イオン性界面活性剤は一種を単独でまたは二種以上を組み合わせ使用することができる。
【0033】
これら有機物質の水難溶性金属塩の皮膜の形成に使用される皮膜形成性を有する水溶性有機物質としては、光触媒に対する皮膜特性の観点から、好ましくは高分子系の化合物が利用される。 有機物質の水難溶性金属塩の皮膜が表面に形成された二酸化チタン粒子は、二酸化チタンのもつ光触媒性能が抑制されているために、媒体の劣化を生じることなく、また光触媒機能を低下することなく光触媒粉体として優れた特性を有する。特に、水溶性有機物質として高分子系の化合物を使用すると、光触媒機能の耐久性が増大する。
【0034】
不溶化剤としてはカルシウムイオンを供出できる水溶性カルシウム化合物が用いられる。この化合物を添加すると、皮膜形成性を有する水溶性有機物質が不溶化し、カルシウム塩として二酸化チタン表面に析出し、水難溶性皮膜を形成する。好ましいカルシウム化合物としては塩化カルシウムが例示される。
【0035】
二酸化チタン微粒子表面に水難溶性有機物質の被覆膜を形成後、粒子を分離、洗浄、乾燥する。有機物質の水難溶性金属塩の被覆膜を有する二酸化チタン微粒子とフリーの有機物質の水難溶性金属塩との分離には、一般的に遠心分離法、回分式沈降法、濾過法などが採られる。
【0036】
前記方法により製造される光触媒粉体は、好ましくはさらに焼成されることにより光触媒機能を向上することができる。すなわち、前述の光触媒粉体を不活性ガス雰囲気下または空気中において100℃〜800℃、好ましくは250〜700℃雰囲気中で焼成することにより、未反応の水溶性原料を蒸散化することができ、また該被覆粉体表面の吸水性を改善することができる。この吸水性の改善処理を行なうと、該光触媒粉体は、重合体に練り込む場合には優れたコンパウンド特性、成形性、均一性を示し、また布、繊維、プラスティックなどの表面に担持させる場合には優れた担持性を示す。
【0037】
本発明の光触媒粉体は、前述のように、二酸化チタン微粒子の表面に白金、ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛などの金属が担持されていてもよい。これら金属を担持する方法としては、原料の二酸化チタン微粒子に担持する方法、前記有機物質の水難溶性金属塩の被覆層を形成する過程で担持する方法、該被覆層の形成後に担持する方法のいずれを採ってもよい。
【0038】
以下、実施例によって本発明を具体的に説明する。ただし、本発明は以下の実施例によって何ら制限されるものではない。
【0039】
(実施例1)
2.8Lの純水の中に市販のポリカルボン酸ナトリウム型高分子界面活性剤(花王(株)製商品名:ポイズ530)を0.6g添加し、そこへ二酸化チタン超微粒子(昭和タイタニウム(株)製F4、一次粒子の平均粒径0.03ミクロン)120gを投入して分散処理を行った。
【0040】
別に、純水中にCaCl2を添加し、二酸化チタンスラリーと混合した後のCa2+が1.8mMとなるように調整した塩溶液を3.5L作製した。前記方法によって得た二酸化チタンスラリー2.8Lと塩溶液3.5Lとを混合し、さらに温度を40℃に維持して24時間保持して表面処理を完了した。その後、このスラリーを注意深く遠心分離し、120℃で4時間乾燥して二酸化チタン粉末を115g得た。これにより得られた二酸化チタン粉末をFT−IR((株)パーキンエルマー製、FT−IR1650)で表面分析を行った結果、前記高分子界面活性剤由来のカルボキシル基とカルシウム塩構造が担持されていることが吸収ピークから観察された。
【0041】
(消臭機能評価)
前記表面処理された二酸化チタン粉体3.5gを90mmφのシャーレに入れた後、初期濃度60ppmの硫化水素を封入した5Lのテドラーバッグの中に入れ、該二酸化チタン粉末にブラックライトで365nmの紫外線が0.23mW/cm2の強度になるように紫外線を照射した。紫外線照射30分後のテドラーバッグの中の硫化水素濃度を検知管(ガステック(株)、4LL)で測定した結果、硫化水素の残存率は30%であった。これにより、該二酸化チタンの消臭機能が評価される。
【0042】
(樹脂劣化評価)
前記表面処理された二酸化チタン粉体1kgとポリエチレンテレフタレート樹脂を用い、市販の二軸混練押し出し機((株)テクノベル製KZW15−30MG)にて温度280℃下で二酸化チタン濃度20%のコンパウンドを製造した。得られたコンパウンドを加熱プレスで3cmφ×1cmの試験片を作製し、試験片の黄色度(YI値、ASTM D 1925)を分光測色計(ミノルタ(株)製、CM−2002)で測定した結果、その黄色度YI値は8.6で着色はほとんど認められなかった。次に、得られた試験片をフェードメータ(ヘレウス社)、キセノンランプ)で50mW/cm2の光をあてて10時間照射した。その照射前後の黄色度の差異(△YI)を査定、樹脂劣化を評価した。結果は表1に示す。
【0043】
(実施例2)
実施例1のポリカルボン酸ナトリウムをドデシルベンゼンスルホン酸ナトリウム(DBS−Naと略し、ナカライテスク(株)製特級試薬を使用)とした以外は実施例1の方法と同様に処理して、表面被覆された光触媒粉体を製造した。ここで得られた該粉末の表面分析を行った結果、スルホン酸基とカルシウム塩がFT−IRで観察された。次に、得られた光触媒粉末を実施例1と同様な手法により消臭機能評価と樹脂劣化評価を行った結果、表1の結果が得られた。
【0044】
(実施例3)
実施例1で得られた表面処理粉末をさらに電気炉に移し、空気下300℃で10時間焼成した。ここで得られた焼成品を実施例1と同様な手法により消臭機能評価と樹脂劣化評価を行った結果、表1の結果が得られた。
【0045】
(実施例4)
実施例1で得られた粉末を、別途電気炉で窒素雰囲気下600℃で10時間焼成して前記同様、光触媒性の評価をした。結果を表1に示した。
【0046】
(比較例1)
表面処理の施されていない二酸化チタン超微粒子(昭和タイタニウム(株)製F−4、一次粒子の平均粒径0.03ミクロン)に対して、実施例1と同様な手法により消臭機能評価と樹脂劣化評価を行った結果、表1の結果が得られた。
【0047】
(比較例2)
2.8Lの純水の中に二酸化チタン超微粒子(昭和タイタニウム(株)製F−4、一次粒子の平均粒径0.03ミクロン)120gを投入して分散処理を行った。次いで純水中にNaCl、NaHPO4、KH2PO4、KCl、MgCl2・6H2O、CaCl2を添加し、二酸化チタンスラリーと混合した後のNa+が139mM、K+が2.8mM、Ca2+が1.8mM、Mg2+が0.5mM、Cl-が、144mM、HPO4 -が1.1mMとなるように調整した溶液を3.5L作製した。前記方法によって得た二酸化チタンスラリー2.8Lと溶液3.5Lとを混合し、さらに温度を40℃に維持して24時間保持した。その後、スラリーを洗浄、乾燥して100gのリン酸カルシウムで被覆された二酸化チタン微粉末を得た。実施例1と同様な手法により消臭機能評価と樹脂劣化評価を行った結果、表1の結果が得られた。
【0048】
(比較例3)
1.8Lの純水中に二酸化チタン超微粒子(昭和タイタニウム(株)製F−4、一次粒子の平均粒径0.03ミクロン)120gとアルミン酸ソーダ0.05molを投入して分散処理を行った。次に、得られたスラリーに0.06mol/lの希硫酸を滴下し、pH7.2に調整し、洗浄、乾燥を行いアルミナで被覆された二酸化チタン粉末を得た。次に、得られた粉末を実施例1で記載されている消臭機能評価と樹脂劣化評価を行った結果、表1の結果が得られた。
【0049】

Figure 0004079306
【産業上の利用可能性】
【0050】
本発明の有機物質の水難溶性金属塩の皮膜で被覆された二酸化チタン微粒子からなる光触媒粉体は、光の照射によって光触媒作用を示し、悪臭の除去、空気中の有害物質または汚れの分解除去、排水処理や浄水処理、抗菌や抗かび性付与などの環境を浄化する目的で広く使用される。しかも、この光触媒粉体は、環境浄化を効果的に行うことができる。特に粉体を繊維、紙、プラスティック成形品などに塗布、または繊維、プラスティック成形品などの製造過程において繊維やプラスチックなどの媒体に練り混み、あるいは塗料などの形態で使用した際に、光照射環境下であっても媒体の劣化を生じることがない。従って、本発明の光触媒粉体は、二酸化チタンが本来有する優れた環境浄化能特性を保持し、その環境浄化能は耐久性に優る。
【0051】
本発明の光触媒粉体、該光触媒粉体を含む有機重合体組成物、該有機重合体組成物の成形体、および該光触媒粉体もしくは該重合体組成物を表面に有する構造体は、強い光照射下よりも弱い光照射環境下において、特に優れた環境浄化能特性および耐久性に優れた光触媒能を示す。【Technical field】
[0001]
The present invention relates to a photocatalyst powder containing photocatalytic titanium dioxide fine particles, a method for producing the photocatalyst powder, an organic polymer composition containing the photocatalyst powder, a molded product of the polymer composition, and the polymer The present invention relates to a structure having a composition on the surface.
[0002]
The photocatalyst powder containing titanium dioxide of the present invention is used as an environmental purification material for removing malodors, decomposing and removing harmful substances or dirt in the air, wastewater treatment and purification treatment, or water sterilization and algae killing. In particular, it is applied to the surface of a molded article of fiber, paper, and plastic, or kneaded and mixed with a fiber or plastic medium in the production process of a fiber or plastic molded article, or used as a photocatalyst powder for environmental purification in the form of a paint. Suitable for
[Background]
[0003]
In recent years, photocatalysts using titanium dioxide fine particles have attracted attention as environmental purification materials used for the purposes of antibacterial, deodorant, antifouling, air purification, water purification and the like. The photocatalytic mechanism of titanium dioxide is that when titanium dioxide fine particles are irradiated with light, electrons and holes generated inside the titanium dioxide fine particles convert water and oxygen near the surface of the titanium dioxide fine particles into hydroxy radicals and hydrogen peroxide. It is considered to convert and purify harmful substances into carbon dioxide and water by the strong redox action of hydroxy radicals and hydrogen peroxide. It is said that the photocatalytic action of such titanium dioxide fine particles continues semipermanently as long as titanium dioxide fine particles, light, water, and oxygen are present.
[0004]
In the application of such a titanium dioxide photocatalyst, a method of kneading into a fiber or plastic medium or applying it to the surface of a substrate such as cloth or paper in an easy-to-handle fiber or plastic molding production process is attempted. ing. However, due to the strong photocatalytic action of titanium dioxide, not only harmful organic substances and environmental pollutants, but also media such as fibers, plastics, and papers are easily decomposed and deteriorated, which has been a practical obstacle. Furthermore, a paint in which titanium dioxide fine particles and a binder are mixed has been attracting attention because of its ease of handling, but no obstacle has been found to overcome such obstacles to the medium.
[0005]
In JP-A-9-225319 and JP-A-9-239277, as a preventive suppression measure against deterioration of a resin medium or binder due to the strong photocatalytic action of titanium dioxide particles, aluminum, silicon, zirconium, etc. are formed on the surface of titanium dioxide particles. There has been proposed a method of suppressing the photocatalytic action by supporting the photoinactive compound in a state of being distributed in the form of islands having a three-dimensional barrier. According to this method, although the deterioration of the resin medium and the binder is reduced as a whole, the photocatalytic activity is reduced because the photoinactive compound is directly adhered to the active sites on the surface of the titanium dioxide particles, and the resin medium and the binder are reduced. Since the strong photocatalytic action of titanium dioxide is reduced at the specific site, control of the photocatalytic performance is required.
[0006]
Japanese Patent Application Laid-Open No. 10-244166 proposes a photocatalyst in which the surface of titanium dioxide particles is coated with porous calcium phosphate. This photocatalyst has a reduced photocatalytic performance due to the calcium phosphate layer of the coating film, and there is still a problem in durability particularly under strong ultraviolet rays such as sunlight.
[0007]
International Publication WO99 / 33566 discloses a titanium dioxide fine particle powder in which a porous calcium phosphate coating layer is formed on at least a part of the surface of titanium dioxide fine particles, and an anionic surfactant is present on the interface. It is disclosed.
DISCLOSURE OF THE INVENTION
[0008]
The object of the present invention is to remove bad odors, decompose and remove harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial and antifungal (hereinafter collectively referred to as environmental purification action) .) Is effectively and economically produced, a method for producing the same, an organic polymer composition containing the photocatalyst powder, a molded body of the organic polymer composition, and the polymer composition on the surface It is to provide a structure.
[0009]
In particular, the present invention provides a photocatalyst powder having excellent durability characteristics when applied to a surface of fiber, paper, plastic material, etc., kneaded into the material, or used in a coating composition.
[0010]
As a result of intensive studies, the present inventor has found that the above object can be achieved by forming a film of a poorly water-soluble organic substance on the surface of titanium dioxide fine particles.
[0011]
That is, according to the present invention, there is provided a photocatalyst powder characterized in that the surface of titanium dioxide fine particles is coated with a film of a poorly water-soluble organic substance.
[0012]
Furthermore, according to the present invention, an insolubilizing agent is added to a slurry containing a water-soluble organic substance having film-forming properties and titanium dioxide fine particles to form a film of a poorly water-soluble metal salt of an organic substance on the surface of the titanium dioxide fine particles. If desired, there is further provided a method for producing a photocatalyst powder, characterized in that titanium dioxide fine particles on which a film of a poorly water-soluble metal salt of an organic substance is formed are further calcined at 100 ° C. to 800 ° C.
[0013]
Further, according to the present invention, an organic polymer composition comprising an organic polymer and a photocatalyst powder having the above characteristics; a photocatalytic functional molded body formed by molding the organic polymer composition; and the above characteristics A photocatalyst functional structure having a photocatalyst powder on the surface is provided.
BEST MODE FOR CARRYING OUT THE INVENTION
[0014]
The photocatalyst powder of the present invention comprises titanium dioxide fine particles whose surface is coated with a film of a water-insoluble metal salt of an organic substance. Here, the film of the poorly water-soluble metal salt of the organic substance is made by adding an insolubilizer to the slurry containing the water-soluble organic substance having film-forming properties and the titanium dioxide fine particles, so as to insolubilize the water-soluble organic substances, and thereby forming the titanium dioxide fine particles. It is formed by precipitating on the surface.
[0015]
The poorly water-soluble metal salt of an organic substance constituting the film has a very small solubility product (also called a solubility constant). Its water solubility product (measuring temperature 25 ° C.) is preferably 10 −10 or less, more preferably 10 −20 or less, and still more preferably 10 −25 or less.
[0016]
The film of the poorly water-soluble metal salt of the organic substance is not limited to its physical structure as long as it is formed within a range that allows the photocatalytic activity of the titanium dioxide surface. Further, coating of sparingly water-soluble metal salts of organic substance inhibits diffusive transport of compounds suffer from photocatalytic reaction in order to exhibit the photocatalytic activity (such as malodor compounds) or its decomposition product (low molecular, carbon dioxide, water, etc.) It does not suppress light transmission. Therefore, the water-insoluble metal salt film of the organic substance may be either partially supported (partially coated) on the surface of the titanium dioxide particles or coated on the entire surface.
[0017]
The film layer of a poorly water-soluble metal salt of an organic substance is usually formed in a range of 0.01 wt% to 10 wt%, preferably 0.1 wt% to 5 wt%, based on the weight of titanium dioxide. . When the water-insoluble coating layer is less than 0.01% by weight, the photocatalytic influence of titanium dioxide on media such as plastic, paper, and fiber is great, and the durability of the media itself is deteriorated. If the water-insoluble film layer is more than 10% by weight, the photocatalytic function of the titanium dioxide particles is deteriorated.
[0018]
As described above, the photocatalyst powder of the present invention is formed by insolubilizing the water-soluble organic substance having film-forming properties and deposited on the surface of the titanium dioxide fine particles, and further calcined at 100 ° C. to 800 ° C. It is preferred that That is, the photocatalyst powder calcined at high temperature exhibits excellent compound properties, moldability, and uniformity when kneaded into a polymer, and is excellent when supported on the surface of a cloth, fiber, plastic or the like. Shows supportability.
[0019]
The titanium dioxide fine particles used in the production of the photocatalyst powder of the present invention are not particularly limited as long as they basically have photocatalytic activity. For example, titanium dioxide fine particles are produced by vapor phase reaction using titanium halide as a raw material. What was obtained, what was obtained by hydrolyzing a titanic acid solution by wet, or what baked them may be used.
[0020]
The titanium dioxide fine particles used in the present invention are not limited to a crystalline form, but anatase and brookite are preferable from the viewpoint of high performance as a photocatalyst. The titanium dioxide fine particles may be these crystalline fine particles or composite crystalline fine particles containing these crystals.
[0021]
The titanium dioxide fine particles used preferably have an average primary particle size of 0.001 to 0.2 microns, particularly 0.01 to 0.1 microns. If it is less than 0.001 micron, it is difficult to produce efficiently and is not practical. If it exceeds 0.2 microns, the photocatalytic performance is significantly reduced.
[0022]
In the photocatalyst powder of the present invention, metals such as platinum, rhodium, ruthenium, palladium, silver, copper, and zinc may be supported on the surface of the titanium dioxide fine particles. When these metals are supported, the environment purification action of the titanium dioxide fine particles is further increased, and the bactericidal and algicidal action is also increased.
[0023]
The photocatalyst powder of the present invention can be added to an organic polymer and used as a composition. Here, examples of the organic polymer that can be used include thermoplastic resins, thermosetting resins, and natural resins. Since the organic polymer and the photocatalytic active surface (surface) of titanium dioxide are not in direct contact with each other due to the formation of the coating film of the poorly water-soluble metal salt of the organic substance, the organic polymer itself of the medium is degraded and deteriorated. And the durability of the photocatalytic activity is increased.
[0024]
Specific examples of such an organic polymer include polyolefins such as polyethylene, polypropylene and polystyrene, polyamides such as nylon 6, nylon 66 and aramid, polyesters such as polyethylene terephthalate and unsaturated polyester, polyvinyl chloride, polyvinylidene chloride, Polyethylene oxide, polyethylene glycol, silicone resin, polyvinyl alcohol, vinyl acetal resin, polyacetate, ABS resin, epoxy resin, vinyl acetate resin, cellulose and rayon and other cellulose derivatives, polyurethane resin, polycarbonate resin, urea resin, fluororesin, polyfluoride And vinylidene chloride, phenol resin, celluloid, chitin, starch sheet, acrylic resin, melamine resin, alkyd resin, and the like.
[0025]
These organic polymer compositions containing the environment-purifying photocatalyst powder of the present invention can be used in the form of paints, coating compositions, compounds, masterbatches and the like. The concentration of the photocatalyst powder in the organic polymer composition is 0.01 to 80% by weight, preferably 1 to 50% by weight, based on the total weight of the composition. In addition, an absorbent such as activated carbon or zeolite may be added to the organic polymer composition in order to enhance the effect of removing malodorous substances.
[0026]
In the present invention, a polymer molded product having an environmental purification function can be obtained by molding the organic polymer composition. Examples of the molded body of such a composition include fibers, films, and plastic molded bodies.
[0027]
Furthermore, since the organic polymer composition of the present invention is excellent in durability, it can be applied as a coating composition for structures such as wall materials, glass, signboards, and road building concrete. Further, the surface-treated titanium dioxide photocatalyst powder and organic polymer composition of the present invention may be coated with a structure (organic matter) such as paper, plastic, cloth, wood, or a coating film such as a vehicle. The function of the photocatalyst can be sufficiently exerted without photocatalytic degradation or destruction of the (structure or coating film).
[0028]
Next, the manufacturing method of the photocatalyst powder of this invention is demonstrated. In the method for producing a photocatalyst powder of the present invention, an insolubilizing agent is added to a slurry containing a water-soluble organic substance having film-forming properties and titanium dioxide fine particles, so that the water-soluble organic substance is insolubilized and deposited on the surface of the titanium dioxide fine particles. By causing the coating to occur, a film of a poorly water-soluble metal salt of an organic substance is formed.
[0029]
Here, the water-soluble organic substance having film-forming properties used is at least one selected from the group consisting of polycarboxylic acids, polysulfonic acids, anionic surfactants and alkali metal salts and ammonium salts thereof. Compounds are preferably used. Among these, as the anionic surfactant, a carboxylic acid type or sulfonic acid type compound is preferably used.
[0030]
Polycarboxylic acids used as water-soluble organic substances having film-forming properties and alkali metal salts and ammonium salts thereof include polyacrylic acid, polymethacrylic acid, polyglutamic acid, polyaspartic acid and co-polymers containing those repeating units. Combined, and alkali metal salts and ammonium salts thereof. If the said copolymer is further illustrated, a maleic acid / methacrylic acid copolymer, a maleic acid / acrylic acid copolymer, etc. will be mentioned.
[0031]
Examples of the polysulfonic acid and its alkali metal salt and ammonium salt include polystyrene sulfonic acid, polyvinyl sulfuric acid, polyvinyl sulfonic acid, poly-α-methylsulfonic acid, polyethylene sulfonic acid, and alkali metal salts and ammonium salts thereof.
The anionic surfactant includes a polycarboxylic acid type polymer surfactant in part, preferably a carboxylate type surfactant such as aliphatic soda soap or alkyl ether carboxylic acid, sodium lauryl sulfate. , Sulfates such as higher alcohol sodium sulfate sulfate, sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, sodium aromatic sulfonate, sodium alkanesulfonate, And organic sulfonates such as sodium salt of aromatic sulfonic acid formalin condensate.
[0032]
These anionic surfactants can be used alone or in combination of two or more.
[0033]
As the water-soluble organic substance having film-forming properties used for forming a film of a poorly water-soluble metal salt of these organic substances, a high molecular compound is preferably used from the viewpoint of film characteristics with respect to a photocatalyst. Titanium dioxide particles with a thin water-soluble metal salt film of an organic substance formed on the surface do not cause deterioration of the medium or decrease the photocatalytic function because the photocatalytic performance of titanium dioxide is suppressed. It has excellent characteristics as a photocatalyst powder. In particular, when a polymer compound is used as the water-soluble organic substance, the durability of the photocatalytic function is increased.
[0034]
As the insolubilizing agent, a water-soluble calcium compound capable of supplying calcium ions is used. When this compound is added, a water-soluble organic substance having film-forming properties is insolubilized and deposited as a calcium salt on the titanium dioxide surface to form a poorly water-soluble film. A preferable calcium compound is exemplified by calcium chloride.
[0035]
After forming a coating film of poorly water-soluble organic substance on the surface of titanium dioxide fine particles, the particles are separated, washed and dried. The separation of the poorly water-soluble metal salt of titanium dioxide fine particles and free of organic material having a coating film of poorly water-soluble metal salt of an organic material, generally centrifugation batch precipitation, such as filtration method is employed .
[0036]
The photocatalyst powder produced by the above method is preferably further baked to improve the photocatalytic function. That is, the unreacted water-soluble raw material can be evaporated by firing the above-mentioned photocatalyst powder in an inert gas atmosphere or in air at 100 ° C. to 800 ° C., preferably 250 ° C. to 700 ° C. Moreover, the water absorption of the surface of the coated powder can be improved. When this water absorption improvement treatment is performed, the photocatalyst powder exhibits excellent compound characteristics, moldability, and uniformity when kneaded into a polymer, and is supported on the surface of a cloth, fiber, plastic or the like. Shows excellent supportability.
[0037]
As described above, in the photocatalyst powder of the present invention, a metal such as platinum, rhodium, ruthenium, palladium, silver, copper, or zinc may be supported on the surface of the titanium dioxide fine particles. As a method for supporting these metals, any of a method of supporting on titanium dioxide fine particles as a raw material, a method of supporting in the process of forming a coating layer of a poorly water-soluble metal salt of the organic substance, and a method of supporting after formation of the coating layer is possible. May be taken.
[0038]
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited by the following examples.
[0039]
Example 1
0.6 g of commercially available sodium polycarboxylate type polymer surfactant (trade name: Poise 530 manufactured by Kao Corporation) was added to 2.8 L of pure water, and titanium dioxide ultrafine particles (Showa Titanium ( Co., Ltd. F4, 120 g of primary particles having an average particle size of 0.03 micron) was added and dispersed.
[0040]
Separately, 3.5 L of a salt solution prepared by adding CaCl 2 to pure water and adjusting the Ca 2+ after mixing with titanium dioxide slurry to 1.8 mM was prepared. The surface treatment was completed by mixing 2.8 L of the titanium dioxide slurry obtained by the above method and 3.5 L of the salt solution, and further maintaining the temperature at 40 ° C. for 24 hours. Thereafter, the slurry was carefully centrifuged and dried at 120 ° C. for 4 hours to obtain 115 g of titanium dioxide powder. As a result of surface analysis of the titanium dioxide powder obtained by FT-IR (manufactured by PerkinElmer Co., Ltd., FT-IR1650), a carboxyl group and a calcium salt structure derived from the polymer surfactant are supported. It was observed from the absorption peak.
[0041]
(Deodorization function evaluation)
After placing 3.5 g of the surface-treated titanium dioxide powder in a petri dish of 90 mmφ, it is placed in a 5 L Tedlar bag enclosing hydrogen sulfide with an initial concentration of 60 ppm. Ultraviolet rays were irradiated so that the intensity was 0.23 mW / cm 2 . As a result of measuring the hydrogen sulfide concentration in the Tedlar bag 30 minutes after the ultraviolet irradiation with a detector tube (Gastech Co., Ltd., 4LL), the residual ratio of hydrogen sulfide was 30%. Thereby, the deodorizing function of the titanium dioxide is evaluated.
[0042]
(Resin degradation evaluation)
Using 1 kg of the surface-treated titanium dioxide powder and polyethylene terephthalate resin, a compound having a titanium dioxide concentration of 20% is produced at a temperature of 280 ° C. with a commercially available biaxial kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.). did. A test piece of 3 cmφ × 1 cm was prepared from the obtained compound with a heating press, and the yellowness (YI value, ASTM D 1925) of the test piece was measured with a spectrocolorimeter (Minolta Co., Ltd., CM-2002). As a result, the yellowness YI value was 8.6, and almost no coloration was observed. Next, the obtained test piece was irradiated with light of 50 mW / cm 2 with a fade meter (Heraeus Co., Ltd., xenon lamp) for 10 hours. The difference in yellowness (ΔYI) before and after the irradiation was assessed and the resin degradation was evaluated. The results are shown in Table 1.
[0043]
(Example 2)
The surface coating was carried out in the same manner as in Example 1 except that sodium polycarboxylate of Example 1 was sodium dodecylbenzenesulfonate (abbreviated as DBS-Na, using a special grade reagent manufactured by Nacalai Tesque). The photocatalyst powder was manufactured. As a result of surface analysis of the obtained powder, sulfonic acid groups and calcium salts were observed by FT-IR. Next, the obtained photocatalyst powder was subjected to deodorant function evaluation and resin deterioration evaluation by the same method as in Example 1. As a result, the results shown in Table 1 were obtained.
[0044]
(Example 3)
The surface-treated powder obtained in Example 1 was further transferred to an electric furnace and baked at 300 ° C. for 10 hours in air. As a result of performing the deodorizing function evaluation and the resin deterioration evaluation for the fired product obtained here by the same method as in Example 1, the results shown in Table 1 were obtained.
[0045]
Example 4
The powder obtained in Example 1 was separately calcined in an electric furnace at 600 ° C. for 10 hours in a nitrogen atmosphere, and the photocatalytic property was evaluated in the same manner as described above. The results are shown in Table 1.
[0046]
(Comparative Example 1)
Deodorizing function evaluation by the same method as in Example 1 for titanium dioxide ultrafine particles not subjected to surface treatment (F-4 manufactured by Showa Titanium Co., Ltd., average particle size of primary particles: 0.03 micron) As a result of the resin deterioration evaluation, the results shown in Table 1 were obtained.
[0047]
(Comparative Example 2)
In 2.8 L of pure water, 120 g of titanium dioxide ultrafine particles (F-4 manufactured by Showa Titanium Co., Ltd., average particle size of primary particles: 0.03 micron) was added and dispersed. Next, NaCl, NaHPO 4 , KH 2 PO 4 , KCl, MgCl 2 .6H 2 O, CaCl 2 are added to pure water, and after mixing with the titanium dioxide slurry, Na + is 139 mM, K + is 2.8 mM, 3.5 L of a solution prepared so that Ca 2+ was 1.8 mM, Mg 2+ was 0.5 mM, Cl was 144 mM, and HPO 4 was 1.1 mM was prepared. 2.8 L of titanium dioxide slurry obtained by the above method and 3.5 L of solution were mixed, and the temperature was further maintained at 40 ° C. and maintained for 24 hours. Thereafter, the slurry was washed and dried to obtain fine titanium dioxide powder coated with 100 g of calcium phosphate. As a result of performing the deodorizing function evaluation and the resin deterioration evaluation by the same method as in Example 1, the results shown in Table 1 were obtained.
[0048]
(Comparative Example 3)
Dispersion treatment was performed by adding 120 g of titanium dioxide ultrafine particles (F-4 manufactured by Showa Titanium Co., Ltd., average particle size of primary particles: 0.03 micron) and 0.05 mol of sodium aluminate into 1.8 L of pure water. It was. Next, 0.06 mol / l of dilute sulfuric acid was added dropwise to the resulting slurry, adjusted to pH 7.2, washed and dried to obtain titanium dioxide powder coated with alumina. Next, as a result of performing the deodorizing function evaluation and resin deterioration evaluation described in Example 1 for the obtained powder, the results shown in Table 1 were obtained.
[0049]
Figure 0004079306
[Industrial applicability]
[0050]
The photocatalyst powder comprising titanium dioxide fine particles coated with a film of a poorly water-soluble metal salt of an organic substance of the present invention exhibits photocatalytic action by light irradiation, removes bad odor, decomposes and removes harmful substances or dirt in the air, Widely used for purifying environment such as wastewater treatment, water purification, antibacterial and antifungal properties. Moreover, this photocatalyst powder can effectively purify the environment. Light irradiation environment especially when powder is applied to fiber, paper, plastic molding, etc., or kneaded or mixed with fiber, plastic or other media in the manufacturing process of fiber, plastic molding, etc. Even if it is under, the medium does not deteriorate. Therefore, the photocatalyst powder of the present invention retains the excellent environmental purification ability characteristic inherent in titanium dioxide, and the environmental purification ability is superior in durability.
[0051]
The photocatalyst powder of the present invention, the organic polymer composition containing the photocatalyst powder, the molded body of the organic polymer composition, and the structure having the photocatalyst powder or the polymer composition on the surface are strong light. In a light irradiation environment weaker than under irradiation, it exhibits particularly excellent environmental purification performance characteristics and photocatalytic performance with excellent durability.

Claims (11)

表面が有機物質の水難溶性金属塩の皮膜で被覆されている二酸化チタン微粒子からなることを特徴とする光触媒粉体。A photocatalyst powder comprising titanium dioxide fine particles whose surface is coated with a film of a poorly water-soluble metal salt of an organic substance. 有機物質の水難溶性金属塩の皮膜の量が、二酸化チタンに対して0.01重量%〜10重量%である請求の範囲1に記載の光触媒粉体。The photocatalyst powder according to claim 1, wherein the amount of the film of the water-insoluble metal salt of the organic substance is 0.01 wt% to 10 wt% with respect to titanium dioxide. 有機物質の水難溶性金属塩が、ポリカルボン酸カルシウム塩、ポリスルホン酸カルシウム塩および陰イオン界面活性剤のカルシウム塩からなる群より選ばれた少なくとも1種である請求の範囲1または2に記載の光触媒粉体。The photocatalyst according to claim 1 or 2, wherein the poorly water-soluble metal salt of the organic substance is at least one selected from the group consisting of calcium polycarboxylate, calcium polysulfonate, and calcium anionic surfactant. powder. 二酸化チタン微粒子の表面に有機物質の水難溶性金属塩の皮膜を形成した後に100℃〜800℃で焼成したものである請求の範囲1〜3のいずれかに記載の光触媒粉体。The photocatalyst powder according to any one of claims 1 to 3, wherein a film of a poorly water-soluble metal salt of an organic substance is formed on the surface of titanium dioxide fine particles and then baked at 100 ° C to 800 ° C. 皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを含むスラリーに、不溶化剤を添加して二酸化チタン微粒子表面に有機物質の水難溶性金属塩の皮膜を形成することを特徴とする光触媒粉体の製造方法。A photocatalyst powder characterized in that a water-insoluble metal salt film of an organic substance is formed on a surface of titanium dioxide fine particles by adding an insolubilizing agent to a slurry containing a water-soluble organic material having film-forming properties and titanium dioxide fine particles. Manufacturing method. 水溶性有機物質が、ポリカルボン酸、ポリスルホン酸、陰イオン界面活性剤およびそれらのアルカリ塩、アンモニウム塩からなる群より選ばれた少なくとも1種である請求の範囲5に記載の光触媒粉体の製造方法。  The photocatalyst powder production according to claim 5, wherein the water-soluble organic substance is at least one selected from the group consisting of polycarboxylic acids, polysulfonic acids, anionic surfactants and alkali salts and ammonium salts thereof. Method. 不溶化剤が水溶性カルシウム化合物である請求の範囲5または6に記載の光触媒粉体の製造方法。  The method for producing a photocatalyst powder according to claim 5 or 6, wherein the insolubilizing agent is a water-soluble calcium compound. 有機物質の水難溶性金属塩の皮膜が形成された二酸化チタン微粒子をさらに100℃〜800℃で焼成する請求の範囲5〜7のいずれかに記載の光触媒粉体の製造方法。The method for producing a photocatalyst powder according to any one of claims 5 to 7, wherein the titanium dioxide fine particles on which a film of a poorly water-soluble metal salt of an organic substance is formed are further calcined at 100 ° C to 800 ° C. 有機重合体と請求の範囲1〜4のいずれかに記載の光触媒粉体とを含む有機重合体組成物。  The organic polymer composition containing an organic polymer and the photocatalyst powder in any one of Claims 1-4. 請求の範囲9に記載の有機重合体組成物を成形してなる光触媒機能性成形体。  A photocatalytic functional molded article obtained by molding the organic polymer composition according to claim 9. 請求の範囲1〜4のいずれかに記載の光触媒粉体を表面に具備した光触媒機能性構造体。  The photocatalyst functional structure which equipped the surface with the photocatalyst powder in any one of Claims 1-4.
JP2001521461A 1999-09-08 2000-09-08 Photocatalyst powder, its production method and its application Expired - Fee Related JP4079306B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25408699 1999-09-08
US16212499P 1999-10-29 1999-10-29
PCT/JP2000/006151 WO2001017679A1 (en) 1999-09-08 2000-09-08 Particulate photocatalyst, process for producing the same, and applications thereof

Publications (1)

Publication Number Publication Date
JP4079306B2 true JP4079306B2 (en) 2008-04-23

Family

ID=26541526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001521461A Expired - Fee Related JP4079306B2 (en) 1999-09-08 2000-09-08 Photocatalyst powder, its production method and its application

Country Status (3)

Country Link
JP (1) JP4079306B2 (en)
AU (1) AU6876300A (en)
WO (1) WO2001017679A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865542B2 (en) * 2004-02-23 2012-02-01 株式会社クラレ Oxygen absorbent, method for producing the same, and oxygen-absorbing composition and packaging material using the same
JP5287564B2 (en) * 2009-07-15 2013-09-11 富士通株式会社 Pesticide composition and residual pesticide decomposer
US10556999B2 (en) 2016-01-29 2020-02-11 Tolmar, Inc. Purification and decolorization of polymers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275032B2 (en) * 1997-03-03 2002-04-15 独立行政法人産業技術総合研究所 Environmental purification material and method for producing the same
JPH10310401A (en) * 1997-04-30 1998-11-24 Japan Energy Corp Semiconductor photocatalyst and hydrogen production using the same
CN1117630C (en) * 1997-12-25 2003-08-13 工业技术院 Photocatalyst powder for environmental purification, polymer composition contg. said powder and molded article thereof, and processes for producing these
JP4029995B2 (en) * 1999-02-01 2008-01-09 アキレス株式会社 Polyurethane foam with photocatalytic function

Also Published As

Publication number Publication date
AU6876300A (en) 2001-04-10
WO2001017679A1 (en) 2001-03-15

Similar Documents

Publication Publication Date Title
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
US6291067B1 (en) Photocatalytic powder for environmental clarification and powder-containing polymer composition thereof
US6383980B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
EP1437397B1 (en) Cleaning agent
JP3493393B2 (en) Photocatalytic powder for environmental purification, powder-containing polymer composition and molded article thereof, and methods for producing them
JP5134835B2 (en) Disassembly method
JP2006124267A (en) Composite particle containing titanium dioxide and its application
JP2002001125A (en) Photocatalyst powder and slurry, and polymer composition, coating material, photocatalytic functional formed body and photocatalytic functional structural body containing the powder
WO2002053501A1 (en) Highly active photocatalyst
KR20050006267A (en) Antibacterial and anti-staining paint for building material and building material coated therewith
JP2007130267A (en) Deodorant made of tubular titanium oxide particle
JP4079306B2 (en) Photocatalyst powder, its production method and its application
JP4233324B2 (en) Optical functional powder and its use
JP3484470B2 (en) Film material with photocatalytic function
JP3903167B2 (en) Active oxygen generating material
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP4621859B2 (en) Method for producing porous photocatalyst
KR101657517B1 (en) Method for producing a visible light-responsive photocatalytic substance
JP2010075898A (en) Photocatalyst, method of manufacturing the same, and composition having photocatalytic function
JP2009131756A (en) Method for producing titanium oxide-based deodorant
WO2001017680A1 (en) Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP3505305B2 (en) Catalyst composition and deodorizing method using the same
JPH10174881A (en) Photocatalyst body and its production
TW537928B (en) Photocatlytic powder, process for producing same, and applications thereof
JP2008266584A (en) Photocatalyst-containing masterbatch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees