WO2001017679A1 - Particulate photocatalyst, process for producing the same, and applications thereof - Google Patents

Particulate photocatalyst, process for producing the same, and applications thereof Download PDF

Info

Publication number
WO2001017679A1
WO2001017679A1 PCT/JP2000/006151 JP0006151W WO0117679A1 WO 2001017679 A1 WO2001017679 A1 WO 2001017679A1 JP 0006151 W JP0006151 W JP 0006151W WO 0117679 A1 WO0117679 A1 WO 0117679A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
photocatalyst
organic substance
soluble organic
photocatalyst powder
Prior art date
Application number
PCT/JP2000/006151
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Hagihara
Katsura Ito
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to AU68763/00A priority Critical patent/AU6876300A/en
Priority to JP2001521461A priority patent/JP4079306B2/en
Publication of WO2001017679A1 publication Critical patent/WO2001017679A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Definitions

  • the present invention relates to a photocatalyst powder containing photocatalytic titanium dioxide fine particles, a method for producing the photocatalyst powder, an organic polymer composition containing the photocatalyst powder, a molded product of the polymer composition, and the polymer
  • the present invention relates to a structure having a composition on a surface.
  • the photocatalyst powder containing titanium dioxide of the present invention is an environmental purification material for removing odors, decomposing and removing harmful substances or dirt in the air, draining and purifying, or sterilizing and algae-killing water.
  • it is applied to the surface of fibers, paper and plastic moldings, or is mixed with a fiber plastic medium in the process of manufacturing fibers and plastic moldings, or is a photocatalyst powder for environmental purification in the form of paint. Suitable for use in Background art
  • titanium dioxide fine particles have attracted attention as environmental purification materials used for antibacterial, deodorant, antifouling, air purification, and water purification purposes.
  • the photocatalytic mechanism of titanium dioxide is such that when light is applied to the titanium dioxide fine particles, electrons and holes generated inside the titanium dioxide fine particles convert water and oxygen near the surface of the titanium dioxide fine particles into hydroxyl radicals and hydrogen peroxide. It is thought to convert harmful substances into carbon dioxide and water by the strong redox effect of hydroxyradical and hydrogen peroxide. It is said that the photocatalytic action of such titanium dioxide particles lasts semi-permanently as long as the titanium dioxide particles, light, water, and oxygen are present.
  • titanium dioxide photocatalyst there is a method of kneading a fiber or plastic medium in the process of manufacturing an easily handled fiber plastic molded article, or applying it to the surface of a substrate such as cloth or paper. Attempted.
  • titanium dioxide due to the strong photocatalytic action of titanium dioxide, not only harmful organic substances and environmental pollutants but also media such as fibers, plastics, and paper themselves are easily decomposed and deteriorated, which has been a practical obstacle.
  • titanium dioxide fine particles and vine W due to the strong photocatalytic action of titanium dioxide, not only harmful organic substances and environmental pollutants but also media such as fibers, plastics, and paper themselves are easily decomposed and deteriorated, which has been a practical obstacle. Furthermore, titanium dioxide fine particles and vine W
  • Japanese Unexamined Patent Publications Nos. Hei 9-19253 and Hei 9-2392777 describe measures to prevent or prevent deterioration of a resin medium or a binder due to the strong photocatalytic action of titanium dioxide particles.
  • a method has been proposed in which a photoinactive compound such as aluminum, silicon, or zirconium is supported on the surface of titanium dioxide particles in a state of being distributed in an island shape having a steric barrier to suppress the photocatalytic action.
  • a photoinactive compound such as aluminum, silicon, or zirconium is supported on the surface of titanium dioxide particles in a state of being distributed in an island shape having a steric barrier to suppress the photocatalytic action.
  • the photocatalytic activity is reduced because the photoinactive compound is directly adhered to the active sites on the surface of the titanium dioxide particles, and the resin is reduced. Since the strong photocatalytic effect of titanium dioxide is reduced in specific portions of the medium and binder, control of photocatalytic performance is required.
  • Japanese Patent Application Laid-Open No. H10-244416 proposes a photocatalyst in which the surface of titanium dioxide particles is coated with porous calcium phosphate.
  • the photocatalytic performance of the photocatalyst is degraded by the calcium phosphate layer of the coating film, and there is still a problem in durability, particularly under strong ultraviolet rays such as sunlight.
  • An object of the present invention is to remove odors, decompose and remove harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial and antifungal treatment, etc. ), A method for producing the same, an organic polymer composition containing the photocatalyst powder, a molded article of the organic polymer composition, and the polymer composition on the surface. It is to provide a structure having.
  • the present invention is to provide a photocatalyst powder having excellent permanent properties in surface application to fiber, paper, plastic material, or the like, kneading into the material, or use in a coating composition. .
  • a photocatalyst powder characterized in that the surface of titanium dioxide fine particles is coated with a film of a poorly water-soluble organic substance.
  • an insolubilizing agent is added to a slurry containing a water-soluble organic substance having a film forming property and titanium dioxide fine particles to form a film of a poorly water-soluble organic substance on the surface of the titanium dioxide fine particles. Accordingly, there is provided a method for producing a photocatalyst powder, further comprising firing the titanium dioxide fine particles on which a film of a poorly water-soluble organic substance is formed at 100 ° C. to 800 ° C.
  • an organic polymer composition comprising an organic polymer and a photocatalyst powder having the above characteristics; a photocatalytic functional molded article obtained by molding the organic polymer composition; Provided is a photocatalyst functional structure provided with a photocatalyst powder having the same on the surface.
  • the photocatalyst powder of the present invention is composed of titanium dioxide fine particles whose surface is coated with a film of a poorly water-soluble organic substance.
  • the film of the poorly water-soluble organic substance is formed by adding an insolubilizing agent to a slurry containing a water-soluble organic substance having a film forming property and titanium dioxide fine particles to insolubilize the water-soluble organic substance, and to form a film on the surface of the titanium dioxide fine particles. It is formed by precipitation.
  • the poorly water-soluble organic substance that forms the film has a very small solubility product (also called solubility constant).
  • Solubility product (measurement temperature 2 5 ° C) for the water is preferably 1 0 one 1 (5 or less, more preferably 1 0 2 (5 or less, more preferably 1 0 2 5 below.
  • Poorly water-soluble The organic material film is not limited to its physical structure as long as the photocatalytic activity of the titanium dioxide surface is acceptable, and the film of poorly water-soluble organic material exhibits photocatalytic activity. It does not suppress the diffusion and transfer of compounds (such as malodorous substances) and their decomposed products (such as low molecular weight, carbon dioxide gas, water, etc.), and does not suppress light transmission.
  • the film of the soluble organic substance is partially supported (partially covered) on the surface of the titanium dioxide particles or The deviation may be such that the entire surface is covered.
  • the coating layer of the poorly water-soluble organic substance is usually formed in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the weight of titanium dioxide. . If the water-insoluble coating layer is less than 0.01% by weight, the photocatalytic effect of titanium dioxide on a medium such as plastic, paper, or fiber is large, and the durability of the medium itself is deteriorated. When the content of the poorly water-soluble coating layer is more than 10% by weight, the photocatalytic function of the titanium dioxide particles deteriorates.
  • the photocatalyst powder of the present invention is obtained by insolubilizing a water-soluble organic substance having a film-forming property and depositing and forming on the surface of titanium dioxide fine particles. It is preferably fired at 0 °.
  • the photocatalyst powder fired at a high temperature exhibits excellent compound properties, moldability, and uniformity when kneaded into a polymer, and is excellent when supported on the surface of cloth, fiber, plastic, etc. It shows good supportability.
  • the production method of the titanium dioxide fine particles used for producing the photocatalyst powder of the present invention is not particularly limited as long as it has photocatalytic ability.
  • a product obtained by the reaction, a product obtained by hydrolyzing a titanic acid solution by a wet method, or a product obtained by calcining them may be used.
  • the titanium dioxide fine particles used in the present invention are not limited to a crystal form, but anatase-brookite is preferable from the viewpoint of high performance as a photocatalyst.
  • the titanium dioxide fine particles may be these crystalline fine particles or composite crystalline fine particles containing these crystals.
  • the titanium dioxide fine particles to be used preferably have an average primary particle size of 0.01 to 0.2 micron, particularly preferably 0.01 to 0.1 micron. If it is less than 0.001 micron, it is difficult to produce efficiently and it is not practical. If it exceeds 0.2 microns, the photocatalytic performance will be significantly reduced.
  • a metal such as platinum, rhodium, ruthenium, palladium, silver, copper, or zinc may be supported on the surface of the titanium dioxide fine particles.
  • the photocatalyst powder of the present invention can be used as a composition by adding it to an organic polymer.
  • the organic polymer examples include a thermoplastic resin, a thermosetting resin, and a natural resin. Due to the formation of the coating film of the poorly water-soluble organic substance, the organic polymer does not directly contact the photocatalytically active surface (surface) of titanium dioxide. The durability of the photocatalytic ability is increased.
  • organic polymers include polyolefins such as polyethylene, polypropylene, and polystyrene; polyamides such as nylon 6, nylon 66, and aramide; polyesters such as polyethylene terephthalate and unsaturated polyester; polyvinyl chloride; Shiridani vinylidene, polyethylene oxide, polyethylene glycol, silicone resin, polyvinyl alcohol, vinyl acetate resin, polyacetate, ABS resin, epoxy resin, vinyl acetate resin, cellulose and other cellulose derivatives, cellulose resin, polyurethane resin, polycarbonate Net resin, urea resin, fluorine resin, polyvinylidene fluoride, phenol resin, celluloid, chitin, starch sheet, acrylic resin, melamine resin, alkyd resin Etc., and the like.
  • polyolefins such as polyethylene, polypropylene, and polystyrene
  • polyamides such as nylon 6, nylon 66, and aramide
  • polyesters such as polyethylene terephthalate and unsatur
  • organic polymer compositions containing the photocatalyst powder for environmental purification of the present invention can be used in the form of paints, coating compositions, compounds, masterbatches and the like.
  • concentration of the photocatalyst powder in the organic polymer composition is from 0.01 to 80% by weight, preferably from 1 to 50% by weight, based on the total weight of the composition.
  • an absorbent such as activated carbon or zeolite may be added to the organic polymer composition in order to enhance the effect of removing malodorous substances.
  • a molded polymer having an environmental purification function can be obtained by molding the organic polymer composition.
  • Molded articles of such a composition include fibers, films, plastic molded articles and the like.
  • the organic polymer composition of the present invention since the organic polymer composition of the present invention has excellent durability, it can be applied as a coating composition for structures such as wall materials, glass, signboards, and concrete for road construction. Furthermore, the titanium dioxide photocatalyst powder and the organic polymer composition of the present invention, which have been subjected to surface treatment, can be applied to a structure (organic substance) such as paper, plastic, cloth, or wood, or to a medium such as a vehicle. (Structures and coatings) photocatalytically degraded It is possible to fully demonstrate the function of the photocatalyst without breaking.
  • an insolubilizing agent is added to a slurry containing a film-forming water-soluble organic substance and titanium dioxide fine particles to insolubilize the water-soluble organic substance and precipitate on the surface of the titanium dioxide fine particles.
  • the water-soluble organic substance having a film-forming property used is at least one selected from the group consisting of polycarbonates, polysulfonic acids, anionic surfactants, and alkali metal salts and ammonium salts thereof.
  • a carboxylic acid type or a sulfonic acid type compound is preferably used as the anionic surfactant.
  • polycarboxylic acid used as a water-soluble organic substance having a film-forming property and its alkali metal salt and ammonium salt examples include polyacrylic acid, polymethacrylic acid, polyglutamic acid, polyaspartic acid, and a copolymer containing a repeating unit thereof. And their alkali metal salts and ammonium salts.
  • copolymer examples include a maleic acid-methacrylic acid copolymer and a maleic acid-Zacrylic acid copolymer.
  • polysulfonic acid and its metal salts and ammonium salts examples include polystyrenesulfonic acid, polyvinylsulfuric acid, polyvinylsulfonic acid, poly- ⁇ -methylsulfonic acid, polyethylenesulfonic acid, and their alkali metal salts and ammonium salts.
  • anionic surfactants also include polycarboxylic acid-type polymer surfactants, and are preferably aliphatic sodium soda test, surfactants such as alkyl ether carboxylic acid, and sulfonic acid-type surfactants, and lauryl.
  • Sulfates such as sodium sulfate, higher alcohol sodium sulfate, sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sodium sulfate, sodium dodecylbenzene sulfonate, sodium alkylnaphthalene sulfonate, sodium aromatic sulfonate, alkane sulfone And organic sulfonic acid salts such as sodium salt of sodium sulfonic acid and a sodium salt of an aromatic sulfonic acid formalin condensate.
  • anionic surfactants may be used alone or in combination of two or more. Can be used.
  • a polymer compound is preferably used from the viewpoint of the film property to the photocatalyst. Titanium dioxide particles having a film of a poorly water-soluble organic substance formed on the surface do not cause deterioration of the medium and do not deteriorate the photocatalytic function because the photocatalytic performance of titanium dioxide is suppressed. Has excellent properties as a body. In particular, when a polymer compound is used as the water-soluble organic substance, the durability of the photocatalytic function is increased.
  • a water-soluble calcium compound capable of supplying calcium ions is used as the insolubilizing agent.
  • the water-soluble organic substance capable of forming a film is insolubilized and precipitates as a calcium salt on the surface of titanium dioxide to form a water-insoluble film.
  • Preferred examples of the calcium compound include salts and calcium.
  • the particles After forming a coating film of a poorly water-soluble organic substance on the surface of titanium dioxide fine particles, the particles are separated, washed and dried. In general, centrifugal separation, batch sedimentation, filtration and the like are used to separate titanium dioxide fine particles having a coating film of a poorly water-soluble organic substance and a clear poorly water-soluble organic substance.
  • the photocatalyst powder produced by the above method can preferably be further calcined to improve the photocatalytic function. That is, by firing the above-mentioned photocatalyst powder in an atmosphere of an inert gas or in air at 100: 800 ° C, preferably 250-700 ° C, unreacted
  • the water-soluble raw material can be evaporated, and the water absorption of the surface of the coated powder can be improved.
  • the photocatalyst powder exhibits excellent compounding properties, moldability, and uniformity when kneaded into a polymer, and is applied to the surface of cloth, fiber, plastic, and the like. When carried, it exhibits excellent carrying properties.
  • a metal such as platinum, platinum, ruthenium, palladium, silver, copper, or zinc may be supported on the surface of the titanium dioxide fine particles.
  • a method for supporting these metals any of a method of supporting titanium dioxide fine particles as a raw material, a method of supporting the metal in the process of forming the poorly water-soluble organic substance coating layer, and a method of supporting the metal layer after the formation of the coating layer is adopted. Is also good.
  • the present invention will be described specifically with reference to examples. However, the present invention is not limited at all by the following embodiments.
  • the surface-treated titanium dioxide powder was placed in a 9 9 ⁇ petri dish, and then placed in a 5 L Tedlar bag filled with hydrogen sulfide having an initial concentration of 60 pm. UV light was applied so that the UV light at 365 nm had an intensity of 0.23 mW / cm 2 .
  • the concentration of hydrogen sulfide in the Tedlar bag 30 minutes after ultraviolet irradiation was measured with a detector tube (Gastec Co., Ltd., 4LL). As a result, the residual ratio of hydrogen sulfide was 30%. Thereby, the deodorizing function of the titanium dioxide is evaluated.
  • test piece was irradiated with light of 50 mWZ cm 2 for 10 hours using a fade meter (Hereus Co., Ltd., xenon lamp).
  • a fade meter Hereus Co., Ltd., xenon lamp.
  • the difference in yellowness ( ⁇ ⁇ ⁇ ) before and after the irradiation was evaluated, and resin deterioration was evaluated.
  • the results are shown in Table 1.
  • Example 1 Treatment was performed in the same manner as in Example 1 except that sodium polycarboxylate in Example 1 was changed to sodium dodecylbenzenesulfonate (abbreviated as DBS-Na, using a special grade reagent manufactured by Nacalai Tesque, Inc.).
  • DBS-Na sodium dodecylbenzenesulfonate
  • a surface-coated photocatalyst powder was produced.
  • a sulfonic acid group and a calcium salt were observed by FT-IR.
  • the obtained photocatalyst powder was evaluated for deodorizing function and resin degradation by the same method as in Example 1, and the results shown in Table 1 were obtained.
  • Example 1 The surface-treated powder obtained in Example 1 was further transferred to an electric furnace and fired at 300 ° C. for 10 hours under air.
  • the fired product obtained here was evaluated for the deodorizing function and the resin deterioration by the same method as in Example 1. As a result, the results shown in Table 1 were obtained.
  • Example 1 The powder obtained in Example 1 was separately fired in an electric furnace at 600 at a nitrogen atmosphere for 10 hours, and the photocatalytic property was evaluated in the same manner as described above. The results are shown in Table 1.
  • Example 3 Polycarboxylic acid 300 20 8.5 9.0 0.5
  • Comparative Example 1 1 20 25 34.0 9.0 Comparative Example 2 Ca 608.0 8.4 0.4 Comparative Example 3—Alumina ⁇ 98 8.2 8.3 0.1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A particulate photocatalyst comprising fine titanium dioxide particles the surface of which has been coated with a film of a sparingly water-soluble organic substance such as calcium salt of a polycarboxylic acid, polysulfonic acid, or anionic surfactant. This particulate photocatalyst is produced by adding an insolubilizing agent to a slurry containing a film-forming water-soluble organic substance and fine titanium dioxide particles to form a film of a sparingly water-soluble organic substance on the surface of the fine titanium dioxide particles. It is used, e.g., for environmental purification as an organic polymer composition containing the particulate photocatalyst, a molding of the organic polymer composition, a structure having on the surface the particulate photocatalyst, or the like.

Description

光触媒粉体、 その製造方法およびその応用 技術分野  Photocatalyst powder, its production method and its application
本発明は、 光触媒性の二酸化チタン微粒子を含む光触媒粉体、 該光触媒粉体の 製造方法、 該光触媒粉体を含む有機重合体組成物、 ならびに該重合体組成物の成 形体、 および該重合体組成物を表面に有する構造体に関する。  The present invention relates to a photocatalyst powder containing photocatalytic titanium dioxide fine particles, a method for producing the photocatalyst powder, an organic polymer composition containing the photocatalyst powder, a molded product of the polymer composition, and the polymer The present invention relates to a structure having a composition on a surface.
本発明の二酸化チタンを含む光触媒粉体は、 悪臭の除去や空気中の有害物質ま たは汚れの分解除去、 排水処理や浄化処理、 あるいは水の殺菌や殺藻などを行う ための環境浄化材料として用いられ、 特に繊維や紙およびプラスチック成形体表 面への塗布、 または繊維やプラスチック成形品などの製造過程において繊維ゃプ ラスチックの媒体に練り混み、 あるいは塗料の形態で環境浄化用光触媒粉体に使 用するのに適している。 背景技術  The photocatalyst powder containing titanium dioxide of the present invention is an environmental purification material for removing odors, decomposing and removing harmful substances or dirt in the air, draining and purifying, or sterilizing and algae-killing water. In particular, it is applied to the surface of fibers, paper and plastic moldings, or is mixed with a fiber plastic medium in the process of manufacturing fibers and plastic moldings, or is a photocatalyst powder for environmental purification in the form of paint. Suitable for use in Background art
近年、 二酸化チタン微粒子を使用した光触媒が、 抗菌、 消臭、 防汚、 大気の浄 化、 水質の浄化などの目的で使用される環境浄化材として注目されている。 この ような二酸化チタンの光触媒メカニズムは、 二酸化チタン微粒子に光が照射され ると、 二酸化チタン微粒子内部に発生した電子と正孔がニ酸化チタン微粒子表面 近傍の水と酸素をヒドロキシラジカルや過酸化水素に変換し、 ヒドロキシラジカ ルと過酸化水素の強力な酸化還元作用により有害な物質を炭酸ガスと水に浄化 するためと考えられている。 こうした二酸化チタン微粒子の光触媒作用は、 二酸 化チタン微粒子、 光、 水、 酸素が存在する限り半永久的に継続すると言われてい る。  In recent years, photocatalysts using titanium dioxide fine particles have attracted attention as environmental purification materials used for antibacterial, deodorant, antifouling, air purification, and water purification purposes. The photocatalytic mechanism of titanium dioxide is such that when light is applied to the titanium dioxide fine particles, electrons and holes generated inside the titanium dioxide fine particles convert water and oxygen near the surface of the titanium dioxide fine particles into hydroxyl radicals and hydrogen peroxide. It is thought to convert harmful substances into carbon dioxide and water by the strong redox effect of hydroxyradical and hydrogen peroxide. It is said that the photocatalytic action of such titanium dioxide particles lasts semi-permanently as long as the titanium dioxide particles, light, water, and oxygen are present.
このような二酸化チタン光触媒の応用においては、 取り扱いの容易な繊維ゃプ ラスチック成形体などの製造過程において繊維やプラスチックの媒体に練り込 んだり、 布、 紙などの基体の表面に塗布する方法が試みられている。 しかしなが ら、 二酸化チタンの強力な光触媒作用によつて有害有機物や環境汚染物質だけで なく繊維やプラスチック、 紙などの媒体自身も分解 ·劣化され易いため実用上の 障害になっていた。 さらに、 その取り扱い易さから二酸化チタン微粒子とバイン W In the application of such a titanium dioxide photocatalyst, there is a method of kneading a fiber or plastic medium in the process of manufacturing an easily handled fiber plastic molded article, or applying it to the surface of a substrate such as cloth or paper. Attempted. However, due to the strong photocatalytic action of titanium dioxide, not only harmful organic substances and environmental pollutants but also media such as fibers, plastics, and paper themselves are easily decomposed and deteriorated, which has been a practical obstacle. Furthermore, titanium dioxide fine particles and vine W
2 ダーを混合した塗料が注目されているが、 そのような媒体への障害が克服されか つ安価なバインダ一は見出されていない。  Although paints with a mixture of two binders are attracting attention, no one has found an inexpensive binder that overcomes the obstacles to such media.
特開平 9一 2 2 5 3 1 9号公報および特開平 9一 2 3 9 2 7 7号公報には、 二 酸化チタン粒子の強い光触媒作用による樹脂媒体またはバインダーの劣化に対 する防止抑制策として、 二酸化チタン粒子の表面にアルミニウム、 珪素、 ジルコ ニゥムなどの光不活性化合物を立体的障壁のある島状に分布した状態で担持せ しめて光触媒作用を抑制する方法が提案されている。 この方法によれば、 樹脂媒 体やバインダ一の劣化は全体として低減されるものの、 光不活性化合物が二酸化 チタン粒子の表面の活性点に直接接着されるため光触媒活性が減じることと、 樹 脂媒体やバインダ一の特定部位は二酸化チタンの強い光触媒作用が低下するの で、 光触媒性能の制御が求められている。  Japanese Unexamined Patent Publications Nos. Hei 9-19253 and Hei 9-2392777 describe measures to prevent or prevent deterioration of a resin medium or a binder due to the strong photocatalytic action of titanium dioxide particles. In addition, a method has been proposed in which a photoinactive compound such as aluminum, silicon, or zirconium is supported on the surface of titanium dioxide particles in a state of being distributed in an island shape having a steric barrier to suppress the photocatalytic action. According to this method, although the deterioration of the resin medium and the binder is reduced as a whole, the photocatalytic activity is reduced because the photoinactive compound is directly adhered to the active sites on the surface of the titanium dioxide particles, and the resin is reduced. Since the strong photocatalytic effect of titanium dioxide is reduced in specific portions of the medium and binder, control of photocatalytic performance is required.
特開平 1 0— 2 4 4 1 6 6号公報には、 二酸化チタン粒子の表面に多孔質のリ ン酸カルシウムを被覆した光触媒が提案されている。 この光触媒は被覆膜のリン 酸カルシウム層によって光触媒性能が低下し、 特に太陽光のような強力な紫外線 の下では耐久性になお課題が残されている。  Japanese Patent Application Laid-Open No. H10-244416 proposes a photocatalyst in which the surface of titanium dioxide particles is coated with porous calcium phosphate. The photocatalytic performance of the photocatalyst is degraded by the calcium phosphate layer of the coating film, and there is still a problem in durability, particularly under strong ultraviolet rays such as sunlight.
また、 国際公開 W099/33566号公報には、二酸化チタン微粒子の表面の少なくと も一部に多孔質のリン酸カルシウム被覆層が形成され、 その界面に陰イオン性界 面活性剤が存在する二酸化チタン微粒子粉体が開示されている。 発明の開示  Further, International Publication WO099 / 33566 discloses that titanium dioxide fine particles in which a porous calcium phosphate coating layer is formed on at least a part of the surface thereof and an anionic surfactant is present at the interface. A powder is disclosed. Disclosure of the invention
本発明の目的は、 上記のような従来技術に鑑み、 悪臭の除去、 空気中の有害物 質または汚れの分解除去、 排水処理や浄水処理、 抗菌ゃ抗かびなど (以下、 環境 浄化作用と総称する。 ) を効果的かつ経済的に行う光触媒粉体、 その製造方法、 該光触媒粉体を含む有機重合体組成物、 該有機重合体組成物の成形体、 および該 重合体組成物を表面に有する構造体を提供することにある。  An object of the present invention is to remove odors, decompose and remove harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial and antifungal treatment, etc. ), A method for producing the same, an organic polymer composition containing the photocatalyst powder, a molded article of the organic polymer composition, and the polymer composition on the surface. It is to provide a structure having.
特に本発明は、 繊維、 紙、 プラスチック素材などへの表面塗布、 または該素材 への練り混み、 あるいは塗料組成物への使用において優れた而久特性を有する光 触媒粉体を提供するものである。  In particular, the present invention is to provide a photocatalyst powder having excellent permanent properties in surface application to fiber, paper, plastic material, or the like, kneading into the material, or use in a coating composition. .
本発明者は、 鋭意研究を重ねた結果、 二酸化チタン微粒子の表面に水難溶性の 有機物質の皮膜を形成することにより上記目的が達成されることを見出した。 すなわち、 本発明によれば、 二酸化チタン微粒子の表面が水難溶性有機物質の 皮膜で被覆されていることを特徴とする光触媒粉体が提供される。 As a result of intensive studies, the present inventor has found that poorly water-soluble It has been found that the above object is achieved by forming a film of an organic substance. That is, according to the present invention, there is provided a photocatalyst powder characterized in that the surface of titanium dioxide fine particles is coated with a film of a poorly water-soluble organic substance.
さらに、 本発明によれば、 皮膜形成性を有する水溶性有機物質と二酸化チタン 微粒子とを含むスラリ一に、 不溶化剤を添加して二酸化チタン微粒子表面に水難 溶性有機物質の皮膜を形成し、 所望により、 さらに、 水難溶性有機物質の皮膜が 形成された二酸化チタン微粒子をさらに 1 0 0 °C〜8 0 0 °C下で焼成すること を特徴とする光触媒粉体の製造方法が提供される。  Further, according to the present invention, an insolubilizing agent is added to a slurry containing a water-soluble organic substance having a film forming property and titanium dioxide fine particles to form a film of a poorly water-soluble organic substance on the surface of the titanium dioxide fine particles. Accordingly, there is provided a method for producing a photocatalyst powder, further comprising firing the titanium dioxide fine particles on which a film of a poorly water-soluble organic substance is formed at 100 ° C. to 800 ° C.
さらに、 本発明によれば、 有機重合体と上記特徴を有する光触媒粉体とを含む 有機重合体組成物;該有機重合体組成物を成形してなる光触媒機能性成形体;お よび上記特徴を有する光触媒粉体を表面に具備した光触媒機能性構造体が提供 される。 発明を実施するための最良の形態  Further, according to the present invention, an organic polymer composition comprising an organic polymer and a photocatalyst powder having the above characteristics; a photocatalytic functional molded article obtained by molding the organic polymer composition; Provided is a photocatalyst functional structure provided with a photocatalyst powder having the same on the surface. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光触媒粉体は、 水難溶性有機物質の皮膜で表面が被覆されている二酸 化チタン微粒子からなる。 ここで、 水難溶性有機物質の皮膜は、 皮膜形成性を有 する水溶性有機物質と二酸化チタン微粒子とを含むスラリーに不溶化剤を添加 して、 水溶性有機物質を不溶化し、 二酸化チタン微粒子表面に析出せしめること により形成されたものである。 皮膜を構成する水難溶性有機物質は非常に小さい溶解度積 (溶解度定数ともい う) を有する。 その水に対する溶解度積 (測定温度 2 5 °C) は、 好ましくは 1 0 一 1 (5以下、 より好ましくは 1 0— 2 (5以下、 さらに好ましくは 1 0— 2 5以下である。 水難溶性有機物質の皮膜は、 二酸化チタン表面の光触媒活性を許容できる範囲 で形成されていればよく、 その物理的構造には限定されない。 また、 水難溶性有 機物資の皮膜は、 光触媒活性を発揮するうえで光触媒反応を被る化合物 (悪臭物 など) やその分解物 (低分子、 炭酸ガス、 水など) の拡散移動を抑制するもので はなく、 また光透過を抑制するものではない。 従って、 前記水難溶性有機物質の 皮膜は、 二酸化チタン粒子表面に部分的に担持 (部分被覆) された状態または表 面全体に被覆された状態のレ ^ずれであってもよい。 The photocatalyst powder of the present invention is composed of titanium dioxide fine particles whose surface is coated with a film of a poorly water-soluble organic substance. Here, the film of the poorly water-soluble organic substance is formed by adding an insolubilizing agent to a slurry containing a water-soluble organic substance having a film forming property and titanium dioxide fine particles to insolubilize the water-soluble organic substance, and to form a film on the surface of the titanium dioxide fine particles. It is formed by precipitation. The poorly water-soluble organic substance that forms the film has a very small solubility product (also called solubility constant). Solubility product (measurement temperature 2 5 ° C) for the water is preferably 1 0 one 1 (5 or less, more preferably 1 0 2 (5 or less, more preferably 1 0 2 5 below. Poorly water-soluble The organic material film is not limited to its physical structure as long as the photocatalytic activity of the titanium dioxide surface is acceptable, and the film of poorly water-soluble organic material exhibits photocatalytic activity. It does not suppress the diffusion and transfer of compounds (such as malodorous substances) and their decomposed products (such as low molecular weight, carbon dioxide gas, water, etc.), and does not suppress light transmission. The film of the soluble organic substance is partially supported (partially covered) on the surface of the titanium dioxide particles or The deviation may be such that the entire surface is covered.
水難溶性有機物質の皮膜層は、 通常、 二酸化チタン重量に対して 0 . 0 1重量% 〜 1 0重量%、好ましくは 0 . 1重量%~ 5重量%の範囲で形成されることが好ま しい。 水難溶性皮膜層が 0 . 0 1重量%よりも少ないとプラスチック、 紙、 繊維な どの媒体への二酸化チタンの光触媒的影響が大きく、 媒体自身の耐久性が悪化す る。 水難溶性皮膜層が 1 0重量%より多いと、 二酸化チタン粒子の光触媒機能が 悪化する。  The coating layer of the poorly water-soluble organic substance is usually formed in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the weight of titanium dioxide. . If the water-insoluble coating layer is less than 0.01% by weight, the photocatalytic effect of titanium dioxide on a medium such as plastic, paper, or fiber is large, and the durability of the medium itself is deteriorated. When the content of the poorly water-soluble coating layer is more than 10% by weight, the photocatalytic function of the titanium dioxide particles deteriorates.
本発明の光触媒粉体は、 前述のように、 皮膜形成性を有する水溶性有機物質が 不溶化されて、 二酸化チタン微粒子表面に析出形成されたものであるが、 さらに、 1 0 0 °C〜8 0 0 で焼成されたものであることが好ましい。 すなわち、 高温で 焼成された光触媒粉体は、 重合体に練り込む場合には優れたコンパウンド特性、 成形性、 均一性を示し、 また布、 繊維、 ブラスティックなどの表面に担持させる 場合には優れた担持性を示す。  As described above, the photocatalyst powder of the present invention is obtained by insolubilizing a water-soluble organic substance having a film-forming property and depositing and forming on the surface of titanium dioxide fine particles. It is preferably fired at 0 °. In other words, the photocatalyst powder fired at a high temperature exhibits excellent compound properties, moldability, and uniformity when kneaded into a polymer, and is excellent when supported on the surface of cloth, fiber, plastic, etc. It shows good supportability.
本発明の光触媒粉体の製造に用いられる二酸化チタン微粒子は、 基本的には光 触媒能を有するものであれば特にその製法は限定されるものではなく、 例えば八 ロゲン化チタンを原料とし気相反応により得られるもの、 またはチタン酸溶液を 湿式で加水分解して得られたもの、 あるいはそれらを焼成したものでもよい。 また、 本発明において用いられる二酸化チタン微粒子は、 結晶形に限定される ものではないが、 光触媒として高性能を期待するうえからアナターゼゃブルッカ イトが好ましい。 二酸化チタン微粒子は、 これらの結晶系微粒子もしくはこれら の結晶を含む複合結晶系微粒子であってもよい。  The production method of the titanium dioxide fine particles used for producing the photocatalyst powder of the present invention is not particularly limited as long as it has photocatalytic ability. A product obtained by the reaction, a product obtained by hydrolyzing a titanic acid solution by a wet method, or a product obtained by calcining them may be used. The titanium dioxide fine particles used in the present invention are not limited to a crystal form, but anatase-brookite is preferable from the viewpoint of high performance as a photocatalyst. The titanium dioxide fine particles may be these crystalline fine particles or composite crystalline fine particles containing these crystals.
また、用いられる二酸化チタン微粒子は、一次粒子の平均粒径が 0 .0 0 1〜0 . 2ミクロン、 特に 0 .0 1〜0 . 1ミクロンであることが好ましい。 0 . 0 0 1ミク ロンを下回ると効率よく生産するのが困難であり実用的でない。 0 .2ミクロンを 超えると光触媒性能が大幅に低下する。  The titanium dioxide fine particles to be used preferably have an average primary particle size of 0.01 to 0.2 micron, particularly preferably 0.01 to 0.1 micron. If it is less than 0.001 micron, it is difficult to produce efficiently and it is not practical. If it exceeds 0.2 microns, the photocatalytic performance will be significantly reduced.
本発明の光触媒粉体は、 二酸化チタン微粒子の表面に白金、 ロジウム、 ルテニ ゥム、 パラジウム、 銀、 銅、 亜鉛などの金属が担持されていてもよい。 これらの 金属が担持されると二酸化チタン微粒子の環境浄化作用がさらに増長し、 殺菌、 殺藻作用も大きくなる。 本発明の光触媒粉体は、 有機重合体に添加して組成物として使用できる。 ここ で、 使用できる有機重合体には、 熱可塑性樹脂、 熱硬化性樹脂、 天然樹脂などが 挙げられる。 前記水難溶性有機物質の被覆膜の形成により、 有機重合体と二酸化 チタンの光触媒活性面 (表面) が直接接触することがないために、 媒体の有機重 合体自身が分解劣化を受けることが少なく、 光触媒能の耐久性が増大する。 In the photocatalyst powder of the present invention, a metal such as platinum, rhodium, ruthenium, palladium, silver, copper, or zinc may be supported on the surface of the titanium dioxide fine particles. When these metals are carried, the environmental purification action of the titanium dioxide fine particles is further enhanced, and the sterilization and algicidal actions are also enhanced. The photocatalyst powder of the present invention can be used as a composition by adding it to an organic polymer. Here, examples of the organic polymer that can be used include a thermoplastic resin, a thermosetting resin, and a natural resin. Due to the formation of the coating film of the poorly water-soluble organic substance, the organic polymer does not directly contact the photocatalytically active surface (surface) of titanium dioxide. The durability of the photocatalytic ability is increased.
このような有機重合体の具体例としては、 ポリエチレン、 ポリプロピレン、 ポ リスチレンなどのポリオレフイン、 ナイロン 6、 ナイロン 6 6、 ァラミドなどの ポリアミド、 ポリエチレンテレフタレート、 不飽和ポリエステルなどのポリエス テル、 ポリ塩化ビニル、 ポリ塩ィ匕ビニリデン、 ポリエチレンオキサイド、 ポリエ チレングリコール、 シリコン樹脂、 ポリビニルアルコール、 ビニルァセ夕一ル榭 脂、 ポリアセテート、 A B S樹脂、 エポキシ樹脂、 酢酸ビニル樹脂、 セルロース およびレーヨンその他のセルロース誘導体、 ポリウレタン樹脂、 ポリカーボネー ト樹脂、 尿素樹脂、 フッ素樹脂、 ポリフッ化ビニリデン、 フエノール樹脂、 セル ロイド、 キチン、 澱粉シート、 アクリル樹脂、 メラミン樹脂、 アルキド樹脂など が挙げられる。  Specific examples of such organic polymers include polyolefins such as polyethylene, polypropylene, and polystyrene; polyamides such as nylon 6, nylon 66, and aramide; polyesters such as polyethylene terephthalate and unsaturated polyester; polyvinyl chloride; Shiridani vinylidene, polyethylene oxide, polyethylene glycol, silicone resin, polyvinyl alcohol, vinyl acetate resin, polyacetate, ABS resin, epoxy resin, vinyl acetate resin, cellulose and other cellulose derivatives, cellulose resin, polyurethane resin, polycarbonate Net resin, urea resin, fluorine resin, polyvinylidene fluoride, phenol resin, celluloid, chitin, starch sheet, acrylic resin, melamine resin, alkyd resin Etc., and the like.
本発明の環境浄化用光触媒粉体を含むこれら有機重合体組成物は、 塗料、 コー ティング組成物、 コンパウンド、 マスターバッチなどの形態で使用できる。 有機 重合体組成物中の光触媒粉体の濃度は、 該組成物全重量につき、 0 . 0 1〜8 0重 量%、 好ましくは 1〜5 0重量%である。 また、 有機重合体組成物には、 悪臭物 質の除去効果を高めるために活性炭、 ゼォライ卜のような吸収剤を添加してもよ い。  These organic polymer compositions containing the photocatalyst powder for environmental purification of the present invention can be used in the form of paints, coating compositions, compounds, masterbatches and the like. The concentration of the photocatalyst powder in the organic polymer composition is from 0.01 to 80% by weight, preferably from 1 to 50% by weight, based on the total weight of the composition. In addition, an absorbent such as activated carbon or zeolite may be added to the organic polymer composition in order to enhance the effect of removing malodorous substances.
本発明においては、 上記有機重合体組成物を成形することによつて環境浄化機 能を有する重合体成形体が得られる。 このようなな組成物の成形体として、 繊維、 フィルム、 プラスチック成形体などが挙げられる。  In the present invention, a molded polymer having an environmental purification function can be obtained by molding the organic polymer composition. Molded articles of such a composition include fibers, films, plastic molded articles and the like.
さらに、 本発明の有機重合体組成物は、 耐久性に優れていることから壁材、 ガ ラス、 看板、 道路建築用コンクリートなどの構造体のコーティング組成物として 適応できる。 さらに表面処理された本発明の二酸化チタン光触媒粉体および有機 重合体組成物は、 紙やプラスチック、 布、 木のような構造体 (有機物) や、 車両 などの塗膜にコーティングされても、 媒体 (構造体や塗膜) を光触媒的劣化 -破 壊することなく、 光触媒の機能を十分発揮することが可能である。 Further, since the organic polymer composition of the present invention has excellent durability, it can be applied as a coating composition for structures such as wall materials, glass, signboards, and concrete for road construction. Furthermore, the titanium dioxide photocatalyst powder and the organic polymer composition of the present invention, which have been subjected to surface treatment, can be applied to a structure (organic substance) such as paper, plastic, cloth, or wood, or to a medium such as a vehicle. (Structures and coatings) photocatalytically degraded It is possible to fully demonstrate the function of the photocatalyst without breaking.
次に、 本発明の光触媒粉体の製造方法について説明する。 本発明の光触媒粉体 の製造方法では、 皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを 含むスラリーに不溶化剤を添加して、 水溶性有機物質を不溶化し、 二酸化チタン 微粒子表面に析出せしめることにより水難溶性有機物質の皮膜が形成される。 ここで、 使用される皮膜形成性を有する水溶性有機物質としては、 ポリカルボ ン酸、 ポリスルホン酸、 陰イオン界面活性剤およびそれらのアルカリ金属塩、 ァ ンモニゥム塩からなる群より選ばれた少なくとも 1種の化合物が好ましく使用 される。 これらのうち陰イオン性界面活性剤としては、 カルボン酸型もしくはス ルホン酸型の化合物が好ましく使用される。  Next, a method for producing the photocatalyst powder of the present invention will be described. In the method for producing a photocatalyst powder of the present invention, an insolubilizing agent is added to a slurry containing a film-forming water-soluble organic substance and titanium dioxide fine particles to insolubilize the water-soluble organic substance and precipitate on the surface of the titanium dioxide fine particles. By doing so, a film of a poorly water-soluble organic substance is formed. Here, the water-soluble organic substance having a film-forming property used is at least one selected from the group consisting of polycarbonates, polysulfonic acids, anionic surfactants, and alkali metal salts and ammonium salts thereof. Are preferably used. Among these, a carboxylic acid type or a sulfonic acid type compound is preferably used as the anionic surfactant.
皮膜形成性を有する水溶性有機物質として用いられるポリカルボン酸および そのアルカリ金属塩、 アンモニゥム塩としては、 ポリアクリル酸、 ポリメタァク リル酸、 ポリグルタミン酸、 ポリアスパラギン酸およびそれらの繰り返し単位を 含む共重合体、 ならびそれらのアルカリ金属塩、 アンモニゥム塩が挙げられる。 前記共重合体をさらに例示すれば、 マレイン酸 メ夕アクリル酸共重合体、 マレ イン酸 Zァクリル酸共重合体などが挙げられる。  Examples of the polycarboxylic acid used as a water-soluble organic substance having a film-forming property and its alkali metal salt and ammonium salt include polyacrylic acid, polymethacrylic acid, polyglutamic acid, polyaspartic acid, and a copolymer containing a repeating unit thereof. And their alkali metal salts and ammonium salts. Further examples of the copolymer include a maleic acid-methacrylic acid copolymer and a maleic acid-Zacrylic acid copolymer.
前記ポリスルホン酸およびそのアル力リ金属塩、 ァンモニゥム塩としてはポリ スチレンスルホン酸、 ポリビニル硫酸、 ポリビニルスルホン酸、 ポリ— α—メチ ルスルホン酸、 ポリエチレンスルホン酸およびそれらのアルカリ金属塩、 アンモ ニゥム塩が挙げられる。  Examples of the polysulfonic acid and its metal salts and ammonium salts include polystyrenesulfonic acid, polyvinylsulfuric acid, polyvinylsulfonic acid, poly-α-methylsulfonic acid, polyethylenesulfonic acid, and their alkali metal salts and ammonium salts. Can be
陰イオン性界面活性剤としては、 一部にポリカルボン酸型の高分子界面活性剤 も含まれ、 好ましくは脂肪族ソーダ石験、 アルキルエーテルカルボン酸などの力 ルボン酸塩型界面活性剤、 ラウリル硫酸ナトリウム、 高級アルコール硫酸硫酸ナ トリウム、 ポリオキシエチレンラウリルエーテル硫酸ナトリウム、 ポリオキシェ チレンアルキルエーテル硫酸ナトリゥムなどの硫酸塩、 ドデシルベンゼンスルホ ン酸ナトリウム、 アルキルナフタレンスルホン酸ナトリウム、 芳香族スルホン酸 ナトリウム、 アルカンスルホン酸ナトリウム、 芳香族スルホン酸ホルマリン縮合 物のナトリゥム塩などの有機スルホン酸塩などが挙げられる。  Some of the anionic surfactants also include polycarboxylic acid-type polymer surfactants, and are preferably aliphatic sodium soda test, surfactants such as alkyl ether carboxylic acid, and sulfonic acid-type surfactants, and lauryl. Sulfates such as sodium sulfate, higher alcohol sodium sulfate, sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sodium sulfate, sodium dodecylbenzene sulfonate, sodium alkylnaphthalene sulfonate, sodium aromatic sulfonate, alkane sulfone And organic sulfonic acid salts such as sodium salt of sodium sulfonic acid and a sodium salt of an aromatic sulfonic acid formalin condensate.
これらの陰ィォン性界面活性剤は一種を単独でまたは二種以上を組み合わせ使 用することができる。 These anionic surfactants may be used alone or in combination of two or more. Can be used.
これら水難溶性有機物質の皮膜の形成に使用される皮膜形成性を有する水溶 性有機物質としては、 光触媒に対する皮膜特性の観点から、 好ましくは高分子系 の化合物が利用される。 水難溶性有機物質の皮膜が表面に形成された二酸化チタ ン粒子は、 二酸化チタンのもつ光触媒性能が抑制されているために、 媒体の劣化 を生じることなく、 また光触媒機能を低下することなく光触媒粉体として優れた 特性を有する。 特に、 水溶性有機物質として高分子系の化合物を使用すると、 光 触媒機能の耐久性が増大する。  As the water-soluble organic substance having a film-forming property used for forming a film of such a water-insoluble organic substance, a polymer compound is preferably used from the viewpoint of the film property to the photocatalyst. Titanium dioxide particles having a film of a poorly water-soluble organic substance formed on the surface do not cause deterioration of the medium and do not deteriorate the photocatalytic function because the photocatalytic performance of titanium dioxide is suppressed. Has excellent properties as a body. In particular, when a polymer compound is used as the water-soluble organic substance, the durability of the photocatalytic function is increased.
不溶化剤としてはカルシウムイオンを供出できる水溶性力ルシゥム化合物が 用いられる。 この化合物を添加すると、 皮膜形成性を有する水溶性有機物質が不 溶化し、 カルシウム塩として二酸化チタン表面に析出し、 水難溶性皮膜を形成す る。 好ましいカルシウム化合物としては塩^カルシウムが例示される。  As the insolubilizing agent, a water-soluble calcium compound capable of supplying calcium ions is used. When this compound is added, the water-soluble organic substance capable of forming a film is insolubilized and precipitates as a calcium salt on the surface of titanium dioxide to form a water-insoluble film. Preferred examples of the calcium compound include salts and calcium.
二酸化チタン微粒子表面に水難溶性有機物質の被覆膜を形成後、 粒子を分離、 洗浄、 乾燥する。 水難溶性有機物質の被覆膜を有する二酸化チタン微粒子とフリ 一の水難溶性有機物質物質との分離には、 一般的に遠心分離法、 回分式沈降法、 濾過法などが採られる。  After forming a coating film of a poorly water-soluble organic substance on the surface of titanium dioxide fine particles, the particles are separated, washed and dried. In general, centrifugal separation, batch sedimentation, filtration and the like are used to separate titanium dioxide fine particles having a coating film of a poorly water-soluble organic substance and a clear poorly water-soluble organic substance.
前記方法により製造される光触媒粉体は、 好ましくはさらに焼成されることに より光触媒機能を向上することができる。 すなわち、 前述の光触媒粉体を不活性 ガス雰囲気下または空気中において 1 0 0 :〜 8 0 0 °C、 好ましくは 2 5 0〜 7 0 0 °C雰囲気中で焼成することにより、 未反応の水溶性原料を蒸散化することが でき、 また該被覆粉体表面の吸水性を改善することができる。 この吸水性の改善 処理を行なうと、 該光触媒粉体は、 重合体に練り込む場合には優れたコンパゥン ド特性、 成形性、 均一性を示し、 また布、 繊維、 ブラスティックなどの表面に担 持させる場合には優れた担持性を示す。  The photocatalyst powder produced by the above method can preferably be further calcined to improve the photocatalytic function. That is, by firing the above-mentioned photocatalyst powder in an atmosphere of an inert gas or in air at 100: 800 ° C, preferably 250-700 ° C, unreacted The water-soluble raw material can be evaporated, and the water absorption of the surface of the coated powder can be improved. When this water-absorbing treatment is performed, the photocatalyst powder exhibits excellent compounding properties, moldability, and uniformity when kneaded into a polymer, and is applied to the surface of cloth, fiber, plastic, and the like. When carried, it exhibits excellent carrying properties.
本発明の光触媒粉体は、 前述のように、 二酸化チタン微粒子の表面に白金、 口 ジゥム、 ルテニウム、 パラジウム、 銀、 銅、 亜鉛などの金属が担持されていても よい。 これら金属を担持する方法としては、 原料の二酸化チタン微粒子に担持す る方法、 前記水難溶性有機物質被覆層を形成する過程で担持する方法、 該被覆層 の形成後に担持する方法のいずれを採ってもよい。 以下、 実施例によって本発明を具体的に説明する。 ただし、 本発明は以下の実 施例によって何ら制限されるものではない。 As described above, in the photocatalyst powder of the present invention, a metal such as platinum, platinum, ruthenium, palladium, silver, copper, or zinc may be supported on the surface of the titanium dioxide fine particles. As a method for supporting these metals, any of a method of supporting titanium dioxide fine particles as a raw material, a method of supporting the metal in the process of forming the poorly water-soluble organic substance coating layer, and a method of supporting the metal layer after the formation of the coating layer is adopted. Is also good. Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited at all by the following embodiments.
(実施例 1 )  (Example 1)
2.8Lの純水の中に市販のポリカルボン酸ナトリゥム型高分子界面活性剤(花 王 (株) 製商品名:ボイズ 530) を 0.6 g添加し、 そこへ二酸化チタン超微粒 子 (昭和タイ夕ニゥム (株) 製 F4、 一次粒子の平均粒径 0.03ミクロン) 12 0 gを投入して分散処理を行った。  0.6 g of a commercially available sodium polycarboxylate-type polymer surfactant (trade name: Boise 530, manufactured by Kao Corporation) was added to 2.8 L of pure water, and then ultrafine titanium dioxide particles (Showa Taiy 夕 Co., Ltd.) were added thereto. 120 g of F4 manufactured by Nimu Co., Ltd. (average particle diameter of primary particles: 0.03 micron) was added to perform dispersion treatment.
別に、 純水中に CaC 12を添加し、 二酸化チタンスラリーと混合した後の C a 2+が 1. 8mMとなるように調整した塩溶液を 3.5 L作製した。 前記方法によつ て得た二酸化チタンスラリー 2.8 Lと塩溶液 3.5 Lとを混合し、 さらに温度を 40°Cに維持して 24時間保持して表面処理を完了した。 その後、 このスラリー を注意深く遠心分離し、 120 で 4時間乾燥して二酸化チタン粉末を 1 15 g 得た。 これにより得られた二酸化チタン粉末を FT— I R ( (株) パーキンエル マー製、 FT— I R 1650) で表面分析を行った結果、 前記高分子界面活性剤 由来のカルボキシル基とカルシウム塩構造が担持されていることが吸収ピーク から観察された。 Separately, pure water was added CaC 1 2, C a 2+ after mixing with titanium dioxide slurry was adjusted salt solution 3.5 L prepared as a 1. 8 mM. 2.8 L of the titanium dioxide slurry obtained by the above method was mixed with 3.5 L of the salt solution, and the temperature was maintained at 40 ° C and maintained for 24 hours to complete the surface treatment. Thereafter, this slurry was carefully centrifuged and dried at 120 for 4 hours to obtain 115 g of titanium dioxide powder. The titanium dioxide powder thus obtained was subjected to surface analysis using FT-IR (FT-IR 1650, manufactured by PerkinElmer Co., Ltd.). As a result, a carboxyl group derived from the polymer surfactant and a calcium salt structure were supported. Was observed from the absorption peak.
(消臭機能評価)  (Evaluation of deodorant function)
前記表面処理された二酸化チタン粉体 3.5 gを 9 Οππηφのシャーレに入れ た後、 初期濃度 60 pmの硫化水素を封入した 5 Lのテドラーバッグの中に入 れ、該ニ酸化チタン粉末にブラックライ卜で 365 nmの紫外線が 0.23mW/ c m2の強度になるようにに紫外線を照射した。紫外線照射 30分後のテドラーバ ッグの中の硫化水素濃度を検知管 (ガステック (株) 、 4LL) で測定した結果、 硫化水素の残存率は 30%であった。 これにより、 該ニ酸化チタンの消臭機能が 評価される。 3.5 g of the surface-treated titanium dioxide powder was placed in a 9 9ππηφ petri dish, and then placed in a 5 L Tedlar bag filled with hydrogen sulfide having an initial concentration of 60 pm. UV light was applied so that the UV light at 365 nm had an intensity of 0.23 mW / cm 2 . The concentration of hydrogen sulfide in the Tedlar bag 30 minutes after ultraviolet irradiation was measured with a detector tube (Gastec Co., Ltd., 4LL). As a result, the residual ratio of hydrogen sulfide was 30%. Thereby, the deodorizing function of the titanium dioxide is evaluated.
(樹脂劣化評価)  (Resin deterioration evaluation)
前記表面処理されたニ酸化チタン粉体 1 kgとポリエチレンテレフタレート 樹脂を用い、 市販の二軸混練押し出し機 ( (株) テクノベル製 KZW15— 30 MG) にて温度 280°C下で二酸化チタン濃度 20%のコンパウンドを製造した。 得られたコンパウンドを加熱プレスで 3 cm<i) X 1 cmの試験片を作製し、 試験 片の黄色度 (Y I値、 ASTM D 1925) を分光測色計 (ミノルタ (株) 製、 CM— 2002) で測定した結果、 その黄色度 Y I値は 8.6で着色はほとん ど認められなかった。 次に、 得られた試験片をフェードメータ (ヘレウス社) 、 キセノンランプ) で 50 mWZ c m2の光をあてて 10時間照射した。その照射前 後の黄色度の差異 (ΔΥ Ι) を査定、 樹脂劣化を評価した。 結果は表 1に示す。 Using 1 kg of the surface-treated titanium dioxide powder and polyethylene terephthalate resin, a commercially available twin-screw kneading extruder (KZW15-30 MG manufactured by Technovel Co., Ltd.) at a temperature of 280 ° C and a titanium dioxide concentration of 20% Was manufactured. A 3 cm <i) x 1 cm test piece was prepared from the obtained compound using a hot press and tested. The yellowness (YI value, ASTM D 1925) of the piece was measured by a spectrophotometer (CM-2002, manufactured by Minolta Co., Ltd.). As a result, the yellowness YI value was 8.6, and almost no coloring was observed. Next, the obtained test piece was irradiated with light of 50 mWZ cm 2 for 10 hours using a fade meter (Hereus Co., Ltd., xenon lamp). The difference in yellowness (Δ の 黄色) before and after the irradiation was evaluated, and resin deterioration was evaluated. The results are shown in Table 1.
(実施例 2)  (Example 2)
実施例 1のポリカルボン酸ナトリゥムをドデシルベンゼンスルホン酸ナ卜リ ゥム (DBS— Naと略し、 ナカライテスク (株) 製特級試薬を使用) とした以 外は実施例 1の方法と同様に処理して、 表面被覆された光触媒粉体を製造した。 ここで得られた該粉末の表面分析を行った結果、 スルホン酸基とカルシウム塩が FT- I Rで観察された。 次に、 得られた光触媒粉末を実施例 1と同様な手法に より消臭機能評価と樹脂劣化評価を行った結果、 表 1の結果が得られた。  Treatment was performed in the same manner as in Example 1 except that sodium polycarboxylate in Example 1 was changed to sodium dodecylbenzenesulfonate (abbreviated as DBS-Na, using a special grade reagent manufactured by Nacalai Tesque, Inc.). Thus, a surface-coated photocatalyst powder was produced. As a result of a surface analysis of the powder obtained here, a sulfonic acid group and a calcium salt were observed by FT-IR. Next, the obtained photocatalyst powder was evaluated for deodorizing function and resin degradation by the same method as in Example 1, and the results shown in Table 1 were obtained.
(実施例 3 )  (Example 3)
実施例 1で得られた表面処理粉末をさらに電気炉に移し、 空気下 300°Cで 1 0時間焼成した。 ここで得られた焼成品を実施例 1と同様な手法により消臭機能 評価と樹脂劣化評価を行った結果、 表 1の結果が得られた。  The surface-treated powder obtained in Example 1 was further transferred to an electric furnace and fired at 300 ° C. for 10 hours under air. The fired product obtained here was evaluated for the deodorizing function and the resin deterioration by the same method as in Example 1. As a result, the results shown in Table 1 were obtained.
(実施例 4)  (Example 4)
実施例 1で得られた粉末を、 別途電気炉で窒素雰囲気下 600でで 10時間焼 成して前記同様、 光触媒性の評価をした。 結果を表 1に示した。  The powder obtained in Example 1 was separately fired in an electric furnace at 600 at a nitrogen atmosphere for 10 hours, and the photocatalytic property was evaluated in the same manner as described above. The results are shown in Table 1.
(比較例 1 )  (Comparative Example 1)
表面処理の施されていない二酸化チタン超微粒子 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒径 0.03ミクロン) に対して、 実施例 1と同様な手 法により消臭機能評価と樹脂劣化評価を行った結果、 表 1の結果が得られた。  Evaluation of deodorant function for ultra-fine titanium dioxide particles without surface treatment (F-4, manufactured by Showa Taiyu Nippon Co., Ltd., average particle size of primary particles 0.03 micron) by the same method as in Example 1. The results of Table 1 were obtained as a result of the evaluation of resin deterioration.
(比較例 2)  (Comparative Example 2)
2.8 Lの純水の中に二酸化チタン超微粒子 (昭和夕イタニゥム (株) 製 F— 4、 一次粒子の平均粒径 0.03ミクロン) 120 gを投入して分散処理を行った。 次 いで純水中に NaCl、 NaHP04、 KH2P04、 KC1、 MgCl2 · 6H20、 CaCl2を添加し、 二 酸化チタンスラリーと混合した後の Na+が 139mM、 K+が 2.8mM、 Ca2+が 1. 8mM、 Mg2+が 0.5mM、 CI—が、 144mM、 HP04—が 1.1 mMとなるように 調整した溶液を 3.5 L作製した。前記方法によって得た二酸化チタンスラリー 2. 8 Lと溶液 3.5 Lとを混合し、 さらに温度を 40°Cに維持して 24時間保持した。 その後、 スラリーを洗浄、 乾燥して 1 00 gのリン酸カルシウムで被覆された二 酸化チタン微粉末を得た。 実施例 1と同様な手法により消臭機能評価と樹脂劣化 評価を行った結果、 表 1の結果が得られた。 120 g of ultrafine titanium dioxide particles (F-4, manufactured by Showa Yu Itanimu Co., Ltd., average particle size of primary particles: 0.03 micron) were put into 2.8 L of pure water to perform dispersion treatment. Next Ide and NaCl, NaHP0 4, KH 2 P0 4, KC1, MgCl 2 · 6H 2 0, CaCl 2 was added to pure water, second after mixing with titanium oxide slurry Na + is 139 mm, K + is 2.8 mM, Ca 2+ 1. 8 mM, Mg 2+ 0.5 mM, CI- is, 144mM, HP0 4 - are formed so that 1.1 mM 3.5 L of the prepared solution was prepared. 2.8 L of the titanium dioxide slurry obtained by the above method and 3.5 L of the solution were mixed, and the temperature was further maintained at 40 ° C for 24 hours. Thereafter, the slurry was washed and dried to obtain 100 g of calcium phosphate-coated fine powder of titanium dioxide. The deodorizing function evaluation and the resin deterioration evaluation were performed in the same manner as in Example 1, and the results shown in Table 1 were obtained.
(比較例 3)  (Comparative Example 3)
1.8 Lの純水中に二酸化チタン超微粒子 (昭和タイ夕ニゥム (株) 製 F— 4、 一次粒子の平均粒径 0.03ミクロン) 120 gとアルミン酸ソーダ 0.05mo 1を投入して分散処理を行った。 次に、 得られたスラリーに 0.06 mo 1 Z 1の 希硫酸を滴下し、 pH 7.2に調整し、 洗浄、 乾燥を行いアルミナで被覆された二 酸化チタン粉末を得た。 次に、 得られた粉末を実施例 1で記載されている消臭機 能評価と樹脂劣化評価を行った結果、 表 1の結果が得られた。  120 g of ultrafine titanium dioxide particles (F-4, manufactured by Showa Taiyu Nippon Co., Ltd., average particle size of primary particles: 0.03 micron) and 0.05 mol of sodium aluminate are added to 1.8 L of pure water for dispersion treatment. Was. Next, 0.06 mo 1 Z 1 of dilute sulfuric acid was added dropwise to the obtained slurry, the pH was adjusted to 7.2, and washing and drying were performed to obtain titanium dioxide powder coated with alumina. Next, the obtained powder was subjected to the deodorizing function evaluation and the resin deterioration evaluation described in Example 1, and the results shown in Table 1 were obtained.
表面に形成 焼成 消臭機能 コンパゥン 紫外線照射 紫外線照射 された化合物 温度 硫化水素 ド作製時の 10時間後の 前後の Y I の残存率 Y I値 Y I値 Formed on the surface Firing Deodorizing function Compound UV irradiation UV-irradiated compound Temperature Residual rate of Y I before and after 10 hours after hydrogen sulfide production Y I value Y I value
C )_ (%) . (ΔΥ I ) 実施例 1 ポリカルボン酸 30 8.6 9.0 0.4  (C) _ (%). (ΔΥI) Example 1 Polycarboxylic acid 30 8.6 9.0 0.4
Ca塩  Ca salt
実施例 2 DBS— 35 9.5 10.5 Example 2 DBS—35 9.5 10.5
C a塩  C a salt
実施例 3 ポリカルボン酸 300 20 8.5 9.0 0.5 Example 3 Polycarboxylic acid 300 20 8.5 9.0 0.5
Ca塩  Ca salt
実施例 4 ポリカルボン酸 600 25 8.4 8.9 0.5 Example 4 Polycarboxylic acid 600 25 8.4 8.9 0.5
Ca塩  Ca salt
比較例 1 一 20 25 34.0 9.0 比較例 2 リン酸 Ca 60 8.0 8.4 0.4 比較例 3—アルミナ ― 98 8.2 8.3 0.1 Comparative Example 1 1 20 25 34.0 9.0 Comparative Example 2 Ca 608.0 8.4 0.4 Comparative Example 3—Alumina ― 98 8.2 8.3 0.1

Claims

産業上の利用可能性 本発明の水難溶性有機物質の皮膜で被覆された二酸化チタン微粒子からなる 光触媒粉体は、 光の照射によって光触媒作用を示し、 悪臭の除去、 空気中の有害 物質または汚れの分解除去、 排水処理や浄水処理、 抗菌ゃ抗かび性付与などの環 境を浄化する目的で広く使用される。 しかも、 この光触媒粉体は、 環境浄化を効 果的に行うことができる。 特に粉体を繊維、 紙、 ブラスティック成形品などに塗 布、 または繊維、 ブラスティック成形品などの製造過程において繊維やプラスチ ックなどの媒体に練り混み、 あるいは塗料などの形態で使用した際に、 光照射環 境下であっても媒体の劣化を生じることがない。 従って、 本発明の光触媒粉体は、 二酸化チタンが本来有する優れた環境浄化能特性を保持し、 その環境浄化能は耐 久性に優る。 本発明の光触媒粉体、 該光触媒粉体を含む有機重合体組成物、 該有機重合体組 成物の成形体、 および該光触媒粉体もしくは該重合体組成物を表面に有する構造 体は、 強い光照射下よりも弱い光照射環境下において、 特に優れた環境诤化能特 性および耐久性に優れた光触媒能を示す。 請求の範囲 INDUSTRIAL APPLICABILITY The photocatalyst powder comprising titanium dioxide fine particles coated with a film of a poorly water-soluble organic substance of the present invention exhibits a photocatalytic action upon irradiation with light, removes offensive odors, removes harmful substances or dirt in the air. It is widely used to purify the environment such as decomposition and removal, wastewater treatment, water purification treatment, and antimicrobial and antifungal properties. In addition, this photocatalyst powder can effectively purify the environment. In particular, when powder is applied to fibers, paper, plastic moldings, etc., or is mixed with fibers, plastics, or other media in the manufacturing process of fibers, plastic moldings, etc., or used in the form of paint Furthermore, the medium does not deteriorate even under the light irradiation environment. Therefore, the photocatalyst powder of the present invention retains the excellent environmental purification ability inherent in titanium dioxide, and the environmental purification ability is superior in durability. The photocatalyst powder of the present invention, an organic polymer composition containing the photocatalyst powder, a molded article of the organic polymer composition, and a structure having the photocatalyst powder or the polymer composition on the surface are strong. Under light irradiation environment that is weaker than under light irradiation, it shows particularly excellent environmental aging ability and photocatalytic ability with excellent durability. The scope of the claims
1 . 表面が水難溶性有機物質の皮膜で被覆されている二酸化チタン微粒子か らなることを特徴とする光触媒粉体。 1. Photocatalyst powder characterized by comprising titanium dioxide fine particles whose surface is coated with a film of a poorly water-soluble organic substance.
2 . 水難溶性有機物質の皮膜の量が、 二酸化チタンに対して 0 .0 1重量%〜 1 0重量%である請求の範囲 1に記載の光触媒粉体。  2. The photocatalyst powder according to claim 1, wherein the amount of the film of the poorly water-soluble organic substance is 0.01 to 10% by weight based on titanium dioxide.
3 . 水難溶性有機物質が、 ポリカルボン酸カルシウム塩、 ポリスルホン酸力 ルシゥム塩および陰ィォン界面活性剤のカルシウム塩からなる群より選ばれた 少なくとも 1種である請求の範囲 1または 2に記載の光触媒粉体。  3. The photocatalyst according to claim 1 or 2, wherein the poorly water-soluble organic substance is at least one selected from the group consisting of a calcium salt of a polycarboxylic acid, a calcium salt of a polysulfonic acid, and a calcium salt of an anionic surfactant. powder.
4 . 二酸化チタン微粒子の表面に水難溶性有機物質の皮膜を形成した後に 1 0 0 °:〜 8 0 0 °Cで焼成したものである請求の範囲 1〜3のいずれかに記載の 光触媒粉体。  4. The photocatalyst powder according to any one of claims 1 to 3, wherein the photocatalyst powder is obtained by forming a film of a poorly water-soluble organic substance on the surface of titanium dioxide fine particles and then calcining at 100 ° C: to 800 ° C. .
5 . 皮膜形成性を有する水溶性有機物質と二酸化チタン微粒子とを含むスラ リーに、 不溶化剤を添加して二酸化チタン微粒子表面に水難溶性有機物質の皮膜 を形成することを特徴とする光触媒粉体の製造方法。  5. Photocatalytic powder characterized by adding a solubilizer to a slurry containing a water-soluble organic substance having a film forming property and titanium dioxide fine particles to form a film of a poorly water-soluble organic substance on the surface of the titanium dioxide fine particles. Manufacturing method.
6 . 水溶性有機物質が、 ポリカルボン酸、 ポリスルホン酸、 陰イオン界面活 性剤およびそれらのアルカリ塩、 アンモニゥム塩からなる群より選ばれた少なく とも 1種である請求の範囲 5に記載の光触媒粉体の製造方法。  6. The photocatalyst according to claim 5, wherein the water-soluble organic substance is at least one selected from the group consisting of polycarboxylic acids, polysulfonic acids, anionic surfactants, and alkali salts and ammonium salts thereof. Powder manufacturing method.
7 . 不溶化剤が水溶性カルシウム化合物である請求の範囲 5または 6に記載 の光触媒粉体の製造方法。  7. The method for producing a photocatalyst powder according to claim 5, wherein the insolubilizing agent is a water-soluble calcium compound.
8 . 水難溶性有機物質の皮膜が形成された二酸化チタン微粒子をさらに 1 0 0 °C〜8 0 0 °Cで焼成する請求の範囲 5〜7のいずれかに記載の光触媒粉体の 製造方法。  8. The method for producing a photocatalyst powder according to any one of claims 5 to 7, wherein the titanium dioxide fine particles on which the film of the poorly water-soluble organic substance is formed are further calcined at 100 ° C to 800 ° C.
9 . 有機重合体と請求の範囲 1〜4のいずれかに記載の光触媒粉体とを含む 有機重合体組成物。  9. An organic polymer composition comprising the organic polymer and the photocatalyst powder according to any one of claims 1 to 4.
1 0 . 請求の範囲 9に記載の有機重合体組成物を成形してなる光触媒機能性成 形体。  10. A photocatalytic functional molded article obtained by molding the organic polymer composition according to claim 9.
1 1 . 請求の範囲 1〜4のいずれかに記載の光触媒粉体を表面に具備した光触 媒機能性構造体。 11. A photocatalyst having a photocatalyst powder according to any one of claims 1 to 4 on its surface. Medium functional structure.
PCT/JP2000/006151 1999-09-08 2000-09-08 Particulate photocatalyst, process for producing the same, and applications thereof WO2001017679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU68763/00A AU6876300A (en) 1999-09-08 2000-09-08 Particulate photocatalyst, process for producing the same, and applications thereof
JP2001521461A JP4079306B2 (en) 1999-09-08 2000-09-08 Photocatalyst powder, its production method and its application

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25408699 1999-09-08
JP11/254086 1999-09-08
US16212499P 1999-10-29 1999-10-29
US60/162,124 1999-10-29

Publications (1)

Publication Number Publication Date
WO2001017679A1 true WO2001017679A1 (en) 2001-03-15

Family

ID=26541526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006151 WO2001017679A1 (en) 1999-09-08 2000-09-08 Particulate photocatalyst, process for producing the same, and applications thereof

Country Status (3)

Country Link
JP (1) JP4079306B2 (en)
AU (1) AU6876300A (en)
WO (1) WO2001017679A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079974A1 (en) * 2004-02-23 2005-09-01 Kuraray Co., Ltd. Oxygen absorbent, method for producing same, and oxygen absorbing composition and packaging material using same
JP2009235095A (en) * 2009-07-15 2009-10-15 Fujitsu Ltd Agrochemical composition, and residual agrochemical degrading agent
WO2017132350A1 (en) 2016-01-29 2017-08-03 Tolmar Inc. Purification and decolorization of polymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
JPH10310401A (en) * 1997-04-30 1998-11-24 Japan Energy Corp Semiconductor photocatalyst and hydrogen production using the same
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same
JP2000290496A (en) * 1999-02-01 2000-10-17 Achilles Corp Polyurethane foam having photocatalytic function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
JPH10310401A (en) * 1997-04-30 1998-11-24 Japan Energy Corp Semiconductor photocatalyst and hydrogen production using the same
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same
JP2000290496A (en) * 1999-02-01 2000-10-17 Achilles Corp Polyurethane foam having photocatalytic function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079974A1 (en) * 2004-02-23 2005-09-01 Kuraray Co., Ltd. Oxygen absorbent, method for producing same, and oxygen absorbing composition and packaging material using same
JP2009235095A (en) * 2009-07-15 2009-10-15 Fujitsu Ltd Agrochemical composition, and residual agrochemical degrading agent
WO2017132350A1 (en) 2016-01-29 2017-08-03 Tolmar Inc. Purification and decolorization of polymers
EP3408305A4 (en) * 2016-01-29 2019-08-28 Tolmar Inc. Purification and decolorization of polymers
US10556999B2 (en) 2016-01-29 2020-02-11 Tolmar, Inc. Purification and decolorization of polymers

Also Published As

Publication number Publication date
AU6876300A (en) 2001-04-10
JP4079306B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US6383980B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
KR100397659B1 (en) Photocatalyst powder for environmental purification, polymer composition containing the powder and molded article thereof, and processes for producing these
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
US7579296B2 (en) Broad band light absorbing photocatalyst, process for producing thereof, broad band light absorbing photocatalyst composition, and molded article
JP3454817B2 (en) Visible light responsive paints, coatings and articles
EP2477947B1 (en) Stable nano titania sols and a process for their production
JP3493393B2 (en) Photocatalytic powder for environmental purification, powder-containing polymer composition and molded article thereof, and methods for producing them
JP5134835B2 (en) Disassembly method
CN110075930B (en) Photocatalytic system with photoresponse switch and self-indicating property as well as preparation method and application
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
JP2006124267A (en) Composite particle containing titanium dioxide and its application
JP2002001125A (en) Photocatalyst powder and slurry, and polymer composition, coating material, photocatalytic functional formed body and photocatalytic functional structural body containing the powder
JP5127134B2 (en) Deodorant comprising tubular titanium oxide particles
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JP2004243307A (en) High activity photocatalyst particle, manufacturing method therefor and usage thereof
WO2001017679A1 (en) Particulate photocatalyst, process for producing the same, and applications thereof
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JPWO2002053285A1 (en) Photofunctional powder and its use
JP3903167B2 (en) Active oxygen generating material
JP2002036418A (en) Film material with photocatalytic function
JP2010075898A (en) Photocatalyst, method of manufacturing the same, and composition having photocatalytic function
WO2008072747A1 (en) Stain-resistant material synthesized by reprecipitation method and having weather resistance, and process for production thereof
WO2001017680A1 (en) Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2012095699A (en) Antibacterial and deodorization treating agent, and antibacterial and deodorization treating article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)