JP2008300300A - Nonaqueous lithium ion secondary battery - Google Patents

Nonaqueous lithium ion secondary battery Download PDF

Info

Publication number
JP2008300300A
JP2008300300A JP2007147527A JP2007147527A JP2008300300A JP 2008300300 A JP2008300300 A JP 2008300300A JP 2007147527 A JP2007147527 A JP 2007147527A JP 2007147527 A JP2007147527 A JP 2007147527A JP 2008300300 A JP2008300300 A JP 2008300300A
Authority
JP
Japan
Prior art keywords
lithium ion
secondary battery
ion secondary
porous
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007147527A
Other languages
Japanese (ja)
Other versions
JP2008300300A5 (en
JP5174376B2 (en
Inventor
Hiroyoshi Take
弘義 武
Yoshihiro Uetani
慶裕 植谷
Keisuke Yoshii
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007147527A priority Critical patent/JP5174376B2/en
Publication of JP2008300300A publication Critical patent/JP2008300300A/en
Publication of JP2008300300A5 publication Critical patent/JP2008300300A5/ja
Application granted granted Critical
Publication of JP5174376B2 publication Critical patent/JP5174376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery in which various substances which are other than lithium ion and become causes for increasing a deterioration of battery characteristics are prevented from moving between a positive electrode and a negative electrode and as a result, a charge and discharge efficiency can be improved when charge and discharge are repeated and moreover even if charge and discharge are repeated, a decrease in capacity is not caused and a deterioration of rate characteristics is limited. <P>SOLUTION: The nonaqueous lithium ion secondary battery is composed of a positive electrode, a nonaqueous electrolyte solution and a porous separator membrane, and a negative electrode which is electrically insulated from the positive electrode through the porous separator membrane. Between the positive electrode and the negative electrode, there is, on the porous separator membrane, preferably at least one layer of a substantially non-porous lithium ion conductive layer having an air permeability of 10,000 sec/100 cc or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水リチウムイオン二次電池に関し、詳しくは、正極と負極の間に実質的に無孔性のリチウムイオン伝導層性を有し、特に、レート特性にすぐれる非水リチウムイオン二次電池に関する。   The present invention relates to a non-aqueous lithium ion secondary battery, and in particular, has a substantially nonporous lithium ion conductive layer property between a positive electrode and a negative electrode, and in particular, a non-aqueous lithium ion secondary battery having excellent rate characteristics. Next battery.

近年、携帯電話やノート型パーソナルコンピュータ等の小型携帯電子機器のための電源
として、高エネルギー密度を有する非水リチウムイオン二次電池が広く用いられている。このような非水リチウムイオン二次電池は、シート状の正負電極と、例えば、ポリオレフィン樹脂多孔質フィルムとを積層し、又は捲回して、例えば、金属缶からなる電池容器に仕込んだ後、この電池容器に電解液を注入し、密封、封口するという工程を経て製造される。
In recent years, non-aqueous lithium ion secondary batteries having high energy density have been widely used as power sources for small portable electronic devices such as mobile phones and notebook personal computers. Such a non-aqueous lithium ion secondary battery is formed by laminating or winding a sheet-like positive and negative electrode and, for example, a polyolefin resin porous film, and charging the battery container made of, for example, a metal can. It is manufactured through a process of injecting an electrolytic solution into a battery container, sealing, and sealing.

しかし、近年、上記のような小型携帯電子機器の一層の小型化、軽量化への要望が非常
に強く、リチウムイオン二次電池についても、更なる薄型化と軽量化が求められており、従来の金属缶容器に代えて、ラミネートフィルム型の電池容器も用いられるようになっている。また、正極材料や負極材料においては、高容量且つ高出力のリチウムイオン二次電池を提供するための研究が精力的になされており、一方で、安全性の高いリチウムイオン二次電池を求める要望が非常に高まっている。
However, in recent years, there has been a strong demand for further miniaturization and weight reduction of the above-described small portable electronic devices, and further reduction in thickness and weight have been demanded for lithium ion secondary batteries. Instead of the metal can container, a laminate film type battery container is also used. In addition, positive electrode materials and negative electrode materials have been intensively researched to provide high-capacity and high-power lithium-ion secondary batteries. On the other hand, there is a demand for highly safe lithium-ion secondary batteries. Is growing very much.

そこで、例えば、不燃性の固体電解質や、不燃性、耐熱性であって、常温溶融塩とも呼
ばれるイオン液体を用いる提案がなされているが、これらはイオン伝導性が不十分であるということや、また、電極との良好な界面が得られないという問題があり、本格的な実用化がなされるまでには至っていない。
Therefore, for example, a proposal has been made to use an incombustible solid electrolyte, an incombustible, heat resistant ionic liquid called a room temperature molten salt, but these have insufficient ion conductivity, In addition, there is a problem that a good interface with the electrode cannot be obtained, and it has not yet been put into practical use.

更には、上述したような精力的な研究によっても、リチウムイオン二次電池には、依然
として、常温又は高温の雰囲気下で充放電を繰り返すことによって、容量が低下する、出力特性が劣化する、安全性が低下する等の問題がある。その原因には種々のものがあるが、例えば、充電時に負極にリチウムが析出する、正極活物質から金属イオンが溶出する、正極で酸化された有機溶媒がカチオンラジカルとなって、負極表面で還元されたり、他の反応を起こしたりする、正極活物質や集電体から溶出した金属イオンが負極表面に析出する、また、電解液が電極材料表面で分解して、フッ化リチウム等を生成し、容量に寄与するリチウムイオン量が減少するので、不可逆容量が増加する等を挙げることができる(例えば、非特許文献1)。
Furthermore, even through the above-described intensive research, lithium-ion secondary batteries still have a reduced capacity, output characteristics, and safety due to repeated charge and discharge in a room temperature or high temperature atmosphere. There is a problem such as a decrease in performance. There are various causes for this, for example, lithium is deposited on the negative electrode during charging, metal ions are eluted from the positive electrode active material, and the organic solvent oxidized at the positive electrode becomes a cation radical, which is reduced on the negative electrode surface. Metal ions eluted from the positive electrode active material or current collector are deposited on the negative electrode surface, and the electrolytic solution decomposes on the electrode material surface to produce lithium fluoride or the like. As the amount of lithium ions contributing to the capacity decreases, the irreversible capacity increases (for example, Non-Patent Document 1).

そこで、このような問題を解決するために、例えば、正極活物質と負極活物質の少なく
とも一方の表面を保護膜で被覆し、非水溶媒が活物質表面で酸化又は還元されることを抑制することによって、リチウムイオン二次電池の保存性を向上させる方法が提案されている(特許文献1参照)。しかし、本発明者らの研究の結果、この方法によれば、活物質表面での電荷移動抵抗が増大するので、レート特性が低下し、また、保護膜が充放電中に徐々に分解して、長期特性が劣化する問題があることが見出された。
Therefore, in order to solve such a problem, for example, at least one surface of the positive electrode active material and the negative electrode active material is covered with a protective film, and the nonaqueous solvent is prevented from being oxidized or reduced on the surface of the active material. Thus, a method for improving the storage stability of the lithium ion secondary battery has been proposed (see Patent Document 1). However, as a result of the study by the present inventors, according to this method, the charge transfer resistance on the surface of the active material is increased, so that the rate characteristics are deteriorated, and the protective film is gradually decomposed during charging and discharging. It was found that there is a problem that long-term characteristics deteriorate.

また、ポリオレフィン樹脂製の多孔質フィルムにある種のスルフィド化合物やポリスル
フィド化合物を含有する薄膜を形成することによって、初期の不可逆容量を減少させる方法も提案されている(特許文献2参照)。しかし、この方法によれば、充放電を繰り返す間に上記薄膜が有機溶媒に溶出し、前記含有物が正極で酸化されて、ガスを発生し、電池膨れの原因となったり、また、薄膜が不均一になって、正極活物質から溶出した金属イオンやカチオンラジカルが電極間を移動することを抑制できず、充放電効率が低下したりするという問題がある。
A method of reducing the initial irreversible capacity by forming a thin film containing a certain sulfide compound or polysulfide compound in a porous film made of polyolefin resin has also been proposed (see Patent Document 2). However, according to this method, the thin film elutes into the organic solvent during repeated charge and discharge, and the inclusions are oxidized at the positive electrode to generate gas, causing the battery to swell. There is a problem that the metal ions and cation radicals eluted from the positive electrode active material cannot be prevented from moving between the electrodes due to non-uniformity, and charge / discharge efficiency is reduced.

更には、リチウムイオンを透過させる孔を有する基材に高分子樹脂被覆層を設け、従来
のリチウムイオン二次電池用セパレータに比べて孔径を小さくして、充放電中に脱落した活物質が電極間を移動することを抑制し、かくして、内部短絡を生じ難くする方法が提案されている(特許文献3参照)。しかし、この方法によっても、リチウムイオン以外の金属イオンやカチオンラジカルが電極間を移動することが抑制できず、充放電効率が低下するという問題がある。
P. Aroraら、Journal of ElectrochemicalSociety, Vol. 145, No. 10, October 1998 特開平9−219188号公報 特開2002−237285号公報 特開2004−31084号公報
Furthermore, a polymer resin coating layer is provided on a base material having pores through which lithium ions can permeate, and the pore size is made smaller than that of a conventional lithium ion secondary battery separator. There has been proposed a method of suppressing movement between the terminals and thus making it difficult to cause an internal short circuit (see Patent Document 3). However, even with this method, there is a problem that metal ions other than lithium ions and cation radicals cannot be suppressed from moving between electrodes, and charge / discharge efficiency is reduced.
P. Arora et al., Journal of Electrochemical Society, Vol. 145, No. 10, October 1998 JP-A-9-219188 JP 2002-237285 A JP 2004-31084 A

本発明は、従来のリチウムイオン二次電池における上述した問題を解決するためになさ
れたものであって、負極表面への析出物を低減して、充放電効率を高め、充放電を繰り返しても、容量の低下が少なく、かくして、レート特性にすぐれ、また、レート特性の劣化も少ない非水リチウムイオン二次電池を提供することを目的とする。
The present invention has been made in order to solve the above-described problems in the conventional lithium ion secondary battery, and reduces deposits on the surface of the negative electrode to increase charge / discharge efficiency and repeat charge / discharge. It is an object of the present invention to provide a non-aqueous lithium ion secondary battery that has a small decrease in capacity, and thus has excellent rate characteristics and little deterioration of rate characteristics.

本発明によれば、正極と非水電解液と多孔質セパレータ膜とこの多孔質セパレータ膜を
介して前記正極と電気的に絶縁されている負極からなる非水リチウムイオン二次電池において、前記正極と前記負極の間に実質的に無孔性のリチウムイオン伝導層を少なくとも1層有することを特徴とする非水リチウムイオン二次電池が提供される。
According to the present invention, in the non-aqueous lithium ion secondary battery comprising a positive electrode, a non-aqueous electrolyte, a porous separator film, and a negative electrode electrically insulated from the positive electrode through the porous separator film, the positive electrode There is provided a non-aqueous lithium ion secondary battery comprising at least one substantially non-porous lithium ion conductive layer between the negative electrode and the negative electrode.

本発明による非水リチウムイオン二次電池は、正極と負極の間に実質的に無孔性のリチ
ウムイオン伝導層を少なくとも1層有し、この実質的に無孔性のリチウムイオン伝導層によって、リチウムイオン以外の物質であって、電池特性の劣化を引き起こす原因となる種々の物質が正負極間を移動することが抑制される。かくして、本発明の非水リチウムイオン二次電池によれば、電極でのリチウムイオンの吸蔵放出以外の反応を低減して、充放電を長期間にわたって繰り返したときの充放電効率を向上させることができる。また、本発明の非水リチウムイオン二次電池によれば、上記実質的に無孔性のリチウムイオン伝導層によって、電極の表面に析出物が生成することも抑制されるので、充放電を繰り返しても、容量の低下が少なく、従って、レート特性の劣化が小さい。
The non-aqueous lithium ion secondary battery according to the present invention has at least one substantially non-porous lithium ion conductive layer between the positive electrode and the negative electrode, and the substantially non-porous lithium ion conductive layer It is possible to suppress movement of various substances other than lithium ions, which cause deterioration of battery characteristics, between the positive and negative electrodes. Thus, according to the non-aqueous lithium ion secondary battery of the present invention, it is possible to reduce reactions other than occlusion and release of lithium ions at the electrode and improve charge and discharge efficiency when charge and discharge are repeated over a long period of time. it can. Further, according to the non-aqueous lithium ion secondary battery of the present invention, the substantially non-porous lithium ion conductive layer also suppresses the formation of precipitates on the surface of the electrode, so that charge and discharge are repeated. However, there is little decrease in the capacity, and therefore the deterioration of the rate characteristic is small.

本発明による非水リチウムイオン二次電池は、リチウムイオンを吸蔵放出し得る正極と
非水電解液と多孔質セパレータ膜とこの多孔質セパレータ膜を介して前記正極と電気的に絶縁されている負極とからなり、上記正極と負極との間に実質的に無孔性のリチウムイオン伝導層を少なくとも1層有する。
The non-aqueous lithium ion secondary battery according to the present invention includes a positive electrode capable of occluding and releasing lithium ions, a non-aqueous electrolyte, a porous separator film, and a negative electrode electrically insulated from the positive electrode through the porous separator film. And having at least one substantially non-porous lithium ion conductive layer between the positive electrode and the negative electrode.

本発明において、多孔質セパレータ膜は、好ましくは、平均孔径0.01〜5μmの細
孔と20〜95%の範囲の空孔率を有する。空孔率は、より好ましくは、30〜90%の範囲であり、最も好ましくは、40〜85%の範囲である。空孔率が余りに低い場合は、電池のセパレータとして用いたときにイオン伝導経路が少なくなり、十分な電池特性を得ることができない。他方、空孔率が余りに高い場合には、電池のセパレータとして用いたときに強度が不十分であり、所要の強度を得るためには、多孔質フィルムとして厚いものを用いざるを得ず、そうすれば、電池の内部抵抗が高くなるので好ましくない。
In the present invention, the porous separator membrane preferably has pores having an average pore diameter of 0.01 to 5 μm and a porosity in the range of 20 to 95%. The porosity is more preferably in the range of 30 to 90%, and most preferably in the range of 40 to 85%. When the porosity is too low, the ion conduction path is reduced when used as a battery separator, and sufficient battery characteristics cannot be obtained. On the other hand, if the porosity is too high, the strength is insufficient when used as a battery separator, and a thick porous film must be used to obtain the required strength. This is not preferable because the internal resistance of the battery increases.

更に、本発明によれば、多孔質セパレータの通気度は、通常、1500秒/100cc
以下であり、好ましくは、1000秒/100cc以下である。通気度が高すぎるときは、電池のセパレータとして用いた場合に、イオン伝導性が低く、十分な電池特性を得ることができない。また、多孔質セパレータ膜の強度は、突き刺し強度が1N以上であることが好ましい。突刺し強度が1Nよりも小さいときは、電極間に面圧がかかった際に基材が破断し、内部短絡を引き起こすおそれがあるからである。
Furthermore, according to the present invention, the air permeability of the porous separator is usually 1500 seconds / 100 cc.
Or less, preferably 1000 seconds / 100 cc or less. When the air permeability is too high, the ion conductivity is low when used as a battery separator, and sufficient battery characteristics cannot be obtained. The strength of the porous separator film is preferably 1N or more. This is because when the piercing strength is less than 1 N, the substrate may be broken when a surface pressure is applied between the electrodes, thereby causing an internal short circuit.

本発明においては、多孔質セパレータ膜は、上述したような特性を有すれば、特に、限
定されるものではないが、耐溶剤性や耐酸化還元性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたとき、樹脂が溶融して、細孔が閉塞する性質を有し、その結果、電池に所謂シャットダウン機能を有せしめることができるところから、多孔質フィルムとしては、ポリエチレン樹脂フィルムが特に好適である。ここに、ポリエチレン樹脂には、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。
In the present invention, the porous separator film is not particularly limited as long as it has the above-described characteristics, but if considering solvent resistance and oxidation-reduction resistance, polyolefin such as polyethylene and polypropylene is used. A porous film made of a resin is preferred. However, among them, when heated, the resin melts and the pores are blocked. As a result, the battery can have a so-called shutdown function. Resin films are particularly suitable. Here, the polyethylene resin includes not only a homopolymer of ethylene but also a copolymer of ethylene with an α-olefin such as propylene, butene and hexene.

また、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質フィルム
と上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、基材多孔質フィルムとして、好適に用いられる。
In addition, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the above-mentioned polyolefin resin porous film is also suitably used as a substrate porous film because of its excellent heat resistance. It is done.

より好ましくは、前記多孔質セパレータの膜厚は、3〜100μmの範囲である。多孔
質セパレータの膜厚が3μmよりも小さいときは、強度が不十分であって、電池においてセパレータとして用いるとき、電極が相互に接触して、内部短絡を起こすおそれがある。他方、多孔質セパレータの膜厚が100μmを超えるときは、セパレータの膜抵抗が増大し、レート特性の低下招くので好ましくない。
More preferably, the film thickness of the porous separator is in the range of 3 to 100 μm. When the thickness of the porous separator is less than 3 μm, the strength is insufficient, and when used as a separator in a battery, the electrodes may contact each other and cause an internal short circuit. On the other hand, when the film thickness of the porous separator exceeds 100 μm, the membrane resistance of the separator increases and the rate characteristics are lowered, which is not preferable.

本発明において、正極活物質としては、非水リチウムイオン二次電池の正極として用いられているものであれば、いずれも用いられる。そのような正極活物質として、例えば、コバルト酸リチウム、スピネル型マンガン酸リチウム、ニッケル酸リチウム、オリビン型リン酸鉄リチウム等を挙げることができる。   In the present invention, any positive electrode active material may be used as long as it is used as a positive electrode of a non-aqueous lithium ion secondary battery. Examples of such a positive electrode active material include lithium cobaltate, spinel type lithium manganate, lithium nickelate, and olivine type lithium iron phosphate.

負極活物質としても、非水リチウムイオン二次電池の負極として用いられているもので
あれば、いずれでも用いられる。例えば、黒鉛、非晶質炭素、炭素繊維等を挙げることができる。
Any negative electrode active material may be used as long as it is used as the negative electrode of a non-aqueous lithium ion secondary battery. For example, graphite, amorphous carbon, carbon fiber, etc. can be mentioned.

本発明によるリチウムイオン二次電池は、上記正極と負極の間に実質的に無孔性のリチ
ウムイオン伝導層を少なくとも1層有する。本発明において、「実質的に無孔性である」とは、通気度が10000秒/100cc以上であって、実質的に通気度を測定することができない程度に通気性をもたないことを意味する。
The lithium ion secondary battery according to the present invention has at least one substantially non-porous lithium ion conductive layer between the positive electrode and the negative electrode. In the present invention, “substantially non-porous” means that the air permeability is 10,000 seconds / 100 cc or more, and the air permeability is not so high that the air permeability cannot be measured substantially. means.

上記実質的に無孔性のリチウムイオン伝導層は、リチウムイオン以外の物質であって、
電池特性の劣化を引き起こす原因となる種々の物質が正負極間を移動することを抑制する。ここで、リチウムイオン以外であって、電池特性の劣化を引き起こす原因となる物質とは、主に電極から脱離する活物質、正極活物質から溶出する遷移金属イオン、正極で酸化された電解液分解物、例えば、電解液カチオンラジカル等をいう。ここに、上記正極活物質から溶出する遷移金属イオンとは、限定されるものではないが、主として、コバルト、マンガン、ニッケル、鉄又はバナジウムのイオンである。
The substantially non-porous lithium ion conductive layer is a substance other than lithium ions,
Suppresses movement of various substances that cause deterioration of battery characteristics between the positive and negative electrodes. Here, substances other than lithium ions that cause deterioration of battery characteristics mainly include an active material that is desorbed from the electrode, a transition metal ion that is eluted from the positive electrode active material, and an electrolytic solution oxidized at the positive electrode A decomposition product, for example, an electrolyte cation radical or the like. Here, the transition metal ions eluted from the positive electrode active material are not limited, but mainly ions of cobalt, manganese, nickel, iron, or vanadium.

かくして、本発明の非水リチウムイオン二次電池によれば、電極でのリチウムイオンの
吸蔵放出以外の反応を低減して、充放電を長期繰り返したときの充放電効率を向上させることができる。また、上記実質的に無孔性のリチウムイオン伝導層は、電極の表面に析出物が生成することも抑制するので、本発明のリチウムイオン二次電池によれば、充放電を繰り返しても、容量の低下が少なく、従って、レート特性の劣化が小さい。
Thus, according to the non-aqueous lithium ion secondary battery of the present invention, reactions other than occlusion / release of lithium ions at the electrode can be reduced, and charge / discharge efficiency when charge / discharge is repeated for a long time can be improved. Further, the substantially non-porous lithium ion conductive layer also suppresses the formation of precipitates on the surface of the electrode. Therefore, according to the lithium ion secondary battery of the present invention, even when charging and discharging are repeated, The decrease in capacity is small, and therefore the deterioration of rate characteristics is small.

更に、本発明によれば、非水電解液と多孔質セパレータ膜を有することから、電解液の
保液性にすぐれ、一般に粉末の集合体からなる電極においても、活物質表面にリチウムイオンが十分に供給され、電極活物質が有する本来の容量を損なうことなく、レート特性にすぐれた非水リチウムイオン二次電池を得ることができる。
Furthermore, according to the present invention, since the nonaqueous electrolytic solution and the porous separator film are provided, the electrolytic solution is excellent in liquid retention, and lithium ions are sufficiently present on the active material surface even in an electrode generally composed of a powder aggregate. Thus, a non-aqueous lithium ion secondary battery having excellent rate characteristics can be obtained without impairing the original capacity of the electrode active material.

本発明において、実質的に無孔性のリチウムイオン伝導層の厚さは、0.01〜2.2
μmの範囲にあることが好ましい。リチウムイオン伝導層の厚さが0.01μmよりも小さいときは、リチウムイオン以外であって、電池特性の劣化を引き起こす原因となる物質が正極と負極の間で移動することを十分に抑制することができない。他方、リチウムイオン伝導層の厚さが2.2μmよりも大きいときは、リチウムイオン伝導層の抵抗が増大して、レート特性の低下を招くので、好ましくない。本発明において、実質的に無孔性のリチウムイオン伝導層の厚さは、より好ましくは、0.01〜2.0μmの範囲であり、最も好ましくは、0.05〜2.0μmの範囲である。
In the present invention, the thickness of the substantially non-porous lithium ion conductive layer is 0.01 to 2.2.
It is preferable to be in the range of μm. When the thickness of the lithium ion conductive layer is smaller than 0.01 μm, sufficiently suppress the movement of substances other than lithium ions that cause deterioration of battery characteristics between the positive electrode and the negative electrode. I can't. On the other hand, when the thickness of the lithium ion conductive layer is larger than 2.2 μm, the resistance of the lithium ion conductive layer is increased and the rate characteristics are deteriorated. In the present invention, the thickness of the substantially nonporous lithium ion conductive layer is more preferably in the range of 0.01 to 2.0 μm, and most preferably in the range of 0.05 to 2.0 μm. is there.

本発明において、上記前記実質的に無孔性のリチウムイオン伝導層は、好ましくは、実
質的に無孔性の高分子固体電解質又はゲル電解質からなる。
In the present invention, the substantially nonporous lithium ion conductive layer is preferably made of a substantially nonporous polymer solid electrolyte or gel electrolyte.

高分子固体電解質は、マトリックスとしての固体高分子物質中に電解質塩を含有させて
なるものである。上記固体高分子物質としては、ポリエチレンオキシドやその誘導体が好適であるが、ポリプロピレンオキシドやポリエチレングリコール等のポリアルキレンエーテルポリマー、ポリアクリロニトリル、ポリホスファゼン、ポリメタクリル酸メチル等の高分子物質も用いられる。
The polymer solid electrolyte is obtained by containing an electrolyte salt in a solid polymer material as a matrix. As the solid polymer material, polyethylene oxide and derivatives thereof are suitable, but polymer materials such as polyalkylene ether polymers such as polypropylene oxide and polyethylene glycol, polyacrylonitrile, polyphosphazene, and polymethyl methacrylate are also used.

他方、ゲル電解質は、重合体の網目構造中に非水溶媒とこれに溶解させた電解質塩をゲ
ルとして保持してなるものであり、物理架橋ゲルと化学架橋ゲルのいずれでもよい。物理架橋ゲルとしては、例えば、ポリアクリロニトリルとその誘導体や、ポリフッ化ビニリデン−6フッ化プロピレン共重合体を網目構造の骨格として有するものが用いられる。一方、化学架橋ゲルとしては、メタリクル酸メチルとカルボン酸の共重合体や、ポリビニルアルコール等に架橋剤を加えて、架橋させたものを網目構造の骨格として有するものが用いられる。また、ポリエーテル多元共重合体の架橋体を膨潤させたものも用いられる。非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等のエーテル類や、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。
On the other hand, the gel electrolyte is obtained by holding a non-aqueous solvent and an electrolyte salt dissolved in the polymer network structure as a gel, and may be either a physical crosslinked gel or a chemically crosslinked gel. As the physical crosslinking gel, for example, one having polyacrylonitrile and its derivatives or a polyvinylidene fluoride-6-fluorinated propylene copolymer as a skeleton having a network structure is used. On the other hand, as the chemical cross-linking gel, a copolymer of methyl methacrylate and a carboxylic acid, or a cross-linkage obtained by adding a cross-linking agent to polyvinyl alcohol or the like as a skeleton having a network structure is used. Moreover, what swollen the crosslinked body of the polyether multi-component copolymer is also used. Examples of the non-aqueous solvent include cyclic esters such as ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain structures such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Esters can be used alone or as a mixture of two or more.

上記高分子固体電解質又はゲル電解質において、電解質塩としては、例えば、ヘキサフ
ルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。これら電解質塩は、高分子固体電解質又はゲル電解質において、通常、1〜50重量%の範囲で用いられる。
In the polymer solid electrolyte or gel electrolyte, as the electrolyte salt, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, or the like is preferably used. These electrolyte salts are usually used in the range of 1 to 50% by weight in the polymer solid electrolyte or gel electrolyte.

但し、本発明において、高分子固体電解質を形成する高分子物質やゲルを形成する非水
溶媒や電解質塩として用いられるリチウム塩は、上記例示に限定されるものではない。
また、上記電解質塩は、用いる溶媒の種類や量に応じて適宜に決定される。
However, in the present invention, the polymer salt forming the polymer solid electrolyte, the non-aqueous solvent forming the gel, and the lithium salt used as the electrolyte salt are not limited to the above examples.
The electrolyte salt is appropriately determined according to the type and amount of the solvent used.

本発明によれば、上述した高分子固体電解質とゲル電解質はいずれも、極性を有する部
位を含むことが好ましい。ここに、極性を有する部位とは、好ましくは、酸素原子、窒素原子、硫黄原子又はリン原子を含む部位をいい、例えば、水酸基、カルボキシル基、ケトン基、エーテル基、エステル基、アミン基、チオエーテル基、ホスフィン基等を具体例として挙げることができる。但し、本発明において、極性を有する部位は、上記例示に限定されるものではない。
According to the present invention, it is preferable that both the polymer solid electrolyte and the gel electrolyte described above include a polar part. Here, the part having polarity preferably means a part containing an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, for example, a hydroxyl group, a carboxyl group, a ketone group, an ether group, an ester group, an amine group, a thioether. Specific examples include groups and phosphine groups. However, in this invention, the site | part which has polarity is not limited to the said illustration.

高分子固体電解質、ゲル電解質いずれも、密度が小さく、柔軟であるので、これらを前
記実質的に無孔性のリチウムイオン伝導層として用いることによって、軽量で、形状の自由性に富む実用性にすぐれた非水リチウムイオン二次電池を得ることができる。特に、上述したように、極性を有する部位を含む高分子固体電解質を用いるときは、高分子固体電解質内でのリチウムイオンの解離が促進され、また、極性を有する部位を含むゲル電解質を用いるときは、非水溶媒に対する膨潤性が向上するので、リチウムイオン伝導性層のイオン伝導性が向上して、レート特性にすぐれた非水リチウムイオン二次電池を得ることができる。
Since both the solid polymer electrolyte and the gel electrolyte are small in density and flexible, by using them as the substantially non-porous lithium ion conductive layer, they are lightweight and practical in shape. An excellent non-aqueous lithium ion secondary battery can be obtained. In particular, as described above, when using a polymer solid electrolyte containing a polar part, dissociation of lithium ions in the polymer solid electrolyte is promoted, and when using a gel electrolyte containing a polar part Since the swellability with respect to the non-aqueous solvent is improved, the ion conductivity of the lithium ion conductive layer is improved, and a non-aqueous lithium ion secondary battery having excellent rate characteristics can be obtained.

更に、遷移金属イオンや電解液ラジカルは、リチウムイオンと比べて、高分子固体電解
質やゲル電解質内の極性部位に配位して、移動が阻害されるという理由から、リチウムイオンと比べて、前記リチウムイオン伝導層内の移動度が低く、濃度拡散や熱拡散等による電極間の移動がより一層抑制される。
Furthermore, compared to lithium ions, transition metal ions and electrolyte radicals are coordinated to polar sites in solid polymer electrolytes and gel electrolytes compared to lithium ions. The mobility in the lithium ion conductive layer is low, and movement between electrodes due to concentration diffusion, thermal diffusion, and the like is further suppressed.

本発明によれば、上述したような実質的に無孔性のリチウムイオン伝導層、好ましくは
、固体高分子電解質又はゲル電解質は、少なくとも前記正極、多孔質セパレータ膜又は負極のいずれかに担持され、好ましくは、多孔質セパレータ膜に担持される。固体高分子電解質又はゲル電解質が多孔質セパレータ膜に担持される場合は、それらは多孔質セパレータ膜の一方の表面に担持されてもよく、両方の表面に担持されてもよい。
According to the present invention, the substantially non-porous lithium ion conductive layer as described above, preferably the solid polymer electrolyte or the gel electrolyte is supported on at least one of the positive electrode, the porous separator film, and the negative electrode. Preferably, it is carried on a porous separator membrane. When the solid polymer electrolyte or gel electrolyte is supported on the porous separator membrane, they may be supported on one surface of the porous separator membrane or on both surfaces.

多孔質セパレータ膜の表面は正極又は負極の表面よりも平滑であるので、正極又は負極
に担持させる場合に比べて、一層、薄膜化したリチウムイオン伝導層を担持させることができるので、レート特性にすぐれ、負極表面への析出物が低減され、充放電効率が高く、充放電を繰り返しても、容量の劣化が少なく、レート特性の劣化が抑制された非水リチウムイオン二次電池を得ることができる。
Since the surface of the porous separator film is smoother than the surface of the positive electrode or the negative electrode, it is possible to carry a lithium ion conductive layer that is made thinner than the case of carrying it on the positive electrode or the negative electrode. It is possible to obtain a non-aqueous lithium ion secondary battery in which deposits on the negative electrode surface are reduced, charging / discharging efficiency is high, capacity deterioration is small even when charging / discharging is repeated, and deterioration of rate characteristics is suppressed. it can.

このように、固体高分子電解質を多孔質セパレータ膜に担持させるには、一例を挙げれ
ば、固体高分子電解質をアセトン、酢酸エチル、酢酸ブチル等の適宜の有機溶剤に溶解させて溶液とし、この溶液を多孔質セパレータ膜の基材をなす多孔質フィルムの表面にキャスティングやスプレー塗布し、又は上記溶液中に多孔質フィルムを含浸させた後、乾燥して、用いた有機溶剤を除去して、多孔質フィルムの表面に固体高分子電解質層を形成し、積層すればよい。また、別の方法として、固体高分子電解質を溶融押出によってフィルムに成形し、このフィルムを基材多孔質フィルムに熱ラミネート等によって張り合わせてもよい。
Thus, in order to support the solid polymer electrolyte on the porous separator membrane, for example, the solid polymer electrolyte is dissolved in an appropriate organic solvent such as acetone, ethyl acetate, butyl acetate to form a solution. Casting or spraying the solution on the surface of the porous film that forms the base material of the porous separator membrane, or impregnating the porous film in the solution, followed by drying to remove the organic solvent used, A solid polymer electrolyte layer may be formed and laminated on the surface of the porous film. As another method, a solid polymer electrolyte may be formed into a film by melt extrusion, and this film may be bonded to a substrate porous film by thermal lamination or the like.

ゲル電解質の場合は、ゲル電解質において網目構造を形成するための重合体の層を上記
したと同じ方法にて多孔質フィルムの表面に形成し、積層した後、これを電池容器に仕込み、これに電解液を注入して、電池に組み込めば、上記多孔質フィルム表面の重合体の層は、電解質塩を含む電解液によって膨潤して、ゲル電解質を形成する。このようにして、電池の組み立て時にゲル電解質を多孔質セパレータ膜に担持させることができる。
In the case of a gel electrolyte, a polymer layer for forming a network structure in the gel electrolyte is formed on the surface of the porous film by the same method as described above, laminated, and then charged into a battery container. When the electrolytic solution is injected and incorporated in the battery, the polymer layer on the surface of the porous film swells with the electrolytic solution containing the electrolyte salt to form a gel electrolyte. In this way, the gel electrolyte can be supported on the porous separator membrane during battery assembly.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定され
るものではない。以下において、多孔質セパレータ膜の物性と電池特性と複合化セパレータに担持させた架橋メチルメタクリレート/4−ヒドロキシブチルアクリレート共重合体のゲル分率は以下のようにして評価し、又は測定した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, the physical properties and battery characteristics of the porous separator film and the gel fraction of the crosslinked methyl methacrylate / 4-hydroxybutyl acrylate copolymer supported on the composite separator were evaluated or measured as follows.

(多孔質セパレータ膜の厚み)
1/10000mmシックネスゲージによる測定と多孔質セパレータ膜(多孔質フィル
ム)の断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(Thickness of porous separator film)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10,000 times scanning electronic microscopic photograph of the cross section of the porous separator membrane (porous film).

(多孔質セパレータ膜の空孔率)
多孔質セパレータ膜の単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm
)及び多孔質フィルムを構成する樹脂の密度d(g/cm3)から下式にて算出した。
空孔率(%)=(1−(100W/S/t/d))×100
(Porosity of porous separator membrane)
Weight W (g) per unit area S (cm 2 ) of porous separator membrane, average thickness t (cm
) And the density d (g / cm 3 ) of the resin constituting the porous film.
Porosity (%) = (1− (100 W / S / t / d)) × 100

(多孔質セパレータ膜の通気度)
JIS P 8117に準拠して求めた。
(Air permeability of porous separator membrane)
It calculated | required based on JISP8117.

(突き刺し強度)
カトーテック(株)製圧縮試験磯KES−G5を用いて突き刺し試験を行った。測定に
より得られた荷重変位曲線から最大荷重を読みとり、突き刺し強度とした。針は直径1.0mm、先端の曲率半径0.5mmのものを用いて、2cm/秒の速度で行った。
(Puncture strength)
A piercing test was performed using a compression test kit KES-G5 manufactured by Kato Tech Co., Ltd. The maximum load was read from the load displacement curve obtained by the measurement, and the puncture strength was obtained. A needle having a diameter of 1.0 mm and a radius of curvature of the tip of 0.5 mm was used at a speed of 2 cm / second.

(ゲル分率)
重量W0 の共重合体を担持させた複合化セパレータの重量を測定した後、これを酢酸エチル中で24時間振盪して、未架橋共重合体を溶出させた。複合化セパレータを酢酸エチルから取り出し、乾燥させた後、その重量を測定して、複合化セパレータ上に残存している共重合体(架橋共重合体)の重量Wを求めて、ゲル分率を(W/W0)x100によって求めた。
(Gel fraction)
After measuring the weight of the composite separator carrying the copolymer of weight W 0 , this was shaken in ethyl acetate for 24 hours to elute the uncrosslinked copolymer. The composite separator is taken out from ethyl acetate and dried, and then its weight is measured to determine the weight W of the copolymer (crosslinked copolymer) remaining on the composite separator. It was determined by (W / W 0 ) × 100.

参考例1
(電極シートの調製)
正極活物質であるコバルト酸リチウム(日本化学工業(株)製セルシードC−10)8
5重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL1120)5重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。
Reference example 1
(Preparation of electrode sheet)
Lithium cobalt oxide (cell seed C-10 manufactured by Nippon Chemical Industry Co., Ltd.) 8 as a positive electrode active material
5 parts by weight and 10 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive additive and 5 parts by weight of vinylidene fluoride resin (KF Polymer L1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are mixed. Then, this was made into a slurry using N-methyl-2-pyrrolidone so as to have a solid content concentration of 15% by weight.

このスラリーを厚み20μmのアルミニウム箔(集電体)上に厚み200μmに塗布し、80℃で1時間、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmのシートを得、これを42mm角に裁断して、正極シートとしての使用に供した。   This slurry was applied to an aluminum foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, and then at 120 ° C. for 2 hours, and then pressed by a roll press, so that the thickness of the active material layer was A 100 μm sheet was obtained, cut into a 42 mm square, and used as a positive electrode sheet.

また、負極活物質であるメソカーボンマイクロビーズ(大阪ガスケミカル(株)製MC
MB6−28)80重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL1120)10重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。
Also, mesocarbon microbeads (MC gas manufactured by Osaka Gas Chemical Co., Ltd.), which is a negative electrode active material
MB6-28) 80 parts by weight, 10 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, and vinylidene fluoride resin (KF Polymer L1120 manufactured by Kureha Chemical Industry Co., Ltd.) 10 as a binder Part by weight was mixed, and this was made into a slurry using N-methyl-2-pyrrolidone so as to have a solid concentration of 15% by weight.

このスラリーを厚み20μmの銅箔(集電体)上に厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの負極シート得、これを44mm角に裁断して、負極シートとしての使用に供した。   This slurry was applied to a copper foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to form an active material layer. A negative electrode sheet having a thickness of 100 μm was obtained, and this was cut into a 44 mm square to be used as a negative electrode sheet.

参考例2
(対照電池の作製)
厚さ16μm、空孔率40%、通気度300秒/100cc、突き刺し強度3.0Nの
ポリエチレン樹脂製の多孔質フィルムを多孔質セパレータ膜(以下においても同じである。)として用意した。前記参考例1で得た負極シート、上記多孔質セパレータ膜及び前記参考例1で得た正極シートをこの順序に積層した。この積層体をアルミニウムラミネートパッケージに仕込んだ後、パッケージ内に1.0モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注液し、次いでパッケージを封口して、リチウムイオン二次電池Aを対照電池として組み立てた。
Reference example 2
(Production of control battery)
A porous film made of polyethylene resin having a thickness of 16 μm, a porosity of 40%, an air permeability of 300 seconds / 100 cc, and a piercing strength of 3.0 N was prepared as a porous separator film (the same applies hereinafter). The negative electrode sheet obtained in Reference Example 1, the porous separator film, and the positive electrode sheet obtained in Reference Example 1 were laminated in this order. An electrolytic solution comprising an ethylene carbonate / diethyl carbonate (1/1 by weight) mixed solvent in which lithium hexafluorophosphate is dissolved in the package at a concentration of 1.0 mol / L after the laminate is prepared in an aluminum laminate package. Then, the package was sealed, and the lithium ion secondary battery A was assembled as a control battery.

製造例1
ポリエチレンオキシド(Aldrich製、平均分子量900000)をアセトニトリ
ルに10%重量濃度に溶解させると共に、この溶液にヘキサフルオロリン酸リチウムを上記ポリエチレンオキシドのエーテル酸素に対するリチウム原子の比が0.05となるように加えて、ポリマー溶液1を調製した。
Production Example 1
Polyethylene oxide (manufactured by Aldrich, average molecular weight 900,000) is dissolved in acetonitrile at a concentration of 10% by weight, and lithium hexafluorophosphate is dissolved in this solution so that the ratio of lithium atoms to ether oxygen in the polyethylene oxide is 0.05. In addition, polymer solution 1 was prepared.

製造例2
ポリ(フッ化ビニリデン/ヘキサフルオロプロピレン)共重合体(エルフアトケム製カ
イナー(Kynar)2801)10gをN−メチル−2−ピロリドン90gに溶解させて、10重量%濃度のポリマー溶液2を調製した。
Production Example 2
10 g of poly (vinylidene fluoride / hexafluoropropylene) copolymer (Kynar 2801 manufactured by Elf Atchem) was dissolved in 90 g of N-methyl-2-pyrrolidone to prepare a polymer solution 2 having a concentration of 10% by weight.

製造例3
還流冷却管を備えた500mL容量の三つ口フラスコにメチルメタクリレート95g、
4−ヒドロキシブチルアクリレート5g、酢酸エチル67g及びN,N'−アゾビスイソブチロニトリル0.2gを投入し、窒素ガスを導入しながら、30分間攪拌混合した後、温度64℃でラジカル重合を行なった。
Production Example 3
In a 500 mL three-necked flask equipped with a reflux condenser, 95 g of methyl methacrylate,
4 g of 4-hydroxybutyl acrylate, 67 g of ethyl acetate and 0.2 g of N, N′-azobisisobutyronitrile were added, and after stirring and mixing for 30 minutes while introducing nitrogen gas, radical polymerization was performed at a temperature of 64 ° C. I did it.

約1時間経過したとき、ラジカル重合が進行して、反応混合物の粘度が上昇し始めた。
そのまま、8時間重合を続けた後、約40℃まで冷却し、再び、N,N'−アゾビスイソブチロニトリル0.1gを加え、70℃に再度加熱して、更に、8時間後重合を行なった。この後、約40℃まで冷却し、酢酸エチル166gを加え、全体が均一になるまで攪拌混合して、メチルメタクリレート/4−ヒドロキシブチルアクリレート共重合体の酢酸エチル溶液を得た。
When about 1 hour passed, radical polymerization proceeded and the viscosity of the reaction mixture began to rise.
The polymerization was continued for 8 hours as it was, then cooled to about 40 ° C., 0.1 g of N, N′-azobisisobutyronitrile was added again, and the mixture was heated again to 70 ° C., and further post-polymerized for 8 hours. Was done. Then, it cooled to about 40 degreeC, ethyl acetate 166g was added, and it stirred and mixed until the whole became uniform, and the ethyl acetate solution of the methylmethacrylate / 4-hydroxybutyl acrylate copolymer was obtained.

このようにして得たメチルメタクリレート/4−ヒドロキシブチルアクリレート共重合
体の酢酸エチル溶液20gと架橋剤ベンゾイルパーオキサイド0.06gを酢酸エチル3.94gに溶解させて、25重量%濃度のポリマー溶液3を調製した。
20 g of an ethyl acetate solution of methyl methacrylate / 4-hydroxybutyl acrylate copolymer thus obtained and 0.06 g of a benzoyl peroxide cross-linking agent were dissolved in 3.94 g of ethyl acetate to obtain a polymer solution 3 having a concentration of 25% by weight. Was prepared.

実施例1
ポリマー溶液1にアセトニトリルを加え、室温下、不活性ガス雰囲気中で攪拌して、濃
度8.3%の均一なポリマー溶液を得た。このようにして得られたポリマーの溶液を多孔質セパレータ膜の片面にワイヤーバー(#20)にて塗布した後、50℃で加熱乾燥して、アセトニトリルを揮散させた。かくして、多孔質セパレータ膜の片面に厚み0.5μmの高分子固体電解質層を実質的に無孔性のリチウムイオン伝導層として担持させた複合化セパレータを得た。
Example 1
Acetonitrile was added to the polymer solution 1 and stirred in an inert gas atmosphere at room temperature to obtain a uniform polymer solution having a concentration of 8.3%. The polymer solution thus obtained was applied to one side of the porous separator film with a wire bar (# 20) and then dried by heating at 50 ° C. to volatilize acetonitrile. Thus, a composite separator was obtained in which a solid polymer electrolyte layer having a thickness of 0.5 μm was supported as a substantially nonporous lithium ion conductive layer on one surface of the porous separator membrane.

次いで、上記複合化セパレータをその基材樹脂フィルムが前記参考例1で得た負極シー
トに対向し、上記基材樹脂フィルム上の高分子固体電解質が前記参考例1で得た正極シートに対向するように積層して、積層体を得た。この積層体をアルミニウムラミネートパッケージ内に仕込み、次いで、1.0モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注液し、次いで、パッケージを封口して、リチウムイオン二次電池Bを組み立てた。
Next, the base separator resin film of the composite separator faces the negative electrode sheet obtained in Reference Example 1, and the polymer solid electrolyte on the base resin film faces the positive electrode sheet obtained in Reference Example 1. Thus, a laminated body was obtained. This laminate was placed in an aluminum laminate package, and then an electrolytic solution composed of a mixed solvent of ethylene carbonate / diethyl carbonate (weight ratio 1/1) in which lithium hexafluorophosphate was dissolved at a concentration of 1.0 mol / L was poured. Then, the package was sealed, and a lithium ion secondary battery B was assembled.

実施例2
ポリマー溶液2にN−メチル−2−ピロリドンを加え、室温で攪拌して、濃度8.3%
の均一なポリマー溶液を得た。得られた溶液を多孔質セパレータ膜の片面にワイヤーバー(#20)にて塗布した後、60℃で加熱乾燥して、N−メチル−2−ピロリドンを揮散させた。かくして、多孔質セパレータ膜の片面に厚み0.5μmのポリ(フッ化ビニリデン/ヘキサフルオロプロピレン)共重合体層を担持させた複合化セパレータを得た。
Example 2
Add N-methyl-2-pyrrolidone to polymer solution 2 and stir at room temperature to a concentration of 8.3%.
A homogeneous polymer solution was obtained. After apply | coating the obtained solution to the single side | surface of a porous separator film | membrane with a wire bar (# 20), it heat-dried at 60 degreeC and volatilized N-methyl-2- pyrrolidone. Thus, a composite separator having a poly (vinylidene fluoride / hexafluoropropylene) copolymer layer having a thickness of 0.5 μm supported on one surface of the porous separator film was obtained.

次いで、上記複合化セパレータをその基材樹脂フィルムが前記参考例1で得た負極シー
トに対向し、上記基材樹脂フィルム上の共重合体層が前記参考例1で得た正極シートに対向するよう積層して積層体を得た。この積層体をアルミニウムラミネートパッケージ内に仕込んだ後、1.0モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注液し、次いで、パッケージを封口して、リチウムイオン二次電池Cを組み立てた。
Next, the base separator resin film of the composite separator faces the negative electrode sheet obtained in Reference Example 1, and the copolymer layer on the base resin film faces the positive electrode sheet obtained in Reference Example 1. Thus, a laminate was obtained. After this laminate was prepared in an aluminum laminate package, an electrolytic solution comprising an ethylene carbonate / diethyl carbonate (weight ratio 1/1) mixed solvent in which lithium hexafluorophosphate was dissolved at a concentration of 1.0 mol / L was poured. Then, the package was sealed, and a lithium ion secondary battery C was assembled.

このリチウムイオン二次電池において、ポリ(フッ化ビニリデン/ヘキサフルオロプロ
ピレン)共重合体層は、リチウム塩を含む電解液によって膨潤してゲル電解質、即ち、リチウムイオン伝導層として機能する。
In this lithium ion secondary battery, the poly (vinylidene fluoride / hexafluoropropylene) copolymer layer swells with an electrolytic solution containing a lithium salt and functions as a gel electrolyte, that is, a lithium ion conductive layer.

実施例3
ポリマー溶液3に酢酸エチルを加え、室温で攪拌して、濃度8.3%の均一なポリマー
溶液を得た。得られた溶液を多孔質セパレータ膜の片面にワイヤーバー(#20)にて塗布した後、60℃で加熱乾燥して、酢酸エチルを揮散させ、次いで、これを90℃の恒温器に168時間投入して、メチルメタクリレート/4−ヒドロキシブチルアクリレート共重合体を架橋させた。かくして、多孔質セパレータ膜の片面に厚み0.5μmの架橋した共重合体層を担持させた複合化セパレータを得た。この架橋した共重合体のゲル分率は58.3%であった。
Example 3
Ethyl acetate was added to the polymer solution 3 and stirred at room temperature to obtain a uniform polymer solution having a concentration of 8.3%. The obtained solution was applied to one side of the porous separator film with a wire bar (# 20), and then heated and dried at 60 ° C. to volatilize ethyl acetate, and then this was placed in a 90 ° C. incubator for 168 hours. The methyl methacrylate / 4-hydroxybutyl acrylate copolymer was cross-linked. Thus, a composite separator in which a cross-linked copolymer layer having a thickness of 0.5 μm was supported on one surface of the porous separator membrane was obtained. This crosslinked copolymer had a gel fraction of 58.3%.

次いで、この複合化セパレータをその基材樹脂フィルムが前記参考例1で得た負極シー
トに対向し、上記基材樹脂フィルム上の架橋した共重合体層が前記参考例1で得た正極シートに対向するように積層して積層体を得た。この積層体をアルミニウムラミネートパッケージ内に仕込んだ後、1.0モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注液し、次いで、パッケージを封口して、リチウムイオン二次電池Dを組み立てた。
Next, the composite separator faces the negative electrode sheet obtained in Reference Example 1 with the base resin film, and the crosslinked copolymer layer on the base resin film becomes the positive electrode sheet obtained in Reference Example 1. The laminate was obtained by laminating so as to face each other. After this laminate was prepared in an aluminum laminate package, an electrolytic solution comprising an ethylene carbonate / diethyl carbonate (weight ratio 1/1) mixed solvent in which lithium hexafluorophosphate was dissolved at a concentration of 1.0 mol / L was poured. Then, the package was sealed, and a lithium ion secondary battery D was assembled.

このリチウムイオン二次電池において、上記架橋した共重合体層は、リチウム塩を含む
電解液によって膨潤してゲル電解質、即ち、リチウムイオン伝導層として機能する。
In this lithium ion secondary battery, the crosslinked copolymer layer functions as a gel electrolyte, that is, a lithium ion conductive layer, by swelling with an electrolyte containing a lithium salt.

上記複合化セパレータに担持させた架橋した共重合体層の表面の走査電子顕微鏡写真を
図1に示すように、実質的に無孔性である。
As shown in FIG. 1, a scanning electron micrograph of the surface of the crosslinked copolymer layer carried on the composite separator is substantially nonporous.

実施例4
実施例3において、複合化セパレータの基材樹脂フィルム上に担持させた架橋した共重
合体層が前記参考例1で得た負極シートに対向し、基材樹脂フィルムが前記参考例1で得た正極シートに対向するように、複合化セパレータを正負の電極シートと積層して積層体を得た以外は、実施例3と同様にして、リチウムイオン二次電池Eを組み立てた。このリチウムイオン二次電池Eは、架橋した共重合体層が負極シート側に位置する以外は、前記リチウムイオン二次電池Dと同じである。
Example 4
In Example 3, the crosslinked copolymer layer carried on the base resin film of the composite separator was opposed to the negative electrode sheet obtained in Reference Example 1, and the base resin film was obtained in Reference Example 1. A lithium ion secondary battery E was assembled in the same manner as in Example 3, except that the composite separator was laminated with the positive and negative electrode sheets so as to face the positive electrode sheet to obtain a laminate. This lithium ion secondary battery E is the same as the lithium ion secondary battery D except that the crosslinked copolymer layer is located on the negative electrode sheet side.

比較例2
実施例3において、ポリマー溶液3にN−メチル−2−ピロリドンを10重量部となる
ように加え、濃度8.3%の均一なポリマー溶液を調製した。これを実施例3と同様にして、多孔質セパレータ膜に塗布した後、酢酸エチルとN−メチル−2−ピロリドンを揮散させ、次いで、これを90℃の恒温器に168時間投入して、メチルメタクリレート/4−ヒドロキシブチルアクリレート共重合体を架橋させ、かくして、片面に厚み0.5μmの架橋した共重合体層を多孔質セパレータ膜に担持させて、複合化セパレータを得た。上記架橋した共重合体のゲル分率は57.9%であった。この複合化セパレータを用いた以外は、実施例3と同様にして、リチウムイオン二次電池Fを作製した。
Comparative Example 2
In Example 3, N-methyl-2-pyrrolidone was added to the polymer solution 3 so that it might become 10 weight part, and the uniform polymer solution with a density | concentration of 8.3% was prepared. After applying this to the porous separator film in the same manner as in Example 3, the ethyl acetate and N-methyl-2-pyrrolidone were volatilized, and then this was put into a 90 ° C. incubator for 168 hours. The methacrylate / 4-hydroxybutyl acrylate copolymer was cross-linked, and thus a cross-linked copolymer layer having a thickness of 0.5 μm was supported on one surface of the porous separator film to obtain a composite separator. The crosslinked copolymer had a gel fraction of 57.9%. A lithium ion secondary battery F was produced in the same manner as in Example 3 except that this composite separator was used.

この複合化セパレータにおいては、溶媒が沸点の相違する酢酸エチルとN−メチル−2
−ピロリドンとからなるポリマー溶液を多孔質セパレータ膜に塗布し、それら溶媒を揮散させ、加熱して、上記共重合体を架橋させたので、架橋した共重合体層の表面は、その走査電子顕微鏡写真を図2に示すように、1〜5μm程度の孔を有している。
In this composite separator, ethyl acetate and N-methyl-2 having different boiling points are used as solvents.
-The polymer solution consisting of pyrrolidone was applied to the porous separator film, the solvent was volatilized, and the copolymer was crosslinked by heating, so that the surface of the crosslinked copolymer layer was scanned with a scanning electron microscope. As shown in FIG. 2, the photograph has holes of about 1 to 5 μm.

上記実施例1〜4、比較例1及び2にて得られたラミネートシール型リチウムイオン二
次電池A〜Fについて、一定温度(25℃)の下、0.2CmAのレートにて3回充放電を行い、3回目の放電容量を初期放電容量として求めた。また、3回目の充放電効率を初期充放電効率として求めた。その後、0.2CmAで充電し、次いで、2CmAで放電して、2CmA放電容量を求め、前記初期放電容量に対する2CmA放電容量の百分率(%)にて初期レート特性を評価した。
The laminate seal type lithium ion secondary batteries A to F obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were charged and discharged three times at a rate of 0.2 CmA under a constant temperature (25 ° C.). The third discharge capacity was determined as the initial discharge capacity. The third charge / discharge efficiency was determined as the initial charge / discharge efficiency. Thereafter, the battery was charged at 0.2 CmA, then discharged at 2 CmA to obtain a 2 CmA discharge capacity, and the initial rate characteristics were evaluated by the percentage (%) of the 2 CmA discharge capacity with respect to the initial discharge capacity.

その後、1CmAで充電し、1CmAで放電することを1サイクルとし、300サイク
ル充放電を繰り返した。1CmAの充放電を開始した1サイクル目の放電容量に対する300サイクル目の放電容量の百分率(%)にて容量維持率を評価した。また、300サイクルの平均充放電効率を平均効率として評価した。この後、0.2CmAで充電し、0.2CmAで放電し、300サイクル目の1CmA放電容量に対する0.2CmAの百分率(%)にて、充放電を繰り返した後のレート特性を評価した。結果を表1に示す。
Thereafter, charging at 1 CmA and discharging at 1 CmA was taken as one cycle, and 300 cycles of charging and discharging were repeated. The capacity maintenance rate was evaluated as a percentage (%) of the discharge capacity at the 300th cycle with respect to the discharge capacity at the 1st cycle where charging / discharging of 1 CmA was started. Moreover, the average charge / discharge efficiency of 300 cycles was evaluated as the average efficiency. Thereafter, the battery was charged at 0.2 CmA, discharged at 0.2 CmA, and the rate characteristics after repeated charge and discharge were evaluated at a percentage (%) of 0.2 CmA with respect to the 1 CmA discharge capacity at the 300th cycle. The results are shown in Table 1.

表1に示す結果から、本発明によるリチウムイオン二次電池は、初期放電容量、初期充放電効率及び初期レート特性の劣化が少なく、高容量且つ高出力を有する。また、サイクル試験中の充放電効率が向上したので、充放電を繰り返しても、容量の劣化が少なく、長期信頼性にすぐれたリチウムイオン二次電池を得ることができる。   From the results shown in Table 1, the lithium ion secondary battery according to the present invention has little deterioration in initial discharge capacity, initial charge / discharge efficiency and initial rate characteristics, and has high capacity and high output. In addition, since the charge / discharge efficiency during the cycle test is improved, a lithium ion secondary battery with little deterioration in capacity and excellent long-term reliability can be obtained even after repeated charge / discharge.

実施例5〜11
実施例3において、ポリマー溶液3に酢酸エチルを加え、室温で攪拌して、それぞれポ
リマー濃度が2.1%、3.2%、4.3%、8.4%、16%、22%及び25%の均一なポリマー溶液を得た。
Examples 5-11
In Example 3, ethyl acetate was added to polymer solution 3 and stirred at room temperature, and the polymer concentrations were 2.1%, 3.2%, 4.3%, 8.4%, 16%, 22% and A 25% homogeneous polymer solution was obtained.

このようにして得られたそれぞれのポリマー溶液を多孔質セパレータ膜の片面にワイヤ
ーバー(#20)にて塗工した後、60℃で加熱乾燥して、酢酸エチルを揮散させ、次いでこれを90℃の恒温器に168時間投入して、前記共重合体を架橋し、かくして、片面にそれぞれ厚み0.010μm、0.050μm、0.10μm、0.50μm、1.0μm、2.0μm及び2.2μmの架橋した共重合体層を担持させた複合化セパレータを得た。これらの複合化セパレータにおいて、架橋した共重合体のゲル分率はそれぞれ、48.3%、50.2%、64.4%、58.3%、67.7%、55.0%及び44.5%であった。これらの複合化セパレータをそれぞれ用いて、実施例3と同様にして、リチウムイオン二次電池G〜Mをそれぞれ組み立てた。但し、実施例3のリチウムイオン二次電池Dと実施例8のリチウムイオン二次電池Jは同じものである。
Each polymer solution thus obtained was applied to one side of the porous separator film with a wire bar (# 20), and then heated and dried at 60 ° C. to volatilize ethyl acetate. 168 hours in a thermostat at 0 ° C. to crosslink the copolymer, and thus thicknesses of 0.010 μm, 0.050 μm, 0.10 μm, 0.50 μm, 1.0 μm, 2.0 μm and 2 on one side, respectively. A composite separator carrying a 2 μm cross-linked copolymer layer was obtained. In these composite separators, the gel fractions of the crosslinked copolymers were 48.3%, 50.2%, 64.4%, 58.3%, 67.7%, 55.0% and 44, respectively. .5%. Using these composite separators, lithium ion secondary batteries G to M were assembled in the same manner as in Example 3. However, the lithium ion secondary battery D of Example 3 and the lithium ion secondary battery J of Example 8 are the same.

上記リチウムイオン二次電池G〜Mについて、前記と同じ方法にて電池特性を評価した
。結果を表2に示す。
About the said lithium ion secondary battery G-M, the battery characteristic was evaluated by the same method as the above. The results are shown in Table 2.

表2に示す結果から明らかなように、本発明によれば、多孔質セパレータ膜に担持させ
た実質的に無孔性にリチウムイオン伝導層の厚みが0.01〜2.2μmの範囲、より好ましくは、0.01〜2.0μmの範囲、最も好ましくは、0.05〜2.0μmの範囲にうるとき、特に、高容量でレート特性にすぐれ、充放電を繰り返しても、充放電効率が高く、しかも、容量の劣化が少なく、レート特性の劣化も抑制された非水リチウムイオン二次電池を得ることができる。
As is apparent from the results shown in Table 2, according to the present invention, the thickness of the lithium ion conductive layer supported on the porous separator membrane is substantially non-porous in the range of 0.01 to 2.2 μm, Preferably, when it can be in the range of 0.01 to 2.0 μm, most preferably in the range of 0.05 to 2.0 μm, it has a high capacity and excellent rate characteristics. In addition, it is possible to obtain a non-aqueous lithium ion secondary battery that is high in capacity, has little capacity deterioration, and has suppressed deterioration of rate characteristics.

多孔質セパレータ膜上に担持させた実質的に無孔性のリチウムイオン伝導層の一例としての架橋ポリマー層の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a crosslinked polymer layer as an example of a substantially non-porous lithium ion conductive layer supported on a porous separator membrane. 多孔質セパレータ膜上に担持させた比較例としての有孔性の架橋ポリマー層の表面の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of a porous crosslinked polymer layer as a comparative example supported on a porous separator membrane.

Claims (5)

正極と非水電解液と多孔質セパレータ膜とこの多孔質セパレータ膜を介して前記正極と
電気的に絶縁されている負極からなる非水リチウムイオン二次電池において、前記正極と前記負極の間に実質的に無孔性のリチウムイオン伝導層を少なくとも1層有することを特徴とする非水リチウムイオン二次電池。
In a non-aqueous lithium ion secondary battery comprising a positive electrode, a non-aqueous electrolyte, a porous separator film, and a negative electrode electrically insulated from the positive electrode through the porous separator film, the non-aqueous lithium ion secondary battery is provided between the positive electrode and the negative electrode. A non-aqueous lithium ion secondary battery comprising at least one substantially nonporous lithium ion conductive layer.
実質的に無孔性のリチウムイオン伝導層が10000秒/100cc以上の通気度を有するものである請求項1に記載の非水リチウムイオン二次電池。   The non-aqueous lithium ion secondary battery according to claim 1, wherein the substantially nonporous lithium ion conductive layer has a permeability of 10,000 seconds / 100 cc or more. 実質的に無孔性のリチウムイオン伝導層が高分子固体電解質又はゲル電解質である請求
項1又は2に記載の非水リチウムイオン二次電池。
The nonaqueous lithium ion secondary battery according to claim 1 or 2, wherein the substantially nonporous lithium ion conductive layer is a polymer solid electrolyte or a gel electrolyte.
実質的に無孔性のリチウムイオン伝導層が多孔質セパレータに担持されている請求項1
から3のいずれかに記載の非水リチウムイオン二次電池。
The substantially non-porous lithium ion conductive layer is supported on a porous separator.
To 4. The non-aqueous lithium ion secondary battery according to any one of 3 to 4.
多孔質セパレータ膜が3〜100μmの範囲の膜厚を有し、実質的に無孔性のリチウム
イオン伝導層が合計にて0.01〜2.2μmの範囲の厚さを有する請求項1から4のいずれかに記載の非水リチウムイオン二次電池。

The porous separator membrane has a thickness in the range of 3 to 100 μm, and the substantially nonporous lithium ion conductive layer has a total thickness in the range of 0.01 to 2.2 μm. 4. The nonaqueous lithium ion secondary battery according to any one of 4 above.

JP2007147527A 2007-06-01 2007-06-01 Non-aqueous lithium ion secondary battery Expired - Fee Related JP5174376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147527A JP5174376B2 (en) 2007-06-01 2007-06-01 Non-aqueous lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147527A JP5174376B2 (en) 2007-06-01 2007-06-01 Non-aqueous lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2008300300A true JP2008300300A (en) 2008-12-11
JP2008300300A5 JP2008300300A5 (en) 2010-01-14
JP5174376B2 JP5174376B2 (en) 2013-04-03

Family

ID=40173605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147527A Expired - Fee Related JP5174376B2 (en) 2007-06-01 2007-06-01 Non-aqueous lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5174376B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205663A (en) * 2009-03-05 2010-09-16 Nitto Denko Corp Separator for battery, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
JP2014520377A (en) * 2011-06-23 2014-08-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Secondary battery
WO2015030230A1 (en) 2013-09-02 2015-03-05 日本ゴア株式会社 Protective film, separator using same, and secondary battery
WO2016031335A1 (en) * 2014-08-29 2016-03-03 日東電工株式会社 Lithium metal secondary battery
KR20170032002A (en) * 2015-09-14 2017-03-22 주식회사 엘지화학 Lithium ion conductive organic-inorganic composite separator and lithium secondary battery comprising the same
JP2017538266A (en) * 2014-12-02 2017-12-21 ポリプラス バッテリー カンパニーPolyPlus Battery Company Lithium ion conductive sulfur-based glassy solid electrolyte sheet, and related structures, batteries, and methods
JP2019512838A (en) * 2016-03-29 2019-05-16 ディーケイジェイ・ニュー・エナジー・エス・アンド・ティー・カンパニー・リミテッド Non-porous separator and use thereof
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10833361B2 (en) 2014-12-02 2020-11-10 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US10840547B2 (en) 2017-07-07 2020-11-17 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
CN112670562A (en) * 2020-12-25 2021-04-16 华北电力大学(保定) Porous/non-porous composite lithium ion conductor material
US11171364B2 (en) 2016-05-10 2021-11-09 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
CN116722313A (en) * 2023-08-11 2023-09-08 上海恩捷新材料科技有限公司 Electrolyte composite diaphragm, preparation method and lithium battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte
JP2001110449A (en) * 1999-10-13 2001-04-20 Fujikura Ltd Ion conductive sheet
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
JP2007123254A (en) * 2005-09-29 2007-05-17 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and method of manufacturing battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
JP2001110449A (en) * 1999-10-13 2001-04-20 Fujikura Ltd Ion conductive sheet
JP2007123254A (en) * 2005-09-29 2007-05-17 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and method of manufacturing battery using it

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205663A (en) * 2009-03-05 2010-09-16 Nitto Denko Corp Separator for battery, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
JP2014520377A (en) * 2011-06-23 2014-08-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Secondary battery
WO2015030230A1 (en) 2013-09-02 2015-03-05 日本ゴア株式会社 Protective film, separator using same, and secondary battery
US20160204476A1 (en) * 2013-09-02 2016-07-14 W.L. Gore & Associates, Co., Ltd. Protective film, separator and secondary battery using the same
WO2016031335A1 (en) * 2014-08-29 2016-03-03 日東電工株式会社 Lithium metal secondary battery
JP2016051614A (en) * 2014-08-29 2016-04-11 日東電工株式会社 Lithium metal secondary battery
US10840546B2 (en) 2014-12-02 2020-11-17 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11646445B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US11646444B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
JP2017538266A (en) * 2014-12-02 2017-12-21 ポリプラス バッテリー カンパニーPolyPlus Battery Company Lithium ion conductive sulfur-based glassy solid electrolyte sheet, and related structures, batteries, and methods
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10833361B2 (en) 2014-12-02 2020-11-10 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
KR20170032002A (en) * 2015-09-14 2017-03-22 주식회사 엘지화학 Lithium ion conductive organic-inorganic composite separator and lithium secondary battery comprising the same
KR102024887B1 (en) * 2015-09-14 2019-09-24 주식회사 엘지화학 Lithium ion conductive organic-inorganic composite separator and lithium secondary battery comprising the same
JP2019512838A (en) * 2016-03-29 2019-05-16 ディーケイジェイ・ニュー・エナジー・エス・アンド・ティー・カンパニー・リミテッド Non-porous separator and use thereof
EP3439070A4 (en) * 2016-03-29 2019-10-30 DKJ New Energy S&T Co. Ltd. Non-porous separator and use thereof
US11171364B2 (en) 2016-05-10 2021-11-09 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US11239495B2 (en) 2017-07-07 2022-02-01 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US11444270B2 (en) 2017-07-07 2022-09-13 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10840547B2 (en) 2017-07-07 2020-11-17 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US11817569B2 (en) 2017-07-07 2023-11-14 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11876174B2 (en) 2020-01-15 2024-01-16 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
CN112670562A (en) * 2020-12-25 2021-04-16 华北电力大学(保定) Porous/non-porous composite lithium ion conductor material
CN116722313B (en) * 2023-08-11 2023-11-17 上海恩捷新材料科技有限公司 Electrolyte composite diaphragm, preparation method and lithium battery
CN116722313A (en) * 2023-08-11 2023-09-08 上海恩捷新材料科技有限公司 Electrolyte composite diaphragm, preparation method and lithium battery

Also Published As

Publication number Publication date
JP5174376B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP7045593B2 (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
JP5286001B2 (en) Battery separator and non-aqueous lithium ion secondary battery using the same
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
US7311994B2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
KR20030089750A (en) Lithium secondary battery inhibiting decomposition of electrolytic solution and manufacturing method thereof
JP2005056800A (en) Separator for electronic parts and electronic parts
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
JP2005209498A (en) Nonaqueous electrolyte secondary battery
JP2009266557A (en) Battery separator and lithium-ion secondary battery
KR20170027403A (en) Secondary Battery Comprising Binder having High Swelling Ratio
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR20170050278A (en) Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same
KR20090102452A (en) The preparaion method of heat-resistant separator for lithuim secondary batteries and the separator using it
JP2010199083A (en) Lithium secondary battery
JP2001110449A (en) Ion conductive sheet
KR101013534B1 (en) Graft mesoporous separator with anion recepting compounds, a method for preparation thereof and lithium secondary batteries using the same
JP4563555B2 (en) Lithium secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2009087795A (en) Separator for battery, and nonaqueous lithium-ion secondary battery comprising to use this
KR101520139B1 (en) Electrode assembly and secondary battery including the same
JPH1092416A (en) Electrode and manufacture thereof and battery using the electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees