JP2005209498A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005209498A
JP2005209498A JP2004015419A JP2004015419A JP2005209498A JP 2005209498 A JP2005209498 A JP 2005209498A JP 2004015419 A JP2004015419 A JP 2004015419A JP 2004015419 A JP2004015419 A JP 2004015419A JP 2005209498 A JP2005209498 A JP 2005209498A
Authority
JP
Japan
Prior art keywords
secondary battery
carbon
sheet
composite
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004015419A
Other languages
Japanese (ja)
Other versions
JP2005209498A6 (en
JP4632020B2 (en
Inventor
Jiro Iriyama
次郎 入山
Kentaro Nakahara
謙太郎 中原
Shigeyuki Iwasa
繁之 岩佐
Yukiko Morioka
森岡  由紀子
Masahiro Suguro
雅博 須黒
Masaharu Sato
正春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004015419A priority Critical patent/JP4632020B2/en
Publication of JP2005209498A publication Critical patent/JP2005209498A/en
Publication of JP2005209498A6 publication Critical patent/JP2005209498A6/en
Application granted granted Critical
Publication of JP4632020B2 publication Critical patent/JP4632020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery superior in large current charge and discharge characteristics. <P>SOLUTION: In the nonaqueous electrolyte secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution; the positive electrode comprises a sheet composite including at least a stable organic radical polymer and carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は二次電池に関するものである。   The present invention relates to a secondary battery.

ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高出力の蓄電デバイスが求められている。中でも、正極にリチウム含有遷移金属酸化物、負極に炭素材料を用いたリチウムイオン二次電池は、充放電特性に優れた高エネルギー密度電池として種々の携帯機器に利用されている。   With the rapid market expansion of notebook PCs, mobile phones, electric cars, etc., high output power storage devices are required. Among them, lithium ion secondary batteries using a lithium-containing transition metal oxide for the positive electrode and a carbon material for the negative electrode are used in various portable devices as high energy density batteries having excellent charge / discharge characteristics.

特許文献1には、正極、負極の少なくとも一方の活物質がラジカル化合物を含有することを特徴とする二次電池が公開されている。また特許文献2には、ニトロキシル化合物を正極中に含有した蓄電デバイスが公開されている。この蓄電デバイスは電極反応が速いため大電流で充放電ができるとされている。また、特許文献3には、活物質として少なくとも2以上は組成の領域からなる複合物の粒子を有する二次電池が公開されている。
特開平2002−151084号公報 特開平2002−304996号公報 特開平2002−298850号公報
Patent Document 1 discloses a secondary battery in which at least one active material of a positive electrode and a negative electrode contains a radical compound. Patent Document 2 discloses an electricity storage device containing a nitroxyl compound in a positive electrode. This electricity storage device is said to be able to charge and discharge with a large current because of its fast electrode reaction. Patent Document 3 discloses a secondary battery having composite particles composed of at least two or more composition regions as active materials.
Japanese Patent Laid-Open No. 2002-151084 JP-A-2002-304996 Japanese Patent Laid-Open No. 2002-298850

しかしながら、そもそもリチウムイオン二次電池は、電極反応の反応速度が大きいとはいえず、大きな電流を流すと容量が著しく低下する問題点があった。特許文献1〜3に記載された電池では電極反応が速いため30C程度での充放電が可能なものはあったが、50C程度の大電流化という点では、未だ改善の余地があった。ここで任意の電池におけるCとは、次のように定義される。任意容量をもつ電池を、任意の一定電流で放電もしくは充電し、n時間で放電もしくは充電が終了するとき、その一定電流をC/nと定義する。   However, in the first place, the lithium ion secondary battery cannot be said to have a high reaction rate of the electrode reaction, and has a problem that the capacity is remarkably lowered when a large current is passed. Some of the batteries described in Patent Documents 1 to 3 are capable of charging and discharging at about 30 C because the electrode reaction is fast, but there is still room for improvement in terms of increasing the current to about 50 C. Here, C in any battery is defined as follows. When a battery having an arbitrary capacity is discharged or charged with an arbitrary constant current and the discharge or charging is completed in n hours, the constant current is defined as C / n.

本発明は、大電流充放電特性に優れた二次電池を提供することを目的とする。   An object of this invention is to provide the secondary battery excellent in the large current charging / discharging characteristic.

本発明者らは、少なくとも、正極、負極、および電解質を構成に含む非水電解液二次電池であって、前記正極に少なくとも安定有機ラジカルポリマーと炭素とを含むシート状複合体を用いることにより、更なる大電流化を実現できることを見出し、本発明を完成させるに至った。   The present inventors provide a non-aqueous electrolyte secondary battery including at least a positive electrode, a negative electrode, and an electrolyte, by using a sheet-like composite including at least a stable organic radical polymer and carbon for the positive electrode. The present inventors have found that a further increase in current can be realized and have completed the present invention.

すなわち本発明は、少なくとも、正極、負極、および電解質を有する非水電解液二次電池において、前記正極が、少なくとも安定有機ラジカルポリマーと炭素とを含むシート状複合体を有することを特徴とする非水電解液二次電池である。   That is, the present invention provides a non-aqueous electrolyte secondary battery having at least a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode has a sheet-like composite containing at least a stable organic radical polymer and carbon. It is a water electrolyte secondary battery.

前記安定有機ラジカルポリマーの重量平均分子量が、20000から150000の範囲にあることであることが好ましい。   The stable organic radical polymer preferably has a weight average molecular weight in the range of 20000 to 150,000.

前記安定有機ラジカルポリマーの主鎖が、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類ポリマー、及び、ポリアルキル(メタ)アクリレート類からなる群より選ばれる1種であることが好ましい。   The main chain of the stable organic radical polymer is preferably one selected from the group consisting of poly (meth) acrylic acid, poly (meth) acrylamide polymers, and polyalkyl (meth) acrylates.

前記シート状複合体が、少なくとも前記安定有機ラジカルポリマーと前記炭素と有機溶媒とを含むゲルであることが好ましい。前記有機溶媒が、鎖状カーボネイト類、環状カーボネイト類、及び、ラクトン類からなる群より選ばれる1種以上を含有することが好ましい。   It is preferable that the sheet composite is a gel containing at least the stable organic radical polymer, the carbon, and an organic solvent. The organic solvent preferably contains one or more selected from the group consisting of chain carbonates, cyclic carbonates, and lactones.

本発明のように、少なくとも正極、負極、および電解液を有する非水電解液二次電池において、正極が少なくとも安定有機ラジカルポリマーと炭素とを含むシート状複合体を有することを特徴とする非水電解液二次電池により、50C程度の大電流充放電特性に優れた二次電池を得ることができる。   As in the present invention, in a non-aqueous electrolyte secondary battery having at least a positive electrode, a negative electrode, and an electrolytic solution, the positive electrode has a sheet-like composite containing at least a stable organic radical polymer and carbon. With the electrolyte secondary battery, it is possible to obtain a secondary battery excellent in large current charge / discharge characteristics of about 50C.

[1]安定有機ラジカルポリマー
本発明では、平衡状態におけるスピン濃度が1021spin/g以上である状態が1秒以上継続される有機ポリマーを安定有機ラジカルポリマーと呼ぶ。このような安定有機ラジカルポリマーとしては、例えば、ニトロキシルラジカルを有するポリマー、オキシラジカルを有するポリマー、窒素ラジカルを有するポリマー等が挙げられ、これらから適宜選択して用いることができる。複数種のラジカルを有するポリマーを用いることもできる。また、複数種のポリマーの混合物を用いることもできる。代表的なポリマー構造を以下の化学式1から化学式13に示す。
[1] Stable Organic Radical Polymer In the present invention, an organic polymer in which the state where the spin concentration in the equilibrium state is 10 21 spin / g or more continues for 1 second or longer is referred to as a stable organic radical polymer. Examples of such a stable organic radical polymer include a polymer having a nitroxyl radical, a polymer having an oxy radical, a polymer having a nitrogen radical, and the like, which can be appropriately selected from these. A polymer having plural kinds of radicals can also be used. A mixture of a plurality of types of polymers can also be used. Typical polymer structures are shown in Chemical Formulas 1 to 13 below.

このような安定有機ラジカルポリマーは電気化学的に可逆に酸化還元が可能であり二次電池の活物質として用いることができる。またこの酸化還元過程においてポリマー骨格の変化を伴わないため、酸化還元反応速度が大きく、これらのポリマー及び炭素を含むシート状複合体を正極に用いた本発明の二次電池は大電流での充放電が可能である。   Such a stable organic radical polymer can be electrochemically reversibly oxidized and reduced, and can be used as an active material of a secondary battery. In addition, since there is no change in the polymer skeleton during this redox process, the redox reaction rate is high, and the secondary battery of the present invention using a sheet-like composite containing these polymers and carbon as the positive electrode is charged with a large current. Discharge is possible.

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

Figure 2005209498
Figure 2005209498

上記安定有機ラジカルポリマーの重量平均分子量は20000から150000の範囲にあることが好ましい。重量平均分子量が20000以上とすることで、後述するゲルとするための有機溶媒に溶解しにくくゲル化が容易である。また、150000以下とすることで、膨潤しやすくゲル化が容易である。より好ましくは50000から100000の範囲である。   The stable organic radical polymer preferably has a weight average molecular weight in the range of 20,000 to 150,000. By setting the weight average molecular weight to 20000 or more, it is difficult to dissolve in an organic solvent for forming a gel described later, and gelation is easy. Moreover, by setting it as 150,000 or less, it is easy to swell and gelatinize easily. More preferably, it is in the range of 50,000 to 100,000.

また安定有機ラジカルポリマーの主鎖は特に制限はないが、より好ましいのは、
ポリ(メタ)アクリル酸;
ポリ(メタ)アクリロニトリル;
ポリ(メタ)アクリルアミド、ポリメチル(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド等のポリ(メタ)アクリルアミド類ポリマー;
ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート類ポリマー;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー;
ポリビニルアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルメチルエーテル、ポリビニルカルバゾール、ポリビニルピリジン、ポリビニルピロリドン等のビニル系ポリマー;
ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブテンオキサイド、ポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビニルエーテル、ポリプロピルビニルエーテル、ポリブチルビニルエーテル、ポリベンジルビニルエーテル等のポリエーテル類;
ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレンパラフェニレンジアセテート、ポリエチレンイソプロピリデンジベンゾエート等のポリエステル類;
ポリトリメチレンエチレンウレタン等のポリウレタン類;
ポリエチレンアミン、ポリヘキサメチレンアミン、ポリエチレントリメチレンアミン等のポリアミン系ポリマー類;
等である。上記の主鎖を持つポリマーは、後述するゲルとするための有機溶媒の保持能力に優れ容易にゲル化が容易である。
The main chain of the stable organic radical polymer is not particularly limited, but more preferably
Poly (meth) acrylic acid;
Poly (meth) acrylonitrile;
Poly (meth) acrylamide polymers such as poly (meth) acrylamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropyl (meth) acrylamide;
Polyalkyl (meth) acrylate polymers such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate;
Fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene;
Vinyl polymers such as polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride, polyvinyl methyl ether, polyvinyl carbazole, polyvinyl pyridine, and polyvinyl pyrrolidone;
Polyethers such as polyethylene oxide, polypropylene oxide, polybutene oxide, polyoxymethylene, polyacetaldehyde, polymethyl vinyl ether, polypropyl vinyl ether, polybutyl vinyl ether, polybenzyl vinyl ether;
Polyesters such as polyethylene terephthalate, polyethylene adipate, polyethylene isophthalate, polyethylene naphthalate, polyethylene paraphenylene diacetate, polyethylene isopropylidene dibenzoate;
Polyurethanes such as polytrimethylene ethylene urethane;
Polyamine polymers such as polyethyleneamine, polyhexamethyleneamine, polyethylenetrimethyleneamine;
Etc. The polymer having the main chain is excellent in the ability to hold an organic solvent for forming a gel described later, and is easily gelled.

この中でも、電気化学的な耐性に優れている点で、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類ポリマー、及び、ポリアルキル(メタ)アクリレート類からなる群より選ばれる1種がさらに好ましい。ポリアルキル(メタ)アクリレート類が特に好ましい。なお、主鎖とは、ポリマー分子中で、最も炭素数の多い炭素鎖のことである。   Among these, one selected from the group consisting of poly (meth) acrylic acid, poly (meth) acrylamide polymers, and polyalkyl (meth) acrylates is more preferable in terms of excellent electrochemical resistance. . Polyalkyl (meth) acrylates are particularly preferred. The main chain is a carbon chain having the largest number of carbon atoms in the polymer molecule.

[2]シート状複合体、正極
本発明の非水電解液二次電池における正極は、少なくとも安定有機ラジカルポリマーと炭素とを含むシート状複合体を有する。シート状複合体を得る方法としては、例えば、上記安定有機ラジカルポリマーを溶媒に溶解し、その溶液に炭素粒子を分散させたスラリーを調製し、そのスラリーを集電体上に塗布した後溶媒を蒸発させる方法が挙げられる。スラリーに超音波を放射した後、集電体に塗布してもよい。超音波を放射することにより、炭素粒子がより分散しやすくなる。また、上記の安定有機ラジカルポリマーを溶媒に溶解させた溶液を、炭素を含む多孔質のシートに含浸させた後、溶媒を蒸発させることでも同様にシート状複合体が得られる。
[2] Sheet Composite, Positive Electrode The positive electrode in the nonaqueous electrolyte secondary battery of the present invention has a sheet composite including at least a stable organic radical polymer and carbon. As a method for obtaining a sheet-like composite, for example, a slurry in which the above stable organic radical polymer is dissolved in a solvent and carbon particles are dispersed in the solution is prepared, and after applying the slurry on a current collector, the solvent is added. The method of evaporating is mentioned. After radiating ultrasonic waves to the slurry, it may be applied to the current collector. By emitting ultrasonic waves, the carbon particles are more easily dispersed. Further, a sheet-like composite can be obtained in the same manner by impregnating a porous sheet containing carbon with a solution obtained by dissolving the above stable organic radical polymer in a solvent and then evaporating the solvent.

このようなシート状複合体は、単に安定有機ラジカルポリマー粒子と炭素粒子を混合して作製したシートに比べて、粒子間の接触抵抗がないため、電子伝導性が高い。そのためシート状複合体を正極に用いた電池は大電流での充放電特性に優れている。   Such a sheet-like composite has high electron conductivity because there is no contact resistance between the particles as compared to a sheet prepared by simply mixing stable organic radical polymer particles and carbon particles. Therefore, a battery using a sheet-like composite as a positive electrode is excellent in charge / discharge characteristics at a large current.

シート状複合体を形成するための安定有機ラジカルポリマーと炭素との混合比には特に制限はないが、安定有機ラジカルポリマーと炭素との重量比が20/80〜90/10の範囲にあるのが好ましく、60/40〜80/20がより好ましい。安定有機ラジカルポリマーの重量比が20%以上の場合、シート状複合体に含まれる電池活物質の割合が多くなり、より電池の容量が大きくなる。安定有機ラジカルポリマーの重量比が90%以下の場合、すなわち炭素の重量比が10%以上の場合、シート状複合体中に電子伝導を担う炭素によるネットワーク構造を形成されやすく、大電流での充放電特性が良くなる。   The mixing ratio of the stable organic radical polymer and carbon for forming the sheet-like composite is not particularly limited, but the weight ratio of the stable organic radical polymer to carbon is in the range of 20/80 to 90/10. Is preferable, and 60/40 to 80/20 is more preferable. When the weight ratio of the stable organic radical polymer is 20% or more, the ratio of the battery active material contained in the sheet-like composite increases, and the battery capacity increases. When the weight ratio of the stable organic radical polymer is 90% or less, that is, when the weight ratio of carbon is 10% or more, a network structure composed of carbon responsible for electronic conduction is easily formed in the sheet-like composite, and charging with a large current is possible. Discharge characteristics are improved.

シート状複合体の厚さは特に制限はないが、5μmから400μmの範囲にあることが好ましい。5μm以上とすることで、電池に占める集電体等の他の部材の割合が小さくなり電池のエネルギー密度が高まる。また、400μm以下とすることで、電極の抵抗が小さくなり大電流充放電特性が高まる。   The thickness of the sheet composite is not particularly limited, but is preferably in the range of 5 μm to 400 μm. By setting it as 5 micrometers or more, the ratio of other members, such as a collector which occupies for a battery, becomes small, and the energy density of a battery increases. Moreover, by setting it as 400 micrometers or less, resistance of an electrode becomes small and a large current charging / discharging characteristic improves.

上記シート状複合体に含まれる炭素は、シート状複合体全体に均一に分布していることが好ましい。そのため炭素の形状は粒子または多孔質シートが好ましい。   The carbon contained in the sheet composite is preferably uniformly distributed throughout the sheet composite. Therefore, the shape of carbon is preferably a particle or a porous sheet.

粒子の場合のその粒径は、0.05μmから200μmの範囲にあることが好ましく、さらに好ましくは0.1μmから50μmの範囲で、最も好ましくは0.5μmから5μmの範囲である。粒径が0.05μm以上の粒子は、凝集しにくく複合体全体に均一に分散させることが容易となる。また、粒径が200μm以下の粒子は、上記溶液に混合した際にも沈降しにくく、シート状複合体全体に均一に分散させることが容易となる。   In the case of particles, the particle size is preferably in the range of 0.05 μm to 200 μm, more preferably in the range of 0.1 μm to 50 μm, and most preferably in the range of 0.5 μm to 5 μm. Particles having a particle size of 0.05 μm or more are less likely to aggregate and can be easily dispersed uniformly throughout the composite. Further, particles having a particle size of 200 μm or less are unlikely to settle even when mixed in the above solution, and can be easily dispersed uniformly throughout the sheet-like composite.

また炭素粒子の中でもDBP吸油量が70cm3/100g〜250cm3/100gの範囲にあるものは特に好ましい。このような炭素材料を用いることによりシート状複合体が膨潤しやすくなる。 Also those DBP oil absorption among carbon particles is in the range of 70cm 3 / 100g~250cm 3 / 100g is particularly preferred. By using such a carbon material, the sheet-like composite is easily swelled.

粒子の形状には特に制限はないが、一次粒子が数珠状に連なった二次粒子構造を持つ炭素や繊維状の炭素は、シート状複合体中に電子伝導を担うネットワーク構造を形成しやすく特に好ましい。この二次粒子構造を持つ炭素や繊維状の炭素は、凝集体であるが、粒径はそれほど大きくないため、シート状複合体全体に均一に分散させることが可能である。このような炭素材料として、アセチレンブラック、ケッチェンブッラク等のカーボンブラックや気相成長炭素繊維(VGCF)、メソフェーズピッチ炭素繊維、カーボンナノチューブ等が挙げられる。   The shape of the particle is not particularly limited, but carbon having a secondary particle structure in which primary particles are arranged in a bead shape or fibrous carbon tends to form a network structure responsible for electronic conduction in the sheet-like composite. preferable. The carbon having the secondary particle structure and the fibrous carbon are aggregates, but the particle size is not so large and can be uniformly dispersed throughout the sheet composite. Examples of such a carbon material include carbon black such as acetylene black and ketjen black, vapor grown carbon fiber (VGCF), mesophase pitch carbon fiber, and carbon nanotube.

また、炭素の多孔質シートとしては、活性炭をフェノール樹脂や熱分解樹脂と混合しシート状に成型し焼成したものや、フェノール系繊維の織布を炭化賦活して得られる活性炭繊維布等が上げられる。多孔質シートは、安定有機ラジカルポリマーを溶媒に溶かした溶液を含浸しやすくするため、その空隙率が10体積%から90体積%の範囲のあることが好ましく、さらに好ましくは30体積%から80体積%の範囲にあることが、最も好ましくは40体積%から70体積%の範囲である。   Carbon porous sheets include activated carbon mixed with phenolic resin and pyrolytic resin, molded into a sheet and baked, and activated carbon fiber cloth obtained by carbonizing a woven fabric of phenolic fibers. It is done. The porous sheet preferably has a porosity in the range of 10% by volume to 90% by volume, more preferably 30% by volume to 80% by volume, in order to facilitate impregnation with a solution in which a stable organic radical polymer is dissolved in a solvent. Most preferably, it is in the range of 40% to 70% by volume.

シート状複合体の物理的強度を高くするため、さらに、ポリフッ化ビニリデン、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、等の結着剤を添加してもよい。これらの結着剤は、安定有機ラジカルポリマーを溶解する溶媒に一緒に溶かしてシート状複合体中に一体化させることが特に好ましい。これにより結着剤をシート状複合体全体に均一に分布させることができる。   In order to increase the physical strength of the sheet-like composite, a binder such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, etc. is added. Also good. These binders are particularly preferably dissolved together in a solvent that dissolves the stable organic radical polymer and integrated into the sheet-like composite. Thereby, a binder can be uniformly distributed over the whole sheet-like composite.

[3]ゲル
上記シート状複合物を有機溶媒に浸漬すると、安定有機ラジカルポリマーが有機溶媒で膨潤しゲルが得られる。電池活物質である安定有機ラジカルポリマーをゲル化することにより、充放電反応に伴う活物質内のイオン拡散が速くなり、電池にしたときの大電流での充放電特性が良くなる。したがって、本発明の非水電解液二次電池の正極に用いるシート状複合体は、少なくとも安定有機ラジカルポリマーと炭素と有機溶媒とを含むゲルであることが好ましい。
[3] Gel When the sheet-like composite is immersed in an organic solvent, the stable organic radical polymer swells with the organic solvent to obtain a gel. By gelling a stable organic radical polymer that is a battery active material, ion diffusion in the active material accompanying the charge / discharge reaction is accelerated, and charge / discharge characteristics at a large current when a battery is formed are improved. Therefore, it is preferable that the sheet-like composite used for the positive electrode of the nonaqueous electrolyte secondary battery of the present invention is a gel containing at least a stable organic radical polymer, carbon, and an organic solvent.

シート状複合体を有機溶媒に浸漬する際に、より膨潤しやすくするためにシート状複合体を加熱してもよい。加熱温度は、有機溶媒の沸点以下が好ましい。有機溶媒の沸点より高い温度で加熱すると、有機溶媒が気化しシート状複合体が膨潤しにくくなる。また大気圧以下の圧力下で、シート状複合体を有機溶媒に浸漬しても良い。   When the sheet-like composite is immersed in an organic solvent, the sheet-like composite may be heated in order to facilitate swelling. The heating temperature is preferably not higher than the boiling point of the organic solvent. When heated at a temperature higher than the boiling point of the organic solvent, the organic solvent evaporates and the sheet-like composite is less likely to swell. Moreover, you may immerse a sheet-like composite in an organic solvent under the pressure below atmospheric pressure.

また、上記有機溶媒としては、鎖状カーボネイト類、環状カーボネイト類、及び、ラクトン類からなる群より選ばれる1種以上を含有することが好ましい。これらの有機溶媒は耐酸化性、耐還元性に優れているため、これらの有機溶媒を含んだゲルを正極に用いると二次電池の充放電サイクル特性が良くなる。上記の有機溶媒は単独で用いても、数種類を混合して用いてもよい。   The organic solvent preferably contains at least one selected from the group consisting of chain carbonates, cyclic carbonates, and lactones. Since these organic solvents are excellent in oxidation resistance and reduction resistance, when a gel containing these organic solvents is used for the positive electrode, the charge / discharge cycle characteristics of the secondary battery are improved. The above organic solvents may be used alone or in combination of several kinds.

また、有機溶媒中に電解質塩をあらかじめ溶解させて、その有機溶媒で膨潤させることで、シート状複合物内でイオン伝導性を持たせたものは特に好ましい。溶解させる電解質塩に特に制限はないが、電解液に含まれる電解質塩と同じものが、電池のイオン伝導性を向上させるため最も好ましい。   In addition, it is particularly preferable that the electrolyte salt is dissolved in an organic solvent in advance and swelled with the organic solvent to give ion conductivity in the sheet composite. Although there is no restriction | limiting in particular in the electrolyte salt to dissolve, The same thing as the electrolyte salt contained in electrolyte solution is the most preferable in order to improve the ionic conductivity of a battery.

[4]電解液
本発明の非水電解液二次電池に用いる電解液としては特に限定されるものではなく従来公知のものを採用することができる。電解液は電極間の荷電担体輸送を担うものであり、一般的に20℃で10-5〜10-1S/cmのイオン伝導性を有していることが望ましい。電解質塩を有機溶媒に溶解した電解液を用いることができる。
[4] Electrolytic Solution The electrolytic solution used for the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and conventionally known ones can be employed. The electrolytic solution is responsible for transporting the charge carriers between the electrodes, and generally has an ionic conductivity of 10 −5 to 10 −1 S / cm at 20 ° C. An electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.

有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解する電解質塩を溶解させる。   Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC); or the like, aprotic organic solvents such as one or a mixture of two or more are used, and an electrolyte salt dissolved in these organic solvents is dissolved.

電解質塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等のリチウム塩が挙げられる。また、四フッ化ホウ酸テトラアンモニウム、四フッ化ホウ酸テトラエチルアンモニウム等の第四級アンモニウム塩や、四フッ化ホウ酸テトラエチルホスホニウム等の第四級ホスホニウム塩や四フッ化ホウ酸エチルメチルイミダゾリウム等のイミダゾリウム塩を使用することができる。これら電解質塩は1種のみ用いることも、二種以上を併用することもできる。 Examples of the electrolyte salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ). 2 , LiB 10 Cl 10 , lithium salt of lower aliphatic carboxylic acid carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl and the like. In addition, quaternary ammonium salts such as tetraammonium tetrafluoroborate and tetraethylammonium tetrafluoroborate, quaternary phosphonium salts such as tetraethylphosphonium tetrafluoroborate and ethylmethylimidazolium tetrafluoroborate Imidazolium salts such as can be used. These electrolyte salts can be used alone or in combination of two or more.

[5]負極
本発明の非水電解液二次電池に用いる負極の活物質としては、特に限定されるものではなく、従来公知のものを採用することができる。例えば、天然黒鉛、石油コークス、石炭コークス、ピッチコークス、カーボンブラック、活性炭、樹脂焼成炭素、有機高分子焼成体、熱分解気相成長炭素繊維、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維、低温焼成炭素、フラーレン、カーボンナノチューブ等の炭素材料、金属リチウム、リチウム合金、窒化リチウム、Li3-xxN(0<x<1、M=Co、NiまたはCu)及びこれらの混合物が挙げられ、これらの一種単独または二種以上を組み合わせて用いることができる。
[5] Negative Electrode The negative electrode active material used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and conventionally known materials can be employed. For example, natural graphite, petroleum coke, coal coke, pitch coke, carbon black, activated carbon, resin-fired carbon, organic polymer fired body, pyrolytic vapor-grown carbon fiber, mesocarbon microbead, mesophase pitch-based carbon fiber, polyacrylonitrile Carbon fiber, carbon material such as low-temperature calcined carbon, fullerene, carbon nanotube, metallic lithium, lithium alloy, lithium nitride, Li 3-x M x N (0 <x <1, M = Co, Ni or Cu) and these These can be used, and these can be used alone or in combination of two or more.

上記の中でも天然黒鉛、石油コークス、石炭コークス、ピッチコークス、カーボンブラック、活性炭、樹脂焼成炭素、有機高分子焼成体、熱分解気相成長炭素繊維、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維、低温焼成炭素、フラーレン、カーボンナノチューブ等の炭素材料が大きな電流で充放電ができるため好ましい。   Among these, natural graphite, petroleum coke, coal coke, pitch coke, carbon black, activated carbon, resin-fired carbon, organic polymer fired body, pyrolytic vapor-grown carbon fiber, mesocarbon microbead, mesophase pitch-based carbon fiber, poly Carbon materials such as acrylonitrile-based carbon fiber, low-temperature calcined carbon, fullerene, and carbon nanotube are preferable because they can be charged and discharged with a large current.

本発明では、上記の活物質の層を集電体上に形成したものを負極として用いることが好ましい。また、これらの構成材料間の結びつきを強めるために、結着剤を用いることもできる。結着剤としては、正極に用いるシート状複合体に示したものと同様のものを用いることできる。   In the present invention, it is preferable to use the active material layer formed on the current collector as the negative electrode. Moreover, in order to strengthen the connection between these constituent materials, a binder can also be used. As a binder, the thing similar to what was shown to the sheet-like composite used for a positive electrode can be used.

[6]集電体
本発明の非水電解液二次電池の正極及び負極に用いる集電体に関しては、特に限定されるものではなく、従来公知のものを採用することができる。その材料としては、例えば、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス等の金属や炭素材料を挙げることができる。その形状としては、例えば、箔、平板状、メッシュ状のものを用いることができる。また、このような集電体に触媒効果を持たせたり、活物質と集電体とを化学結合させてもよい。また、負極集電体と正極集電体との電気的接触を防ぐ目的で、両者の間にプラスティック樹脂等からなる絶縁パッキンを配置した構成としてもよい。
[6] Current collector The current collector used for the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and conventionally known ones can be employed. Examples of the material include metals such as nickel, aluminum, copper, gold, silver, aluminum alloy, and stainless steel, and carbon materials. As the shape, for example, a foil, a plate, or a mesh can be used. Further, such a current collector may have a catalytic effect, or the active material and the current collector may be chemically bonded. In addition, for the purpose of preventing electrical contact between the negative electrode current collector and the positive electrode current collector, an insulating packing made of a plastic resin or the like may be disposed between them.

[7]セパレータ
本発明の非水電解液二次電池における正極と負極の間には、必要に応じてセパレータを配置することができる。セパレータについては、特に限定されるものではなく、従来公知のものを採用することができる。例えば、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルム等を用いることができる。
[7] Separator A separator can be disposed between the positive electrode and the negative electrode in the non-aqueous electrolyte secondary battery of the present invention as necessary. About a separator, it does not specifically limit and a conventionally well-known thing is employable. For example, a polyolefin such as polypropylene or polyethylene, a porous film such as a fluororesin, or the like can be used.

[8]電極の積層形態
本発明では、正極および負極の積層形態について特に限定されるものではなく、任意の積層形態を採用することができ、多層積層体、集電体の両面に積層したものを組み合わせた形態、さらにこれらを巻回した形態とすることができる。
[8] Stacked Form of Electrode In the present invention, the stacked form of the positive electrode and the negative electrode is not particularly limited, and any stacked form can be adopted, which is stacked on both surfaces of the multilayer stacked body and the current collector. The form which combined these, Furthermore, it can be set as the form which wound these.

[9]電池の形状
本発明の電池の形状および外観については特に限定されるものではなく、従来公知のものを採用することができる。このような電池形状としては、例えば、電極積層体または巻回体を、金属ケース、樹脂ケース、もしくはアルミニウム箔などの金属箔と合成樹脂フィルムとからなるラミネートフィルム等によって封止したものが挙げられる。また、電池の外観としては、円筒型、角型、コイン型、シート型等が挙げられる。
[9] Shape of Battery The shape and appearance of the battery of the present invention are not particularly limited, and conventionally known ones can be adopted. Examples of such battery shapes include those in which an electrode laminate or a wound body is sealed with a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film. . Examples of the external appearance of the battery include a cylindrical shape, a square shape, a coin shape, and a sheet shape.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
[正極]
化学式1で表される繰り返し単位からなるホモポリマー(粒径20μm、重量平均分子量89000(ゲル浸透クロマトグラフィーにて測定))5.5gとポリフッ化ビニリデン0.5gを60gのn−メチルピロリドンに溶解させ、その溶液に平均粒径5μm、比表面積が300m2/g、DBP吸油量が140cm3/100gのアセチレンブラック4.5gを混合し、スラリーを作製した。このスラリーに40kHzの超音波を30分間照射した後、ドクターブレードを用いて厚さ20μmのアルミ集電体上に70μmの厚さになるよう塗布し、125℃で乾燥してn−メチルピロリドンを蒸発させシート状複合体とした。このシート状複合体を1mol/lのLiPF6電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(ECとDECの混合比3:7(体積比))中に、40℃、66.6hPaの条件下で浸漬させて20分間放置することでゲルを作製し、正極として用いた。
Example 1
[Positive electrode]
5.5 g of a homopolymer consisting of a repeating unit represented by the chemical formula 1 (particle size 20 μm, weight average molecular weight 89000 (measured by gel permeation chromatography)) and 0.5 g of polyvinylidene fluoride are dissolved in 60 g of n-methylpyrrolidone. is an average particle diameter of 5μm to the solution, the specific surface area of 300m 2 / g, DBP oil absorption amount were mixed acetylene black 4.5g of 140cm 3/100 g, to prepare a slurry. The slurry was irradiated with ultrasonic waves of 40 kHz for 30 minutes, and then applied to a thickness of 70 μm on a 20 μm thick aluminum current collector using a doctor blade, and dried at 125 ° C. to obtain n-methylpyrrolidone. Evaporated into a sheet composite. The sheet-like composite of ethylene carbonate / diethyl carbonate mixed solution containing LiPF 6 electrolytic salt 1 mol / l (EC and DEC mixing ratio 3: 7 (volume ratio)) in the, 40 ℃, 66.6hPa conditions The gel was prepared by being immersed in and left to stand for 20 minutes and used as a positive electrode.

[負極]
銅箔上に、人造黒鉛とスチレンブタジエンゴムとセルロースとを水に分散させたスラリーを塗布し、乾燥後、ローラーで圧縮したものを負極として用いた。
[Negative electrode]
A slurry obtained by dispersing artificial graphite, styrene butadiene rubber, and cellulose in water on a copper foil was applied, dried, and then compressed with a roller, and used as a negative electrode.

[電解液]
0.9mol/lのLiPF6電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(ECとDECの混合比3:7(体積比))を用いた。
[Electrolyte]
An ethylene carbonate / diethyl carbonate mixed solution (mixing ratio of EC and DEC 3: 7 (volume ratio)) containing 0.9 mol / l LiPF 6 electrolyte salt was used.

[電池の作成]
上記の正極及び負極をセパレータを介して重ね合わせてステンレス製の外装缶に収納し封止してコイン型二次電池を作製した。
[Create battery]
The above positive electrode and negative electrode were overlapped via a separator, housed in a stainless steel outer can, and sealed to produce a coin-type secondary battery.

(実施例2)
[正極]
化学式1で表される繰り返し単位からなるホモポリマー(粒径20μm、重量平均分子量89000(ゲル浸透クロマトグラフィーにて測定))5.5gとポリフッ化ビニリデン0.5gを100gのテトラヒドロフランに溶解させ、その溶液を空隙率60体積%の活性炭シート(厚さ70μm)4.5gに含浸させた後、テトラヒドロフランを蒸発させシート状複合体を得た。この複合体を1mol/lのLiPF6電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(ECとDECの混合比3:7(体積比))中に、40℃、66.6hPaの条件下で浸漬させて20分間放置することでゲルを作製し、正極として用いた。
(Example 2)
[Positive electrode]
5.5 g of a homopolymer consisting of repeating units represented by the chemical formula 1 (particle size 20 μm, weight average molecular weight 89000 (measured by gel permeation chromatography)) and 0.5 g of polyvinylidene fluoride were dissolved in 100 g of tetrahydrofuran. The solution was impregnated into 4.5 g of an activated carbon sheet (thickness 70 μm) having a porosity of 60% by volume, and then tetrahydrofuran was evaporated to obtain a sheet-like composite. This composite was immersed in an ethylene carbonate / diethyl carbonate mixed solution (EC / DEC mixing ratio 3: 7 (volume ratio)) containing 1 mol / l LiPF 6 electrolyte salt at 40 ° C. and 66.6 hPa. The gel was prepared by leaving it to stand for 20 minutes and used as a positive electrode.

その他は実施例1と同様の方法でコイン型二次電池を作製した。   Other than that, a coin-type secondary battery was fabricated in the same manner as in Example 1.

(実施例3)
[正極]
化学式1で表される繰り返し単位からなるホモポリマー(粒径20μm、重量平均分子量89000(ゲル浸透クロマトグラフィーにて測定))5.5gとポリフッ化ビニリデン0.5gを60gのn−メチルピロリドンに溶解させ、その溶液に平均粒径5μm、比表面積が300m2/g、DBP吸油量が140cm3/100gのアセチレンブラック4.5gを混合し、スラリーを作製した。このスラリーに40kHzの超音波を30分間照射した後、ドクターブレードを用いて厚さ20μmのアルミ集電体上に70μmの厚さになるよう塗布し、125℃で乾燥してn−メチルピロリドンを蒸発させシート状複合体とした。このシート状複合体を正極として用いた。
(Example 3)
[Positive electrode]
5.5 g of a homopolymer consisting of a repeating unit represented by the chemical formula 1 (particle size 20 μm, weight average molecular weight 89000 (measured by gel permeation chromatography)) and 0.5 g of polyvinylidene fluoride are dissolved in 60 g of n-methylpyrrolidone. is an average particle diameter of 5μm to the solution, the specific surface area of 300m 2 / g, DBP oil absorption amount were mixed acetylene black 4.5g of 140cm 3/100 g, to prepare a slurry. The slurry was irradiated with ultrasonic waves of 40 kHz for 30 minutes, and then applied to a thickness of 70 μm on a 20 μm thick aluminum current collector using a doctor blade, and dried at 125 ° C. to obtain n-methylpyrrolidone. Evaporated into a sheet composite. This sheet composite was used as a positive electrode.

その他は実施例1と同様の方法でコイン型二次電池を作製した。   Other than that, a coin-type secondary battery was fabricated in the same manner as in Example 1.

(比較例1)
[正極]
化学式1で表される繰り返し単位からなるホモポリマー(粒径20μm、重量平均分子量89000(ゲル浸透クロマトグラフィーにて測定))5.0gとスチレン−ブタジエン共重合体0.5gを水に分散させ、その分散液に比表面積が300m2/g、DBP吸油量が140cm3/100gのアセチレンブラック4.5gと混合した後、ドクターブレードを用いて厚さ20μmのアルミ集電体上に70μmの厚さになるよう塗布し、80℃で加熱し水を蒸発させ正極を得た。
(Comparative Example 1)
[Positive electrode]
Disperse 5.0 g of a homopolymer (particle size 20 μm, weight average molecular weight 89000 (measured by gel permeation chromatography)) and 0.5 g of a styrene-butadiene copolymer in water, which is a repeating unit represented by Chemical Formula 1, the thickness of a specific surface area in the dispersion 300m 2 / g, after DBP oil absorption was mixed with acetylene black 4.5g of 140cm 3 / 100g, 70μm in thickness 20μm aluminum current collector on the body with a doctor blade And heated at 80 ° C. to evaporate water to obtain a positive electrode.

その他は実施例1と同様の方法でコイン型二次電池を作製した。   Other than that, a coin-type secondary battery was fabricated in the same manner as in Example 1.

(比較例2)
[正極]
化学式1で表される繰り返し単位からなるホモポリマー(粒径20μm、重量平均分子量89000(ゲル浸透クロマトグラフィーにて測定))5.5gとポリフッ化ビニリデン0.5gを60gのn−メチルピロリドンに溶解させ、その溶液に平均粒径2μmの金粉4.5gを混合し、スラリーを作製した。このスラリーをドクターブレードを用いて厚さ20μmのアルミ集電体上に70μmの厚さになるよう塗布し、125℃で乾燥してn−メチルピロリドンを蒸発させシート状複合体とした。このシート状複合体を1mol/lのLiPF6電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(ECとDECの混合比3:7(体積比))中に、40℃、66.6hPaの条件下で浸漬させて20分間放置することでゲルを作製し、正極として用いた。
(Comparative Example 2)
[Positive electrode]
5.5 g of a homopolymer consisting of a repeating unit represented by the chemical formula 1 (particle size 20 μm, weight average molecular weight 89000 (measured by gel permeation chromatography)) and 0.5 g of polyvinylidene fluoride are dissolved in 60 g of n-methylpyrrolidone. Then, 4.5 g of gold powder having an average particle diameter of 2 μm was mixed with the solution to prepare a slurry. This slurry was applied to a thickness of 70 μm on a 20 μm thick aluminum current collector using a doctor blade and dried at 125 ° C. to evaporate n-methylpyrrolidone to obtain a sheet composite. This sheet composite was placed in an ethylene carbonate / diethyl carbonate mixed solution containing 1 mol / l LiPF6 electrolyte salt (mixing ratio of EC and DEC 3: 7 (volume ratio)) at 40 ° C. and 66.6 hPa. The gel was prepared by being immersed and left for 20 minutes, and used as a positive electrode.

その他は実施例1と同様の方法でコイン型二次電池を作製した。   Other than that, a coin-type secondary battery was fabricated in the same manner as in Example 1.

作製したコイン型二次電池を2Vから4Vの電圧範囲で定電流充放電を行った。   The produced coin-type secondary battery was charged and discharged at a constant current in a voltage range of 2V to 4V.

表1に1C放電容量に対する50C放電容量の割合を示す。ここで1C放電とは1時間で放電が終わる定電流で放電することである。50C放電とは1C放電の50倍の電流で放電することである。   Table 1 shows the ratio of 50 C discharge capacity to 1 C discharge capacity. Here, the 1C discharge is a discharge at a constant current that completes the discharge in one hour. A 50C discharge is a discharge at a current 50 times that of a 1C discharge.

Figure 2005209498
Figure 2005209498

以上により実施例1、2、3で作製した本発明の非水電解液二次電池は、1C放電容量に対する50C放電容量の割合が大きく、大電流充放電特性に優れた二次電池であることが分かった。   As described above, the nonaqueous electrolyte secondary batteries of the present invention produced in Examples 1, 2, and 3 are secondary batteries having a large ratio of 50 C discharge capacity to 1 C discharge capacity and excellent large current charge / discharge characteristics. I understood.

Claims (5)

少なくとも、正極、負極、および電解液を有する非水電解液二次電池において、前記正極が、少なくとも安定有機ラジカルポリマーと炭素とを含むシート状複合体を有することを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery having at least a positive electrode, a negative electrode, and an electrolytic solution, wherein the positive electrode has a sheet-like composite containing at least a stable organic radical polymer and carbon. Next battery. 前記安定有機ラジカルポリマーの重量平均分子量が、20000から150000の範囲にあることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the stable organic radical polymer has a weight average molecular weight in the range of 20000 to 150,000. 前記安定有機ラジカルポリマーの主鎖が、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類ポリマー、及び、ポリアルキル(メタ)アクリレート類からなる群より選ばれる1種であることを特徴とする請求項1又は2に記載の非水電解液二次電池。   The main chain of the stable organic radical polymer is one selected from the group consisting of poly (meth) acrylic acid, poly (meth) acrylamide polymers, and polyalkyl (meth) acrylates. Item 3. The nonaqueous electrolyte secondary battery according to Item 1 or 2. 前記シート状複合体が、少なくとも前記安定有機ラジカルポリマーと前記炭素と有機溶媒とを含むゲルであることを特徴する請求項1から3のいずれかに記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the sheet-like composite is a gel including at least the stable organic radical polymer, the carbon, and an organic solvent. 前記有機溶媒が、鎖状カーボネイト類、環状カーボネイト類、及び、ラクトン類からなる群より選ばれる1種以上を含有することを特徴とする請求項4に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 4, wherein the organic solvent contains one or more selected from the group consisting of chain carbonates, cyclic carbonates, and lactones.
JP2004015419A 2004-01-23 2004-01-23 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4632020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015419A JP4632020B2 (en) 2004-01-23 2004-01-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015419A JP4632020B2 (en) 2004-01-23 2004-01-23 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2005209498A true JP2005209498A (en) 2005-08-04
JP2005209498A6 JP2005209498A6 (en) 2005-11-17
JP4632020B2 JP4632020B2 (en) 2011-02-16

Family

ID=34900890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015419A Expired - Lifetime JP4632020B2 (en) 2004-01-23 2004-01-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4632020B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
JP2008150357A (en) * 2006-11-22 2008-07-03 Nec Corp Spirooxazine radical derivative and reversible isomerization reaction
WO2008099557A1 (en) * 2007-02-15 2008-08-21 Nec Corporation Slurry for formation of eletrode and battery
JP2008234909A (en) * 2007-03-19 2008-10-02 Nec Corp Polymer compound, polymer compound/carbon material complex and its manufacturing method, electrode and its manufacturing method and secondary battery
WO2009081460A1 (en) * 2007-12-20 2009-07-02 Nec Corporation Spirooxazine radical derivatives and reversible isomerization reaction
JP2009205918A (en) * 2008-02-27 2009-09-10 Nec Corp Power storage device
WO2009145225A1 (en) * 2008-05-29 2009-12-03 Dic株式会社 Secondary battery, method for producing the same, and ink for forming electrode
JP2010238403A (en) * 2009-03-30 2010-10-21 Nec Corp Battery and manufacturing method of battery
WO2011034117A1 (en) * 2009-09-18 2011-03-24 日本電気株式会社 Polymer radical material-activated carbon-conductive material composite body, method for producing conductive material composite body, and electricity storage device
CN102496482A (en) * 2011-12-26 2012-06-13 东莞新能源科技有限公司 Pole piece of supercapacitor and production method for pole piece
JP2013191448A (en) * 2012-03-14 2013-09-26 Toppan Printing Co Ltd Positive electrode active material for secondary battery and secondary battery using the same
WO2014092128A1 (en) * 2012-12-14 2014-06-19 日本電気株式会社 Electric storage device
WO2015008626A1 (en) * 2013-07-18 2015-01-22 Jsr株式会社 Binder composition for storage device, slurry for storage device, electrode for storage device, separator, and storage device
JP2015060636A (en) * 2013-09-17 2015-03-30 日本電気株式会社 Secondary battery
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10826056B2 (en) 2015-07-13 2020-11-03 Kaneka Corporation Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117855A (en) * 2000-10-06 2002-04-19 Nec Corp Secondary battery and its manufacturing method
JP2002117853A (en) * 2000-10-06 2002-04-19 Nec Corp Battery
JP2002151084A (en) * 2000-02-25 2002-05-24 Nec Corp Secondary battery
JP2002170568A (en) * 2000-12-01 2002-06-14 Nec Corp Battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2002313344A (en) * 2001-04-10 2002-10-25 Nec Corp Electrode binder, and electrode and battery manufactured by using it
JP2003132891A (en) * 2001-10-23 2003-05-09 Nec Corp Secondary battery
JP2003308839A (en) * 2002-04-15 2003-10-31 Nec Corp Radical battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151084A (en) * 2000-02-25 2002-05-24 Nec Corp Secondary battery
JP2002117855A (en) * 2000-10-06 2002-04-19 Nec Corp Secondary battery and its manufacturing method
JP2002117853A (en) * 2000-10-06 2002-04-19 Nec Corp Battery
JP2002170568A (en) * 2000-12-01 2002-06-14 Nec Corp Battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2002313344A (en) * 2001-04-10 2002-10-25 Nec Corp Electrode binder, and electrode and battery manufactured by using it
JP2003132891A (en) * 2001-10-23 2003-05-09 Nec Corp Secondary battery
JP2003308839A (en) * 2002-04-15 2003-10-31 Nec Corp Radical battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148005B2 (en) 2006-10-27 2012-04-03 Denso Corporation Active material and a secondary battery using the active material
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
JP2008150357A (en) * 2006-11-22 2008-07-03 Nec Corp Spirooxazine radical derivative and reversible isomerization reaction
WO2008099557A1 (en) * 2007-02-15 2008-08-21 Nec Corporation Slurry for formation of eletrode and battery
JP5359278B2 (en) * 2007-02-15 2013-12-04 日本電気株式会社 Electrode forming slurry and battery
JP2008234909A (en) * 2007-03-19 2008-10-02 Nec Corp Polymer compound, polymer compound/carbon material complex and its manufacturing method, electrode and its manufacturing method and secondary battery
WO2009081460A1 (en) * 2007-12-20 2009-07-02 Nec Corporation Spirooxazine radical derivatives and reversible isomerization reaction
US8329896B2 (en) 2007-12-20 2012-12-11 Nec Corporation Spirooxazine radical derivatives and reversible isomerization reaction
JP2009205918A (en) * 2008-02-27 2009-09-10 Nec Corp Power storage device
JP4657383B2 (en) * 2008-05-29 2011-03-23 Dic株式会社 Secondary battery, method for producing the same, and ink for electrode formation
WO2009145225A1 (en) * 2008-05-29 2009-12-03 Dic株式会社 Secondary battery, method for producing the same, and ink for forming electrode
JP2010238403A (en) * 2009-03-30 2010-10-21 Nec Corp Battery and manufacturing method of battery
WO2011034117A1 (en) * 2009-09-18 2011-03-24 日本電気株式会社 Polymer radical material-activated carbon-conductive material composite body, method for producing conductive material composite body, and electricity storage device
CN102496482A (en) * 2011-12-26 2012-06-13 东莞新能源科技有限公司 Pole piece of supercapacitor and production method for pole piece
JP2013191448A (en) * 2012-03-14 2013-09-26 Toppan Printing Co Ltd Positive electrode active material for secondary battery and secondary battery using the same
WO2014092128A1 (en) * 2012-12-14 2014-06-19 日本電気株式会社 Electric storage device
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2015008626A1 (en) * 2013-07-18 2015-01-22 Jsr株式会社 Binder composition for storage device, slurry for storage device, electrode for storage device, separator, and storage device
CN105378989A (en) * 2013-07-18 2016-03-02 Jsr株式会社 Binder composition for storage device, slurry for storage device, electrode for storage device, separator, and storage device
JP2015060636A (en) * 2013-09-17 2015-03-30 日本電気株式会社 Secondary battery
US10826056B2 (en) 2015-07-13 2020-11-03 Kaneka Corporation Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Also Published As

Publication number Publication date
JP4632020B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4632020B2 (en) Non-aqueous electrolyte secondary battery
RU2619266C1 (en) Positive electrode for lithium-air battery and method of its preparation
US11551878B2 (en) Electricity storage device
JP4117470B2 (en) Electricity storage device
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP2005209498A6 (en) Non-aqueous electrolyte secondary battery
JP2008300300A (en) Nonaqueous lithium ion secondary battery
KR102268184B1 (en) Sulfur-carbon composite, method for preparing the same, positive electrode and lithium secondary battery comprising the same
KR102160710B1 (en) Electrode and Lithium Secondary Battery Comprising the Same
JP2009105046A (en) Anode for lithium secondary battery and lithium secondary battery using it
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
CN114097110A (en) Method of manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured by the method, and lithium sulfur battery including the lithium metal negative electrode
CN115769399A (en) Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
JP4968766B2 (en) Carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP2007157388A (en) Nonaqueous electrolyte secondary battery
CN115298852A (en) Negative electrode and secondary battery comprising same
JPWO2018135624A1 (en) Electrode and secondary battery using radical polymer
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
KR20200033737A (en) Sulfur-carbon composite and lithium secondary battery including the same
KR20200109861A (en) Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP2011029136A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2001052742A (en) Sheet secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
WO2020017630A1 (en) Secondary battery using radical polymer in electrode

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4632020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

EXPY Cancellation because of completion of term