JP2008298087A - 流体圧アクチュエータ及びエンジンのバルブ駆動装置 - Google Patents

流体圧アクチュエータ及びエンジンのバルブ駆動装置 Download PDF

Info

Publication number
JP2008298087A
JP2008298087A JP2007141249A JP2007141249A JP2008298087A JP 2008298087 A JP2008298087 A JP 2008298087A JP 2007141249 A JP2007141249 A JP 2007141249A JP 2007141249 A JP2007141249 A JP 2007141249A JP 2008298087 A JP2008298087 A JP 2008298087A
Authority
JP
Japan
Prior art keywords
fluid
port
pressure
rotor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007141249A
Other languages
English (en)
Inventor
Tetsuro Muraji
哲朗 連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2007141249A priority Critical patent/JP2008298087A/ja
Publication of JP2008298087A publication Critical patent/JP2008298087A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

【課題】流体圧アクチュエータのロータを高精度に位置決めできるようにする。
【解決手段】ロータ120、ロータを回動自在に収容し可変的に二分される第1流体室C1及び第2流体室C2を画定しかつ第1流体室及び第2流体室にそれぞれ連通する第1ポート114及び第2ポート115を含むハウジング110、第1ポート及び第2ポートに接続されて第1流体室及び第2流体室に対する流体の流入及び流出を制御する方向切換弁130を備え、第1ポートに接続される流体通路140には、圧力差により開弁して第1流体室への流体の流入を許容すると共に、第1ポート側の圧力が第2ポート側の圧力より高いとき閉弁しかつ第1ポート側の圧力が第2ポート側の圧力より低いとき開弁して第1流体室からの流体の流出を許容するパイロット弁170を設けた。これにより、ロータの回転速度又は回転位置が所定値からずれるのを防止することができる。
【選択図】図4

Description

本発明は、流体の圧力を受けて所定の回動範囲を往復動するベーン状のロータを含む流体圧アクチュエータ及びこの流体アクチュエータを駆動源としてエンジンの吸気用又は排気用のバルブを開閉駆動するバルブ駆動装置に関し、特に、回動範囲の両端以外においてもロータを停止させ得る流体圧アクチュエータ及びバルブの開閉タイミング及びリフト量を可変的に駆動するエンジンのバルブ駆動装置に関する。
従来のバルブ駆動装置としては、エンジンのシリンダヘッドに対して、カム面をもつカムシャフト、吸気用又は排気用のバルブ、リターンスプリング、バルブのステム上端に連結されたバルブリフタ等を備える構成において、カムシャフトと平行に配置された支持シャフト、支持シャフトに揺動自在に支持され一端側がカムシャフトのカム面に接触しかつ他端側がバルブリフタの上面に接触する略L字状の揺動カム、揺動カムを支持する支持シャフトを保持しバルブの軸線に垂直な方向に移動自在なフレーム、フレームを移動させる駆動機構等を備えたものが知られている(例えば、特許文献1参照)。
このバルブ駆動装置において、フレームを駆動する駆動機構としては、フレームの雌ネジに螺合するネジ部材,ネジ部材に一体的に形成されたピニオン,ピニオンに噛合するラック,ラックを往復動させる駆動源等からなるネジ及びラック・ピニオン構造を適用したもの、フレームに形成されたラック,ラックに噛合するピニオン,ピニオンを回転駆動する駆動源等からなるラック・ピニオン構造を適用したもの、あるいは、フレームに形成された長い楕円形の断面をなす偏心外輪,偏心外輪の内側に配置された偏心内輪,偏心内輪を回転駆動する駆動源等からなる偏心回転構造を適用したものが示されている。
しかしながら、上記のネジ及びラック・ピニオン構造を採用した場合、カムシャフトから受ける反力等により、ネジ部材とフレームのネジ山及びネジ溝間において食い付き(スティック)等を生じて作動不能になる虞があり、又、ピニオン及びラックにおいてはバックラッシュ等があるため、フレーム(支持シャフト)を所定の位置に高精度に移動させて位置決めすることが困難である。また、上記の偏心外輪及び偏心内輪からなる偏心回転構造を採用した場合、偏心内輪を収容する偏心外輪が大きくなり、装置の大型化を招くという問題がある。
さらに、上記のネジ及びラック・ピニオン構造、ラック・ピニオン構造、又は、偏心回転構造を採用した場合、いずれもフレーム(支持シャフト)を連続的に移動させることはできても、連続的に移動するが故に所定位置に高精度に位置決めする、すなわち、所定位置にフレーム(支持シャフト)を安定して維持する(フレームをロックする)のが困難であり、これに対処するには専用のロック機構等を別途採用する必要がある。
ところで、上記のような駆動機構に替えて流体圧アクチュエータを適用することが考えられる。従来の流体圧アクチュエータとしては、例えば、扇状(ベーン状)のロータ、ロータを所定の角度範囲で回動自在に収容する収容室を画定するハウジング、ハウジングにおいてロータの回動範囲を規制する2つの当接壁の近傍に形成された2つの主通路、ハウジングにおいて各々の主通路と当接壁の間の角度範囲において形成された複数の絞り通路、各々の主通路及び複数の絞り通路に接続された方向切換弁等を備えた油圧アクチュエータが知られている(例えば、特許文献2参照)。
この油圧アクチュエータにおいては、ロータの一方側の回転端又は他方側の回転端に停止させる際に、複数の絞り通路を流れる流体を制御して、ロータが当接壁に衝突する衝撃力等を緩和できるようにしたものである。
しかしながら、この油圧アクチュエータにおいて、ロータは、回動範囲の両端(二箇所の角度位置)において停止(位置決め)できるのみであり、回動範囲の途中位置(その他の角度位置)において停止(位置決め)できるものではない。
したがって、ロータに連結される被回転体を、回動範囲の両端以外の角度位置に停止(位置決め)させる必要がある場合、この被回転体を回転駆動するアクチュエータとして、上記の油圧アクチュエータを適用することはできない。
また、ロータに連結される被回転体が、油圧による回転方向とは逆向きに回転させるような反力を受ける場合、その反力が油圧に打ち勝ってロータが逆向きに回転し、被回転体が所望の角度位置に位置決めされない虞がある。
特開平6−74011号公報 特開昭64−6504号公報
本発明は、上記従来の装置の事情に鑑みて成されたものであり、その目的とするところは、構造の簡素化、小型化、低コスト化等を図りつつ、外部から逆向きの反力が作用してもロータを所望の角度位置に位置決めすることができ、又、回動範囲の両端以外の角度位置においてもロータを高精度に停止させる(位置決めする)ことができる流体圧アクチュエータを提供することにあり、又、構造の簡素化、小型化、低コスト化等を図りつつ、カムシャフトによる反力を受けても、吸気用又は排気用のバルブの開閉タイミング及びリフト量を安定して高精度に可変的に調整(制御)することができるエンジンのバルブ駆動装置を提供することにある。
本発明の流体圧アクチュエータは、ベーン状のロータと、ロータを回動自在に密接して収容すると共にロータにより可変的に二分される第1流体室及び第2流体室を画定する収容室,ロータを所定角度範囲の回転端にそれぞれ停止させるべく第1流体室及び第2流体室に対する流体の流入及び流出を許容する第1ポート及び第2ポートを含むハウジングと、第1ポート及び第2ポートに接続されて第1流体室及び第2流体室に対する流体の流入及び流出を制御する方向切換弁を備えた流体圧アクチュエータであって、上記第1ポートに接続される流体通路には、圧力差により開弁して第1流体室への流体の流入を許容すると共に、第1ポート側の圧力が第2ポート側の圧力より高いとき閉弁し、かつ、第1ポート側の圧力が第2ポート側の圧力より低いとき開弁して第1流体室からの流体の流出を許容するパイロット弁が設けられている、構成となっている。
この構成によれば、方向切換弁を駆動して、第1ポートをポンプ(流体の供給側)に接続しかつ第2ポートをドレーン(流体の排出側)に接続すると、パイロット弁は第1ポートに接続される流体通路内の圧力差により開弁して第1流体室への流体の流入を許容し、第1流体室(第1ポート側)の圧力が第2流体室(第2ポート側)の圧力よりも高くなり、ロータは一方側の回転端に停止して位置決めされ、一方、第2ポートをポンプ(流体の供給側)に接続しかつ第1ポートをドレーン(流体の排出側)に接続すると、第2流体室(第2ポート側)の圧力が第1流体室(第1ポート側)の圧力よりも高くなり、すなわちパイロット弁は両ポート間の圧力差により開弁して第1流体室からの流体の流出を許容し、ロータは他方側の回転端に停止して位置決めされる。
ここで、ロータを流体圧により回転させる際に、第1流体室の圧力を高めるように回転を乱す外力が加わると、パイロット弁が閉弁してその外力に抵抗する力を生じ、ロータの回転速度又は回転位置が所定の値からずれるのを防止することができる。
上記構成をなす流体アクチュエータにおいて、ハウジングには、所定角度範囲の途中においてロータを停止させるべく、方向切換弁に接続されて収容室に連通すると共にロータにより開閉され得る中間ポートが設けられている、構成を採用することができる。
この構成によれば、中間ポートを遮断した状態で方向切換弁を駆動して、第1ポートをポンプ(流体の供給側)に接続しかつ第2ポートをドレーン(流体の排出側)に接続すると、パイロット弁は第1ポートに接続される流体通路内の圧力差により開弁して第1流体室への流体の流入を許容し、第1流体室(第1ポート側)の圧力が第2流体室(第2ポート側)の圧力よりも高くなり、ロータは一方側の回転端に停止して位置決めされ、一方、第2ポートをポンプ(流体の供給側)に接続しかつ第1ポートをドレーン(流体の排出側)に接続すると、第2流体室(第2ポート側)の圧力が第1流体室(第1ポート側)の圧力よりも高くなり、すなわちパイロット弁は両ポート間の圧力差により開弁して第1流体室からの流体の流出を許容し、ロータは他方側の回転端に停止して位置決めされる。
また、中間ポートをドレーン(流体の排出側)に接続した状態で方向切換弁を駆動して、第1ポート及び第2ポートをポンプ(流体の供給側)に接続すると、パイロット弁は圧力差により開弁(又は閉弁)しつつ、中間ポートと連通した状態にある第1流体室及び第2流体室の一方から中間ポートを通して流体が流出し、第1流体室と第2流体室の圧力がバランスした時点でロータが中間ポートを閉塞する。これにより、ロータはこの中間ポートに対応する所定角度範囲の途中位置に停止して位置決めされる。
このように、第1ポート及び第2ポートの他に中間ポートを設けるだけで、構造の簡素化、小型化、低コスト化を達成しつつ、ロータを回動範囲の両端以外の途中位置において、高精度に位置決めして停止させることができる。
上記構成をなす流体圧アクチュエータにおいて、第2ポートに接続される流体通路には、パイロット弁に対して、第2ポート側の圧力を導く圧力導入通路が接続されている、構成を採用することができる。
この構成によれば、圧力導入通路を介することで、第2ポート側の圧力をパイロット弁に容易に導くことができるため、構造の簡素化を達成しつつ、経路を適宜選定することで圧力損失を抑制し第2ポート側の圧力を確実に導くことができる。
上記構成をなす流体圧アクチュエータにおいて、ハウジングは複数配列され、方向切換弁は、複数のハウジングの第1ポートに共通に接続される第1共通通路、複数のハウジングの第2ポートに共通に接続される第2共通通路、及び複数のハウジングの中間ポートに共通に接続される中間共通通路を介して、複数のハウジングと接続され、複数のハウジングの第1ポートと第1共通通路との間には、それぞれパイロット弁が設けられている、構成を採用することができる。
この構成によれば、第1共通通路、第2共通通路、及び中間共通通路を介して、共通の方向切換弁に対し複数のハウジングが並列に接続され、かつ、第1ポートに接続される流体通路にそれぞれパイロット弁が設けられているため、一つのハウジング内において外力等による圧力の変動が生じても、その変動が他のハウジングに伝播して影響を及ぼすのを防止することができる。
また、本発明に係るエンジンのバルブ駆動装置は、バルブの開閉タイミング及びリフト量を可変的に調整する調整機構と、調整機構を駆動する駆動機構を備えたエンジンのバルブ駆動装置であって、上記駆動機構は、カム作用を及ぼす板状カムと、板状カムを回転駆動する流体圧アクチュエータを含み、上記流体圧アクチュエータは、板状カムに連結されるベーン状のロータと、ロータを回動自在に密接して収容すると共にロータにより可変的に二分される第1流体室及び第2流体室を画定する収容室,ロータを所定角度範囲の回転端にそれぞれ停止させるべく第1流体室及び第2流体室に対する流体の流入及び流出を許容する第1ポート及び第2ポートを含むハウジングと、第1ポート及び第2ポートに接続されて第1流体室及び第2流体室に対する流体の流入及び流出を制御する方向切換弁を含み、第1ポートに接続される流体通路には、圧力差により開弁して第1流体室への流体の流入を許容すると共に、第1ポート側の圧力が第2ポート側の圧力より高いとき閉弁し、かつ、第1ポート側の圧力が第2ポート側の圧力より低いとき開弁して第1流体室からの流体の流出を許容するパイロット弁が設けられている、構成となっている。
この構成によれば、方向切換弁を駆動してロータを回転させると板状カムが回転し、この板状カムが調整機構にカム作用を及ぼし、調整機構はバルブの開閉タイミング及びリフト量を可変的に調整する。
ここで、ロータの駆動力により板状カムを回転させる際に、調整機構に(例えば、カムシャフトのカム荷重による)外力が作用して板状カムの回転を乱す、すなわち、第1流体室の圧力を高めるように回転を乱す外力が加わると、パイロット弁が閉弁してその外力に抵抗する力を生じ、ロータすなわち板状カムの回転速度又は回転位置が所定の値からずれるのを防止することができ、エンジンのバルブを所定のタイミングで開閉させ又所定のリフト量に調整することができる。
上記構成をなすバルブ駆動装置において、調整機構は、カムシャフトのカム部に接触する第1接触部を一端側にかつ吸気又は排気用のバルブに直接又は間接的に接触する第2接触部を他端側に有する揺動カムと、揺動カムをカムシャフトと平行な揺動軸線回りに揺動自在に支持しかつ揺動軸線をカムシャフトに近接及び離隔させるべく所定方向に移動自在に支持されて板状カムのカム作用を受ける可動ホルダを含む、構成を採用することができる。
この構成によれば、流体圧アクチュエータ(ロータ)の駆動力により板状カムが回転すると、可動ホルダがカム作用を受けて所定方向に移動し、揺動カムの揺動軸線とカムシャフト(の軸線)の距離を変化させる。これにより、揺動カムの第1接触部が(カムシャフトの)カム部と接触する領域及び位相と、揺動カムの第2接触部がバルブ(又はバルブリフタ)と接触する領域が変化し、バルブの開閉タイミング及びリフト量を可変的に変化させることができる。
ここで、揺動カムを支持する可動ホルダを駆動する駆動機構として、板状カム及び流体圧アクチュエータを採用するため、構造を簡素化でき、装置を小型化、低コスト化できる。また、可動ホルダ(すなわち揺動軸線)の位置決めは、その端面に接触してカム作用を及ぼす板状カムによるため、従来のような食い付きによる作動不能あるいはバックラッシュ等による位置決め不良等を生じることなく、確実に駆動することができる。
上記構成をなすバルブ駆動装置において、ハウジングには、所定角度範囲の途中においてロータを停止させるべく、方向切換弁に接続されて収容室に連通すると共にロータにより開閉され得る中間ポートが設けられている、構成を採用することができる。
この構成によれば、方向切換弁を駆動して、第1ポート、第2ポート、及び中間ポートの状態(ポンプ、ドレーン、クローズのいずれかの状態)を適宜選定することにより、ロータはこの中間ポートに対応する所定角度範囲の途中位置に停止して位置決めされる。すなわち、第1ポート及び第2ポートの他に中間ポートを設けるだけで、構造の簡素化、小型化、低コスト化を達成しつつ、ロータ及び板状カムを回動範囲の両端以外の途中位置において、高精度に位置決めして停止させることができる。
これにより、板状カムは、異なるリフト量をなす少なくとも三箇所の位置に位置決めされるため、調整機構(可動スライダ)に三段階のカム作用を及ぼすことができ、バルブの開閉タイミング及びリフト量を少なくとも三段階(例えば、低速、中速、高速)の運転状態に調整することができる。
上記構成をなすバルブ駆動装置において、第2ポートに接続される流体通路には、パイロット弁に対して、第2ポート側の圧力を導く圧力導入通路が接続されている、構成を採用することができる。
この構成によれば、圧力導入通路を介することで、第2ポート側の圧力をパイロット弁に容易に導くことができるため、構造の簡素化を達成しつつ、経路を適宜選定することで圧力損失を抑制し第2ポート側の圧力を確実に導くことができる。
上記構成をなすバルブ駆動装置において、板状カム及び流体アクチュエータのハウジングは、カムシャフトに沿って複数配列され、方向切換弁は、複数のハウジングの第1ポートに共通に接続される第1共通通路、複数のハウジングの第2ポートに共通に接続される第2共通通路、及び複数のハウジングの中間ポートに共通に接続される中間共通通路を介して、複数のハウジングと接続され、複数のハウジングの第1ポートと第1共通通路との間には、それぞれパイロット弁が設けられている、構成を採用することができる。
この構成によれば、第1共通通路、第2共通通路、及び中間共通通路を介して、共通の方向切換弁に対し複数のハウジングが並列に接続され、かつ、第1ポートに接続される流体通路にそれぞれパイロット弁が設けられているため、一つのハウジング内において外力等による圧力の変動が生じても、その変動が他のハウジングに伝播して影響を及ぼすのを防止することができる。したがって、多気筒エンジンにおいて、駆動機構(板状カム及びロータを含むハウジング)が気筒ごとに設けられる場合、一つの気筒に対応するハウジングに生じた圧力変動が他の気筒に対応するハウジング内の圧力に影響を及ぼすのを防止、すなわち、全気筒におけるバルブの開閉駆動に影響を及ぼすのを防止できる。
上記構成をなす流体圧アクチュエータによれば、構造の簡素化、小型化、低コスト化等を達成しつつ、外部から逆向きの反力が作用してもロータを所望の角度位置に位置決めすることができ、又、回動範囲の両端以外の角度位置においてもロータを高精度に停止させる(位置決めする)ことができる。また、上記構成をなすエンジンのバルブ駆動装置によれば、構造の簡素化、小型化、低コスト化等を達成しつつ、カムシャフトによる反力を受けても、吸気用又は排気用のバルブの開閉タイミング及びリフト量を安定して高精度に可変的に調整(制御)することができる。
以下、本発明の最良の実施形態について、添付図面を参照しつつ説明する。
図1ないし図7は、本発明に係る流体圧アクチュエータを備えたエンジンのバルブ駆動装置の一実施形態を示すものであり、図1は装置の分解斜視図、図2は装置の一部を示す部分斜視図、図3は装置の一部を示す部分平面図、図4は装置に含まれる流体圧アクチュエータの構成図、図5ないし図7は流体圧アクチュエータの動作を示す動作図である。
このバルブ駆動装置は、図1に示すように、ホルダブロック10、ホルダブロック10に対して所定方向Xに移動自在に支持された可動ホルダ20、可動ホルダ20に揺動自在に支持されると共にカムシャフト1のカム部1aと吸気用又は排気用のバルブ2に連結されたバルブリフタ3との間に介在する2つの揺動カム30、可動ホルダ20に設けられてそれぞれの揺動カム30に付勢力を及ぼす2つの捩りバネ40、捩りバネ40を支持するガイド筒50、可動ホルダ20にカム作用を及ぼす板状カム60、板状カム60を回転駆動する流体圧アクチュエータ100等を備えている。
ここでは、可動ホルダ20、揺動カム30、捩りバネ40等により、バルブ2の開閉タイミング及びリフト量を可変的に調整する調整機構が構成されており、又、可動ホルダ20にカム作用を及ぼす板状カム60、板状カム60を回転駆動する流体圧アクチュエータ100等により、調整機構を駆動する駆動機構が構成されている。
ホルダブロック10は、図1に示すように、エンジンのシリンダヘッドに固定されるベース部11、ベース部11から直立して形成され流体圧アクチュエータ100を固定するための固定部12、可動ホルダ20を所定方向X(ここでは、バルブ2の往復動方向に対して垂直な方向、すなわち、バルブリフタ3の上面に平行な方向)に移動自在に支持するガイド部13等を備えている。
このように、ホルダブロック10に対して、揺動カム30及び捩りバネ40を支持した可動ホルダ20、板状カム60を直結した流体圧アクチュエータ100を組み付けることができるため、ホルダブロック10を基準として、予め相互間の寸法精度を高精度に管理でき、要求される機械的強度を容易に確保でき、又、ホルダブロック10を土台にして容易にモジュール化でき、全体として組付け作業性の向上、生産性の向上、製造コストの低減等を達成することができる。
可動ホルダ20は、図1ないし図3に示すように、略直方体形状をなすブロック部21、ブロック部21の両端から延出する2つのシャフト部22,22を備えている。
ブロック部21は、板状カム60のカム部61が接触して摺動する端面21a、ガイド部13を摺動自在に通すべく所定方向Xに伸長して形成された2つのガイド貫通孔21bを画定している。
2つのシャフト部22は、カムシャフト1の軸線S1と平行な揺動軸線S2を画定するように円柱状に形成され、その付根側寄りに(揺動軸線S2の方向においてブロック部21に当接するように)揺動カム30を外嵌させて揺動自在に支持し、その外側から捩りバネ40を保持したガイド筒50を外嵌させて支持するようになっている。
揺動カム30は、図1及び図2に示すように、略L字状に形成されており、シャフト部22に回動自在に外嵌される嵌合部31、嵌合部31から一端側に湾曲して延出するように形成されてカムシャフト1のカム部1aに接触して摺動する第1接触部32、嵌合部31から他端側に湾曲して延出するように形成されてバルブリフタ3(の上面)に接触して摺動する第2接触部33等を備えている。
すなわち、揺動カム30は、カムシャフト1(カム部1a)とバルブリフタ3の間に介在して、カムシャフト1が回転すると、カム部1aのカム作用により揺動して、バルブリフタ3(及びバルブ2)を開閉駆動し、又、その揺動軸線S2の位置(カムシャフト1の軸線S1からの離隔距離)に応じて、第1接触部32がカム部1aと接触するタイミング及び領域が変化し、それに伴って、第2接触部33がバルブリフタ3の上面と接触する領域が変化して、バルブ2の開閉タイミング及びリフト量を連続的に変化させるようになっている。
捩りバネ40は、図1及び図2に示すように、線状のバネ鋼を加工して形成されており、可動ホルダ20のシャフト部22にガイド筒50を介して保持され、その一端が揺動カム30の一部に掛止され、その他端がホルダブロック10の一部に掛止されて、第1接触部32がカムシャフト1のカム部1aに常時接触するように、揺動カム30を回転付勢し、又、可動ホルダ20を板状カム60に常時接触させるように付勢している。
板状カム60は、図1ないし図3に示すように、薄板の略円板状に形成され、その周縁においてカム部61を画定し、流体圧アクチュエータ100の後述するロータ120に設けられた回転軸121に直結されている。尚、カム部61は、例えば、3つの角度範囲において、それぞれリフト量が低リフト、中リフト、高リフトと異なるプロフィルをもつように形成されている。
流体圧アクチュエータ100は、図4に示すように、円筒状をなすハウジング110、ハウジング110内に回動自在に収容されるロータ120、ハウジング110に接続される方向切換弁130、第1流体通路140、第2流体通路150、中間流体通路160、第1流体通路140に配置されたパイロット弁170、第2流体通路150内(すなわち第2ポート115側)の流体圧力をパイロット弁170に導く圧力導入通路180等を備えている。
ハウジング110は、図4に示すように、ロータ120を密接させつつ所定角度範囲において回動自在に収容すると共にロータ120により可変的に二分される第1流体室C1及び第2流体室C2を画定する収容室C、ロータ120を回動自在に支持する支軸111、ロータ120の一方側の回転端を規定する当接壁112、ロータ120の他方側の回転端を規定する当接壁113、当接壁112の近傍に形成された第1ポート114、当接壁113の近傍に形成された第2ポート115、ロータ120の回動範囲(所定角度範囲)の略中間位置に形成された中間ポート116等を備えている。
ロータ120は、図4に示すように、回動角度に応じて収容室Cを可変的に二分して第1流体室C1及び第2流体室C2を画定するように形成され、支軸111に嵌合されて回動自在に支持され、その先端面が、一端側の回転端に位置するとき第1ポート114を閉塞し,他端側の回転端に位置するとき第2ポート115を閉塞し,略中間位置に位置するとき中間ポート116を閉塞し得るように形成されている。また、ロータ120には、ハウジング110から突出して軸線方向S3に伸長する回転軸121が一体的に回転するように設けられている。回転軸121の先端側には、板状カム60が一体的に回転するように連結されている。
方向切換弁130は、流体圧として例えば空気圧を用いる場合は空気圧回路を備えたものであり、流体圧として例えば油圧を用いる場合は油圧回路を備えたものである。
そして、方向切換弁130は、第1流体通路140を介して第1ポート114をポンプ(流体の供給側)又はドレーン(流体の排出側)に接続し、第2流体通路150を介して第2ポート115をポンプ(流体の供給側)又はドレーン(流体の排出側)に接続し、中間流体通路160を介して中間ポート116をドレーン(流体の排出側)に接続し又はクローズ(閉塞)するようになっている。
パイロット弁170は、図4に示すように、第1ポート114に接続される第1流体通路140に設けられており、一方向への流れを許容する一方向弁のように第1流体通路140内の圧力差により開弁して、図5(a)に示すように第1流体室C1への流体の流入を許容するようになっている。
また、パイロット弁170は、図4に示すように、圧力導入通路180を介して、第2流体通路150内の流体圧すなわち第2ポート115側の流体圧力を参照するようになっており、第1ポート114側の圧力が第2ポート115側の圧力より高いとき閉弁して、図5(b)に示すように第1流体通路140を閉塞し、かつ、第1ポート114側の圧力が第2ポート115側の圧力より低いとき開弁して、図5(c)に示すように第1流体室C1から第1流体通路140を通って流体が流出するのを許容するようになっている。
次に、上記流体圧アクチュエータ100の動作について、図6及び図7を参照しつつ説明する。
先ず、ロータ120を反時計回りの回転端に回転させて位置決めするには、図6(a)に示すように、中間ポート116を閉塞(クローズ)した状態で、第2ポート115をドレーンに接続して第2流体室C2内の流体を排出すると同時に、第1ポート114をポンプに接続して第1流体室C1内に流体を流入させる。このとき、パイロット弁170は、第1流体通路140内の圧力差により開弁して、第1流体室C1内への流体の流入を許容する。
これにより、第1流体室C1内の流体圧力が第2流体室C2内の流体圧力よりも高くなり、ロータ120は反時計回りに回転付勢力を受けて回転し、当接壁113に当接して反時計回りの回転端に位置決めされる。
続いて、ロータ120を時計回りの回転端に回転させて位置決めするには、図6(b)に示すように、中間ポート116を閉塞(クローズ)した状態で、第1ポート114をドレーンに接続して第1流体室C1内の流体を排出すると同時に、第2ポート115をポンプに接続して第2流体室C2内に流体を流入させる。このとき、パイロット弁170は、第1ポート114側の圧力が第2ポート115側の圧力よりも低いため開弁して、第1流体室C1からの流体の流出を許容する。
これにより、第2流体室C2内の流体圧力が第1流体室C1内の流体圧力よりも高くなり、ロータ120は時計回りに回転付勢力を受けて回転し、当接壁112に当接して時計回りの回転端に位置決めされる。
続いて、ロータ120を回動範囲の途中位置(中間位置)に回転させて位置決めするには、図7(a)に示すように、中間ポート116をドレーンに接続した状態で、第1ポート114をポンプに接続して第1流体室C1内に流体を流入させると同時に、第2ポート115をポンプに接続して第2流体室C2内に流体を流入させる。
ロータ120が、例えば図7(a)に示すように、反時計回りに片寄った角度位置にある場合、第1流体室C1内の流体は中間ポート116を通して排出され、第2流体室C2は流入する流体で圧力が上昇する。このとき、パイロット弁170は、第1流体通路140内の圧力差及び第1ポート114側の圧力と第2ポート115側の圧力差に応じて前述のような開閉動作を行う。
そして、第1流体室C1と第2流体室C2の圧力差により、ロータ120は時計回りに回転付勢力を受けて回転し始め、図7(b)に示すように、その先端面が中間ポート116に臨む位置に至った(重なった)時点で中間ポート116を閉塞する。
これにより、中間ポート116からの流体の流出は止まり、第2流体室C2内の圧力は上昇して、第1流体室C1の圧力と釣り合ったところで、第1ポート114及び第2ポート115からの流体の流入が止まる。この中間位置(途中位置)に停止した状態において、第1流体室C1には、第1ポート114を介して方向切換弁130からの流体圧が作用しており、又、第2流体室C2には、第2ポート115を介して方向切換弁130からの流体圧が作用している。
ここで、仮に、ロータ120を中間位置から移動させるような外乱が加わっても、パイロット弁170はその外乱に抵抗する力を生じさせると共に、第1流体室C1及び第2流体室C2の圧力が自動的にバランスするように作動して、ロータ120は中間位置に位置決めされる。
上記のように、第1ポート114及び第2ポート115の他に中間ポート116を設けるだけで、構造の簡素化、小型化、低コスト化を達成しつつ、ロータ120を回動範囲の両端以外の途中位置(中間位置)において、高精度に位置決めして停止させることができる。尚、上記実施形態において、第1ポート114及び第2ポート115に対して、通路を所定の口径に絞るオリフィスを設けてもよい。この場合、相対的に中間ポート116の流路抵抗を減らすことができ、中間ポート116から流体を効率よく排出することができる。これにより、第1流体室C1と第2流体室C2の圧力差により生じるロータ120の回転力を大きくすることができる。
すなわち、上記流体圧アクチュエータ100によれば、方向切換弁130を駆動して、第1ポート114をポンプ(流体の供給側)に接続しかつ第2ポート115をドレーン(流体の排出側)に接続すると、パイロット弁170は第1ポート114に接続される第1流体通路140内の圧力差により開弁して第1流体室C1への流体の流入を許容し、第1流体室C1(第1ポート114側)の圧力が第2流体室C2(第2ポート115側)の圧力よりも高くなり、ロータ120は反時計回りの回転端に停止して位置決めされ、一方、第2ポート115をポンプ(流体の供給側)に接続しかつ第1ポート114をドレーン(流体の排出側)に接続すると、第2流体室C2(第2ポート115側)の圧力が第1流体室C1(第1ポート114側)の圧力よりも高くなり、すなわちパイロット弁170は第1ポート114側の圧力と第2ポート115側の圧力との圧力差により開弁して第1流体室C1からの流体の流出を許容し、ロータ120は時計回りの回転端に停止して位置決めされる。
そして、ロータ120を流体圧により回転させる際に、第1流体室C1の圧力を高めるように回転を乱す外力が加わると、パイロット弁170が閉弁して、その外力に抵抗する力を生じ、ロータ120の回転速度又は回転位置が所定の値からずれるのを防止するようになっている。
上記パイロット弁170が抵抗する力を生じる作用について、図8ないし図13を参照しつつ、以下に説明する。
先ず、図8に示すように、第1ポート114をポンプ(流体の供給側)に接続しかつ第2ポート115をドレーン(流体の排出側)に接続して、ロータ120を反時計回りに回転させて、板状カム60を最大リフト側に回転させる。このとき、パイロット弁170は、第1流体通路140内の圧力差により開弁して、第1流体室C1への流体の流入を許容している。
この際に、図9に示すように、カムシャフト1が回転して、可動スライダ20を板状カム60にさらに押し付けるような(右向きの矢印で示す)反力を及ぼすと、板状カム60にはロータ120の回転駆動力とは逆向きに(二点鎖線で示す時計回りに)回転させるようなトルクが加わる。
そして、第1流体室C1内の流体は圧縮され、第1流体室C1から第1ポート114の領域に満たされた流体の圧力は上昇する。これにより、第1ポート114側の圧力は第2ポート115側の圧力よりも高くなりかつ第1流体通路140において第1ポート114側の圧力が方向切換弁130側の圧力よりも高くなるため、パイロット弁170は閉弁して、図10に示すように、ロータ120が時計回りに回転するのを防止する。
これにより、板状カム60が流体圧アクチュエータ100の駆動力以外の外力により乱されて逆向きに回転しようとするのを防止することができる。
一方、図11に示すように、第2ポート115をポンプ(流体の供給側)に接続しかつ第1ポート114をドレーン(流体の排出側)に接続して、ロータ120を時計回りに回転させて、板状カム60を最小リフト側に回転させる。このとき、パイロット弁170は、第1ポート114側の圧力が第2ポート115側の圧力よりも低くなるため開弁して、第1流体室C1からの流体の流出を許容している。
この際に、図12に示すように、カムシャフト1が回転して、可動スライダ20を板状カム60にさらに押し付けるような(右向きの矢印で示す)反力を及ぼすと、板状カム60にはロータ120の回転駆動力と同一の向きに(二点鎖線で示す時計回りに)回転させるようなトルクが加わる。
そして、第1流体室C1内の流体は圧縮され、第1流体室C1から第1ポート114の領域に満たされた流体の圧力は上昇する。これにより、第1ポート114側の圧力は第2ポート115側の圧力よりも高くなりかつ第1流体通路140において第1ポート114側の圧力が方向切換弁130側の圧力よりも高いため、パイロット弁170は閉弁して、図13に示すように、ロータ120が時計回りに回転するのを防止する。
これにより、板状カム60が流体圧アクチュエータ100の駆動力以外の外力により乱されて過度に回転しようとするのを防止することができる。
図14は、上記流体圧アクチュエータ100が多気筒(ここでは、4気筒)エンジンに適用される場合を示すものであり、気筒ごとに一つの流体圧アクチュエータ100が配置されている。尚、ここでは、4つの流体圧アクチュエータ100が一つの方向切換弁130に並列に接続されている。
すなわち、バルブ駆動装置において、板状カム60及び流体アクチュエータ100のハウジング110は、4気筒エンジン用のカムシャフト1に沿って4つ配列されている。
そして、4つのハウジング110と一つの方向切換弁130は、第1共通通路200、第2共通通路210、及び中間共通通路220を介してそれぞれ並列に接続されている。
そして、それぞれのハウジング110の第1ポート114に接続された第1流体通路140にそれぞれパイロット弁170が設けられ、又、それぞれのパイロット弁170に第2ポート115側の圧力を導く圧力導入通路180が接続されている。
第1共通通路200は、図14に示すように、4つのハウジング110のそれぞれの第1ポート114に接続される4つの第1流体通路140を相互に連通させるように接続している。
第2共通通路210は、図14に示すように、4つのハウジング110のそれぞれの第2ポート115に接続される4つの第2流体通路150を相互に連通させるように接続している。
中間共通通路220は、図14に示すように、4つのハウジング110のそれぞれの中間ポート116に接続される4つの中間通路160を相互に連通させるように接続している。
これによれば、第1共通通路200、第2共通通路210、及び中間共通通路220を介して、共通の方向切換弁130に対し4つのハウジング110が並列に接続され、かつ、第1ポート114に接続される第1流体通路140にそれぞれパイロット弁170が設けられているため、一つのハウジング110内において外力(上述のようなカムシャフト1による反力)等による圧力の変動が生じても、その変動が他のハウジング110に伝播して影響を及ぼすのを防止することができる。
したがって、多気筒エンジンにおいて、駆動機構(板状カム60及びロータ120を含むハウジング110)が気筒ごとに設けられる場合、一つの気筒に対応するハウジング110に生じた圧力変動が他の気筒に対応するハウジング110内の圧力に影響を及ぼすのを防止、すなわち、全気筒におけるバルブ2の開閉駆動に影響を及ぼすのを防止できる。
上記実施形態においては、流体圧アクチュエータをエンジンのバルブ駆動装置における駆動源として適用した場合を示したが、これに限定されるものではなく、回転駆動力を必要とするものであれば、その他の装置に適用することができる。
上記実施形態においては、ハウジング110に1つの中間ポート116を設けた場合を示したが、中間ポート116を設けない構成においてあるいは2つ以上の中間ポート116を設ける構成において、本発明に係るパイロット弁170を採用してもよい。
上記実施形態においては、流体圧アクチュエータ100を構成するハウジング110を4つ配列した場合を示したが、これに限定されるものではなく、ハウジング110ごとにパイロット弁170を設ける限り、その他の複数のハウジング110を配列した構成において、本発明を採用してもよい。
上記実施形態においては、ハウジング110の第1ポート114に接続される第1流体通路140にパイロット弁170を設けることを前提に、第1流体室C1の圧力を高めるとき、板状カム60がリフト量を最大にする方向に回転するように構成した場合を示したが、これに限定されるものではなく、逆に、第1流体室C1の圧力を高めるとき、板状カムがリフト量を最小にする方向に回転するようにした構成を採用してもよい。
以上述べたように、本発明の流体圧アクチュエータは、構造の簡素化、小型化、低コスト化等を達成しつつ、外部から逆向きの反力が作用してもロータを所望の角度位置に位置決めすることができ、又、回動範囲の両端以外の角度位置においてもロータを高精度に停止させる(位置決めする)ことができため、エンジンのバルブ駆動装置の駆動源として適用できるのは勿論のこと、ロータにより回転させられる被回転体を高精度な角度位置において停止及び位置決めする必要のある分野であれば、機械分野の駆動源としてだけでなく、電子機器等その他の分野の駆動源としても有用である。
本発明に係る流体圧アクチュエータを備えたエンジンのバルブ駆動装置の一実施形態を示す分解斜視図である。 図1に示すバルブ駆動装置の一部を示す部分斜視図である。 図1に示すバルブ駆動装置の一部を示す部分平面図である。 本発明に係る流体圧アクチュエータの一実施形態を示す構成図である。 (a),(b),(c)は、図4に示す流体圧アクチュエータに含まれるパイロット弁の動作を示す動作図である。 (a),(b)は、図4に示す流体圧アクチュエータの動作を示す動作図である。 (a),(b)は、図4に示す流体圧アクチュエータの動作を示す動作図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係るエンジンのバルブ駆動装置及び流体圧アクチュエータの動作を説明する部分平面図及び断面図である。 本発明に係る流体圧アクチュエータを複数配列した実施形態を示す構成図である。
符号の説明
1 カムシャフト
1a カム部
S1 カムシャフトの軸線
10 ホルダブロック
13 ガイド部
20 可動ホルダ(調整機構)
S2 揺動軸線
30 揺動カム(調整機構)
32 第1接触部
33 第2接触部
40 捩りバネ(調整機構)
50 ガイド筒
60 板状カム(駆動機構)
100 流体圧アクチュエータ(駆動機構)
110 ハウジング
C 収容室
C1 第1流体室
C2 第2流体室
112,113 当接壁
114 第1ポート
115 第2ポート
116 中間ポート
120 ベーン状のロータ
121 回転軸
130 方向切換弁
140 第1流体通路
150 第2流体通路
160 中間流体通路
170 パイロット弁
180 圧力導入通路
200 第1共通通路
210 第2共通通路
220 中間共通通路

Claims (9)

  1. ベーン状のロータと、前記ロータを回動自在に密接して収容すると共に前記ロータにより可変的に二分される第1流体室及び第2流体室を画定する収容室,前記ロータを所定角度範囲の回転端にそれぞれ停止させるべく前記第1流体室及び第2流体室に対する流体の流入及び流出を許容する第1ポート及び第2ポートを含むハウジングと、前記第1ポート及び第2ポートに接続されて前記第1流体室及び第2流体室に対する流体の流入及び流出を制御する方向切換弁を備えた流体圧アクチュエータであって、
    前記第1ポートに接続される流体通路には、圧力差により開弁して前記第1流体室への流体の流入を許容すると共に、前記第1ポート側の圧力が前記第2ポート側の圧力より高いとき閉弁し、かつ、前記第1ポート側の圧力が前記第2ポート側の圧力より低いとき開弁して前記第1流体室からの流体の流出を許容するパイロット弁が設けられている、
    ことを特徴とする流体圧アクチュエータ。
  2. 前記ハウジングには、前記所定角度範囲の途中において前記ロータを停止させるべく、前記方向切換弁に接続されて前記収容室に連通すると共に前記ロータにより開閉され得る中間ポートが設けられている、
    ことを特徴とする請求項1記載の流体圧アクチュエータ。
  3. 前記第2ポートに接続される流体通路には、前記パイロット弁に対して、前記第2ポート側の圧力を導く圧力導入通路が接続されている、
    ことを特徴とする請求項1又は2に記載の流体圧アクチュエータ。
  4. 前記ハウジングは、複数配列され、
    前記方向切換弁は、前記複数のハウジングの第1ポートに共通に接続される第1共通通路、前記複数のハウジングの第2ポートに共通に接続される第2共通通路、及び前記複数のハウジングの中間ポートに共通に接続される中間共通通路を介して、前記複数のハウジングと接続され、
    前記複数のハウジングの第1ポートと前記第1共通通路との間には、それぞれ、前記パイロット弁が設けられている、
    ことを特徴とする請求項2又は3に記載の流体圧アクチュエータ。
  5. バルブの開閉タイミング及びリフト量を可変的に調整する調整機構と、前記調整機構を駆動する駆動機構を備えたエンジンのバルブ駆動装置であって、
    前記駆動機構は、カム作用を及ぼす板状カムと、前記板状カムを回転駆動する流体圧アクチュエータを含み、
    前記流体圧アクチュエータは、前記板状カムに連結されるベーン状のロータと、前記ロータを回動自在に密接して収容すると共に前記ロータにより可変的に二分される第1流体室及び第2流体室を画定する収容室,前記ロータを所定角度範囲の回転端にそれぞれ停止させるべく前記第1流体室及び第2流体室に対する流体の流入及び流出を許容する第1ポート及び第2ポートを含むハウジングと、前記第1ポート及び第2ポートに接続されて前記第1流体室及び第2流体室に対する流体の流入及び流出を制御する方向切換弁を含み、
    前記第1ポートに接続される流体通路には、圧力差により開弁して前記第1流体室への流体の流入を許容すると共に、前記第1ポート側の圧力が前記第2ポート側の圧力より高いとき閉弁し、かつ、前記第1ポート側の圧力が前記第2ポート側の圧力より低いとき開弁して前記第1流体室からの流体の流出を許容するパイロット弁が設けられている、
    ことを特徴とするエンジンのバルブ駆動装置。
  6. 前記調整機構は、カムシャフトのカム部に接触する第1接触部を一端側にかつ吸気又は排気用のバルブに直接又は間接的に接触する第2接触部を他端側に有する揺動カムと、前記揺動カムを前記カムシャフトと平行な揺動軸線回りに揺動自在に支持しかつ前記揺動軸線を前記カムシャフトに近接及び離隔させるべく所定方向に移動自在に支持されて前記板状カムのカム作用を受ける可動ホルダを含む、
    ことを特徴とする請求項5記載のエンジンのバルブ駆動装置。
  7. 前記ハウジングには、前記所定角度範囲の途中において前記ロータを停止させるべく、前記方向切換弁に接続されて前記収容室に連通すると共に前記ロータにより開閉され得る中間ポートが設けられている、
    ことを特徴とする請求項5又は6に記載のエンジンのバルブ駆動装置。
  8. 前記第2ポートに接続される流体通路には、前記パイロット弁に対して、前記第2ポート側の圧力を導く圧力導入通路が接続されている、
    ことを特徴とする請求項5ないし7いずれかに記載のエンジンのバルブ駆動装置。
  9. 前記板状カム及び前記流体アクチュエータのハウジングは、前記カムシャフトに沿って複数配列され、
    前記方向切換弁は、前記複数のハウジングの第1ポートに共通に接続される第1共通通路、前記複数のハウジングの第2ポートに共通に接続される第2共通通路、及び前記複数のハウジングの中間ポートに共通に接続される中間共通通路を介して、前記複数のハウジングと接続され、
    前記複数のハウジングの第1ポートと前記第1共通通路との間には、それぞれ、前記パイロット弁が設けられている、
    ことを特徴とする請求項7又は8に記載の流体圧アクチュエータ。
JP2007141249A 2007-05-29 2007-05-29 流体圧アクチュエータ及びエンジンのバルブ駆動装置 Pending JP2008298087A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141249A JP2008298087A (ja) 2007-05-29 2007-05-29 流体圧アクチュエータ及びエンジンのバルブ駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141249A JP2008298087A (ja) 2007-05-29 2007-05-29 流体圧アクチュエータ及びエンジンのバルブ駆動装置

Publications (1)

Publication Number Publication Date
JP2008298087A true JP2008298087A (ja) 2008-12-11

Family

ID=40171801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141249A Pending JP2008298087A (ja) 2007-05-29 2007-05-29 流体圧アクチュエータ及びエンジンのバルブ駆動装置

Country Status (1)

Country Link
JP (1) JP2008298087A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229941A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd 内燃機関の動弁装置
KR101780625B1 (ko) * 2017-04-14 2017-09-21 김장수 선박용 헬기 안전네트 구동장치 및 이를 포함하는 선박용 헬기 안전네트장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229941A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd 内燃機関の動弁装置
KR101780625B1 (ko) * 2017-04-14 2017-09-21 김장수 선박용 헬기 안전네트 구동장치 및 이를 포함하는 선박용 헬기 안전네트장치

Similar Documents

Publication Publication Date Title
JP6453916B2 (ja) 部分的ストローク制動装置を有する回転弁アクチュエータ
US8082952B2 (en) Piezoelectric bending element actuator for servo valve
US20110100469A1 (en) Flow control valve
US7040266B1 (en) Electro-hydraulic engine valve actuation
WO2007057927A1 (en) Pneumatic actuator with stroke regulator
JP2008298087A (ja) 流体圧アクチュエータ及びエンジンのバルブ駆動装置
MXPA05009833A (es) Dispositivo para el accionamiento variable de valvulas cambiadoras de gas de motores de combustion interna.
JP4960646B2 (ja) ロードセンシング式油圧制御装置
US20060096562A1 (en) Reed valve with multiple ports
US8056466B2 (en) Pneumatic actuator, in particular for valves
US7137374B1 (en) Adjustable hydraulic valve lifter
JP4175629B2 (ja) ロータリバルブ
KR100820701B1 (ko) 가변 밸브 리프트 장치
KR100840914B1 (ko) 밸브 장치
US9140149B2 (en) Continuously variable valve lift/timing apparatus
JP2008223959A (ja) 流体圧アクチュエータ
JPH03188427A (ja) 分配型燃料噴射ポンプの噴射時期制御装置
JP3568510B2 (ja) 斜板形アキシャルピストンポンプの制御装置
JP5073372B2 (ja) ドアクローザ
JP4014025B2 (ja) スプール弁装置
JP2008008386A (ja) 多連形切換弁
US20170218953A1 (en) Variable-capacity vane pump
JP6208798B2 (ja) 内燃機関用のシリンダ構成
KR101748339B1 (ko) 자동차의 가변 흡기장치
JP4387173B2 (ja) アクチュエータユニット