JP2008294934A - 量子暗号通信システムおよび盗聴検知方法 - Google Patents

量子暗号通信システムおよび盗聴検知方法 Download PDF

Info

Publication number
JP2008294934A
JP2008294934A JP2007140576A JP2007140576A JP2008294934A JP 2008294934 A JP2008294934 A JP 2008294934A JP 2007140576 A JP2007140576 A JP 2007140576A JP 2007140576 A JP2007140576 A JP 2007140576A JP 2008294934 A JP2008294934 A JP 2008294934A
Authority
JP
Japan
Prior art keywords
pulse train
optical pulse
photon
receiver
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007140576A
Other languages
English (en)
Inventor
Toshimori Honjo
利守 本庄
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007140576A priority Critical patent/JP2008294934A/ja
Publication of JP2008294934A publication Critical patent/JP2008294934A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

【課題】なりすまし盗聴を良好に判別可能な量子暗号通信システムおよび盗聴検知方法を提供すること。
【解決手段】送信機311は、時間間隔Tのパルスからなり、0またはπで位相変調され、4つ連続する時間位置に空パルスを含む、パルス当り平均1光子未満の光パルス列であって、4つの連続した空パルスを含む光パルス列324を受信機312に送信する。受信機312は、光パルス列324を受信し、分岐手段317にて分岐し、一方の光パルス列に時間間隔Tだけ遅延を施して合波し、位相差に応じて光子検出器319aまたは光子検出器319bにて光子を検出する。受信機312は、パルス4と、パルス5とが重なる時間スロットt4に対する、所定期間内の検出信号の数に基づいて、盗聴があったか否かを判断する。
【選択図】図3

Description

本発明は、量子暗号通信システムおよび盗聴検知方法に関し、より詳細には、位相変調した光パルス列の相対的位相差を利用して、安全な暗号鍵を供給する量子暗号通信システムおよび盗聴検知方法に関するものである。
従来、暗号技術としては数式の数学的な計算困難性(例えば、解読のための計算に膨大な時間がかかる)を基礎にした暗号方式が使用されてきたが、最近では、光子1個レベルの光を用いることにより、物理的に安全性が保証された量子暗号通信の研究が進められている。
量子暗号は、量子力学の理論を用いた暗号技術であって、盗聴しても内容が無意味なものになってしまい、かつ盗聴されたことが分かる究極の暗号技術として知られている。量子暗号通信の分野では、互いに離れた地点に存在する2者間で暗号通信を行うための秘密鍵を供給するシステムが知られており、そのシステムは、量子鍵配送システムとも呼ばれている。
量子鍵配送には、各種方式が存在するが、その中に差動位相シフト量子鍵配送方式(非特許文献1参照)と呼ばれる方式がある。このような差動位相シフト量子鍵配送方式においては、送信機から受信機に送信される送信信号は、パルス当り平均1光子未満(例えば0.1光子/パルス)のパルス列である。送信機は、信号送信の際に、上記パルス列に対して、0またはπで位相変調する。このときの位相変調データを各パルスの送出時刻に対応付けて第1の記憶手段に記憶する。
このような送信信号を受信した受信機は、受信パルス列を2つに分岐し、一方のパルス列に1パルス分の遅延を加えた後、再び2×2の合波器にて合波する。該2×2合波器の出力端には2つの光子検出器が配置されており、光子を検出した光子検出器の位置に基づいて、秘密鍵を作成する。すなわち、2つの光子検出器の一方で検出された場合にはビット「0」を割り当て、他方の光子検出器で検出された場合はビット「1」を割り当てる。
このとき、受信機は、光子を検出した時刻と光子検出器とを第2の記憶手段に記憶し、必要な数だけ光子が送受信された後、受信機は、送信機に光子が検出された時刻を知らせる。送信機は、知らされた時刻に対応した位相変調データを第1の記憶手段から読み出し、該位相変調データから所定の時刻ではどちらの光子検出器で検出されたかを知ることができ、上記光子検出器とビット「0」、「1」との関係に応じて、受信機と同じビット列を取得することができる。
このような差動位相シフト量子鍵配送方式に対して、なりすまし法と呼ばれる盗聴が行われる可能性がある。
上記なりすまし法においては、盗聴者は、送信機と受信機とを結ぶ伝送路の途中で、送信機によって送出された送信信号を本来の受信機と同様の機器構成で受信し、その受信結果に基づいてダミー信号を本来の受信機に送信する。盗聴者が送信信号を正しく受信できれば、ダミー信号は元の送信信号と同一であり、受信機に盗聴行為が気付かれないようにして情報を得ることができる。
しかしながら、「差動位相シフト量子鍵配送システム」においては、送信信号はパルス当り平均1光子未満(例えば0.1光子/パルス)の光パルス列であるため、このような送信信号を受信しても、10パルスあたり1回しか光子は検出されない。
したがって、盗聴者は、光子を検出した時刻に対応する2つのパルスの位相差は分かるが、それ以外の場合の位相差は検出できない。
盗聴者がこのような検出結果に基づいてダミー信号を送ろうとすると、位相差が検出できなかったパルスについては、当て推量で選んだ位相を割り振って再送するか(なりすまし盗聴1)、何も信号を出さないか(なりすまし盗聴2)、のいずれかの方法を採るしかない。
前者の場合(なりすまし盗聴1)、当て推量で選んだ位相差を受信機が検出した際、送信機が送った信号と異なる信号となる可能性が高い。後者の場合(なりすまし盗聴2)、やはり信号の不一致が生じる。その理由は、この場合に盗聴者が送るのは光子を検出した時刻に対応する連続する2パルスを含む光パルス列であるが、孤立した連続する2つのパルス以外は空のパルスだからである。
このように、なりすまし盗聴が行われると送信機および受信機間でビットの不一致(ビット誤り)が生じる。そこで、送信機および受信機は、通常の手順に従って秘密鍵を得た後、いくつかのテストビットを用いて照合検査をする。システムが正常に動作していれば両者のビット情報は一致するが、なりすまし盗聴があれば一致しないビットが発生する。不一致ビットがある場合、システムは盗聴されていると判断し、その秘密鍵を廃棄する。言い方を変えると、テストビットが一致していれば盗聴行為はなかったと判断することができ、その秘密鍵は安全であることが保証される。
このように、従来、なりすまし盗聴を受けたとしても、送信信号が1パルスあたり1光子未満であることにより、盗聴者は正確なダミー信号を送信できず、送受信機間でビット誤りが生じ、盗聴を判別することができた。
K.Inoue, E.Waks, Y.Yamamoto, 「Differential-phase-shift quantum key distribution using coherent light」,2003年,Physical Review A, vol.68, paper number 022317
上述の説明では、送受信機の性能が完全であることを前提として、得られた秘密鍵が安全であることを説明した。しかし、実際には送受信機の性能の不完全さのためにシステム元来のビット誤りが発生する。かかる場合、そのビット誤りに紛れて、鍵の一部が盗聴される可能性がある。
例えば、システム元来のビット誤り率がeであったと仮定する。これに対して盗聴者は、伝送信号の一部に対してだけ、上述のなりすまし盗聴2を行うとする。盗聴する割合をxとすると、それにより発生するビット誤り率は、x×1/4=x/4である。
ここで、x/4<e、すなわち、システム元来のビット誤り率の方が盗聴により発生するビット誤り率よりも高い場合、送信機および受信機では、このシステム元来のビット誤りによる揺らぎと盗聴による誤り増加との区別がつかず、盗聴に気づくことが困難である。すなわち、割合xに該当する分の鍵情報は、送信機および受信機が気付くことなく盗聴者によって盗まれる可能性がある。
実際の装置では、送信機および受信機の不完全さによるビット誤りの発生は避けられない。特に、量子鍵配送システムの場合、1光子が情報伝播の担い手であるため、通常のデジタル光通信系のように光子の多寡により「0」「1」を判別するという手法をとることもできず、ビット誤りが起きやすい。
したがって、上述のように盗聴によるビット誤りと、このシステム元来のビット誤りが区別できない場合、盗聴に気づきにくいため、なりすまし盗聴により鍵の一部が盗まれる可能性が高い。これを防ぐには、ビット誤りに頼らずに、なりすまし盗聴を発見できるシステムが望まれる。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、なりすまし盗聴を良好に判別可能な量子暗号通信システムおよび盗聴検知方法を提供することにある。
本発明は、このような目的を達成するために、請求項1記載の発明は、送信機、および受信機を備える量子暗号通信システムであって、前記送信機は、一定の時間間隔のパルスからなる光パルス列を送出する光源と、前記光パルス列を0またはπで位相変調する位相変調器と、前記位相変調された光パルス列を、少なくとも4つ以上連続する時間位置に空パルスを含む、パルス当り平均1光子未満の光パルス列として送出する減衰手段と、前記少なくとも4つ以上連続する時間位置の情報を記憶する第1の記憶手段とを備え、前記受信機は、前記減衰手段より送出された前記光パルス列を受信し、第1の光パルス列と第2の光パルス列に分岐する分岐手段と、前記第1の光パルス列を、前記一定の時間間隔と等しい時間遅延させる遅延手段と、前記遅延させられた第1の光パルス列と前記第2の光パルス列とを合波する合波手段と、前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差が0である場合に光子を検出する第1の光子検出手段と、前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差がπである場合に光子を検出する第2の光子検出手段と、入力された前記情報を記憶する第2の記憶手段と、前記第2の記憶手段に記憶された情報に基づいて、前記第1の光パルス列と前記第2の光パルス列とが合波する際の、空パルス同士が干渉する時間スロットに対する、所定期間内の、前記第1の光子検出手段および第2の光子検出手段からの検出信号の数を取得する検出信号数取得手段と、前記検出信号の数に基づいて、盗聴があったか否かを判断する判断手段とを備えることを特徴とする。
請求項2記載の発明は、請求項1記載の発明において、前記送信機は、前記第1の記憶手段に記憶された前記情報を、前記受信機に対して送信する送信手段をさらに備え、前記受信機は、前記送信された情報を受信する受信手段をさらに備え、前記受信機は、前記受信した情報を前記第2の記憶手段に記憶することを特徴とする。
請求項3記載の発明は、盗聴検知方法であって、入力された、一定の時間間隔のパルスからなり、0またはπで位相変調され、少なくとも4つ以上連続する時間位置に空パルスを含む、パルス当り平均1光子未満の光パルス列を、第1の光パルス列と第2の光パルス列に分岐する分岐工程と、前記第1の光パルス列を、前記一定の時間間隔と等しい時間遅延させる遅延工程と、前記遅延させられた第1の光パルス列と前記第2の光パルス列とを合波する合波工程と、前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差が0である場合に第1の光子検出手段にて光子を検出し、前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差がπである場合に第2の光子検出手段にて光子を検出する検出工程と、記憶手段に記憶された、前記少なくとも4つ以上連続する時間位置の情報に基づいて、前記第1の光パルス列と前記第2の光パルス列とが合波する際の、空パルス同士が干渉する時間スロットに対する、所定期間内の、前記第1の光子検出手段および第2の光子検出手段からの検出信号の数を取得する検出信号数取得工程と、前記検出信号の数に基づいて、盗聴があったか否かを判断する判断工程とを有することを特徴とする。
請求項4記載の発明は、請求項3記載の発明において、前記情報を入力する入力工程と、前記入力された情報を前記記憶手段に記憶する記憶工程とをさらに有することを特徴とする。
本発明によれば、装置の不完全性による誤り検出がある場合でも、特定の時間スロットにおける光子検出の有無から、なりすまし盗聴を発見することができる。
以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
(本発明を実施するにあたって行った検討事項)
本発明の一実施形態では、なりすまし盗聴の検知のために、ビット誤り率から盗聴を発見する形態ではない方法として、2連続の空パルスを用いる方法を検討した。
図1は、本発明の一実施形態に係る、2連続空パルス付き差動位相シフト量子鍵配送システム(量子暗号通信システム)の基本構成を示す図である。
なお、本明細書において、「空パルス」とは、光子数ゼロであるパルスのことを指す。
送信機111は、0またはπで任意にランダムに位相変調した一定間隔のコヒーレント光パルス列を、パルス当り平均1光子未満(例えば、0.1光子/パルス)で伝送路119に送出する。平均光子数1個未満という状態は、通常のレーザ光を大きく減衰させることにより実現することができる。このとき、送信機111は、光パルス列の際に、上記光パルス列に対して、0またはπで位相変調する。このときの位相変調データを各パルスの送出時刻に対応付けて、送信機111が備える、メモリ等の第1の記憶手段(不図示)に記憶する。
さらに送信機111は、任意にランダムに2連続の空パルスを、上記光パルス列に挿入して伝送路に送出する。この空パルスを挿入した送出時刻(時間位置)も第1の記憶手段に記憶される。図1では、第3と第4の時間位置に空パルスが挿入されている場合を例示してある。
このような光パルス列を光子検出する場合、あるパルスでは光子が検出され、あるパルスでは何も検出されないという検出結果となる。どのパルスで光子が検出されるかは、測定するまで不確定である。
図1に示すように、送信機111より送出された光パルス列は、伝送路119を経て受信機112に到達する。まず、受信機112は、光分岐手段116を使用して、送信機111より受信した光パルス列をエネルギー的に等分になるよう2つに分岐し、分岐した各光パルス列を長経路120および短経路121に送出する。長経路120では、光パルス列に一定の遅延(本明細書では、時間T)を加える。その後、長経路120および短経路121を通った光パルス列は、2×2合波カップラ117にて再び合波する。2×2合波カップラ117は、2つの入力端子(長経路120および短経路121にそれぞれ接続されている)を備え、長経路120および短経路121を通った光パルス列を受け入れる。また、2×2合波カップラ117は、2つの出力端子も備え、それぞれの出力端子は、光子検出器118a、および光子検出器118bに接続される。
上記長経路120で一方の光パルス列に与えられる一定の遅延時間Tは、送信機111から伝送路119を介して受信機112に入力される光パルス列の一定間隔Tに等しいものと仮定すると(図1においてTで示す)、2×2合波カップラ117では、前後のパルスが重なり合って合波される。パルスが重なり合う様子は、短経路121を通過した光パルス列123と長経路を通過した光パルス列122とを用いて、図1の受信機112の下に図示している。
なお、図1〜5において、符号が付された光パルス列が示されているが、各図中の光パルス列の各々では、光パルス列を構成する光パルスが時系列的(右側が時間的に先)に図示されている。
受信機112に入力された光パルス列は、0またはπで位相変調されている。したがって、受信機112内の分岐・合波経路の伝播位相が適当であれば、重なり合うパルスの位相差は0またはπとなる。
2×2合波カップラ117での合波の結果、両パルスは干渉し、位相差が0なら光子検出器118bが光子を検出し、位相差πなら光子検出器118aが光子を検出することになる。ただし、送信機111が2連続で送った空パルスのひとつが、受信機112内の分岐・合波回路を経て、光子が存在し得るパルスと重なり合った結果、光子検出される場合は、干渉が起きないため、光子検出器118aで光子が検出されるか光子検出器118bで光子検出されるかは、全くのランダムとなる。図1の例示では、光パルス列122の2番目のパルスと光パルス列123の3番目とが重なり合った場合、および光パルス列122の4番目と光パルス列123の5番目のパルスとが重なり合った場合が、これに相当する。
さらに、空パルス同士が重なり合った場合には、何も検出されない。図1の例示では、光パルス列122の3番目と光パルス列123の4番目のパルスが重なり合う場合が、これに相当する。
以上の構成を用いて、送信機111と受信機112とは以下の手順により秘密鍵を得る。
まず、受信機112は、上記構成により送信機111より送出され、伝送路119を経たパルスから光子を、光子検出器118aおよび118bのいずれかで検出する。この際、受信機112は、光子を検出した時刻と検出器とを受信機112が備える、メモリ等の第2の記憶手段(不図示)に記録する。所定の数だけ光子が送受信された後、受信機112は送信機111に対して、第2の記憶手段に記憶された、光子が検出された時刻(光子検出時刻)を通知する。
送信機111は、通知された光子検出時刻と、第1の記憶手段に記憶された、送信機111自身の有する位相変調データとから、受信機112が光子検出器118aまたは光子検出器118bのいずれかで光子を検出したかを知ることができる。
そこで、光子検出器118aにて光子が検出される場合をビット「0」、光子検出器118bにて光子が検出される場合をビット「1」と取り決めておけば、送信機111と受信機112とは同じビット列を得ることができる。これを、暗号通信のための秘密鍵とする。
ただし、上記のように、空パルスが関与した時刻での光子検出については、いずれの光子検出器で光子検出したか、送信機111には分からない。図1の例示では、光パルス列122の2番目のパルスと光パルス列123の3番目のパルスとが重なり合った時間スロット、および光パルス列122の4番目と光パルス列123の5番目のパルスとが重なり合った時間スロットでの光子検出がこれに相当する。
この光子検出によるビット不一致を避けるため、送信機111は、いずれの光子検出器で光子検出したか分からないビットを廃棄するとともに、廃棄ビットを受信機112に通知する。そして、通知を受けた受信機112も該当するビットを廃棄する。これにより、不明なビットは除去される。
上記手順においては、受信機112から送信機111へ通知されるのは光子検出時刻のみであるため、ビット情報は受信機112の外部に出ることはなく、盗聴されることはない。
また、送られているのはパルスあたり平均1光子未満の光なので、盗聴者が信号の一部を分岐してビット情報を得ることはできない。なぜなら、光子が2分割されることはないので、盗聴者が分岐により光子検出すると、その光子は受信機112には届かず、送信機111と受信機112のビット列にはならないからである。
図2は、図1に示す差動位相シフト量子鍵配送システムにおけるなりすまし盗聴の説明図である。
盗聴者は、伝送路119の途中で、送信機111によって送出された伝送信号を本来の受信機112と同様の機器構成(盗聴受信機211)で受信し、その受信結果に基づいてダミー信号を本来の受信機112に光送信機212を用いて送信する。盗聴受信機211が伝送信号を正しく受信できれば、ダミー信号は元の送信信号と同一であり、本来の受信機112に盗聴行為が気付かれないようにして情報を得ることができる。
しかしながら、図1に示す「2連続空パルス付き差動位相シフト量子鍵配送システム」においては、送信信号はパルス当り平均1光子未満(例えば0.1光子/パルス)の光パルス列であるため、このような送信信号を受信しても、平均10パルスに1回しか光子は検出されない。さらに、送信される光パルス列には2連続の空パルス(図2中のパルス3、4)が挿入されており、盗聴受信機211が平均10パルスに1回光子を検出した時に、光子が存在し得る2パルスの干渉の結果の光子検出なのか(真の光子検出)、一方は空である2パルスの重なり合いの結果の光子検出なのか(ダミーの光子検出)、区別できない(図2参照)。
このような状況では、盗聴受信機211は、検出信号は全て真の光子検出であるものとしてダミー信号を送るしかない。より具体的には、盗聴受信機211は、光子を検出した光子検出器に基づき位相差が0であるかπであるかを判定し、その位相差を付与した2パルスを本来の受信機112に送信する。
このような2パルスを受信機112が受信すると、本来、光子が検出されるはずのない時刻で光子が検出され得る。このことを、図2を参照して詳しく説明する。
説明のため、1から6まで番号を付けた6つの光パルスからなる光パルス列213が送信機111から送信され、そのうちパルス3とパルス4とは空パルスであるとする。図2において、符号214は、盗聴受信機211の短経路121を通過した光パルス列であり、符号215は、盗聴受信機211の長経路120を通過した光パルス列である。
盗聴受信機211がこの6パルスを分岐・合波すると、光パルス列214のパルス2と光パルス列215のパルス3とが重なり合う時刻(時間スロット)で光子を検出する場合がある。盗聴受信機211はこれがダミー検出だとは分からないため、真の検出であるものとして、検出結果に従って位相差を付与したパルス2とパルス3とを、本来の受信機112に送信する。この2パルスは、光子が存在し得るパルスである。すなわち、送信機111から送信された時点では、空パルスであったパルス3においても光子が存在し得るようになり、光送信機212から送信された光パルス列216のパルス2およびパルス3には光子が存在しうることになる。
上記のようなパルス2とパルス3とを含む光パルス列216を受信機112が受信すると、分岐・合波回路から出力される段階では3つの時刻で光子が検出され得る(図2参照)。図2において、符号217は、受信機112の短経路121を通過した光パルス列であり、符号218は、受信機112の長経路120を通過した光パルス列である。すなわち、図2では、受信機112の光分岐手段116にて分岐された2パルスのうち、遅延されない2パルス(光パルス列218に含まれる)と遅延された2パルス(光パルス列217に含まれる)を時系列的(右側が時間的に先)に図示している。この図からもわかるように、光子は、第1の時刻;パルス2が短経路121を通って光子検出器に到達する時刻、第2の時刻;パルス3が短経路121を通るか、パルス2が長経路120を通って光子検出器に到達する時刻、第3の時刻;パルス3が長経路120を通って光子検出器に到達する時刻、の3つの時刻で検出され得る。
これらのうち第3の時刻は、本来は、短経路121を通ったパルス4と長経路120を通ったパルス3が重なり合う時刻である。ところで、盗聴されていない正常時には、パルス3とパルス4とは空パルスである。したがって、本来は、上記第3の時刻で光子が検出されることはあり得ない。
ところが、上で説明したように、なりすまし盗聴されると、本来は光子検出されない時刻に光子が検出されることがある。そこで、信号伝送後に、送信機111は、受信機112に、第1の記憶手段に記憶された空パルスの送出時刻を通知する。受信機112は、その送出時刻から正常であれば光子が検出されないはずの時刻を特定し、その時刻に光子が検出されたか否かをチェックする。そして、光子が検出されていれば、なりすまし盗聴されたと判断する。
以上のようにして、「2連続空パルス付き差動位相シフト鍵配送システム」は盗聴を発見する。
上記「2連続空パルス付き差動位相シフト鍵配送システム」では、本来は光子を検出するはずのない時刻に光子が検出されるか否かにより、盗聴を発見する。ところが、実際のシステムでは、例えば、送信パルスのオンオフ比が100%でなかったり、光子検出器に雑音が伴っていたりするため、信号光子がないはずの時間スロットで検出信号(光子検出器からの出力信号)が出力されることがある。
そのような装置の不完全さによる誤り計数があると、盗聴者はそれを利用して、以下のようにして鍵情報の一部を盗むことができる。まず盗聴者は、何らかの手段を使って装置の不完全性による誤り計数を減少させる。そして、その減少分が、なりすまし盗聴により発生する空スロット計数と同じとなる割合だけ、伝送信号に対して盗聴を行う。式で表わすと、
ΔCerror=αCeve
ということである。ここで、ΔCerrorは盗聴者が減少させた誤り計数確率、Ceveは全ての伝送信号をなりすまし盗聴したときに発生する空スロット計数確率、αは盗聴する割合、である。これにより盗聴者は、α分の盗聴に成功する。
量子鍵配送等の量子暗号通信システムにおいて、一部の盗聴も許さないことが望まれる。本発明は、上記により説明した検討事項に鑑みてなされたものであり、盗聴者が装置の不完全性による誤り計数を減少させた場合の一部なりすまし盗聴をも検知可能とすることが本発明の目的の1つである。
(本発明の実施形態)
図3は、本発明の実施形態に係る量子暗号通信システムの構成図である。
図3において、送信機311は光源313、位相変調器314、減衰手段315、および制御部CPU316を備える。
光源313は、位相変調器314に接続されている。また、位相変調器314は、減衰手段315に接続されている。すなわち、光源313と減衰手段315の間には、位相変調器314が存在する。
制御部CPU316は、送信機311全体の主制御を行うCPUである。また、送信機311は、制御CPU316の制御プログラムを格納したROMおよび各種データを保管し、また一時ワークステーションとして利用されるRAMを有する送信機記憶手段(不図示)を備える。このような構成により、制御部CPU316は、送信機311の各構成を統合して制御し、送信機311全体の主制御を行うことができる。
光源313は、一定の時間間隔Tのパルスからなる光パルス列を送出し、該光パルス列は位相変調器314に入力される。
位相変調器314は、光源313から入力された光パルス列に含まれる各パルスを0またはπで位相変調した後、減衰手段315に該光パルス列を受け渡す。すなわち、光パルス列に含まれるパルスのそれぞれの位相は、0またはπである。この位相変調に用いた位相変調データは、各パルスの送出時刻(時間位置)に対応付けて送信機記憶手段に記憶される。
減衰手段315は、例えば、NDフィルタ(Neutrral Density Filter)等、レーザ光などの光源から入射される光を大きく減衰させるための手段であればいずれのものを用いても構わない。後述する空パルスを任意に挿入するためには、光強度変調器を組み合わせて利用することも有効である。本実施形態では、パルス当り1光子未満の光パルス列を送信機311から送出するが、パルス当り1光子未満の光パルス列は、通常のレーザ光を大きく減衰させ、平均光子数1未満という状態を実現することができる。
本明細書において、「パルス当り1光子未満の光パルス列」とは、所定の数の光パルス列であって、少なくとも4連続の空パルスを含み、かつ、光パルス列に含まれている光子の数がパルス数よりも少ない状態のことを指す。すなわち、光パルス列324に示すように、少なくとも4つ以上連続する時間位置に空パルスを含む、パルス当たり平均1光子未満の光パルス列である。光パルス列324では、光パルス3〜6が空パルスである。
光源313は、一定間隔Tで光パルス列を送出するが(この時点では、各パルスに、光子は含まれている可能性がある)、減衰手段315を通ることにより、光子が含まれていないパルスが生成される。このようなパルスは、何も含まれていない、つまり、単なる空であることを示すため、「空パルス」と定義する。
上記減衰手段315は、位相変調器314から入力された光パルス列を、4つの空パルス3〜6を含む、パルス当たり平均1光子未満の光パルス列324として送出する。すなわち、送信機311は、減衰手段315を通った光パルス列324を、光伝送路323を介して受信機312に対して送出する。
光検出装置としての受信機312は、光分岐手段317、2×2合波カップラ318、光子検出器319a、光子検出器319b、制御部CPU322、長経路320、および短経路321を備える。
光分岐手段317の入力端は光伝送路323に接続され、2つの出力端はそれぞれ長経路320および短経路321に接続されている。光分岐手段317としては、例えば、ビームスプリッタ、方向性結合器、光カップラ等、入力された光を適切に分岐して出力できる手段であればいずれのものを用いても良い。
2×2合波カップラ318は、入力端子および出力端子がそれぞれ2つずつ備わっている。該2つの入力端子のそれぞれは長経路320および短経路321に接続されており、該2つの出力端子のそれぞれは光子検出器319aおよび光子検出器319bに接続されている。
2×2合波カップラ318は、一方の入力端子で長経路320からの光パルス列を受信し、他方の入力端子で短経路321からの光パルス列を受信する。すなわち、2×2光合波カップラ318では、送信機311から送信された光パルス列の前後のパルスが重なり合って合波される。その後、2×2合波カップラ318は、2つの光パルス列の位相差がπの場合には一方の出力端子から光子検出器319aに光子を出力し、位相差が0の場合には他方の出力端子から光子検出器319bに光子を出力する特性を有する。
制御部CPU322は、受信機312全体の主制御を行うCPUである。また、受信機312は、制御CPU322の制御プログラムを格納したROMおよび各種データを保管し、また一時ワークステーションとして利用されるRAMを有する受信機記憶手段(不図示)を備える。このような構成により、制御部CPU322は、受信機312の各構成を統合して制御し、受信機312全体の主制御を行うことができる。
受信機312へ入力された光パルス列は、光分岐手段317により長経路320および短経路321にエネルギー的に等分(例えば、50対50)にそれぞれ分岐される。長経路320に分岐された光パルス列は、一定の遅延時間Tだけ遅延させられた後、2×2光合波カップラ318で短経路321を通った光パルス列と再び合波される。ここで、一定の遅延時間Tは、図3に示すように、入力された光パルス列のパルス間隔Tに等しいものとする。
受信機312に入力された光パルス列は、0またはπで位相変調されている。したがって、受信機312内の分岐・合波回路の伝播位相が適当であれば、重なり合うパルスの位相差は0またはπとなる。
光分岐手段317で2つに分岐された光パルス列が、2×2合波カップラ318にて合波された結果、両パルスは干渉し、2つのパルス列の相対的位相差が0なら光子検出器319bが光子を検出し、相対的位相差πなら光子検出器319aが光子を検出する。
以上の構成の下、送信機311は、0またはπで任意に位相変調した一定間隔(パルス間隔)Tの光パルス列324を、4つの空パルスを含み、パルス当り平均1個光子未満(例えば、0.1光子/パルス)で送出する。
以下の説明では、説明の便宜上、上記条件で説明するが、本発明を上記条件に限定するという意図ではない。
図3では、光パルス列324のうち、3番目から6番目までのパルスが空パルスである例を示す。
受信機312は、光伝送路323を経て送信機311より伝送されてきた光パルス列324を、光分岐手段317にて受け取る。光分岐手段317にて長経路320および短経路321にエネルギー的に等分(例えば、50対50)にそれぞれ分岐された光パルス列は、2×2合波カップラ318で合波され、合波された光パルス列は、後述するようにパルス間の位相差にしたがって光子検出器319a、または光子検出器319bにて検出される。
上記のような受信機312の回路を構成すると、受信機312の2×2合波カップラ318では、前後のパルスが重なり合い、干渉を起こす。すなわち、送信機311から送出された光パルス列324の各パルスは一定の時間間隔Tで送出されており、また長経路320を通った光パルス列は一定の時間間隔Tだけ遅延しているので、長経路320を通った光パルス列はちょうど1パルス分遅延した状態で、短経路321を通った光パルス列と合波される。かかる状態については、図4に詳細に示す。
上記2×2合波カップラ318での合波による干渉の結果、パルス間の位相差が0なら光子検出器319bが光子を検出し、πなら光子検出器319aが光子を検出する。
ただし、送信機311から送信された光は、パルス当り平均1個光子未満なので、光子が検出されるのは稀である。
光子を検出したという信号を得た場合、制御部CPU322は、受信機記憶手段に、光子を検出した時刻(光子検出時刻)、どの光子検出器にて検出されたかを示す格子検出器情報を記憶する。さらに、制御CPU322は、光子を検知した検知信号の数を、時間スロット毎に累積する。すなわち、制御CPU322は、各時間スロットについて、検知信号を1つ検知する毎に、カウント値を1つずつ累積し、該累積されたカウント値を受信機記憶手段に記憶する。このようにして、受信機記憶手段には、時間スロット(図4では、時間スロットt1〜t7)毎に、検知された検知信号の数が記憶されることになる。
図4では、図3で説明した空パルスが4連続で送信された場合(3番目から6番目までのパルスが空パルス)の受信パルスの重なり具合を示す。図4において、符号411は長経路320を通り時間間隔Tだけ遅延された光パルス列であり、符号412は短経路321を通った光パルス列である。
図4では、斜線長方形(1、2、7、8)と空白長方形(3、4、5、6)のパルスが示されているが、斜線長方形(1、2、7、8)は、光子が存在し得るパルス(以後、信号パルスと呼ぶ)を表わし、一方、空白長方形(3、4、5、6)は、空パルスを表わす。
図示するように、空パルスが存在するために、重なり合うパルスの一方が信号パルスで他方が空パルスである場合(時間スロットt2、t6)と、両方とも空パルスである場合(時間スロットt3、t4、t5)と、が生じる。前者の場合、干渉する相手がいないので、光子は光子検出器319aまたは光子検出器319bでランダムに検出される。後者の場合、理想的には光子は全く検出されない。ただし、例えば、受信機にて生じるノイズなどの、装置の不完全性のため、光子検出器から誤って検出信号が出力されることがある。
上記構成及び動作特性を利用して、以下の手順により、送信機311と受信機312は共通のビットを得る。なお、共通のビットを得る手順についても、上述したように、制御部CPU316および322が、送信機311および受信機312をそれぞれ制御して行う。
ステップ1;送信機311は、受信機312に、0またはπでランダムに位相変調された、所定の長さの光パルス列324(4つ連続する時間位置に空パルスを含む、パルス当たり平均1光子未満の光パルス列)を送信する。このとき、制御CPU316は、上記位相変調に用いた位相変調データを、各パルスの送出時刻に対応付けて送信機記憶手段に記憶する。さらに、制御CPU316は、空パルスを挿入した時間位置についても、送信機記憶手段に記憶する。
ステップ2;受信機312は、光伝送路323を経て送信機311より伝送された光パルス列324から光子検出し、光子検出時刻(時間スロット)と光子検出器情報とを受信機記憶手段に記録する。次いで、受信機312は、受信機記憶手段に記憶された、光子を検出した時間スロットを送信機311に通知する。このような通知の方法としては、例えば電話回線、FAX、電子メール等従来の通信手段を用いて、送信者または送信機311に伝える。送信者に伝える場合は、送信者は、知らされた光子検出時刻を送信機311に入力し、送信機記憶手段にその情報を記録する。
ステップ3;送信機311は、送信機記憶手段に記憶された空パルスの時間位置(上記の例では、3番目から6番目までのパルスの時間位置)を示す空パルス時間位置情報を受信機312に送信する。このような送信方法としては、例えば電話回線、FAX、電子メール等従来の通信手段を用いて受信機312に伝える。受信機312は、送信機311から送信された空パルス時間位置情報を受信し、該受信した情報を受信機記憶手段に記憶する。
なお、上記空パルス時間位置情報は、送信機311または送信者が、電話回線、FAX、電子メール等従来の通信手段を用いて受信者に伝えるようにしても良い。この場合、受信者は、知らされた空パルス時間位置情報を受信機312に入力し、受信機記憶手段にその情報を記録する。また、CDなどの可搬メディアに空パルス時間位置情報を記憶し、受信機312が上記可搬メディアから空パルス時間位置情報を読み出し、該読み出した空パルス時間位置情報を受信機記憶手段に記憶するようにしても良い。
このように、本実施形態では、受信機312が空パルス時間位置情報を取得できればいずれの方法を用いても良く、受信機312は、送信機から受信したり、ユーザにより入力されたり、可搬メディアから読み込むなどして入力された空パルス時間位置情報を受信機記憶手段に記憶する。
ステップ4;送信機311は、送信機記憶手段に記憶された位相変調データと、受信機312から受信した光子検出時刻とに基づいて、所定のパルスについて、光子検出器319aまたは光子検出器319bのいずれかが光子を検出したかを判定する。ただし、信号パルスと空パルスが重なった場合(図4の時間スロットt2およびt6)には、上述したように、光子は光子検出器319aまたは光子検出器319bでランダムに検出されるので、どちらが光子を検出したかは判定できない。さらに、空パルス同士が重なった時間スロット(図4の時間スロットt3、t4、t5)で受信機312が誤って検出信号を得た場合も、どちらの光子検出器が検出信号を出したかは判定できない。
ステップ5;受信機312は、送信機311から送信された空パルス時間位置情報に基づいて、光子を検出したとみなした事象が、(a)信号パルス同士が重なり合った時間スロットのものなのか、(b)信号パルスと空パルスとが重なった時間スロットのものなのか、(c)空パルス同士が重なった時間スロットで、かつ、後述のなりすまし盗聴をされた場合に光子を検出し得る時間スロットのものなのか、(d)空パルス同士が重なって時間スロットで、かつ、後述のなりすまし盗聴をされた場合でも光子は検出しないはずの時間スロットのものなのか、を判定する。
詳細に説明すると、受信機312の制御部CPU322は、受信機内のメモリ(図示せず)から判定用のプログラム(盗聴検知プログラム)を読み出し、該時間位置の情報と光子検出信号を得た事象とから判定を行う。すなわち、制御部CPU322は、盗聴検知プログラムを実行して、なりすまし盗聴などの盗聴検知を行う。この盗聴検知方法については後述する。
ステップ6;送受信機311と受信機312とは、信号パルス同士の干渉から起こった光子を検出した事象について、光子検出器319aによるものであればビット「0」を、光子検出器319bによるものであればビット「1」を、付与する。この場合、光子を検出する検出器は確定しているので、送信機311および受信機312は同じビット値を得ることになる。これを秘密鍵ビットとする。
以下、図5を参照しながら、上述の構成・手順によるシステムにおいて、なりすまし盗聴を発見するメカニズムについて説明する。
なりすまし盗聴では、盗聴者は、通常、光伝送路323の途中で受信機312と同様の受信回路である盗聴受信機511により光子を検出する(光子を検出する流れについては、上述の説明を重なるので省略する)。そして、光子検出結果に基づき、正規の受信機312における検出結果が同じとなるようにダミー信号を送出し、受信機312が盗聴に気付かないようにする。
しかしながら、本実施形態では、送信機311が送出しているのは、送信レベルがパルス当り平均1個光子未満(例えば0.1個光子/パルス)であるパルス列である。この場合、盗聴受信機511は平均10スロットに1回しか光子を検出しない。
盗聴受信機511は、光子を検出したスロットについては、正規の受信機312が光子検出器319a、または光子検出器319bで光子を検出するように位相が設定された2連続パルスを送出することができる。一方、光子検出しないスロットについては光子検出器319a、または光子検出器319bのいずれの光子検出器で検出できるようにしたら良いのか分からないため、何も送らない。これにより、孤立した2連続パルスが受信機に送られる。
より詳細に説明すると、光パルス列324中の4連続空パルス3、4、5、6が送信機311から盗聴受信機511に入ってくる。すると盗聴受信機511では、信号パルス2と空パルス3とが重なった時間スロット(図5の矢印A1)、または空パルス6と信号パルス7とが重なった時間スロット(図5の矢印A2)で光子を検出する場合がある。ここで、図5において、符号513は、盗聴受信機511の短経路321を通過した光パルス列であり、符号514は、盗聴受信機511の長経路320を通過した光パルス列である。
しかし、盗聴受信機511には、これが信号パルス同士の干渉によるものなのか、一方が信号パルスのみの検出結果なのか区別がつかない。そこで、盗聴受信機511は、前者の場合は、パルス2、3間の位相を測定したものとして、符号515に示すように時間位置2、3に2連続パルスを発生させて正規の受信機312にパルス列を送信する。後者の場合は、パルス6、7間の位相を測定したものとして、符号516に示すように時間位置6、7に2連続パルスを発生させて正規の受信機312にパルス列を送信する。
なお、光パルス列515、516は、盗聴受信機511から送信される光パルス列324に対応する光パルス列に含まれる光パルス列であるが、本実施形態に係る盗聴検知方法の説明を容易にするために用いる光パルス列である。光パルス列515、516において、黒塗り長方形(2、3、6、7)には光子が存在し得る。これに対して、空白長方形(1、4、5、8)は空パルスであることを示しているわけではなく、上述のような盗聴受信機511が、信号パルス同士の干渉によるものなのか、一方が信号パルスのみの検出結果なのかの区別がつかず、位相を測定したものとして送信したパルス列を強調するために空白にしている。
このような光パルス列515、516が受信機312に入力されると、光分岐手段317にて2つに分岐し、分岐された一方の光パルス列には遅延時間Tだけ遅延が施されて、2×2合波カップラ318にて合波される。符号518は、光パルス列515について、受信機312の短経路321を通過した光パルス列であり、符号519は、光パルス列515について、受信機512の長経路320を通過した光パルス列である。また、符号520は、光パルス列516について、受信機312の短経路321を通過した光パルス列であり、符号521は、光パルス列516について、受信機512の長経路320を通過した光パルス列である。
さて、時間位置2、3の2連続パルス(光パルス列515)が受信機312に入力されると、パルス3、4が重なり合う時間スロット(図5の矢印B1)で光子が検出される可能性がある。しかしながら、図4で説明したように、送信機311から送出された光パルス列324の3番目から6番目までが空パルスであった場合には、受信機312では3番目と4番目のパルスが重なり合う時間スロットでは光子は検出されない。
あるいは、時間位置6、7の2連続パルス(光パルス列516)が受信機312に入力されると、パルス5、6が重なり合う時間スロット(図5の矢印B2)で光子が検出される可能性がある。しかしながら、図4で説明したように、送信機311から送出された光パルス列324の3番目から6番目までが空パルスであった場合には、受信機312では5番目と6番目のパルスが重なり合う時間スロットでは光子は検出されない。
つまり、光子検出されないはずの時間スロットで光子が検出されることになる。そこで、そのような光子検出があれば、なりすまし盗聴ありと判定する。ただし、装置の不完全性のため、盗聴されていない場合でも該時間スロットで検出信号が出力されることがあると、その検出信号がなりすまし盗聴によるものなのか、装置の不完全性によるものなのか判別できない。これが、本発明の検討事項に対する課題であった。
そこで、本実施形態では、盗聴受信機511において、空パルス4と空パルス5とが重なった時間スロット(図5のA3)、すなわち、光分岐手段にて分岐され、長経路320と短経路321とを通過した光パルス列が2×2合波カップラ318にて合波された際の、空パルス同士が干渉する時間スロットを利用する。盗聴受信機511が、この時間スロット(A3)で光子を検出することはない。したがって、盗聴受信機511から正規の受信機312へ送られるパルス4とパルス5とは、必ず空パルスである。
時間位置4、5が空パルスである2連続パルスが受信機312に入力されると、パルス4、5が重なり合う時間スロットで光子が検出されることはない。ただし、装置の不完全性のため、誤って検出信号が出力されることはある。言い換えると、この時間スロットでの検出信号は、装置の不完全性によるもののみで、なりすまし盗聴による光子検出信号は発生しない。
そこで、受信機312は、パルス4、5が重なり合う時間スロットにて検知された検知信号の数に基づいて、盗聴があったか否かを判断する。すなわち、受信機312は、ステップ5において、パルス4、5が重なり合う時間スロットでの検出信号の数と、パルス3、4が重なり合う時間スロットまたはパルス5、6が重なり合う時間スロットでの検出信号の数とを比較し、該比較結果に基づいて盗聴があったか否かを判断する。
上述のように、前者は装置の不完全性によるもののみ、後者はなりすまし盗聴による光子検出と装置の不完全性による検出信号が足し合わさったものである。したがって、両者を比べることにより、なりすまし盗聴による光子検出の数を抽出することができる。これにより、なりすまし盗聴を発見することができる。
より詳細に説明すると、ステップ5において、制御CPU322は、所定期間内にパルス4、5が重なり合う時間スロット(図4の時間スロットt4)にて検出された検出信号の数を取得する。すなわち、制御CPU322は、受信機記憶手段に記憶された空パルス時間位置情報に基づき、受信機記憶手段を参照して、時間スロットt4に対する、上記所定期間内の検知信号の数を判定値として取得する。
次いで、制御CPU322は、上記所定期間内にパルス3、4が重なり合う時間スロット(図4の時間スロットt3)にて検出された検出信号の数、または上記所定期間内にパルス5、6が重なり合う時間スロット(図4の時間スロットt5)にて検出された検出信号の数の一方を取得する。すなわち、制御CPU322は、受信機記憶手段を参照して、時間スロットt3またはt5の一方に対する、上記所定期間内の検知信号の数を比較対象値として取得する。
制御CPU322は、上記判定値と比較対象値とを取得すると、上記判定値と比較対象値とを比較し、上記判定値と比較対象値とが同じ値である場合、比較対象値の取得対象となる時間スロット(時間スロットt3およびt5の少なくとも一方)には、なりすまし盗聴による光子検知信号が無いと判断する。すなわち、なりすまし盗聴がされていないと判断する。
一方、上記判定値と比較対象値とが異なる場合、制御CPU322は、比較対象値の取得対象となる時間スロットに、なりすまし盗聴による光子検知信号があると判断し、なりすまし盗聴がありと判断する。このような判断がされると、制御CPU322は、「なりすまし盗聴あり」という旨の警告メッセージを受信機312が備える表示部(不図示)に表示する。この警告メッセージを送信機311に送信しても良い。また、上記判断に応じて、受信機312が備えるスピーカから警告音を出力してユーザに知らせるようにしても良いし、受信機312が備えるLEDから所定のパターンで発光させてユーザに知らせるようにしても良い。
以上のなりすまし盗聴の発見方法は、盗聴者が、何らかの手段により装置の不完全性による検出信号数を減少させ、減少分を一部なりすまし盗聴による光子検出に置き換えようとした場合でも有効である。なぜなら、受信機312は、パルス4、5が重なり合う時間スロットでの検出信号を利用して、パルス3、4(または5、6)が重なり合う時間スロットでの検出信号数が、装置の不完全性によるものなのかなりすまし盗聴によるものなのか判定しているので、そのような置き換えを発見することが可能である。これにより、本発明の検討事項で問題であった、装置の不完全性を利用した一部なりすまし盗聴を防ぐことができる。
さて、本実施形態において重要なことは、光パルス列を2つに分岐し、分岐された光パルス列の一方をパルス間隔だけ遅延させ、該遅延された一方の光パルス列と、遅延されていない他方の光パルス列とを合波する際に、光子が存在するはずがないパルスが重なり合う時間スロットを存在させることである。このような時間スロットでは、装置の不完全性による検出信号は検出されても、なりすまし盗聴による検出信号が検出されるはずが無いからである。本実施形態では、より高度ななりすまし盗聴を発見するために、この性質を活用するのである。
つまり、図5にて説明したように、なりすまし盗聴があると、光パルス列515に示されるように、空パルスであるはずのパルス3に光子が存在し得るようになる。このような光パルス列515を受信機312が受信すると、光パルス列518、519に示されるように、なりすまし盗聴が無ければ光子が検出されるはずの無い時間スロットB1において、光子が検出される場合が生じる。
ここで、なりすまし盗聴が無く、装置の不完全性による検出信号が検出される場合、パルス3とパルス4とが重なる時間スロットと、パルス4とパルス5とが重なる時間スロットとでは、上記装置の不完全性による検出信号が検出されることになるので、所定期間内の検出信号の数は同じになる。
これに対して、なりすまし盗聴があり、装置の不完全性による検出信号が検出される場合、パルス3とパルス4とが重なる時間スロットにおいては、パルス4とパルス5とが重なる時間スロットでも検出される装置の不完全性による検出信号に加えて、なりすまし盗聴による検出信号も検出されることがある。よって、なりすまし盗聴が行われることにより、所定期間内の検出信号の数が、パルス3とパルス4とが重なる時間スロットと、パルス4とパルス5とが重なる時間スロットとにおいて異なることになる。よって、所定期間内の検出信号の数を比較することにより、なりすまし盗聴を検出することができるのである。
なお、本実施形態では、検出信号の数の比較の際に統計的性質を用いているので、検出信号の数としては十分な量を検出する必要がある。よって、上記所定期間は、統計的に正確な事象(検出信号の数)を検出するのに十分な期間である。ただし、この十分な期間とは、システム、各装置の構成や、本盗聴検知方法を用いる使用者が要求する検知精度に基づいて決定されるものである。
このように、パルス4、5が重なり合う時間スロットのように、盗聴されたとしても、光子が存在するはずがないパルスが重なり合う時間スロットを存在させるために、光パルス列に少なくとも4つ以上の連続した空パルスを含ませる必要があるのである。
上述したように、4つ以上の連続した空パルスにおいて、光パルス列324の時間軸の最初の空パルス(図4においてはパルス3)は、盗聴により、受信機312が受信する際には光子が存在し得るようになる。これについては、4つ以上の連続した空パルスの、時間軸の最後の空パルス(図4においてはパルス6)についても同様のことが言える。従って、盗聴発見処理の比較となる時間スロットは、盗聴により光子が存在し得ることになる空パルスとその時間軸ですぐ次の空パルスとが重なる時間スロット、すなわち、4つ以上の連続した空パルスにおいて、時間軸の最初の空パルス(図4においてはパルス3)とそのすぐ次の空パルス(図4においてはパルス4)とが重なる時間スロット(図4においては時間スロットt3)となる。また、盗聴により光子が存在し得ることになる空パルスとその時間軸ですぐ前の空パルスとが重なる時間スロット、すなわち、4つ以上の連続した空パルスにおいて、時間軸の最後の空パルス(図4においてはパルス6)とそのすぐ前の空パルス(図4においてはパルス5)とが重なる時間スロットも、上記盗聴発見処理の比較となる時間スロット(図4においては時間スロットt5)になり得る。
また、4つ以上の連続した空パルスの最初から2番目以降であって、最後から2番目よりも前の空パルス(図4においてはパルス4)と、該空パルスの時間軸で次の空パルス(図4においてはパルス5)とが重なる時間スロットが、盗聴発見処理の基準となる時間スロット(図4においては時間スロットt4)となる。
受信機312は、受信機記憶手段に記憶された空パルス時間位置情報に基づいて、盗聴発見処理の比較となる時間スロットに関る空パルス、および盗聴発見処理の基準となる時間スロットに関る空パルスをそれぞれ特定する。
本実施形態では、受信機312は、上記盗聴発見処理の基準となる時間スロットにて所定期間内に検出された検出信号の数に基づいて、盗聴があったか否かを判断する。すなわち、受信機312は、上記盗聴発見処理の基準となる時間スロットにて所定期間内に検出された検出信号の数と、上記盗聴発見処理の比較となる時間スロットにて所定期間内に検出された検出信号の数とを比較し、該比較結果に基づいて盗聴があったか否かを判断する。
本発明の比較例に係る、2連続パルス付き差動位相シフト量子鍵配送システムの構成図である。 図1に示す差動位相シフト量子鍵配送システムにおけるなりすまし盗聴の説明図である。 本発明の一実施形態に係る量子暗号通信システムの構成図である。 図3に示す受信機におけるパルスの重なり方を示す図である。 本発明の一実施形態に係るなりすまし盗聴発見のメカニズムを説明する図である。
符号の説明
311 送信機
312 受信機
313 光源
314 位相変調器
315 減衰手段
316、322 制御CPU
317 光分岐手段
318 2×2合波カップラ
319a、319b 光子検出器
320 長経路
321 短経路
323 光伝送路
324 光パルス列

Claims (4)

  1. 送信機、および受信機を備える量子暗号通信システムであって、
    前記送信機は、
    一定の時間間隔のパルスからなる光パルス列を送出する光源と、
    前記光パルス列を0またはπで位相変調する位相変調器と、
    前記位相変調された光パルス列を、少なくとも4つ以上連続する時間位置に空パルスを含む、パルス当り平均1光子未満の光パルス列として送出する減衰手段と、
    前記少なくとも4つ以上連続する時間位置の情報を記憶する第1の記憶手段とを備え、
    前記受信機は、
    前記減衰手段より送出された前記光パルス列を受信し、第1の光パルス列と第2の光パルス列に分岐する分岐手段と、
    前記第1の光パルス列を、前記一定の時間間隔と等しい時間遅延させる遅延手段と、
    前記遅延させられた第1の光パルス列と前記第2の光パルス列とを合波する合波手段と、
    前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差が0である場合に光子を検出する第1の光子検出手段と、
    前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差がπである場合に光子を検出する第2の光子検出手段と、
    入力された前記情報を記憶する第2の記憶手段と、
    前記第2の記憶手段に記憶された情報に基づいて、前記第1の光パルス列と前記第2の光パルス列とが合波する際の、空パルス同士が干渉する時間スロットに対する、所定期間内の、前記第1の光子検出手段および第2の光子検出手段からの検出信号の数を取得する検出信号数取得手段と、
    前記検出信号の数に基づいて、盗聴があったか否かを判断する判断手段とを備えることを特徴とする量子暗号通信システム。
  2. 前記送信機は、
    前記第1の記憶手段に記憶された前記情報を、前記受信機に対して送信する送信手段をさらに備え、
    前記受信機は、前記送信された情報を受信する受信手段をさらに備え、
    前記受信機は、前記受信した情報を前記第2の記憶手段に記憶することを特徴とする請求項1記載の量子暗号通信システム。
  3. 入力された、一定の時間間隔のパルスからなり、0またはπで位相変調され、少なくとも4つ以上連続する時間位置に空パルスを含む、パルス当り平均1光子未満の光パルス列を、第1の光パルス列と第2の光パルス列に分岐する分岐工程と、
    前記第1の光パルス列を、前記一定の時間間隔と等しい時間遅延させる遅延工程と、
    前記遅延させられた第1の光パルス列と前記第2の光パルス列とを合波する合波工程と、
    前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差が0である場合に第1の光子検出手段にて光子を検出し、前記遅延させられた第1の光パルス列と前記第2の光パルス列との相対的位相差がπである場合に第2の光子検出手段にて光子を検出する検出工程と、
    記憶手段に記憶された、前記少なくとも4つ以上連続する時間位置の情報に基づいて、前記第1の光パルス列と前記第2の光パルス列とが合波する際の、空パルス同士が干渉する時間スロットに対する、所定期間内の、前記第1の光子検出手段および第2の光子検出手段からの検出信号の数を取得する検出信号数取得工程と、
    前記検出信号の数に基づいて、盗聴があったか否かを判断する判断工程と
    を有することを特徴とする盗聴検知方法。
  4. 前記情報を入力する入力工程と、
    前記入力された情報を前記記憶手段に記憶する記憶工程と
    をさらに有することを特徴とする請求項3記載の盗聴検知方法。
JP2007140576A 2007-05-28 2007-05-28 量子暗号通信システムおよび盗聴検知方法 Pending JP2008294934A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140576A JP2008294934A (ja) 2007-05-28 2007-05-28 量子暗号通信システムおよび盗聴検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140576A JP2008294934A (ja) 2007-05-28 2007-05-28 量子暗号通信システムおよび盗聴検知方法

Publications (1)

Publication Number Publication Date
JP2008294934A true JP2008294934A (ja) 2008-12-04

Family

ID=40169188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140576A Pending JP2008294934A (ja) 2007-05-28 2007-05-28 量子暗号通信システムおよび盗聴検知方法

Country Status (1)

Country Link
JP (1) JP2008294934A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228942A (ja) * 2010-04-20 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> 量子暗号通信システム
GB2525399A (en) * 2014-04-22 2015-10-28 Toshiba Res Europ Ltd An optical device
CN107370546A (zh) * 2016-05-11 2017-11-21 阿里巴巴集团控股有限公司 窃听检测方法、数据发送方法、装置及系统
US9876580B2 (en) 2014-04-22 2018-01-23 Kabushiki Kaisha Toshiba Optical device
WO2022163577A1 (ja) * 2021-01-29 2022-08-04 日本電気株式会社 光子検出装置、受信装置、量子鍵配送システム及び量子信号の検出方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228942A (ja) * 2010-04-20 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> 量子暗号通信システム
GB2525399A (en) * 2014-04-22 2015-10-28 Toshiba Res Europ Ltd An optical device
GB2525399B (en) * 2014-04-22 2016-05-18 Toshiba Res Europe Ltd An optical device
US9876580B2 (en) 2014-04-22 2018-01-23 Kabushiki Kaisha Toshiba Optical device
CN107370546A (zh) * 2016-05-11 2017-11-21 阿里巴巴集团控股有限公司 窃听检测方法、数据发送方法、装置及系统
CN107370546B (zh) * 2016-05-11 2020-06-26 阿里巴巴集团控股有限公司 窃听检测方法、数据发送方法、装置及系统
WO2022163577A1 (ja) * 2021-01-29 2022-08-04 日本電気株式会社 光子検出装置、受信装置、量子鍵配送システム及び量子信号の検出方法
JP7503251B2 (ja) 2021-01-29 2024-06-20 日本電気株式会社 光子検出装置、受信装置、量子鍵配送システム及び量子信号の検出方法

Similar Documents

Publication Publication Date Title
US20200389299A1 (en) Quantum security systems
JP3829602B2 (ja) 暗号鍵配布装置
US7934132B2 (en) Communication system and method for controlling the same
JP4800674B2 (ja) 通信方法および通信システム
JP4662040B2 (ja) 通信システムおよびその同期制御方法
US20160028542A1 (en) Method for processing double click event for securing safety in quantum key distribution system
JP4358206B2 (ja) 量子暗号通信装置及び量子暗号通信方法
US11251996B2 (en) Modulating signal level transitions to increase data throughput over communication channels
JP4777069B2 (ja) 量子暗号通信システム及び方法、偏波/位相変調変換器並びに位相/偏波変調変換器
JP2008294934A (ja) 量子暗号通信システムおよび盗聴検知方法
JP2008066981A (ja) 秘密鍵配送装置及び秘密鍵配送方法
JP2005268958A (ja) 量子暗号通信装置
JP4962700B2 (ja) 量子暗号通信装置
JP4621116B2 (ja) 量子秘密共有システム及び量子秘密鍵生成方法
KR20230007456A (ko) 양자 기술을 이용한 안전한 고전적인 광학 통신
JP4358829B2 (ja) Qkdシステムのウォッチドッグ検出器
JP4421975B2 (ja) 光検出装置および量子暗号通信システム
JP2008294946A (ja) 量子暗号通信システムおよび方法
JP4575813B2 (ja) 秘密鍵配送装置および秘密鍵配送方法
JP2008306474A (ja) 量子暗号通信装置及び量子暗号通信方法
JP4417360B2 (ja) 量子通信システム
JP4755231B2 (ja) 量子鍵配送システム
JP6257042B2 (ja) 量子鍵配送システムおよび量子鍵配送方法
JP4728288B2 (ja) 量子暗号受信装置及び量子暗号システム及び量子暗号送受信方法
JP2005286485A (ja) 量子暗号通信方法、および量子暗号通信装置