JP2008066981A - 秘密鍵配送装置及び秘密鍵配送方法 - Google Patents

秘密鍵配送装置及び秘密鍵配送方法 Download PDF

Info

Publication number
JP2008066981A
JP2008066981A JP2006241751A JP2006241751A JP2008066981A JP 2008066981 A JP2008066981 A JP 2008066981A JP 2006241751 A JP2006241751 A JP 2006241751A JP 2006241751 A JP2006241751 A JP 2006241751A JP 2008066981 A JP2008066981 A JP 2008066981A
Authority
JP
Japan
Prior art keywords
light
phase
signal
pulse
secret key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241751A
Other languages
English (en)
Inventor
Toshimori Honjo
利守 本庄
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Osaka University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Osaka University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006241751A priority Critical patent/JP2008066981A/ja
Publication of JP2008066981A publication Critical patent/JP2008066981A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】送信機と受信機との間に予め共有しなければならないモード選択鍵のような情報が不要な、量子雑音を利用した秘密鍵配送装置および方法を提供する。
【解決手段】送信機から受信機へ光の量子雑音を利用した強度変調または位相変調の変調信号光を送信することにより、データの暗号化/復号化をするための秘密鍵を生成する。送信機は、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の変調信号光を送出する。受信機は、受信した変調信号光を電気信号に変換し、その電気信号のうちの高レベル信号の中心出力値よりも高いレベルに予め設定された第1のしきい値と、電気信号のうちの低レベル信号の中心出力値よりも低いレベルに予め設定された第2のしきい値とを、電気信号と比較して、第1のしきい値よりもレベルの高い電気信号と、第2のしきい値よりもレベルの低い電気信号とを、しきい値を超えた信号として出力する。
【選択図】図1

Description

本発明は、暗号通信に用いる秘密鍵配送技術に関し、特に、量子雑音を利用した秘密鍵配送装置および秘密鍵配送方法に関する。
データを盗聴者に読み取られないように暗号化して送受信する暗号通信には、公開鍵暗号方式と秘密鍵暗号方式がある。秘密鍵暗号方式は、送受信者が共通の秘密鍵を保有し、この秘密鍵を用いてデータの暗号化・復号化を行う。この方式は、秘密鍵が外部に知られない限り、もっとも安全な暗号通信を提供する。しかし、この方式では、秘密鍵を送受信者に安全に供給する手段が課題となる。
離れた2者に秘密鍵を安全に供給する手段として、量子雑音を利用した秘密鍵配送方法が研究されている。図10にその基本構成を示す。秘密鍵配送システムは、秘密鍵データを変調して送信する送信機10と、変調された秘密鍵データを配送する伝送路30と、変調された秘密鍵データを受信して復調する受信機20とから構成される。この秘密鍵配送システムでは、送信機10及び受信機20は、共通のモード選択鍵を保有しているものとする。送信機10は、このモード選択鍵に従って秘密鍵データを変調し、伝送路30を介して受信機20に送信する。受信機20は、伝送路30を介して送信機からの変調された秘密鍵データを受信し、復調する。
変復調の方法としては、従来、光の強度を用いたもの(例えば、非特許文献1、非特許文献2)や光の偏波を用いたもの(例えば、非特許文献3)が知られている。しかしながら、偏波を用いるものは、伝送に伴う偏波変動のために、光ファイバ伝送には適さない。そのため、ここでは光強度を用いる方法について説明する。
図11は、強度変調を用いた従来の秘密鍵配送システムにおける変復調方法を説明するための図である。ここで、信号レベルに直交する軸(図11では水平軸)は、信号レベルが起こりうる確率を表す(後述の図12、図13も同様)。従来の変復調方法では、送信機10は、図11に示すように、多値の光強度変調信号を送信する。図11では、例として4値(信号レベルが4つ)の場合を図示している。この4値のうちレベルの離れた2値をひとつのモードとする。図11では、レベル1とレベル3をモード1、レベル2とレベル4をモード2としている。そして、モード1とモード2の2つのモードのいずれか1つをモード選択鍵により選択する。一方、受信機20は、送信機10と共有のモード選択鍵により、光強度に関するしきい値を設定する。すなわち、モードに応じて設定するしきい値を変える。図11の場合では、モード1ならば、レベル1とレベル3との中間点であるしきい値を使用し、モード2ならば、レベル2とレベル4との中間点であるしきい値を使用する。次に、偶数次モード(例えば、モード2)では、例えば上位のレベルにビット「0」を、下位のレベルにビット「1」を割り当てる。また、奇数次モード(例えば、モード1)では、上位のレベルにビット「1」を、下位のレベルにビット「0」を割り当てる。すなわち、図11の例では、レベル1にモード1のビット「0」を、レベル2にモード2のビット「1」を、レベル3にモード1のビット「1」を、レベル4にモード2のビット「0」を割り当てる。
送信機10では、あらかじめ保有しているモード選択鍵に従ってビットごとにどのモードで変調するかを選択する。そして、送信する秘密鍵ビットを、選択したモードのレベル(信号レベル)に割り当てる。これにより、ひとつのタイムスロットでは、多値のうちのひとつのレベルが選択されて、送信されることになる。
受信機20では、送信されてきた信号を直接検波し、送信機10と共有のモード選択鍵により設定したしきい値により、検波した信号のビットが「0」か「1」を判定する。その判定の様子を図12に示す。ここで、受信機20は、あらかじめ共有しているモード選択鍵に従ってビットごとに、どのモードで復調するかを選択する。すなわち、図12に示すように、モードに応じて、選択するしきい値を変える。例えば、図12(A)に示すように、モード1ならば、レベル1とレベル3との中間点であるしきい値を使用し、図12(B)に示すように、モード2ならば、レベル2とレベル4との中間点であるしきい値を使用する。このようにして、受信機20は、受信信号を復調し、得られた結果を秘密鍵データとする。
このようなシステムでは、多値変調のレベルを適切に設定することにより、盗聴行為に対して安全な秘密鍵配送システムを構成することができる。次に、その原理について説明する。一般に、光の強度レベルには、図11の波形で示すように、量子雑音による揺らぎが存在する。この揺らぎは、量子力学的に生じるものであり、通常のレーザ光を使用する限り不可避なものである。信号レベルに揺らぎが存在すると、しきい値による判定にエラーを生じる可能性がある。例えば、ビット「0」を送った場合でも、レベルの揺らぎによりしきい値を超えてビット「1」と判定されることがある。こうしたエラーの発生確率は、ビット「0」とビット「1」のレベル差と、揺らぎの幅によって決まる。同じ揺らぎ幅であれば、レベル差が小さい程エラーが発生しやすい。そこで、多値変調のレベルを、隣り合うレベルの間隔は、誤り率が大きくなるように狭く設定する一方、同一モード内でのレベルの間隔は、誤り率が無視できる程度に広く設定する。図11の例では、レベル1とレベル2、およびレベル3とレベル4の間隔は、それぞれ誤り率が大きく判別不可能となるように比較的狭く設定し、レベル1とレベル3、およびレベル2とレベル4の間隔は、それぞれ誤り率が小さく判別可能であるように比較的広く設定する。
正規の受信機20は、送信機10とモード選択鍵を予め共有しているので、どのモードで信号が送られているかを予め知っている。そのため、正規の受信機20は、各モードでのビットの判定に最適なしきい値を選択することができる。例えば、図12に示すように、正規の受信機20はモードに応じてしきい値を適切に選択することができる。これにより、正規の受信機20は、正しくビット情報を得ることができる。
一方、盗聴者(盗聴行為を行なう受信機、盗聴機ともいう;図示しない、以下同様)は、どのモードで信号が送られているかを知らない。そのため、盗聴者は、伝送信号を復調するためには、多値のすべてのレベルの信号を識別しなければならない。すなわち、図13に示すように、隣り合うレベルの全ての中間点にしきい値をそれぞれ設定して、各レベルを識別し、ビットを判定しなければならない。ところが、量子雑音のために、隣り合う信号レベルは、正しく識別することができない。したがって、盗聴者は正しいビットを復調することができず、モード鍵を共有する送信機10と正規の受信機20の間でのみ秘密鍵が正しく伝送されることになる。
原澤、他、「光通信量子暗号伝送方式の原理実験」、電子情報通信学会、2004年通信ソサイエティ大会、B-10-34 、p.263, (2004年). O. Hirota, et al., "Quantum key distribution with unconditional security for all optical fiber network", Quantum Physics, 1 Aug 2003.<http://jp.arxiv.org/ans/quant-ph/0308007> T. Nishioka, et al., "How much security does Y-00 protocol provide us ?"Physics Letters, A327, pp.28-32, 2004. Gilles Brassard and Louis Salvail, "Secret-key reconciliation by public discussion", In Tor Helleseth, editor, Advances in Cryptology---EUROCRYPT '93, volume 765 of Lecture Notes in Computer Science, pages 410-423, Springer-Verlag, 1994. Charles H, Bennett, Gilles Brassard, Claude Crepeau, Ueli M. Maurer, "Generalized privacy amplification," IEEE Transactions on Information Theory 41(6): pp.1915-1923, (1995).
しかしながら、上記の従来技術では、送受信機はあらかじめモード選択鍵を共有していることが必要であり、このモード選択鍵を安全に配送することが困難であるという解決すべき課題があった。
本発明は、このような課題を解決するためになされたもので、その目的とするところは、送信機と受信機との間に予め共有しなければならない情報(モード選択鍵のような情報)が不要な、量子雑音を利用した秘密鍵配送装置及び方法を提供することにある。
上記目的を達成するため、本発明の秘密鍵配送装置は、送信機から受信機へ光の量子雑音を利用した光強度変調または光位相変調による変調信号光を送信することにより、データの暗号化/復号化をするための秘密鍵を生成する秘密鍵配送装置であって、前記送信機においては、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の光強度変調または光位相変調による変調信号光を送出する変調信号光送出手段と、前記変調信号光のタイムスロット時刻と変調値を記録する送信機側情報処理手段と、を備え、前記受信機においては、受信した前記変調信号光を電気信号に変換する光検出手段と、前記電気信号のうちの高レベル信号の中心出力値よりも高いレベルに予め設定された第1のしきい値と、前記電気信号のうちの低レベル信号の中心出力値よりも低いレベルに予め設定された第2のしきい値とを備え、前記電気信号と前記第1、第2のしきい値を比較して、前記第1のしきい値よりもレベルの高い電気信号と、前記第2のしきい値よりもレベルの低い電気信号とを識別して、しきい値を超えた信号として出力する識別手段と、前記しきい値を超えた信号のタイムスロット時刻とそのレベル値に基づいて生成した秘密鍵のビット列とを記録し、かつ該タイムスロット時刻を前記送信機側情報処理手段に送信する受信機側情報処理手段とを備え、前記送信機側情報処理手段は前記受信機側情報処理手段から送信された前記タイムスロット時刻での変調値に基づいて秘密鍵のビット列を生成することを特徴とする。
ここで、前記変調信号光送出手段は2値の位相変調信号光を送出し、前記光検出手段は、前記2値の位相変調信号光と同一光周波数であって、かつ位相が2値の変調位相の中心値と等しい局発光を発生する局発光源と、受信した前記2値の位相変調信号光と前記局発光を合波する2×2光カップラと、前記2×2光カップラの2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段とを含むことを特徴とすることができる。
また、前記変調信号光送出手段は、2値の位相変調信号光として、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の位相変調パルス光と、該位相変調パルス光の2つの変調位相値の中心値である位相を有する無変調パルス光とを、時間位置をずらせて送出し、前記光検出手段は、受信した前記位相変調パルス光と前記無変調パルス光とを2分岐する光分岐手段と、前記光分岐手段で分岐された一方のパルス光にパルス間隔に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐手段で分岐された他方のパルス光と合波する光合波手段と、前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、を含むことを特徴とすることができる。
また、前記変調信号光送出手段は、光源から発生した横直線偏波光を2分岐し、分岐された一方の横直線偏波光に遅延を与え、かつ遅延を与えられた該横直線偏波光を縦直線偏波に変換した後、前記分岐された他方の横直線偏波光と合波することで、第1パルスが横偏波、第2パルスが縦偏波である2連続パルス光を生成し、該2連続パルス光の一方のパルスに対して2値の位相変調を加えた位相変調信号光を送出し、前記光検出手段は、受信した前記位相変調信号光の前記2連続パルス光を前記第1パルスと前記第2パルスに分離する偏波ビームスプリッタと、前記偏波ビームスプリッタで分離された前記第1パルスのパルス光に対してパルス間隔に等しい時間遅延とπ/2の位相遅延を与え、かつ偏波状態を縦直線から横直線に変換した後、前記偏波ビームスプリッタで分離された前記第2パルスのパルス光と合波する光合波手段と、前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、を含むことを特徴とすることができる。
また、前記変調信号光送出手段は、コヒーレントな連続光または一定間隔のパルス光列に対して2値の位相変調を加えて生成した2値の位相変調信号光を送出し、前記光検出手段は、受信した前記2値の位相変調信号光を2分岐する光分岐手段と、前記光分岐手段で分岐された一方のパルス光に位相変調の時間幅に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐手段で分岐された他方のパルス光と合波する光合波手段と、前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、を含むことを特徴とすることができる。
上記目的を達成するため、本発明の秘密鍵配送方法は、送信機から受信機へ光の量子雑音を利用した光強度変調または光位相変調による変調信号光を送信することにより、データの暗号化/復号化をするための秘密鍵を生成する秘密鍵配送方法であって、前記送信機においては、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の光強度変調または光位相変調による変調信号光を送出する変調信号光送出ステップと、前記変調信号光のタイムスロット時刻と変調値を記録する送信機側情報処理ステップと、を実行し、前記受信機においては、受信した前記変調信号光を電気信号に変換する光検出ステップと、前記電気信号のうちの高レベル信号の中心出力値よりも高いレベルに予め設定された第1のしきい値と、前記電気信号のうちの低レベル信号の中心出力値よりも低いレベルに予め設定された第2のしきい値とを有し、前記電気信号と前記第1、第2のしきい値を比較して、前記第1のしきい値よりもレベルの高い電気信号と、前記第2のしきい値よりもレベルの低い電気信号とを識別して、しきい値を超えた信号として出力する識別ステップと、前記しきい値を超えた信号のタイムスロット時刻とそのレベル値に基づいて生成した秘密鍵のビット列とを記録し、かつ該タイムスロット時刻を前記送信機に送信する受信機側情報処理ステップとを実行し、前記送信機側情報処理ステップにおいて、前記受信機側情報処理ステップから送信された前記タイムスロット時刻での変調値に基づいて秘密鍵のビット列を生成することを特徴とする。
上記構成により、本発明によれば、正規の受信機が予め固定されたしきい値を用いるため、モード選択鍵のような予め配送しなければならない情報は不要になり、より安全な秘密鍵配送を行うことができるという効果を奏する。
(第1の実施形態)
図1に、本発明の第1の実施形態による秘密鍵配送システムの構成を示す。送信機10は、強度変調器17で変調された2値{I0,I1}の強度変調光を、光ケーブルのような伝送路30を通じて受信機20に送信する。受信機20は、送られてきた信号光の強度を光検出器(DET)21により電気信号に変換する。光検出器21からの電気信号は識別器28に入力され、識別器28内で2種類のしきい値により並列にまたは順次に識別される。識別器28からの識別結果(後述のタイムスロット時刻とビット値)が制御部(CPU)29のメモリに記録される。一方、送信機10においては、強度変調データ{I0,I1}とそのタイムスロット時刻が制御部19(CPU)のメモリに記録される。
図2は、送信機10における強度変調方法及び受信機20における信号識別方法を説明するための図である。ここで、信号レベルに直交する軸(図2では水平軸)は、信号レベルが起こりうる確率を表す(後述の図5、図9も同様である)。背景技術の項で説明したように、送信機10のレーザ光源11からの出力光レベルは量子雑音のために揺らいでいる。そのため、強度変調器17強度変調された信号光は2つのレベル{I0,I1}を中心に揺らいでいる(以後、I1>I0とする)。ここで、図2に示すように、この2つの強度レベルを、揺らぎ成分が一部重なり合う程度に近接しているように設定する。この信号状態に対し、受信機20においては、識別器28の一方のしきい値(しきい値0)はI0よりも小さいレベルに設定され、識別器28の他方のしきい値(しきい値1)はI1よりも大きなレベルに設定されている。そして、識別器28は、受信信号のうち、しきい値1よりも大きなレベルの信号、及びしきい値0よりも小さいレベルの信号を、それぞれ「しきい値を超えた信号」として、そのタイムスロット時刻と後述のビット値を制御部29に送り記憶させる。
この構成を用いて、送信機10と受信機20は、以下の手順のより秘密鍵を生成する。まず、送信機10と受信機20は上記方法により信号光を送受信する。次に、受信機20の制御部29は、別の伝送路40を通じて、送信機10に上記「しきい値を超えた信号」のタイムスロット時刻を通知する。但し、受信機20の制御部29はどちらのしきい値を超えたかは送信機10に知らせない。伝送路40としては光ファイバに限らず、既存の公衆通信網のような汎用の有線、あるいは無線の伝送路が利用できる。
送信機10の制御部19は、伝送路40を通じて通知されたタイムスロット時刻について、I0で送っていた場合にはビット「0」を、I1で送っていた場合にはビット「1」を割り当て、得られたビット列を記憶する。一方、受信機20の識別器28は、しきい値1よりも大きい信号についてはビット「1」を、しきい値0よりも小さい信号についてはビット「0」を割り当て、得られたビット列を制御部29に送って記憶させる。受信機20において、しきい値1よりも大きい信号は、ほとんど送信レベルがI1の信号であり、またしきい値0よりも小さい信号は、ほとんど送信レベルがI0よりも小さい信号であるので、以上の手順により、送信機10と受信機20はほぼ同じビット列を得ることになる。このビット列を秘密鍵とする。
まれに、送信レベルI0の信号がしきい値1よりも大きく、あるいは送信レベルI1の信号がしきい値0よりも小さくなることがあり、ビット誤りとなるが、それらは誤り訂正という後処理により補償する。この誤り訂正には、例えば、送信機10と受信機20間で複数ビットのパリティを比較し合うことにより、パリティが不一致のブロックを探索し、その不一致のブロックから誤りビットを特定し、特定した誤りビットを訂正する等の公知の誤り訂正アルゴリズムが利用できる(例えば、非特許文献4を参照)。
このようなシステムでは、2つの強度変調レベルを適切に設定することにより、盗聴行為に対して安全な秘密鍵配送システムを構成することができる。次に、その原理について説明する。盗聴者が秘密鍵ビットを得るためには、送信レベルがI0であるかI1であるかを識別するか、または受信機20においてどの信号がどちらのしきい値を超えるかを識別する必要がある。
前者の送信レベルの識別を行うには、盗聴者は、伝送路30に接続して伝送信号の一部を受信し、しきい値をI0とI1との中間点に設定し、信号がしきい値以上ならばその信号の送信レベルはI1、信号がしきい値以下ならばその信号の送信レベルはI0と判定するのが最適な方法である。しかし、上記中間点では、I0とI1の揺らぎ分布が重なり合っているため(図2参照)、判定結果は大きな確率で誤りを伴うことになる。すなわち、量子雑音のため、盗聴者はI0とI1を正しく判別することはできない。
一方、信号が、受信機20が設定したしきい値0またはしきい値1を超えるか否かを識別するためには、盗聴者は、伝送路30に接続して伝送信号の一部を受信し、受信機20と同じしきい値を設定し、そのしきい値を超えるか否かを判定することになる。しかしながら、量子雑音の性質により、分岐した光の揺らぎ方には全く相関がないので、盗聴者側でしきい値を超えた信号が受信機20側でもしきい値を超えるとはかぎらず、盗聴者は受信者と同じ判定ができない。小さい確率で盗聴者と受信機20の両者ともにしきい値を超える場合があり、その信号については盗聴されたことになるが、一部の盗聴は、一部漏洩した情報を消去するための秘匿性増強(Privacy Amplification)という後処理により補償することができる。この秘匿性増強には、例えば、生鍵ビット列を2ビットずつペアにし、そのXOR(排他的論理和)を新たにビットとする等の公知の秘匿性増強アルゴリズムが利用できる(例えば、非特許文献5を参照)。したがって、この盗聴方法も成功しない。
このように、送信機10の送信レベルと受信機20のしきい値を適切に設定することにより、図1のシステムを安全な秘密鍵配送システムとすることができる。
なお、図1では、送信機10において、レーザ光源11と強度変調器17は別のものとして図示したが、例えば、直接電流変調された半導体レーザのように、両者が一体化されていてもよい。
また、説明のため、受信機20において、識別器28と制御部29は別のものとしたが、光検出器21からの信号を直接、制御部29内に取り込み、制御部29内でしきい値処理を行うようにしてもよい。本発明に適用可能な制御部19、29としては、例えば、中央演算処理装置、メモリ、モデムを含み、さらに必要に応じて、キーボード、ディスプレイ、外部記憶装置、アナログデジタル変換器等を含むものとし、専用機に限らず一般的なパーソナルコンピュータも利用可能とすることができる。
(第2の実施形態)
図3に、本発明の第2の実施形態による秘密鍵配送システムの構成を示す。送信機10は、位相変調器18で位相変調された2値{+δ,−δ}の位相変調光を、伝送路30を介して受信機20へ送信する。受信機20は、送られてきた信号光を2×2の光カップラ24を用いて局発光源22からの局発光と合波する。光カップラ24の2つの合波出力端子にはそれぞれ光検出器(DET0、DET1)25,26が接続されているので、光カップラ24で合波された光信号は光検出器25,26で電気信号に変換される。光検出器25,26からの2つの電気信号は、減算器27により差動検出(一方から他方を引き算して出力する検出方法)される。この差動検出出力は、識別器28に入力されて2種類のしきい値により並列にまたは順次に識別され、識別器28からの識別結果(後述のタイムスロット時刻とビット値)は制御部(CPU)29のメモリに記録される。一方、送信機10においては、位相変調データとそのタイムスロット時刻が制御部(CPU)19のメモリに記録される。
図4は、送信機10における位相変調方法を説明するための図である。この図4は、光電場の複素振幅Eを示す図で、横軸が振幅の実数部(Re)、縦軸が虚数部(Im)を表わす。この表示法では、原点からの長さが振幅の絶対値を、横軸との角度δが位相を表わすことになる。前述のように、レーザ光源11からの出力光レベルは量子雑音のために揺らいでいる。複素空間で表わすと、ある点を中心に同心円状に拡がった状態となっている。図3の構成において、送信機10は、位相変調器18を介して、図4に示すように、2つの複素振幅状態を表わす2つの円の一部が重なり合うような位相状態である位相変調信号光を送信する。
受信機20においては、受信信号光を局発光と合波する。信号光電場を
=Aexp[i(ωt +θ)]、局発光電場をE=Aexp[i(ωt+θ)と表わすと、
一方の光検出器(DET0)25への出力光は、
Figure 2008066981
他方の光検出器(DET1)26への出力光は、
Figure 2008066981
となる。ここで、A、Aは振幅、θ、θは位相、ωは角周波数を表わす。光周波数は信号光と局発光とで同一とした。光検出器25,26では、光の強度が検出される。すなわち、光電場が二乗検波される。これにより、一方の光検出器25からは
Figure 2008066981
という信号が、他方の光検出器26からは
Figure 2008066981
という信号が出力される。kは光信号から電気信号への変換効率を表わす係数である。この2信号の差動検出出力は、
Figure 2008066981
となる。
信号光の位相θは{δ,−δ}で変調されている。これに対し、局発光の位相はθ=πに制御されているものとする。すると、差動検出出力は、θ=δに対して
Figure 2008066981
θ=−δに対して
Figure 2008066981
となる。ここで、光の振幅及び位相は量子雑音のため揺らいでおり、そのため差動検波出力は上式(1)、(2)の値を中心に揺らぐことになる。図5に、その出力値分布(出力値の確率分布)を示す。送信信号光の2状態の一部が図4に示すように重なり合っていることを反映して、一部重なり合った信号分布となる。
差動検出出力は識別器28に入力されて、2種類のしきい値により並列にまたは順次に識別される。識別器28の一方のしきい値(しきい値0)は、図5に示すように、Iout(−δ)よりも小さいレベル(信号レベル)に設定されており、このしきい値よりも小さい信号を識別器28は選択して制御部29へ出力する。識別器28の他方のしきい値(しきい値1)は、Iout(δ)よりも大きいレベル(信号レベル)に設定されており、このしきい値よりも大きい信号を識別器28は選択して制御部29へ出力する。制御部29はこれらの信号のタイムスロット時刻と後述のビット値をメモリに記録しておく。
本発明の第2実施例形態における以上の受信特性は、本発明の第1実施例形態における送信レベルI0の信号を位相値−δの信号に、送信レベルI1の信号を位相値δの信号に、それぞれ対応されると、第1の実施形態の受信特性と等価となっている。したがって本実施形態によっても、第1の実施形態と同様にして、送信機10と受信機20は同じビット列を生成し、生成したビット列を秘密鍵とすることができる。生成した秘密鍵の秘匿性が保証されているのも第1の実施形態と同様である。
なお、以上の構成では、2つの光検出器25,26からの出力信号を減算器27を用いていったん差動検波した後に、2種類のしきい値により並列にまたは順次に識別するとした。これは、差動検波により光の過剰雑音(excess noise)が相殺される効果を得るためであるが、原理的には、各光検出器25,26からの出力信号を直接、識別器28に入力する構成としてもよい。
(第3の実施形態)
上述の本発明の第2の実施形態を動作させるには、局発光源22から発生する局発光の位相を、信号光位相を基準として一定に保つ必要があるが、これを実行するには高度な制御技術が必要である。そこで、本発明の第3の実施形態として、第2の実施形態における局発光制御の困難さを回避するように構成された例を示す。
図6に、本発明の第3の実施形態による秘密鍵配送システムの構成図を示す。送信機10は、レーザ光源11からのパルス光を光カップラ(C1)12により2分岐し、分岐した一方のパルス光に遅延路14を通すことで遅延を与えた後、光カップラ(C2)13により再び他方のパルス光と合波する。これにより、2連続パルス光が生成される。そして、位相変調器18は、この2連続パルスの一方のパルス(図6では、後ろのパルス)に対し、2値{+δ,−δ}の位相変調を加えて、得られた変調データを伝送路30を介して受信機20へ送信するとともに、制御部(CPU)19に送る。制御部19はその変調データのタイムスロット時刻と変調値をメモリに記録しておく。位相変調の値δは、第2の実施形態と同様に、量子雑音による信号状態の拡がりが一部重なり合う程度とする(図4参照)。
一方が位相変調された2連続パルス光は、伝送路30を介して受信機20に達する。受信機20は、送られてきた信号光を光カップラ(C3)23により2分岐し、分岐された一方の信号光に遅延路201によりパルス間隔に等しい時間遅延を、及びπ/2位相遅延器202によりπ/2の位相遅延を与えた後、2×2の光カップラ(C4)24を用いて再び分岐された他方の信号光と合波する。光カップラ24の2つの合波出力端子には、それぞれ光検出器25,26が接続されている。光検出器25,26からの2つの電気信号は減算器27により差動検出される。この差動検出出力は識別器28に入力されて、2種類のしきい値により並列にまたは順次に識別され、識別器28からの識別出力(タイムスロット時刻および変調値)は制御部29のメモリに記録される。
受信機20においては、2連続パルスを分岐・遅延回路23,201,202に通すことにより、3つのタイムスロットで光が検出されることになる。このうち、真ん中のタイムスロットでは、長経路を通った第1パルスと短経路を通った第2パルスとが干渉する。この干渉の結果、第1の光検出器(DET0)25からは
Figure 2008066981
という信号Iが出力され、第2の光検出器(DET1)26からは
Figure 2008066981
という信号Iが出力される。ここで、E0とθ0は第1パルスの複素振幅とその位相、Eとθは第2パルスの複素振幅とその位相、Aは振幅の絶対値で、2パルスで等しいものとしている。kは光信号から電気信号への変換効率を表わす係数である。
この2信号の差動検出出力Ioutは、
Figure 2008066981
となる。
第2パルス光の位相θは{δ,−δ}で変調されている。一方、第1パルス光は無変調であり、θ0=0である。したがって、差動検出出力は、θ=δに対して
Figure 2008066981
θ=−δに対して
Figure 2008066981
となる。上式(3)、(4)の出力特性は、第2の実施形態の式(1)、(2)の出力特性と同様である。したがって、真ん中のタイムスロットの検出信号に対し、第2の実施形態と同様の処理を行えば、秘密鍵を得ることができる。
本実施形態では、元が同じ光である2パルスを干渉させているので、両者の位相関係は特別な制御をすることなしに一定に保たれるという利点を有する。
(第4の実施形態)
上記の本発明の第3の実施形態では、受信信号光のうちの真ん中のタイムスロットの信号光のみを利用して、第1及び第3のタイムスロットの信号は無視している。これは、信号光パワーを一部無駄にしていることと等価であるといえる。そこで、本発明の第4の実施形態では、第3の実施形態と類似の形態でありながらも、信号光パワーを有効利用するように構成された例を示す。
図7に、本発明の第4の実施形態による秘密鍵配送システムの構成を示す。送信機10のレーザ光源11は、横直線偏波光を出力するものとする。送信機10は、光源11からのパルス光を光カップラ(C1)12により2分岐し、分岐された一方のパルス光に遅延路14により遅延を与え、かつ偏波回転子16により横直線偏波を縦直線偏波に変換した後、偏波ビームスプリッタ(PBS1)15により再び他方のパルス光と合波する。これにより、第1パルスが横偏波、第2パルスが縦偏波である2連続パルス光が生成される。そして、送信機10は、この2連続パルスの一方のパルス(図6では、後ろのパルス)に対し、位相変調器18により2値{+δ,−δ}の位相変調を加えて、伝送路30を介して受信機20へ送信するとともに、変調データ(タイムスロット時刻と2値の値)を制御回路19のメモリに記録しておく。位相変調の値δは、前述の第2の第3の実施形態と同様に、量子雑音により信号分布が一部重なり合う程度とする(図4参照)。
一方のパルス光のみが位相変調された2連続パルス光は、伝送路30を介して受信機20に達する。受信機20は、送られてきた信号光を偏波ビームスプリッタ(PBS2)204に入力する。ここで、偏波ビームスプリッタ204への入力状態は、第1パルスが縦偏波、第2パルスが横偏波であるように制御されているものとする。これにより、第1パルスと第2パルスは分離されて偏波ビームスプリッタ204から出力される。そして、分離された出力のうち、第1パルスに対して、遅延路01によりパルス間隔に等しい時間遅延を、及びπ/2位相遅延器205によりπ/2の位相遅延を与え、かつ偏波回転子205により偏波状態を縦直線から横直線へ変換した後、2×2の光カップラ24を用いて2パルスを再び合波する。光カップラ24の2つの合波出力端子にはそれぞれ光検出器25,26が接続されている。これら光検出器25,26からの2つの電気信号は減算器27により差動検出される。この差動検出出力は識別器28に入力されて、2種類のしきい値により並列にまたは順次に識別され、識別器28からの識別出力(タイムスロット時刻とビット値)は制御部29のメモリに記録される。
以上のように構成すると、受信機20において、伝送されてきた2連続パルスはひとつの時間位置でのみ重なり合って干渉することとなる。したがって、信号光パワーを無駄にすることなく、第3の実施形態と同様にして秘密鍵を得ることができる。
(第5の実施形態)
上記の第3及び第4の実施形態では、送信機10側に光の分岐・合波回路12,13(15)が用いられている。本発明の第5の実施形態は、第3の第4の実施形態と同様の動作原理を、より簡便な送信機10構成で実施するように構成している。
図8に、本発明の第5の実施形態による秘密鍵配送システムの構成を示す。送信機10のレーザ光源11は、コヒーレントな連続光を出力するものとする。送信機10は、この連続光に対し、位相変調器18により、{+δ,−δ}の位相変調を加える。そして、位相変調光を伝送路30へ出力するとともに、変調データ(タイムスロット時刻と変調値)を制御回路19のメモリに記録しておく。位相変調の位相値δは、前述の第2、第3、および第4の実施形態と同様に、量子雑音により信号分布が一部重なり合う程度とする(図4参照)。
位相変調された連続光は、伝送路30を介して受信機20に達する。受信機20は、送られてきた信号光を2×2光カップラ23により2分岐し、一方の分岐光に遅延路01により位相変調の時間幅に等しい時間遅延を、及びπ/2位相遅延器202によりπ/2の位相遅延を与えた後、2×2の光カップラ24を用いて再び他方の分岐光と合波する。2×2の光カップラ24の2つの合波出力端子にはそれぞれ光検出器25、26が接続されている。これら光検出器25,26からの2つの電気信号は減算器27により差動検出される。この差動検出出力は識別器28に入力されて、2種類のしきい値により並列にまたは順次に識別され、識別器28からの識別出力(タイムスロット時刻とビット値)は制御部29のメモリに記録される。
以上の構成により、受信機20においては、隣り合うタイムスロットの光が干渉する(図8参照)。この干渉の結果、第1の光検出器(DET0)25からは
Figure 2008066981
という信号Iが出力され、第2の光検出器(DET1)26からは
Figure 2008066981
という信号Iが出力される。ここで、Eiとθiはi番目のタイムスロットの信号光の複素振幅とその位相、Ei+1とθi+1は(i+1)番目のタイムスロットの複素振幅とその位相、Aは振幅の絶対値である。kは光信号から電気信号への変換効率を表わす係数である。
この2信号I,Iの差動検出出力Ioutは、
Figure 2008066981
となる。ここで、各スロットの信号光は{+δ,−δ}で位相変調されているので、(θi+1−θi)は、+2δまたは0または−2δとなる。これに従い、差動検出出力Ioutは、前後の位相差が+2δの時に、
Figure 2008066981
となり、前後の位相差が0の時に、
Figure 2008066981
となり、前後の位相差が−2δの時に、
Figure 2008066981
となる。これらの差動検出出力Iout(2δ)、Iout(0)、Iout(−2δ)は、出力信号の中心値であり、実際のその出力レベルは量子雑音のために、その中心値のまわりに分布する。図9に、その出力レベル分布を示す。図9において、水平軸の信号レベルに直交する垂直軸は、差動検出出力の起こりうる確率、または発生頻度を表す。
差動検出出力は識別器28に入力されて、2種類のしきい値により並列にまたは順次に識別される。識別器28の第1のしきい値(しきい値0)は、図9に示すように、Iout(−2δ)よりも小さいレベルに設定されており、識別器28はこの設定値よりも小さい信号を選択して制御部29へ出力する。識別器28の第2のしきい値(しきい値1)は、Iout(2δ)よりも大きいレベルに設定されており、識別器28はこの設定値よりも大きい信号を選択して制御部29へ出力する。制御部29はこれらの出力信号を、しきい値を超えた信号として、そのタイムスロット時刻と、どちらのしきい値を超えたかを示す情報をメモリに記録しておく。
以上の構成を用いて、送信機10と受信機20は、以下の手順のより秘密鍵を生成する。まず、送信機10と受信機20は上記方法のより信号光を送受信する。次に、受信機20は、しきい値を超えた信号の受信タイムスロット時刻を、伝送路40を介して送信機10へ通知する。但し、どちらのしきい値を超えたかは知らせない。送信機10は、制御部19において、通知された受信タイムスロット時刻に対応する2連続送信スロットの位相差が、2δの場合にはビット「1」を割り当て、−2δの場合にはビット「0」を割り当てる。位相差が0のスロットについては何もしない。次に、送信機10の制御部19は、ビットを生成したタイムスロット時刻を、伝送路40を介して受信機20に通知する。受信機20の制御部29は、送信機10から通知されたスロット時刻について、識別器28の出力信号がしきい値1よりも大きい場合にはビット「1」を、識別器28の出力信号がしきい値0よりも小さい場合にはビット「0」を割り当てる。
以上の手順により、これまでの第1〜第4の実施形態と同様にして、送信機10と受信機20は秘密鍵を生成することができる。量子雑音のため生成した秘密鍵の秘匿性が保証されているのもこれまでと同様である。
第5実施形態は、受信機20においてしきい値を超えた信号でも位相差が0である信号は廃棄している点が、第1〜第4の実施形態とは異なっている。その分だけ鍵生成効率が低いという欠点があるように一見みえるが、送信機10の構成が簡便であって、時間軸を有効利用している、など実用上の利点を有している。
なお、以上の説明では、送信機10においては、連続コヒーレント光を位相変調するものとしたが、一定間隔のパルス光列を位相変調してもよい。
(他の実施の形態)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲に記載の範囲内であれば、その構成部材等の置換、変更、追加、個数の増減、形状の設計変更等の各種変形は、全て本発明の実施形態に含まれる。
本発明の第1の実施形態における秘密鍵配送システムの構成を示すブロック図である。 本発明の第1の実施形態における変調方法および信号の判別方法を説明するための概念図である。 本発明の第2の実施形態における秘密鍵配送システムの構成を示すブロック図である。 本発明の第2の実施形態における変調方法を示す模式図である。 本発明の第2の実施形態における復調信号分布を示す図である。 本発明の第3の実施形態における秘密鍵配送システムの構成を示すブロック図である。 本発明の第4の実施形態における秘密鍵配送システムの構成を示すブロック図である。 本発明の第5の実施形態における秘密鍵配送システムの構成を示すブロック図である。 本発明の第5の実施形態における復調信号分布を示す図である。 従来技術の秘密鍵配送システムの基本構成を示すブロック図である。 強度変調を用いた従来の秘密鍵配送システムにおける変調方法を説明するための概念図である。 強度変調を用いた従来の秘密鍵配送システムにおける各モードでの信号の判別方法を説明するための概念図である。 強度変調を用いた従来の秘密鍵配送システムにおいて、モード情報をもたない盗聴者の判別方法を説明するための概念図である。
符号の説明
10 送信機
11 レーザ光源
12 光カップラ(C1)
13 光カップラ(C2)
14 遅延路
15 偏波ビームスプリッタ(PBS1)
16 偏波回転子
17 強度変調器
18 位相変調器
19 制御部、制御回路(CPU)
20 受信機
21 光検出器(DET)
22 局発光源
23 2×2光カップラ(C3)
201 遅延路
202 π/2位相遅延器
203 偏波制御部
204 偏波ビームスプリッタ(PBS2)
205 偏波回転子
24 光カップラ(C4)
25 光検出器(DET0)
26 光検出器(DET1)
27 減算器
28 識別器
29 CPU
30 伝送路
40 伝送路

Claims (10)

  1. 送信機から受信機へ光の量子雑音を利用した光強度変調または光位相変調による変調信号光を送信することにより、データの暗号化/復号化をするための秘密鍵を生成する秘密鍵配送装置であって、
    前記送信機においては、
    量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の光強度変調または光位相変調による変調信号光を送出する変調信号光送出手段と、
    前記変調信号光のタイムスロット時刻と変調値を記録する送信機側情報処理手段と、
    を備え、
    前記受信機においては、
    受信した前記変調信号光を電気信号に変換する光検出手段と、
    前記電気信号のうちの高レベル信号の中心出力値よりも高いレベルに予め設定された第1のしきい値と、前記電気信号のうちの低レベル信号の中心出力値よりも低いレベルに予め設定された第2のしきい値とを備え、前記電気信号と前記第1、第2のしきい値を比較して、前記第1のしきい値よりもレベルの高い電気信号と、前記第2のしきい値よりもレベルの低い電気信号とを識別して、しきい値を超えた信号として出力する識別手段と、
    前記しきい値を超えた信号のタイムスロット時刻とそのレベル値に基づいて生成した秘密鍵のビット列とを記録し、かつ該タイムスロット時刻を前記送信機側情報処理手段に送信する受信機側情報処理手段とを備え、
    前記送信機側情報処理手段は前記受信機側情報処理手段から送信された前記タイムスロット時刻での変調値に基づいて秘密鍵のビット列を生成することを特徴とする秘密鍵配送装置。
  2. 前記変調信号光送出手段は2値の位相変調信号光を送出し、
    前記光検出手段は、
    前記2値の位相変調信号光と同一光周波数であって、かつ位相が2値の変調位相の中心値と等しい局発光を発生する局発光源と、
    受信した前記2値の位相変調信号光と前記局発光を合波する2×2光カップラと、
    前記2×2光カップラの2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、
    前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と
    を含むことを特徴とする請求項1に記載の秘密鍵配送装置。
  3. 前記変調信号光送出手段は、2値の位相変調信号光として、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の位相変調パルス光と、該位相変調パルス光の2つの変調位相値の中心値である位相を有する無変調パルス光とを、時間位置をずらせて送出し、
    前記光検出手段は、
    受信した前記位相変調パルス光と前記無変調パルス光とを2分岐する光分岐手段と、
    前記光分岐手段で分岐された一方のパルス光にパルス間隔に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐手段で分岐された他方のパルス光と合波する光合波手段と、
    前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、
    前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、
    を含むことを特徴とする請求項1に記載の秘密鍵配送装置。
  4. 前記変調信号光送出手段は、光源から発生した横直線偏波光を2分岐し、分岐された一方の横直線偏波光に遅延を与え、かつ遅延を与えられた該横直線偏波光を縦直線偏波に変換した後、前記分岐された他方の横直線偏波光と合波することで、第1パルスが横偏波、第2パルスが縦偏波である2連続パルス光を生成し、該2連続パルス光の一方のパルスに対して2値の位相変調を加えた位相変調信号光を送出し、
    前記光検出手段は、
    受信した前記位相変調信号光の前記2連続パルス光を前記第1パルスと前記第2パルスに分離する偏波ビームスプリッタと、
    前記偏波ビームスプリッタで分離された前記第1パルスのパルス光に対してパルス間隔に等しい時間遅延とπ/2の位相遅延を与え、かつ偏波状態を縦直線から横直線に変換した後、前記偏波ビームスプリッタで分離された前記第2パルスのパルス光と合波する光合波手段と、
    前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、
    前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、
    を含むことを特徴とする請求項1に記載の秘密鍵配送装置。
  5. 前記変調信号光送出手段は、コヒーレントな連続光または一定間隔のパルス光列に対して2値の位相変調を加えて生成した2値の位相変調信号光を送出し、
    前記光検出手段は、
    受信した前記2値の位相変調信号光を2分岐する光分岐手段と、
    前記光分岐手段で分岐された一方のパルス光に位相変調の時間幅に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐手段で分岐された他方のパルス光と合波する光合波手段と、
    前記光合波手段の2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換手段と、
    前記2つの光電変換手段からの電気信号を差動検出し、差動検出出力を前記識別手段に送出する差動検出手段と、
    を含むことを特徴とする請求項1に記載の秘密鍵配送装置。
  6. 送信機から受信機へ光の量子雑音を利用した光強度変調または光位相変調による変調信号光を送信することにより、データの暗号化/復号化をするための秘密鍵を生成する秘密鍵配送方法であって、
    前記送信機においては、
    量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の光強度変調または光位相変調による変調信号光を送出する変調信号光送出ステップと、
    前記変調信号光のタイムスロット時刻と変調値を記録する送信機側情報処理ステップと、
    を実行し、
    前記受信機においては、
    受信した前記変調信号光を電気信号に変換する光検出ステップと、
    前記電気信号のうちの高レベル信号の中心出力値よりも高いレベルに予め設定された第1のしきい値と、前記電気信号のうちの低レベル信号の中心出力値よりも低いレベルに予め設定された第2のしきい値とを有し、前記電気信号と前記第1、第2のしきい値を比較して、前記第1のしきい値よりもレベルの高い電気信号と、前記第2のしきい値よりもレベルの低い電気信号とを識別して、しきい値を超えた信号として出力する識別ステップと、
    前記しきい値を超えた信号のタイムスロット時刻とそのレベル値に基づいて生成した秘密鍵のビット列とを記録し、かつ該タイムスロット時刻を前記送信機に送信する受信機側情報処理ステップとを実行し、
    前記送信機側情報処理ステップにおいて、前記受信機側情報処理ステップから送信された前記タイムスロット時刻での変調値に基づいて秘密鍵のビット列を生成することを特徴とする秘密鍵配送方法。
  7. 前記変調信号光送出ステップでは2値の位相変調信号光を送出し、
    前記光検出ステップは、
    前記2値の位相変調信号光と同一光周波数であって、かつ位相が2値の変調位相の中心値と等しい局発光を発生するステップと、
    受信した前記2値の位相変調信号光と前記局発光を合波するステップと、
    合波された2つの出力光の強度をそれぞれ電気信号に変換するステップと、
    変換された2つの電気信号を差動検出し、差動検出出力を前記識別ステップに供給する差動検出ステップと、
    を含むことを特徴とする請求項6に記載の秘密鍵配送方法。
  8. 前記変調信号光送出ステップでは、2値の位相変調信号光として、量子揺らぎにより信号分布の一部が重なり合うレベルに設定された2値の位相変調パルス光と、該位相変調パルス光の2つの変調位相値の中心値である位相を有する無変調パルス光とを、時間位置をずらせて送出し、
    前記光検出ステップは、
    受信した前記位相変調パルス光と前記無変調パルス光とを2分岐する光分岐ステップと、
    前記光分岐ステップで分岐された一方のパルス光にパルス間隔に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐ステップで分岐された他方のパルス光と合波する光合波ステップと、
    前記光合波ステップの2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換ステップと、
    前記2つの光電変換ステップで変換された電気信号を差動検出し、差動検出出力を前記識別ステップに供給する差動検出ステップと、
    を含むことを特徴とする請求項6に記載の秘密鍵配送方法。
  9. 前記変調信号光送出ステップでは、光源から発生した横直線偏波光を2分岐し、分岐された一方の横直線偏波光に遅延を与え、かつ遅延を与えられた該横直線偏波光を縦直線偏波に変換した後、前記分岐された他方の横直線偏波光と合波することで、第1パルスが横偏波、第2パルスが縦偏波である2連続パルス光を生成し、該2連続パルス光の一方のパルスに対して2値の位相変調を加えた信号を2値の位相変調信号光として送出し、
    前記光検出ステップは、
    受信した前記位相変調信号光の前記2連続パルス光を前記第1パルスと前記第2パルスに分離するステップと、
    分離された前記第1パルスのパルス光に対してパルス間隔に等しい時間遅延とπ/2の位相遅延を与え、かつ偏波状態を縦直線から横直線に変換した後、前記分離された前記第2パルスのパルス光と合波する光合波ステップと、
    前記光合波ステップの2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換ステップと、
    前記2つの光電変換ステップで変換された電気信号を差動検出し、差動検出出力を前記識別ステップに供給する差動検出ステップと、
    を含むことを特徴とする請求項6に記載の秘密鍵配送方法。
  10. 前記変調信号光送出ステップでは、コヒーレントな連続光または一定間隔のパルス光列に対して2値の位相変調を加えて生成した2値の位相変調信号光を送出し、
    前記光検出ステップは、
    受信した前記2値の位相変調信号光を2分岐する光分岐ステップと、
    前記光分岐ステップで分岐された一方のパルス光に位相変調の時間幅に等しい時間遅延とπ/2の位相遅延を与えた後、前記光分岐ステップで分岐された他方のパルス光と合波する光合波ステップと、
    前記光合波ステップの2つの出力光の強度をそれぞれ電気信号に変換する2つの光電変換ステップと、
    前記2つの光電変換ステップで変換された電気信号を差動検出し、差動検出出力を前記識別ステップに供給する差動検出ステップと、
    を含むことを特徴とする請求項6に記載の秘密鍵配送方法。
JP2006241751A 2006-09-06 2006-09-06 秘密鍵配送装置及び秘密鍵配送方法 Pending JP2008066981A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241751A JP2008066981A (ja) 2006-09-06 2006-09-06 秘密鍵配送装置及び秘密鍵配送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241751A JP2008066981A (ja) 2006-09-06 2006-09-06 秘密鍵配送装置及び秘密鍵配送方法

Publications (1)

Publication Number Publication Date
JP2008066981A true JP2008066981A (ja) 2008-03-21

Family

ID=39289303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241751A Pending JP2008066981A (ja) 2006-09-06 2006-09-06 秘密鍵配送装置及び秘密鍵配送方法

Country Status (1)

Country Link
JP (1) JP2008066981A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296217A (ja) * 2008-06-04 2009-12-17 Hitachi Ltd 暗号通信装置
JP2010035072A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd 光通信システム
WO2010091566A1 (zh) * 2009-02-12 2010-08-19 Liu Haiyun 加密/解密方法
JP2010283694A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 量子暗号通信装置および量子暗号通信方法
JP2013236332A (ja) * 2012-05-10 2013-11-21 Nippon Telegr & Teleph Corp <Ntt> 位相変調光生成装置
CN105763326A (zh) * 2016-05-09 2016-07-13 浙江工商大学 基于五量子比特最大纠缠态的量子隐私比较方法
CN116170141A (zh) * 2023-04-18 2023-05-26 合肥硅臻芯片技术有限公司 一种量子纠缠w态的产生装置及产生方法
JP7388700B2 (ja) 2019-12-25 2023-11-29 国立研究開発法人情報通信研究機構 秘密鍵共有方法及びシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352530A (ja) * 1986-08-22 1988-03-05 Fujitsu Ltd コヒ−レント光通信用の受信器
JP2002064480A (ja) * 2000-08-23 2002-02-28 Nec Corp 暗号鍵配布方法及び装置
JP2002118545A (ja) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd 暗号鍵配布方法及びその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352530A (ja) * 1986-08-22 1988-03-05 Fujitsu Ltd コヒ−レント光通信用の受信器
JP2002064480A (ja) * 2000-08-23 2002-02-28 Nec Corp 暗号鍵配布方法及び装置
JP2002118545A (ja) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd 暗号鍵配布方法及びその装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296217A (ja) * 2008-06-04 2009-12-17 Hitachi Ltd 暗号通信装置
JP2010035072A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd 光通信システム
WO2010091566A1 (zh) * 2009-02-12 2010-08-19 Liu Haiyun 加密/解密方法
JP2010283694A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 量子暗号通信装置および量子暗号通信方法
JP2013236332A (ja) * 2012-05-10 2013-11-21 Nippon Telegr & Teleph Corp <Ntt> 位相変調光生成装置
CN105763326A (zh) * 2016-05-09 2016-07-13 浙江工商大学 基于五量子比特最大纠缠态的量子隐私比较方法
CN105763326B (zh) * 2016-05-09 2018-11-23 浙江工商大学 基于五量子比特最大纠缠态的量子隐私比较方法
JP7388700B2 (ja) 2019-12-25 2023-11-29 国立研究開発法人情報通信研究機構 秘密鍵共有方法及びシステム
CN116170141A (zh) * 2023-04-18 2023-05-26 合肥硅臻芯片技术有限公司 一种量子纠缠w态的产生装置及产生方法
CN116170141B (zh) * 2023-04-18 2023-07-04 合肥硅臻芯片技术有限公司 一种量子纠缠w态的产生装置及产生方法

Similar Documents

Publication Publication Date Title
US7616765B2 (en) Method and system for generating shared information
US7787628B2 (en) Double phase encoding quantum key distribution
US7760883B2 (en) Any-point-to-any-point (AP2AP) quantum key distribution protocol for optical ring network
CN108604425B (zh) 随机数序列生成装置、量子密码发送机以及量子密码通信系统
US8391491B2 (en) Communication system and synchronization control method
JP2008066981A (ja) 秘密鍵配送装置及び秘密鍵配送方法
JPWO2006018952A1 (ja) 多モード光伝送装置
US20120328100A1 (en) Optical transmission device and reception device for yuen encryption, optical transmission method and reception method for yuen encryption, and encrypted communication system
JP6471903B2 (ja) 光秘匿通信システム
JP4777069B2 (ja) 量子暗号通信システム及び方法、偏波/位相変調変換器並びに位相/偏波変調変換器
WO2021171248A1 (en) A method for quantum key distribution, a method for transmitting an optical signal, a method for receiving an optical signal, and a receiver of an optical signal for quantum key distribution
JP2006333138A (ja) データ送信装置、データ受信装置、並びにデータ通信装置
JP4746588B2 (ja) 量子暗号通信装置及び量子暗号通信方法
JP4575813B2 (ja) 秘密鍵配送装置および秘密鍵配送方法
JP4608412B2 (ja) 量子秘密鍵配送システムおよび量子秘密鍵配送方法
US7912215B2 (en) Data transmission apparatus, data receiving apparatus and method executed thereof
JP5472850B2 (ja) パルスポジション変調雑音秘匿通信方式
JP4421975B2 (ja) 光検出装置および量子暗号通信システム
US20070189521A1 (en) Data transmission apparatus, data receiving apparatus and data communication method
JP2007336409A (ja) セキュア通信システム
JP4718222B2 (ja) データ送信装置、データ受信装置、並びにデータ通信装置
JP5062642B2 (ja) 暗号光送信装置及び受信装置、暗号光送信方法及び受信方法、並びに暗号通信システム
JP4523365B2 (ja) 量子暗号通信装置
WO2023195253A1 (ja) 信号処理システム
JP2006074250A (ja) 量子暗号通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110805