JP2008286473A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008286473A
JP2008286473A JP2007131835A JP2007131835A JP2008286473A JP 2008286473 A JP2008286473 A JP 2008286473A JP 2007131835 A JP2007131835 A JP 2007131835A JP 2007131835 A JP2007131835 A JP 2007131835A JP 2008286473 A JP2008286473 A JP 2008286473A
Authority
JP
Japan
Prior art keywords
radiator
water
refrigerant
refrigeration cycle
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007131835A
Other languages
Japanese (ja)
Other versions
JP4863218B2 (en
Inventor
Yasutaka Ochiai
康敬 落合
Takashi Okazaki
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007131835A priority Critical patent/JP4863218B2/en
Publication of JP2008286473A publication Critical patent/JP2008286473A/en
Application granted granted Critical
Publication of JP4863218B2 publication Critical patent/JP4863218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device improved in a progress rate by spraying water to a radiator. <P>SOLUTION: A refrigerant flow channel is constituted so that the refrigerant flow in a heat exchanger and the flow of drippage on the radiator caused by water spraying are opposed to each other, cascade utilization of heat can be achieved, performance can be improved, the amount of water discarded without evaporated can be minimized, and water spraying efficiency can be improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放熱器に散水して性能向上を図る冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus that sprinkles water on a radiator to improve performance.

従来から、冷凍サイクルにおいて凝縮器の冷却効果を向上させる空気調和装置用凝縮器の冷却装置が提案されている。   Conventionally, a cooling device for a condenser for an air conditioner that improves the cooling effect of the condenser in a refrigeration cycle has been proposed.

従来例として、冷媒を循環させる圧縮機、冷媒流れを切換える流路切換え手段、放熱器、負荷側熱交換器、を順次配管で接続し、冷媒として少なくとも二酸化炭素を含めた冷媒を循環させて負荷側熱交換器にて冷却運転と加熱運転が切換え可能な冷媒回路と、放熱器および 負荷側熱交換器の少なくともいずれかに設けられ放熱器の一部もしくは負荷側熱交換器の一部の表面に散水する散水装置とを備え、 圧縮機が吐出する高圧冷媒が供給される放熱器もしくは 負荷側熱交換器の一部に散水が行われることを特徴とする冷凍サイクル装置というものが挙げられる(例えば、特許文献1参照)。   As a conventional example, a compressor that circulates refrigerant, a flow path switching means that switches refrigerant flow, a radiator, and a load-side heat exchanger are sequentially connected by a pipe, and a refrigerant including at least carbon dioxide is circulated as a refrigerant to load. A refrigerant circuit that can be switched between a cooling operation and a heating operation in the side heat exchanger, and a part of the radiator or a part of the load side heat exchanger provided in at least one of the radiator and the load side heat exchanger And a refrigeration cycle apparatus characterized in that water is sprayed to a part of a radiator or a load side heat exchanger to which a high-pressure refrigerant discharged from a compressor is supplied. For example, see Patent Document 1).

他の従来例として、圧縮機、空気と冷媒とを熱交換させる放熱器、膨張機構、及び利用側熱交換器が接続されるとともに圧縮機の吐出冷媒を超臨界状態として冷凍サイクルを行う冷媒回路を備えた冷凍装置であって、放熱器の表面に水を散布するための散水手段を備えていることを特徴とするものが挙げられる。(例えば、特許文献2参照)   As another conventional example, a refrigerant circuit that performs a refrigeration cycle by connecting a compressor, a heat radiator that exchanges heat between the air and the refrigerant, an expansion mechanism, and a use-side heat exchanger and setting the refrigerant discharged from the compressor to a supercritical state And a refrigeration apparatus comprising a watering means for spraying water on the surface of the radiator. (For example, see Patent Document 2)

特開2006−308166号公報(第5頁、図1)Japanese Patent Laying-Open No. 2006-308166 (5th page, FIG. 1) 特開2006−162152号公報(第3頁、図1)JP 2006-162152 A (page 3, FIG. 1)

このような従来例においては、放熱器に水を散布した際、蒸発しきれなかった水が重力により滴下する流れと、放熱器内部を流れる冷媒の流れ、との関係が考慮されておらず、冷媒流路の分岐パターンや散水ノズルの位置等も考慮されていなかったので、散水による性能向上が十分に得られないという課題があった。特に、冷媒としてCO2を用いる場合には、放熱器での温度勾配が大きく、放熱器内部の冷媒流れ、冷媒流路の分岐パターン、散水ノズル位置がC〇Pや能力向上に及ぼす影響が大きいため、従来の方法では散水による性能向上効果が十分に得られないという課題があった。   In such a conventional example, when water was sprayed on the radiator, the relationship between the flow of water that could not be evaporated by gravity and the flow of refrigerant flowing inside the radiator was not considered, Since the branch pattern of the coolant channel, the position of the watering nozzle, and the like were not taken into consideration, there was a problem that the performance improvement by watering could not be obtained sufficiently. In particular, when CO2 is used as the refrigerant, the temperature gradient in the radiator is large, and the refrigerant flow inside the radiator, the branch pattern of the refrigerant flow path, and the water spray nozzle position have a large effect on COP and capacity improvement. However, the conventional method has a problem that the performance improvement effect by watering cannot be obtained sufficiently.

本発明の目的は、放熱器内部の冷媒流れと散布した水の流れとを考慮し、熱のカスケード利用を行うことにより散水効果を向上させた冷凍サイクル装置を提供することである。   An object of the present invention is to provide a refrigeration cycle apparatus that improves the sprinkling effect by performing cascade use of heat in consideration of the refrigerant flow inside the radiator and the flow of dispersed water.

この発明によれば、圧縮機、放熱器、膨張弁、蒸発器およびこれらを順次接続する接続配管で接続した冷媒回路と、前記放熱器に散水する散水装置とを備え、冷媒を循環させる冷凍サイクル装置において、前記放熱器は冷媒を前記放熱器の下部から流入させて上部から流出させ、前記散水装置から前記放熱器上に散布された水が前記放熱器上を上部から下部に向かって流れ、前記放熱器内の冷媒流れと対向流となることを特徴とする冷凍サイクル装置が得られる。   According to the present invention, a refrigeration cycle comprising a compressor, a radiator, an expansion valve, an evaporator, and a refrigerant circuit connected by a connecting pipe that sequentially connects these, and a watering device that sprinkles the radiator, and circulates the refrigerant. In the apparatus, the radiator flows in the refrigerant from the lower part of the radiator and flows out from the upper part, and the water sprayed on the radiator from the watering device flows on the radiator from the upper part to the lower part, A refrigeration cycle apparatus characterized by being in a counterflow with the refrigerant flow in the radiator is obtained.

この発明の冷凍サイクル装置によれば、熱源源側熱交換器は、放熱器下部から温度が高い冷媒が流入し、熱交換しながら上部へ向かい、放熱器上部から温度が下がった冷媒が流出するよう冷媒流路が構成されていることにより、放熱器に水を散布した際、蒸発しきれなかった水が重力により滴下する流れと、放熱器内部を流れる冷媒の流れが対向流となるため、熱のカスケード利用を行うことができ、散水効果を増加させることができる。また、水の蒸発率を向上させることで、蒸発せずに捨てる水を少なくするものである。   According to the refrigeration cycle apparatus of the present invention, in the heat source side heat exchanger, a refrigerant having a high temperature flows from the lower part of the radiator, moves upward while exchanging heat, and a refrigerant having a lowered temperature flows from the upper part of the radiator. Since the refrigerant flow path is configured, when water is sprayed on the radiator, the flow of water that could not be evaporated and the flow of the refrigerant flowing inside the radiator are opposed to each other, Cascade utilization of heat can be performed and the watering effect can be increased. In addition, by increasing the evaporation rate of water, the amount of water discarded without evaporating is reduced.

実施の形態1.
以下本発明の実施の形態1における冷凍サイクル装置について説明する。図1は本発明の実施の形態1に係る冷凍サイクル装置を示す図である。本実施形態の冷凍サイクル装置は、室外機101と室内機102、および室外機101と室内機102を接続する接続配管104を備えた冷媒回路105と、散水装置103とにより構成され、冷媒回路105には冷媒として例えばCO2が封入され高圧側が超臨界状態で運転されている。
Embodiment 1 FIG.
The refrigeration cycle apparatus in Embodiment 1 of the present invention will be described below. FIG. 1 is a diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus of the present embodiment includes an outdoor unit 101 and an indoor unit 102, a refrigerant circuit 105 including a connection pipe 104 that connects the outdoor unit 101 and the indoor unit 102, and a water spray device 103. For example, CO2 is enclosed as a refrigerant and the high pressure side is operated in a supercritical state.

室外機101は、冷媒を循環させる圧縮機1と、放熱器2と、膨張弁3と、これら圧縮機1、放熱器2および膨張弁3を順次接続する接続配管104と、放熱器2内部の冷媒と熱交換させる室外空気を送風する室外ファン5とにより構成され、室外ファン5は放熱器2の近傍に設けられている。   The outdoor unit 101 includes a compressor 1 that circulates refrigerant, a radiator 2, an expansion valve 3, a connection pipe 104 that sequentially connects the compressor 1, the radiator 2, and the expansion valve 3, and an inside of the radiator 2. The outdoor fan 5 that blows outdoor air that exchanges heat with the refrigerant is provided, and the outdoor fan 5 is provided in the vicinity of the radiator 2.

室内機102は、蒸発器4と、蒸発器4の内部の冷媒と熱交換させる室内空気を送付する室内ファン6とにより構成され、室内ファン6は蒸発器4の近傍に設けられている。   The indoor unit 102 includes an evaporator 4 and an indoor fan 6 that sends indoor air that exchanges heat with the refrigerant inside the evaporator 4, and the indoor fan 6 is provided in the vicinity of the evaporator 4.

放熱器2および蒸発器4はいずれもフィン・アンド・チューブ熱交換器で構成され、フィン24が鉛直方向に設置され、このフィン24に垂直となるよう水平に伝熱管25が配置されている。   Both the radiator 2 and the evaporator 4 are constituted by fin-and-tube heat exchangers, the fins 24 are installed in the vertical direction, and the heat transfer tubes 25 are arranged horizontally so as to be perpendicular to the fins 24.

図2は、実施の形態1に係る放熱器2に散水した際の放熱器2とその周囲の状態を描いた概略図であり図2(A)は側面図、図2(B)は正面図である。放熱器2は、図1、2に示されているように、分岐部21と合流部22とを備えている。分岐部21においては、伝熱管25が入口から2つに分岐してそれぞれ冷媒が並列に流れる2つの分岐流路25aおよび25bとなっている。合流部22においては、2つの分岐流路25aおよび25bが合流して1つの流路25cを冷媒が流れるようになっている。合流部22は分岐部21よりも上部に配置され、伝熱管25内の冷媒流路は合流部22内部では冷媒が下から上に流れるよう構成されている。   FIG. 2 is a schematic diagram illustrating the radiator 2 and its surroundings when water is sprayed on the radiator 2 according to the first embodiment, FIG. 2 (A) is a side view, and FIG. 2 (B) is a front view. It is. As shown in FIGS. 1 and 2, the radiator 2 includes a branch portion 21 and a junction portion 22. In the branching section 21, the heat transfer tube 25 is branched into two from the inlet, and two branch flow paths 25a and 25b through which the refrigerant flows in parallel, respectively. In the merging portion 22, the two branch flow paths 25a and 25b are merged, and the refrigerant flows through the single flow path 25c. The junction portion 22 is disposed above the branch portion 21, and the refrigerant flow path in the heat transfer tube 25 is configured such that the refrigerant flows from the bottom to the top inside the junction portion 22.

また、フィン24は、放熱器2の複数の分岐流路25aおよび25bを有する分岐部21と合流部22とに連続して延びたものではあるが、フィン24の分岐部21と合流部22との間の部分には、熱移動を遮断する例えば熱遮断スリット23が設けられている。この熱遮断スリット23は、高温部と低温部との間で分岐部同士間での熱移動を防止するために用いることもできる。   Further, the fin 24 extends continuously from the branch portion 21 having the plurality of branch passages 25a and 25b of the radiator 2 and the junction portion 22, but the branch portion 21 and the junction portion 22 of the fin 24 For example, a heat blocking slit 23 for blocking heat transfer is provided in a portion between the two. The heat blocking slit 23 can also be used to prevent heat transfer between the branch portions between the high temperature portion and the low temperature portion.

散水装置103は、図3に示すように、大流量散水ノズル31Aと、小流量散水ノズル31Bと、散水量調整弁32と、それらを接続する給水配管36、温度センサ34、湿度センサ35、散水量制御装置33とを備えている。外気温度と湿度を温度センサ34と湿度センサ35により検知し、検知値に応じて散水量を散水量制御装置33で調整する。給水配管36は一端が例えば水道管37に接続され、他端は散水量調整弁32を介して散水ノズル31A及び31Bに接続されている。   As shown in FIG. 3, the watering device 103 includes a large-flow watering nozzle 31 </ b> A, a small-flow watering nozzle 31 </ b> B, a watering amount adjustment valve 32, a water supply pipe 36 connecting them, a temperature sensor 34, a humidity sensor 35, a watering device. A water amount control device 33 is provided. The outside air temperature and humidity are detected by the temperature sensor 34 and the humidity sensor 35, and the water spray amount is adjusted by the water spray amount control device 33 according to the detected value. One end of the water supply pipe 36 is connected to, for example, a water pipe 37, and the other end is connected to the watering nozzles 31 </ b> A and 31 </ b> B via the watering amount adjustment valve 32.

放熱器2に散布する水の量は、散水量調整弁32により調整される。散水量制御装置33は、温度センサ34、湿度センサ35での検知値をもとに散水量調整弁32を制御し、室外温度が低いときや室外湿度が高い場合には散水効果が低いため散水量を減らし、もしくは水の散布を停止し、無駄な散水を行わないようにする。   The amount of water sprayed on the radiator 2 is adjusted by the water spray amount adjustment valve 32. The sprinkling amount control device 33 controls the sprinkling amount adjustment valve 32 based on the values detected by the temperature sensor 34 and the humidity sensor 35, and the sprinkling effect is low when the outdoor temperature is low or the outdoor humidity is high. Reduce the amount of water or stop spraying water to avoid unnecessary watering.

散水装置103は、放熱器2の分岐部21よりも上部に配置されている合流部22だけに水を散布する。このため、冷媒温度が低下し熱交換しにくくなっている合流部に集中して水を散布するため、合流部の放熱が行われ易くなる。この放熱器上部の合流部に集中散水することで、合流部で蒸発しきれずに滴下する滴下水を用いて放熱器下部を冷却し、熱のカスケード利用ができる。加えて、滴下水は放熱器下部の乾いたフィンで蒸発するため、未蒸発水をなくすことができる。   The water sprinkler 103 spreads water only to the junction part 22 arranged above the branch part 21 of the radiator 2. For this reason, since water is concentrated and sprayed on the confluence | merging part from which refrigerant | coolant temperature falls and it is difficult to heat-exchange, heat dissipation of a confluence | merging part becomes easy. Concentrated water spraying at the junction at the upper part of the radiator allows the lower part of the radiator to be cooled using dripping water that does not evaporate at the junction and can be used in a cascade of heat. In addition, since the dripping water evaporates with the dry fins at the bottom of the radiator, the unevaporated water can be eliminated.

本実施の形態では、散水ノズル31を水平に配置(図4に示すように、散水ノズル31の中心軸31cが放熱器2の主面に対して垂直)して合流部22に集中的に散水するため、図1〜図3に示すように、大流量散水ノズル31Aおよび小流量散水ノズル31Bの配置を千鳥配置としている。千鳥配置とは、複数の散水ノズルを重力方向に多列に配置する場合、上部散水ノズルと下部散水ノズルとの垂直方向位置がずれていて食い違いになって、ジグザグとなり、上部散水ノズル間に下部散水ノズルが配置される散水ノズル配置の形態である。加えて本実施の形態では、上部散水ノズルの散布水量が下部散水ノズルの散布水量に比べて多くなるよう、上部に大流量散水ノズル31Aが配置され、下部に小流量散水ノズル31Bが配置されている。   In the present embodiment, the watering nozzle 31 is disposed horizontally (as shown in FIG. 4, the central axis 31 c of the watering nozzle 31 is perpendicular to the main surface of the radiator 2), and water is concentrated on the merging portion 22. Therefore, as shown in FIGS. 1 to 3, the arrangement of the large flow watering nozzle 31 </ b> A and the small flow watering nozzle 31 </ b> B is staggered. Staggered arrangement means that when multiple water spray nozzles are arranged in multiple rows in the direction of gravity, the vertical positions of the upper water spray nozzle and the lower water spray nozzle are misaligned, resulting in a zigzag and a lower part between the upper water spray nozzles. It is a form of the watering nozzle arrangement | positioning by which a watering nozzle is arrange | positioned. In addition, in the present embodiment, the large-flow sprinkling nozzle 31B is arranged at the upper part and the small-flow sprinkling nozzle 31B is arranged at the lower part so that the sprinkling quantity of the upper sprinkling nozzle is larger than the sprinkling quantity of the lower sprinkling nozzle. Yes.

図4は散水した際の放熱器2の濡れ状態の図を示す。散水ノズル31から散布された水は、フィン24に到達する前に空気中で蒸発する水と、フィン接触後に蒸発する水と、蒸発しきれずにフィン表面を滴下する水に別れ、フィン24上には噴霧液滴が直接付着する付着面902と、蒸発しきれずにフィン表面を滴下する水により形成される濡れ面901と、濡れ面901が滴下水量が少ない両端部から蒸発して乾いた乾面903とが形成される。結果的に、図4に示すように下底が短い台形の濡れ面901が形成される。このことから、放熱器2下部では、乾面903が存在することになる。   FIG. 4 shows a diagram of the wet state of the radiator 2 when water is sprayed. The water sprayed from the watering nozzle 31 is divided into water that evaporates in the air before reaching the fins 24, water that evaporates after the fin contacts, and water that does not evaporate and drops on the surface of the fins. Are the adhering surface 902 on which the spray droplets directly adhere, the wet surface 901 formed by the water that does not evaporate and dripping the fin surface, and the wet surface 901 evaporates from both ends where the amount of dripped water is small and dries dry 903 are formed. As a result, a trapezoidal wetting surface 901 with a short bottom is formed as shown in FIG. From this, the dry surface 903 exists in the lower part of the heat radiator 2.

本実施の形態では、熱交換器下部の乾面903を濡れ面901にするよう、小流量散水ノズル31Bを大流量散水ノズル31Aの下部に配置する千鳥配置とし、下部散水ノズル31Bを上部散水ノズル31Aの間隔を埋めるように配置し薄く広く水を散布しているので、少ない散水量で均一に熱交換器のフィン24に濡れ面901を形成する事ができる。   In the present embodiment, a small flow rate water spray nozzle 31B is arranged in a lower portion of the large flow rate water spray nozzle 31A so that the dry surface 903 at the lower part of the heat exchanger becomes the wet surface 901, and the lower water spray nozzle 31B is the upper water spray nozzle. Since the water is spread thinly and widely so as to fill the gap of 31A, the wetting surface 901 can be uniformly formed on the fins 24 of the heat exchanger with a small amount of water spray.

冷凍サイクルの運転動作を図1および図5に基づいて説明する。図5は二酸化炭素を冷媒とした冷凍サイクルにおいて、冷房能力を一定として放熱器2に散水した場合と、散水しない場合の実験結果をP−h線図に示したものである。   The operation of the refrigeration cycle will be described with reference to FIGS. FIG. 5 is a Ph diagram showing experimental results when water is sprayed on the radiator 2 with constant cooling capacity and when water is not sprayed in a refrigeration cycle using carbon dioxide as a refrigerant.

放熱器2に水を散布しないときのサイクルは破線アで示される。圧縮機1から吐出された高温・高圧のガス冷媒R1は、放熱器2で放熱し、高温高圧の液冷媒R2となる。液冷媒R2は膨張弁3で減圧し、低圧の気液二相冷媒R3となり、蒸発器4で熱交換して低圧ガス冷媒R4となり、圧縮機1に吸引される一般的な冷凍サイクルとなっている。   A cycle when water is not sprayed on the radiator 2 is indicated by a broken line a. The high-temperature and high-pressure gas refrigerant R1 discharged from the compressor 1 dissipates heat in the radiator 2, and becomes a high-temperature and high-pressure liquid refrigerant R2. The liquid refrigerant R2 is depressurized by the expansion valve 3 to become a low-pressure gas-liquid two-phase refrigerant R3, and heat is exchanged by the evaporator 4 to become a low-pressure gas refrigerant R4, which becomes a general refrigeration cycle sucked by the compressor 1. Yes.

散水した場合のサイクルは実線イで示される。散水により放熱器2の伝熱性能が向上するため、散水なしの点線アの場合に比べて高圧が低下し、散水なしの場合に比べて放熱器2出入口のエンタルピ差がΔHからΔH'へと増加する。   The cycle when water is sprayed is indicated by a solid line a. Since the heat transfer performance of the radiator 2 is improved by watering, the high pressure is reduced compared to the case of the dotted line without watering, and the enthalpy difference at the inlet / outlet of the heatsink 2 is changed from ΔH to ΔH 'compared to the case without watering. To increase.

高圧が低下することから圧縮機の入力が減少するとともに、放熱器2出入口のエンタルピ差が増加することから、COPが向上する。   Since the high pressure is reduced, the input of the compressor is reduced, and the enthalpy difference at the entrance and exit of the radiator 2 is increased, so that the COP is improved.

高圧側が超臨界状態となる装置では、暖房運転時には室内の吹込み空気温度が低いため熱交換器出口温度が低下して比較的高いCOPを得ることができるものの、冷房運転時には室外の吹込み空気温度が暖房運転時に比べて高いため放熱器2出口温度が高くなり、高いCOPを得ることができない。つまり、冷房運転時には、放熱器2の出口冷媒温度が外気温よりも高くならざるを得ず、利用側熱交換器となる蒸発器の出入口でのエンタルピ差が小さくなる。   In an apparatus in which the high pressure side is in a supercritical state, the temperature of the indoor blown air is low during heating operation, so that the heat exchanger outlet temperature can be lowered to obtain a relatively high COP. However, during the cooling operation, outdoor blown air is used. Since the temperature is higher than that during heating operation, the temperature at the outlet of the radiator 2 becomes high, and a high COP cannot be obtained. That is, during the cooling operation, the outlet refrigerant temperature of the radiator 2 must be higher than the outside air temperature, and the enthalpy difference at the inlet / outlet of the evaporator serving as the use side heat exchanger is reduced.

本実施の形態では、放熱器2の表面に入口空気よりも温度が低い水を散水する手段を備え、放熱器となっている放熱器2に水を散布することによる放熱量を増加させることができる。その結果、蒸発器となる蒸発器4の冷媒入口エンタルピを増加させ、冷却能力やCOPを向上させることができる。   In this embodiment, the surface of the radiator 2 is provided with means for sprinkling water having a temperature lower than that of the inlet air, and the amount of heat released by spraying water on the radiator 2 serving as a radiator can be increased. it can. As a result, the refrigerant inlet enthalpy of the evaporator 4 serving as an evaporator can be increased, and the cooling capacity and COP can be improved.

加えて超臨界状態となるCO2の大きな特徴として、フロン系冷媒と比較して、図5に示すように放熱器出口部分の等温度線の間隔が広い(比熱が大きい)ことが挙げられる。この特徴によりCO2は、同一温度低下に対するエンタルピ変化がフロン系冷媒に比べて大きい。よって本実施の形態では、この放熱器2出口部分となる合流部22に集中的に散水を行い、蒸発しきれない滴下水も有効利用し、熱のカスケード利用が行われる散水の効果を最大限発揮できるので、蒸発しきれずに無駄に捨ててしまっている水を少なくすことができる。   In addition, a major feature of CO2 that is in a supercritical state is that, as shown in FIG. 5, the interval between the isothermal lines at the radiator outlet is wider (specific heat is larger) than that of the fluorocarbon refrigerant. Due to this characteristic, CO2 has a larger enthalpy change with respect to the same temperature drop than that of a fluorocarbon refrigerant. Therefore, in this embodiment, water is intensively sprayed at the junction 22 which is the outlet portion of the radiator 2, dripped water that cannot be evaporated is effectively used, and the effect of water spraying that uses heat cascade is maximized. Since it can be used, it is possible to reduce the amount of water that has not been evaporated and wasted.

本発明の特徴である熱のカスケード利用について図6、7を参照しながら説明を行う。図6は、横軸に温度、縦軸に放熱器の高さをとり本実施の形態における水と冷媒の温度の推移を示したものである。水の温度推移は矢印aで示され、放熱器の高さが低くなるに従い温度が上昇する。本実施の形態では、冷媒の温度推移は矢印bで示され、放熱器2の分岐が2つあり矢印bは2本存在する。冷媒温度は放熱器の高さが高くなるに従い低下する。空気の入口温度はCで示され一定値である。   The use of heat cascade, which is a feature of the present invention, will be described with reference to FIGS. FIG. 6 shows changes in water and refrigerant temperatures in the present embodiment, with the horizontal axis representing temperature and the vertical axis representing the radiator height. The temperature transition of water is indicated by an arrow a, and the temperature rises as the height of the radiator decreases. In the present embodiment, the temperature transition of the refrigerant is indicated by an arrow b, the radiator 2 has two branches, and there are two arrows b. The refrigerant temperature decreases as the height of the radiator increases. The inlet temperature of the air is indicated by C and is a constant value.

本実施の形態では、冷媒温度と空気の温度差が得にくい放熱器2出口部分である合流部22に、空気よりも温度の低い水を集中的に散水しているため、空気と熱交換させている場合よりも合流部22出口の冷媒温度を下げることができる。加えて、放熱器2下部から温度の高い冷媒が流入し、放熱器2上部に配置された合流部22から温度の低下した冷媒が流出するようにしているので、合流部22に散水した際、滴下水の流れと冷媒が対向流となり、熱交換効率を高めることができる。   In the present embodiment, water having a temperature lower than that of air is intensively sprinkled at the junction 22 which is the outlet portion of the radiator 2 where it is difficult to obtain a temperature difference between the refrigerant temperature and the air. The refrigerant temperature at the outlet of the merging portion 22 can be lowered as compared with the case where it is. In addition, since a refrigerant having a high temperature flows in from the lower part of the radiator 2 and a refrigerant having a lowered temperature flows out from the joining part 22 arranged in the upper part of the radiator 2, when water is sprinkled into the joining part 22, The flow of dripped water and the refrigerant become counterflows, and the heat exchange efficiency can be increased.

以上のことから本実施の形態では、複数の分岐流路を持つ熱交換器において、冷媒温度の低下した部分に温度の低い水を散水し、冷媒温度の高い部分を空気で冷却することで効率よく冷却し、熱のカスケード利用を図ることができる。   From the above, in the present embodiment, in the heat exchanger having a plurality of branch flow paths, water is sprayed at a low temperature in the portion where the refrigerant temperature is lowered, and the portion where the refrigerant temperature is high is cooled with air. Cool well and can use heat cascade.

図7に、散水をしない場合の冷媒の温度推移Aと、放熱器2入口部に散水した場合の冷媒の温度推移Bと、本実施の形態である対向流で散水を行った場合の冷媒の温度推移Cを示す。   FIG. 7 shows the temperature transition A of the refrigerant when water is not sprayed, the temperature transition B of the refrigerant when water is sprayed to the radiator 2 inlet, and the refrigerant temperature when water is sprayed in the counterflow according to this embodiment. A temperature transition C is shown.

散水をしない場合、Aで示されるように冷媒の温度は空気温度以下には下がらない。Bでは温度の高い放熱器2入口部を散水により冷やしているため入口付近で温度は急激に下がるものの、出口部付近では放熱器2内部を流れる冷媒温度は空気の入口温度以下に下げることはできない。   When watering is not performed, as shown by A, the temperature of the refrigerant does not drop below the air temperature. In B, since the inlet part of the radiator 2 having a high temperature is cooled by watering, the temperature rapidly decreases in the vicinity of the inlet, but the refrigerant temperature flowing in the radiator 2 in the vicinity of the outlet cannot be lowered below the inlet temperature of the air. .

本発明のように、放熱器2の出口側に散水したCの場合、温度の高い放熱器2入口の冷媒はそれに応じた温度の高い空気と熱交換させ、冷媒温度が空気温度に近づいた放熱器2出口の冷媒は入口空気よりもさらに温度の低い水と熱交換することができるため、熱交換量を多くすることができ、空気入口温度以下まで冷媒を冷やすことができる。その結果、効率良い熱のカスケード利用が実施される。   In the case of C sprinkled on the outlet side of the radiator 2 as in the present invention, the refrigerant at the inlet of the radiator 2 having a high temperature is heat-exchanged with air corresponding to the temperature, and the refrigerant temperature is close to the air temperature. Since the refrigerant at the outlet of the vessel 2 can exchange heat with water having a temperature lower than that of the inlet air, the amount of heat exchange can be increased and the refrigerant can be cooled to the air inlet temperature or lower. As a result, efficient cascade use of heat is implemented.

本実施の例では、蒸発しきれなかった水が重力により滴下する流れと、放熱器2内部を流れる冷媒の流れが対向流となるように放熱器2を構成している。そのため、図6に示すように水温(a)は放熱器2上部で低く、下部に滴下するほど高くなり、最終的には蒸発させることができる。放熱器内部を流れる冷媒温度(b)は、放熱器2の下部で高く、上部に流れるほど低くなる。よって、通常では冷媒温度と空気温度との温度差が小さくなり熱交換しにくい冷媒温度の低い部分に低温の水を散水することで効率良く冷媒を冷却することができる。   In the present embodiment, the radiator 2 is configured such that the flow of water that cannot be evaporated dripping by gravity and the flow of the refrigerant flowing inside the radiator 2 are opposed to each other. Therefore, as shown in FIG. 6, the water temperature (a) is low at the upper part of the radiator 2 and becomes higher as it drops to the lower part, and can finally be evaporated. The temperature (b) of the refrigerant flowing inside the radiator is higher at the lower part of the radiator 2 and becomes lower as it flows into the upper part. Therefore, normally, the temperature difference between the refrigerant temperature and the air temperature becomes small, and the refrigerant can be efficiently cooled by sprinkling the low-temperature water in the portion where the refrigerant temperature is low and heat exchange is difficult.

また一般的に、二酸化炭素はフロン系の冷媒と比較して臨界温度が低いため容易に超臨界サイクルとなり、また毒性や引火性もないため安全に取り扱うことができる。また、フロン系の冷媒と比較してオゾン破壊係数や地球温暖化係数も低いため、地球環境に優しい冷凍装置を提供することができる。   In general, carbon dioxide has a critical temperature lower than that of chlorofluorocarbon-based refrigerants, so it easily becomes a supercritical cycle, and can be safely handled because it has neither toxicity nor flammability. In addition, since the ozone depletion coefficient and the global warming coefficient are lower than those of chlorofluorocarbon-based refrigerants, it is possible to provide a refrigeration apparatus that is friendly to the global environment.

図8は放熱器2の伝熱管25を2列に配列した場合の放熱器構成を示す。本実施の形態では1列熱交換器の例を示したが、図8(a)、(b)に示すように2列以上の伝熱管25を持つ放熱器2としても良い。この場合、2列目以降の伝熱管25の冷媒の流れも水の流れと対向流となるよう図8(a)のように冷媒流路を配置すればよい。あるいは、図8(b)に示すように最終出口部の冷媒流れが水の流れと対向流となるようにすれば良い。   FIG. 8 shows a radiator configuration when the heat transfer tubes 25 of the radiator 2 are arranged in two rows. In the present embodiment, an example of a single-row heat exchanger has been shown. However, as shown in FIGS. 8A and 8B, a heat radiator 2 having two or more rows of heat transfer tubes 25 may be used. In this case, the refrigerant flow path may be arranged as shown in FIG. 8A so that the refrigerant flow in the second and subsequent rows of the heat transfer tubes 25 is also opposite to the water flow. Or what is necessary is just to make it the refrigerant | coolant flow of a last exit part turn into a counterflow with the flow of water as shown in FIG.8 (b).

また、2列以上で列間の熱移動がある場合には、図8(b)に示すように、各列での熱の移動を防止するため、フィン24の高温部と低温部の間に熱移動を遮断するもの、例えば縦方向に熱遮断スリット23を設けてもよい。   Also, when there is heat transfer between rows in two or more rows, as shown in FIG. 8B, in order to prevent heat transfer in each row, between the high temperature portion and the low temperature portion of the fin 24. A heat blocking slit 23 may be provided in the vertical direction, for example, for blocking heat transfer.

以上のように本実施の形態では、熱源源側熱交換器は、放熱器下部から温度が高い冷媒が流入し、熱交換しながら上部へ向かい、放熱器上部から温度が下がった冷媒が流出するよう冷媒流路が構成されていることにより、放熱器2に水を散布した際、蒸発しきれなかった水が重力により滴下する流れと、放熱器内部を流れる冷媒の流れが対向流となるため、熱のカスケード利用を行うことができ、散水効果を増加させることができる。   As described above, in the present embodiment, in the heat source side heat exchanger, the refrigerant having a high temperature flows from the lower part of the radiator, moves toward the upper part while exchanging heat, and the refrigerant having the lowered temperature flows from the upper part of the radiator. Since the refrigerant flow path is configured as described above, when water is sprayed on the radiator 2, the flow of water that could not be evaporated by gravity and the flow of the refrigerant flowing inside the radiator become an opposite flow. , Cascade use of heat can be done and watering effect can be increased.

また本実施の形態では、放熱器2入口の冷媒流路が複数に分岐し、冷媒は分岐された放熱器2で放熱したあと合流し、合流した冷媒が再度放熱器2に入り放熱する構成、つまり放熱器2が複数の分岐流路を有した分岐部21と合流部22から成り、分岐部21で放熱したあと合流部22で放熱する構成であるため、合流部22を通る冷媒流量が分岐部の冷媒流量よりも増加する。そのため、合流部22を通る冷媒速度が増加し、熱伝達率が増加し、合流部での熱交換量が増加する。本発明では、上記のような構成を持つ放熱器2に散水し、放熱器2内部の冷媒を空気温度よりも低い水と熱交換量させるので、熱交換量を増加させることができる。以上のことから、本発明では従来よりも散水の効果を高くすることができ、冷凍サイクル効率を向上させることができるという効果がある。   Further, in the present embodiment, the refrigerant flow path at the inlet of the radiator 2 is branched into a plurality, the refrigerant merges after radiating heat at the branched radiator 2, and the merged refrigerant enters the radiator 2 again to dissipate heat, That is, since the radiator 2 is composed of the branch portion 21 and the junction portion 22 having a plurality of branch flow paths, and the heat is radiated at the junction portion 22 after radiating heat at the branch portion 21, the flow rate of the refrigerant passing through the junction portion 22 is branched. It increases than the refrigerant flow rate of the part. Therefore, the speed of the refrigerant passing through the junction 22 increases, the heat transfer coefficient increases, and the amount of heat exchange at the junction increases. In the present invention, water is sprinkled on the radiator 2 having the above-described configuration, and the amount of heat exchange can be increased because the refrigerant in the radiator 2 exchanges heat with water lower than the air temperature. From the above, in the present invention, the effect of watering can be made higher than before, and the refrigeration cycle efficiency can be improved.

また本実施の形態では、熱交換して温度の低下した冷媒が内部を通る放熱器合流部を分岐部よりも上部に配置していること、合流部の冷媒流路が下から上に冷媒が流れる構成となっていることから、放熱器に散水を行った際、蒸発せずに重力で滴下する水の流れと冷媒の流れが対向流となり、熱のカスケード利用ができるという効果がある。   Further, in the present embodiment, the radiator joining portion through which the refrigerant whose temperature has decreased due to heat exchange passes is arranged above the branching portion, and the refrigerant flow path of the joining portion is from below to above. Since it is configured to flow, when water is sprayed on the radiator, the flow of water that is dropped by gravity without evaporating and the flow of refrigerant become counterflows, and there is an effect that heat can be used in cascade.

また本実施の形態では、冷媒温度が低下し熱交換しにくくなっている合流部に集中して水を散布するため、合流部の放熱が行われ易くなる。合流部は分岐部よりも上部に配置される構造をとっており、この放熱器上部の合流部に集中散水することで、合流部で蒸発しきれずに滴下する滴下水を用いて放熱器下部を冷却し、熱のカスケード利用ができる。加えて、滴下水は放熱器下部の乾いたフィンで蒸発するため、未蒸発水をなくすことができる。   Moreover, in this Embodiment, since water is concentrated and sprayed on the confluence | merging part where refrigerant | coolant temperature falls and it is difficult to heat-exchange, it becomes easy to perform the thermal radiation of a confluence | merging part. The merging part has a structure that is arranged above the branch part, and by concentrating water on the merging part at the upper part of this radiator, the lower part of the radiator is used by dripping water that does not evaporate at the merging part. Cool and use heat cascade. In addition, since the dripping water evaporates with the dry fins at the bottom of the radiator, the unevaporated water can be eliminated.

また本実施の形態では、フィン24に放熱器2の高温部と低温部の間の熱移動を遮断するスリットを設けたので、高温部から低温部(熱交換器出口部)への熱移動がなくなるという効果がある。   In the present embodiment, since the fin 24 is provided with a slit that blocks the heat transfer between the high temperature part and the low temperature part of the radiator 2, the heat transfer from the high temperature part to the low temperature part (heat exchanger outlet part) is prevented. It has the effect of disappearing.

また、本実施の形態では散水ノズルが千鳥配置されているので、熱交換器下部で増大していた乾面を的確に濡れ面にし、かつ散布した水を最大限に利用することができるという効果がある。   In addition, since the watering nozzles are arranged in a staggered manner in the present embodiment, the dry surface that has increased at the bottom of the heat exchanger can be accurately made a wet surface, and the sprayed water can be used to the maximum extent. There is.

また、本実施の形態では放熱器2上部フィンにかかる水量が放熱器2下部フィンにかかる水量に比べて多いので、放熱器2上部で滴下する水を下部で有効に利用できる上、未蒸発水を最小限にし、過剰な散水を抑制することができるという効果がある。   Further, in this embodiment, since the amount of water applied to the upper fin of the radiator 2 is larger than the amount of water applied to the lower fin of the radiator 2, the water dripped at the upper portion of the radiator 2 can be used effectively at the lower portion, and the non-evaporated water The effect of minimizing the amount of water and suppressing excessive watering.

また、本実施の形態では外気温度と外気湿度を検知し、検知値に応じて散水量を調整したので、散水手段による過剰な散水を抑制することもできるという効果がある。   Further, in the present embodiment, since the outside air temperature and the outside air humidity are detected and the water spray amount is adjusted according to the detected value, there is an effect that excessive water spraying by the water spraying means can be suppressed.

また、本実施の形態では冷媒回路の冷媒として、フロン系冷媒よりも放熱器出口部分の等温度線の間隔が広い二酸化炭素が用いられているため、同一温度変化でのエンタルピ変化を大きくすることができ、大きな散水効果を得ることができるという効果がある。   Further, in the present embodiment, carbon dioxide, which has a wider interval of isothermal lines at the outlet of the radiator than the chlorofluorocarbon refrigerant, is used as the refrigerant in the refrigerant circuit, so that the enthalpy change at the same temperature change is increased. It is possible to obtain a great watering effect.

実施の形態2.
以下、実施の形態2の冷凍サイクル装置について説明する。冷凍サイクル装置の構成は、実施の形態1と同様であるため、詳細な説明は省略し、異なる部分のみ下記に示す。
Embodiment 2. FIG.
Hereinafter, the refrigeration cycle apparatus of Embodiment 2 will be described. Since the configuration of the refrigeration cycle apparatus is the same as that of the first embodiment, detailed description is omitted, and only different parts are shown below.

実施の形態1では放熱器を複数流路に分岐しているが、本実施の形態では、図9に示すように、放熱器2の伝熱管25は、複数流路に分岐することなく、温度の高い冷媒が放熱器2下部から流入して、上部へ流れ、温度の低下した冷媒が放熱器2上部から流出するよう構成されている。従って放熱器2は分岐部と合流部とを持っていない。また、実施の形態1では冷媒として二酸化炭素を用いていたが、本実施の形態ではフロン系冷媒を用いている。   In the first embodiment, the radiator is branched into a plurality of flow paths. However, in this embodiment, as shown in FIG. 9, the heat transfer tube 25 of the radiator 2 has a temperature without branching into the plurality of flow paths. The refrigerant having a high temperature flows in from the lower part of the radiator 2 and flows to the upper part, and the refrigerant having a lowered temperature flows out from the upper part of the radiator 2. Therefore, the heat radiator 2 does not have a branch part and a junction part. In the first embodiment, carbon dioxide is used as the refrigerant, but in the present embodiment, a fluorocarbon refrigerant is used.

実施の形態1では散水装置103の散水ノズル31を水平に配置し、合流部22に集中的に散水するため、散水ノズルを千鳥配置としているのに対し、本実施の形態では散水ノズル31は室外機101の上方に設置され、放熱器2の下部に比べて上部ほど多く水がかかるよう傾斜配置(散水ノズル31の中心軸31cが垂直面内で放熱器2の主面に対して傾斜した配置)されている。この例においても図4と同様の散水の付着面902、濡れ面901および乾面903が形成される。   In the first embodiment, the watering nozzles 31 of the watering device 103 are arranged horizontally and the watering nozzles are arranged in a staggered manner in order to scatter water intensively at the merging portion 22, whereas in the present embodiment, the watering nozzles 31 are arranged outdoors. It is installed above the machine 101 and is inclined so that more water is applied to the upper part than the lower part of the radiator 2 (an arrangement in which the central axis 31c of the watering nozzle 31 is inclined with respect to the main surface of the radiator 2 in the vertical plane). ) Also in this example, a water sprinkling surface 902, a wet surface 901, and a dry surface 903 similar to those in FIG. 4 are formed.

散水ノズルが傾斜配置されているため散水ノズルから噴出される液滴が楕円状に広がって水滴同士が重なる領域が減少し、水滴の付着により濡れ状態となる付着面902が大きくなり、濡れ面901との合計の面積が大きくなり、乾面903が小さくなる。従って散水効果が高くなり、かつ未蒸発の滴下水が減少して効率の高い散水が可能となる。   Since the water spray nozzles are inclined, the droplets ejected from the water spray nozzles spread in an elliptical shape and the area where the water droplets overlap each other is reduced, and the attachment surface 902 that becomes wet due to the attachment of the water droplets increases, and the wet surface 901 And the total area becomes larger and the dry surface 903 becomes smaller. Accordingly, the watering effect is enhanced, and the non-evaporated dripping water is reduced to enable efficient watering.

冷凍サイクルの運転動作を図1および図10に基づいて説明する。図10は、能力一定の条件で冷房運転を行った際、放熱器2に散水した場合と散水しなかった場合のサイクルをP−h線図にプロットしたものである。   The operation of the refrigeration cycle will be described with reference to FIGS. FIG. 10 is a Ph diagram plotting the cycle when water is sprayed on the radiator 2 and when water is not sprayed when the cooling operation is performed under a constant capacity condition.

放熱器2に散水しないときのサイクルを点線アで示す。圧縮機1から吐出された高温・高圧のガス冷媒R1は、放熱器2で放熱し、高温高圧の液冷媒R2となる。液冷媒R2は膨張弁3で減圧し、低圧の気液二相冷媒R3となり、蒸発器4で熱交換して低圧ガス冷媒R4となり、圧縮機1に吸引される冷凍サイクルとなる。   A cycle when water is not sprayed on the radiator 2 is indicated by a dotted line a. The high-temperature and high-pressure gas refrigerant R1 discharged from the compressor 1 dissipates heat in the radiator 2, and becomes a high-temperature and high-pressure liquid refrigerant R2. The liquid refrigerant R2 is depressurized by the expansion valve 3 to become a low-pressure gas-liquid two-phase refrigerant R3, and heat is exchanged by the evaporator 4 to become a low-pressure gas refrigerant R4, which becomes a refrigeration cycle sucked into the compressor 1.

散水した場合のサイクルは実線イで表される。散水により放熱器2の伝熱性能が向上し、内部の冷媒温度が下がるため、散水なしの場合に比べて高圧が低下し、過冷却度が増加する(R2')。過冷却度が増加することから、放熱器2出入口のエンタルピ差がΔHからΔH'へと増加する。   The cycle when water is sprayed is represented by a solid line a. Sprinkling improves the heat transfer performance of the radiator 2 and lowers the internal refrigerant temperature, so that the high pressure is reduced and the degree of supercooling is increased as compared to the case without watering (R2 ′). Since the degree of supercooling increases, the enthalpy difference at the entrance and exit of the radiator 2 increases from ΔH to ΔH ′.

また、高圧が低下することから圧縮機の入力が減少して、放熱器2出入口のエンタルピ差が増加することから、COPが向上する。   Further, since the high pressure is reduced, the input of the compressor is reduced, and the enthalpy difference at the entrance and exit of the radiator 2 is increased, so that the COP is improved.

図9に示す本実施の形態では伝熱管25が1列の放熱器2の例を示したが、図8(a)、(b)に示すように2列以上の伝熱管25を持つ放熱器2としても良い。この場合、2列目以降の伝熱管25の冷媒の流れも水の流れと対向流となるよう図8(a)のように冷媒流路を配置すればよい。あるいは、図8(b)に示すように最終出口部の冷媒流れが水の流れと対向流となるようにすれば良い。   In the present embodiment shown in FIG. 9, an example in which the heat transfer tube 25 is one row of the radiator 2 is shown. However, as shown in FIGS. 8A and 8B, the radiator having two or more rows of the heat transfer tubes 25. 2 is also acceptable. In this case, the refrigerant flow path may be arranged as shown in FIG. 8A so that the refrigerant flow in the second and subsequent rows of the heat transfer tubes 25 is also opposite to the water flow. Or what is necessary is just to make it the refrigerant | coolant flow of a last exit part turn into a counterflow with the flow of water as shown in FIG.8 (b).

また、2列以上で列間の熱移動がある場合には、図8(b)に示すように、各列での熱の移動を防止するため、フィン24の高温部と低温部の間に熱移動を遮断するもの、例えば縦方向に熱遮断スリット23を設けてもよい。   Also, when there is heat transfer between rows in two or more rows, as shown in FIG. 8B, in order to prevent heat transfer in each row, between the high temperature portion and the low temperature portion of the fin 24. A heat blocking slit 23 may be provided in the vertical direction, for example, for blocking heat transfer.

以上のように、本実施の形態では、熱源側熱交換器である放熱器2は、放熱器2下部から温度が高い冷媒が流入し、熱交換しながら上部へ向かい、放熱器2上部から流出するよう放熱器2冷媒流路が構成されていることにより、放熱器2に水を散布した際、蒸発しきれなかった水が重力により滴下する流れと、放熱器2を流れる冷媒の流れが対向流となるため、熱のカスケード利用を行うことができ、散水効果を増加させることができるという効果がある。   As described above, in the present embodiment, in the radiator 2 that is the heat source side heat exchanger, the refrigerant having a high temperature flows from the lower portion of the radiator 2, moves upward while exchanging heat, and flows out from the upper portion of the radiator 2. Since the radiator 2 refrigerant flow path is configured so that when water is sprayed on the radiator 2, the flow of water that could not be evaporated and the flow of refrigerant flowing through the radiator 2 face each other. Since it becomes a flow, the heat can be used in cascade and the watering effect can be increased.

また、本実施の形態では、2列以上の伝熱管を用いて列間の熱移動がある場合には、熱源側熱交換の高温部と低温部の間に熱移動を遮断するもの、例えば熱遮断スリットを設けても良く、高温部から低温部(熱交換器出口部)への熱移動によるロスがなくなるという効果がある。   In the present embodiment, when there is heat transfer between rows using two or more heat transfer tubes, the heat transfer between the high temperature portion and the low temperature portion of the heat source side heat exchange, for example, heat A blocking slit may be provided, and there is an effect that loss due to heat transfer from the high temperature portion to the low temperature portion (heat exchanger outlet portion) is eliminated.

また、本実施の形態では、放熱器上部フィンにかかる水量が放熱器下部フィンにかかる水量に比べて多いので、放熱器上部で滴下する水を下部で有効に利用して、未蒸発水を最小限にし、過剰な散水を極力抑制することができる。   Further, in this embodiment, the amount of water applied to the radiator upper fin is larger than the amount of water applied to the radiator lower fin. It is possible to limit excessive water spraying as much as possible.

また、本実施の形態では、散水ノズルを傾斜配置したので、空気と熱交換しにくい放熱器2出口から順に多い水量で冷却することができるという効果がある。   Moreover, in this Embodiment, since the watering nozzle was inclined and arrange | positioned, there exists an effect that it can cool by the water quantity in order from the radiator 2 exit which is hard to exchange heat with air.

散水ノズルを傾斜配置するので、放熱器上部のフィンにかかる水量が放熱器下部にかかる水量に比べて多くなり、空気と熱交換しにくい放熱器出口から順に多い水量で冷却することができ、加えて放熱器2上部で蒸発しきれずに滴下する水を下部で有効に利用できるため、未蒸発水を最小限にし、過剰な散水を抑制することができる。   Since the watering nozzle is inclined, the amount of water applied to the fins at the top of the radiator is larger than the amount of water applied to the bottom of the radiator, and cooling can be performed with a large amount of water in order from the radiator outlet where heat exchange with the air is difficult. Since the water that does not evaporate at the upper part of the radiator 2 and drops dripping can be used effectively at the lower part, the unevaporated water can be minimized and excessive water spray can be suppressed.

また本実施の形態では、外気温度と外気湿度を検知し、検知値に応じて散水量を調整するので、散水手段による過剰な散水を抑制することができる。   Further, in the present embodiment, the outside air temperature and the outside air humidity are detected, and the amount of water spray is adjusted according to the detected value, so that excessive water spraying by the water spraying means can be suppressed.

この発明の実施の形態1に係る室外ユニットと室内ユニット及びその内部の冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the outdoor unit which concerns on Embodiment 1 of this invention, an indoor unit, and the internal refrigerating cycle apparatus. 実施の形態1に係る放熱器に散水した際の放熱器周囲の状態も含めた(a)側面図と、(b)正面図である。It is the (a) side view including the state of the radiator periphery at the time of watering the radiator which concerns on Embodiment 1, and (b) front view. 実施の形態1に係る散水装置の構成を示す図である。It is a figure which shows the structure of the watering apparatus which concerns on Embodiment 1. FIG. 散水ノズルで水を散布した際のフィンの様子を示した図である。It is the figure which showed the mode of the fin at the time of spraying water with a watering nozzle. 実施の形態1に係るCO2の圧力―エンタルピ線図上での本冷凍サイクル装置の動作を示す図である。It is a figure which shows operation | movement of this refrigeration cycle apparatus on the pressure-enthalpy diagram of CO2 which concerns on Embodiment 1. FIG. 実施の形態1に係る放熱器の出口部集中散水の有用性を示す図である。It is a figure which shows the usefulness of the exit part concentration watering of the heat radiator which concerns on Embodiment 1. FIG. 実施の形態1に係る放熱器表面を流れる水温と内部を流れる冷媒温度の放熱器の高さ方向に対する推移を示した図である。It is the figure which showed transition with respect to the height direction of the heat radiator of the water temperature which flows through the heat radiator surface which concerns on Embodiment 1, and the refrigerant | coolant temperature which flows through the inside. 実施の形態1に係る放熱器のパスパターンの変形例と散水方法を示す図である。It is a figure which shows the modification of the path pattern of the heat radiator which concerns on Embodiment 1, and the watering method. 実施の形態2に係る圧力−エンタルピ線図上での本冷凍サイクル装置の動作を示す図である。It is a figure which shows operation | movement of this refrigeration cycle apparatus on the pressure-enthalpy diagram based on Embodiment 2. FIG. 実施の形態2に係る放熱器に散水した際の放熱器周囲の状態も含めた側面図と正面図である。It is the side view and front view including the state of a radiator periphery at the time of watering the radiator which concerns on Embodiment 2. FIG.

符号の説明Explanation of symbols

1 圧縮機、2 放熱器、3 膨張弁、4 蒸発器、5 室外ファン、6 室内ファン、21 分岐部、22 合流部、23 熱遮断スリット、24 フィン、25 伝熱管、25a、25b 分岐流路、25 伝熱管、31 散水ノズル、31A 大流量散水ノズル、31B 小流量散水ノズル、32散水量調整弁、33 散水量制御装置、34 室外温度センサ、35A、35B センサ、101 室外機、102 室内機、103 散水装置、104 接続配管、105 冷媒回路、901 濡れ面。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Radiator, 3 Expansion valve, 4 Evaporator, 5 Outdoor fan, 6 Indoor fan, 21 Branch part, 22 Merge part, 23 Heat interruption slit, 24 Fin, 25 Heat transfer pipe, 25a, 25b Branch flow path , 25 Heat transfer tube, 31 Sprinkling nozzle, 31A Large flow sprinkling nozzle, 31B Small flow sprinkling nozzle, 32 Sprinkling amount adjustment valve, 33 Sprinkling amount control device, 34 Outdoor temperature sensor, 35A, 35B sensor, 101 Outdoor unit, 102 Indoor unit , 103 Water sprinkler, 104 Connection piping, 105 Refrigerant circuit, 901 Wetting surface.

Claims (9)

圧縮機、放熱器、膨張弁、蒸発器およびこれらを順次接続する接続配管で接続した冷媒回路と、前記放熱器に散水する散水装置とを備え、冷媒を循環させる冷凍サイクル装置において、
前記放熱器は冷媒を前記放熱器の下部から流入させて上部から流出させ、前記散水装置から前記放熱器上に散布された水が前記放熱器上を上部から下部に向かって流れ、前記放熱器内の冷媒流れと対向流となることを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus comprising a compressor, a radiator, an expansion valve, an evaporator and a refrigerant circuit connected by a connecting pipe that sequentially connects these, and a watering device that sprinkles water to the radiator, and circulates the refrigerant,
The radiator allows the refrigerant to flow from the lower part of the radiator and flow out from the upper part, and the water sprayed on the radiator from the watering device flows on the radiator from the upper part to the lower part, and the radiator A refrigeration cycle apparatus, wherein the refrigeration cycle apparatus is opposed to the refrigerant flow inside.
前記放熱器は、複数の分岐流路を有した分岐部と前記複数の分岐流路が合流する合流部から構成され、少なくとも合流部の伝熱管が下から上に冷媒が流れるよう構成されていることを特徴とする請求項1に記載の冷凍サイクル装置。   The radiator is composed of a branch portion having a plurality of branch flow paths and a merge section where the plurality of branch flow paths merge, and at least a heat transfer tube of the merge section is configured so that the refrigerant flows from the bottom to the top. The refrigeration cycle apparatus according to claim 1. 前記合流部が前記分岐部よりも上部に配置されていることを特徴とする請求項2に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 2, wherein the merging portion is disposed above the branching portion. 前記散水装置が、前記合流部だけに水を散布することを特徴とする請求項3に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein the water sprinkler sprays water only to the merging portion. 放熱器の高温部と低温部の間のフィンが、熱移動を遮断する熱遮断スリットを備えていることを特徴とする請求項1〜4のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein a fin between the high temperature portion and the low temperature portion of the radiator includes a heat blocking slit that blocks heat transfer. 前記散水ノズルを複数有し、それらが千鳥格子に配置されていることを特徴とする請求項1〜5のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a plurality of the watering nozzles are provided and arranged in a staggered pattern. 前記放熱器の上部への散水量が、放熱器の下部への散水量に比べて多いことを特徴とする請求項1〜6のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the amount of water sprayed to the upper portion of the radiator is larger than the amount of water sprayed to the lower portion of the radiator. 外気温度と外気湿度を検知するセンサと、検知値に応じて散水量を調整する散水量制御装置とを備えていることを特徴とする1〜7のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising: a sensor that detects an outside air temperature and an outside air humidity; and a water spray amount control device that adjusts the water spray amount according to the detected value. 前記冷媒が二酸化炭素であることを特徴とする1〜8のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of 1 to 8, wherein the refrigerant is carbon dioxide.
JP2007131835A 2007-05-17 2007-05-17 Refrigeration cycle equipment Active JP4863218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131835A JP4863218B2 (en) 2007-05-17 2007-05-17 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131835A JP4863218B2 (en) 2007-05-17 2007-05-17 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008286473A true JP2008286473A (en) 2008-11-27
JP4863218B2 JP4863218B2 (en) 2012-01-25

Family

ID=40146355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131835A Active JP4863218B2 (en) 2007-05-17 2007-05-17 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4863218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194972A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Air conditioner for vehicle
JP2019142360A (en) * 2018-02-21 2019-08-29 株式会社デンソー Air conditioner for vehicle
WO2022130986A1 (en) * 2020-12-17 2022-06-23 パナソニックIpマネジメント株式会社 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150760A (en) * 1978-05-19 1979-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPH05203285A (en) * 1992-01-23 1993-08-10 Matsushita Refrig Co Ltd Heat exchanger
JPH0611210A (en) * 1992-06-29 1994-01-21 Nippondenso Co Ltd Heat exchanger and air conditioner using same
JPH11211248A (en) * 1998-01-27 1999-08-06 Ebara Corp Method for controlling avoidance of overload in air heat source heat pump device
JP2000018770A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Auxiliary cooler and air conditioner with the same
JP2001263862A (en) * 2000-03-17 2001-09-26 Fujitsu General Ltd Heat exchanger
JP2001317821A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Air heat source type cooling apparatus and cooling method using the same
JP2002022291A (en) * 2000-07-03 2002-01-23 Daikin Ind Ltd Air conditioner
JP2002054834A (en) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2002333186A (en) * 1993-06-01 2002-11-22 Hitachi Ltd Air conditioner
JP2003185189A (en) * 2001-12-14 2003-07-03 Denso Corp Water supply device for outdoor unit
JP2004232908A (en) * 2003-01-29 2004-08-19 Masaru Kitano Cooler
JP2005201573A (en) * 2004-01-16 2005-07-28 Mitsubishi Heavy Ind Ltd Outdoor unit for air conditioner and air conditioner comprising the same
JP2006162152A (en) * 2004-12-07 2006-06-22 Daikin Ind Ltd Auxiliary cooling system of outdoor machine
JP2006284057A (en) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd Air conditioner and its operating method
JP2006308166A (en) * 2005-04-27 2006-11-09 Mitsubishi Electric Corp Refrigerating cycle device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150760A (en) * 1978-05-19 1979-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPH05203285A (en) * 1992-01-23 1993-08-10 Matsushita Refrig Co Ltd Heat exchanger
JPH0611210A (en) * 1992-06-29 1994-01-21 Nippondenso Co Ltd Heat exchanger and air conditioner using same
JP2002333186A (en) * 1993-06-01 2002-11-22 Hitachi Ltd Air conditioner
JPH11211248A (en) * 1998-01-27 1999-08-06 Ebara Corp Method for controlling avoidance of overload in air heat source heat pump device
JP2000018770A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Auxiliary cooler and air conditioner with the same
JP2001263862A (en) * 2000-03-17 2001-09-26 Fujitsu General Ltd Heat exchanger
JP2001317821A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Air heat source type cooling apparatus and cooling method using the same
JP2002022291A (en) * 2000-07-03 2002-01-23 Daikin Ind Ltd Air conditioner
JP2002054834A (en) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2003185189A (en) * 2001-12-14 2003-07-03 Denso Corp Water supply device for outdoor unit
JP2004232908A (en) * 2003-01-29 2004-08-19 Masaru Kitano Cooler
JP2005201573A (en) * 2004-01-16 2005-07-28 Mitsubishi Heavy Ind Ltd Outdoor unit for air conditioner and air conditioner comprising the same
JP2006162152A (en) * 2004-12-07 2006-06-22 Daikin Ind Ltd Auxiliary cooling system of outdoor machine
JP2006284057A (en) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd Air conditioner and its operating method
JP2006308166A (en) * 2005-04-27 2006-11-09 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194972A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Air conditioner for vehicle
JP2019142360A (en) * 2018-02-21 2019-08-29 株式会社デンソー Air conditioner for vehicle
JP7040106B2 (en) 2018-02-21 2022-03-23 株式会社デンソー Vehicle air conditioner
WO2022130986A1 (en) * 2020-12-17 2022-06-23 パナソニックIpマネジメント株式会社 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method

Also Published As

Publication number Publication date
JP4863218B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP6827542B2 (en) Refrigeration cycle equipment
US20050279115A1 (en) Method and apparatus for evaporative cooling of a cooling fluid
JP5619295B2 (en) Refrigeration cycle equipment
JP2009133624A (en) Refrigerating/air-conditioning device
JP4428341B2 (en) Refrigeration cycle equipment
WO2023065677A1 (en) Cooling unit
JP4863218B2 (en) Refrigeration cycle equipment
JP2005214533A (en) Dehumidifier
JP2829080B2 (en) Absorption heat pump
JP6292834B2 (en) Air conditioning equipment in information processing room
JP2006046695A (en) Refrigerating device
US5802866A (en) Air-cooled absorption-type air conditioning apparatus
JP5677237B2 (en) Air conditioner
JPH1078265A (en) Air-cooled absorption air conditioner
JP2006242394A (en) Heat source unit of air conditioner and air conditioner having this unit
WO2023188009A1 (en) Refrigeration cycle device
JP2008089289A (en) Air conditioner
JP7275372B2 (en) Heat source side unit heat exchanger and heat pump device equipped with the heat exchanger
WO2011111602A1 (en) Air conditioner
WO2023188010A1 (en) Refrigeration cycle device
WO2023199426A1 (en) Refrigeration cycle device
TWI794745B (en) cooling device
JP2004085031A (en) Air cooling type heat exchanger and air conditioner
KR100797609B1 (en) Condenser for regrigerator and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250