WO2022130986A1 - Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method - Google Patents

Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method Download PDF

Info

Publication number
WO2022130986A1
WO2022130986A1 PCT/JP2021/044142 JP2021044142W WO2022130986A1 WO 2022130986 A1 WO2022130986 A1 WO 2022130986A1 JP 2021044142 W JP2021044142 W JP 2021044142W WO 2022130986 A1 WO2022130986 A1 WO 2022130986A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
nozzle
stage
nozzles
transfer tubes
Prior art date
Application number
PCT/JP2021/044142
Other languages
French (fr)
Japanese (ja)
Inventor
道美 日下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020208993A external-priority patent/JP2022096089A/en
Priority claimed from JP2021027382A external-priority patent/JP2022128910A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180083940.XA priority Critical patent/CN116583702A/en
Priority to EP21906349.2A priority patent/EP4265982A1/en
Publication of WO2022130986A1 publication Critical patent/WO2022130986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Definitions

  • the present disclosure relates to shell and tube heat exchangers, refrigeration cycle devices, and heat exchange methods.
  • FIG. 19 shows a conventional evaporative condenser described in Patent Document 1 (FIG. 9).
  • the watering unit 330 of the evaporative condenser 300 has a plurality of watering nozzles 334 that sprinkle the cooling water CW toward the condensing coil 326.
  • the cooling water CW evaporates, and the refrigerant R is cooled and condensed.
  • the present disclosure provides a shell-and-tube heat exchanger that is advantageous from the viewpoint of suppressing dryout on the outer surface of a plurality of heat transfer tubes.
  • the shell-and-tube heat exchangers of the present disclosure are: With the shell A plurality of heat transfer tubes arranged inside the shell, Equipped with a nozzle, The following conditions (Ia), (Ib), (Ic), and (Id), or the following conditions (IIa), (IIb), (IIc), and (IId) are satisfied.
  • the plurality of heat transfer tubes are arranged parallel to each other inside the shell, and the first fluid flows through the plurality of heat transfer tubes.
  • the nozzle is arranged inside the shell and includes a plurality of nozzles that spray a second fluid toward the plurality of heat transfer tubes.
  • the direction parallel to the longitudinal direction of the plurality of heat transfer tubes is defined as the X direction
  • the direction perpendicular to the X direction is defined as the Y direction
  • the X direction and the direction perpendicular to the Y direction are the Z direction.
  • the plurality of nozzles include a plurality of first nozzles that spray the second fluid from the first side to the second side in the Z direction, and the first side to the second side in the Z direction. It includes a plurality of second nozzles for spraying the second fluid.
  • the plurality of heat transfer tubes form a heat transfer tube group.
  • the nozzle sprays a liquid toward the heat transfer tube group.
  • the heat transfer tube group has a first stage having a plurality of heat transfer tubes arranged along the first plane and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane. And includes a second stage adjacent to the first stage in a direction perpendicular to the first plane.
  • the nozzle has a first end portion of the plurality of heat transfer tubes in the first stage near the second stage in a direction perpendicular to the first plane, and the first stage in a direction perpendicular to the first plane.
  • a flat spray pattern that has a spray shaft that passes between the two-stage heat transfer tubes and the second end near the first stage, and that passes between the first stage and the second stage. The liquid is sprayed with.
  • the heat exchange method of the present disclosure has a first stage having a plurality of heat transfer tubes arranged along the first plane, and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane, and is perpendicular to the first plane. Passing the heat medium inside the heat transfer tube group including the first stage and the second stage adjacent to the first stage in the above direction.
  • It has a spray shaft that passes between the second end of the heat tube near the first stage, and has a flat spray pattern that passes between the first stage and the second stage toward the heat transfer tube group. The liquid is sprayed to exchange heat between the heat medium and the liquid.
  • the particles are sprayed from the plurality of first nozzles to the fourth nozzle.
  • the surface of the plurality of heat transfer tubes can be uniformly wetted by the second fluid. As a result, dryout can be suppressed.
  • a flat spray pattern with a spray shaft passing between the two ends can spray the liquid towards the heat transfer tube group.
  • the spray pattern passes between the first and second stages.
  • the liquid can be sprayed toward the heat transfer tube group by such a spray pattern. As a result, dryout can be suppressed.
  • Configuration diagram of the refrigeration cycle device Longitudinal section of the evaporator along line II-II in FIG. Cross-sectional view of the evaporator along lines III-III in FIG. Side view of the evaporator along the IVA-IVA line in FIG. Side view of the evaporator along the IVB-IVB line in FIG. Cross-sectional view of the evaporator along the VA-VA line in FIG. Sectional drawing of the evaporator along the VB-VB line in FIG. The figure which shows the moving direction and the dropping state of the refrigerant sprayed from the 1st nozzle and the 3rd nozzle to a plurality of heat transfer tubes.
  • dryout surface means a surface on which the liquid film of the refrigerant does not exist.
  • the present inventor has come up with the idea that the performance of the shell-and-tube heat exchanger can be improved by using the flow of the liquid sprayed from the nozzle as a hint. Then, in order to realize the idea, for example, when the spray pattern of the liquid phase refrigerant is conical, the atomized liquid phase refrigerant reaches the outer surface of the heat transfer tube far from the nozzle. I discovered that there is a problem that it is difficult to do and dryout is likely to occur. The present inventor has come to construct the subject matter of the present disclosure in order to solve the problem.
  • the present disclosure provides a shell-and-tube heat exchanger that is advantageous from the viewpoint of suppressing dryout on the outer surface of a plurality of heat transfer tubes.
  • FIG. 1 shows the configuration of a refrigeration cycle device using a shell-and-tube heat exchanger.
  • the refrigeration cycle device 100 includes an evaporator 101, a compressor 102, a condenser 103, a flow valve 104, a flow path 110a, a flow path 110b, a flow path 110c, and a flow path 110d.
  • the outlet of the evaporator 101 is connected to the inlet of the compressor 102 by the flow path 110a.
  • the outlet of the compressor 102 is connected to the inlet of the condenser 103 by the flow path 110b.
  • the outlet of the condenser 103 is connected to the inlet of the flow valve 104 by the flow path 110c.
  • the outlet of the flow valve 104 is connected to the inlet of the evaporator 101 by the flow path 110d.
  • the flow paths 110a and 110b are steam paths.
  • the flow path 110c and the flow path 110d are liquid paths. Each path is composed of, for example, at least one metal pipe.
  • the evaporator 101 is composed of a shell-and-tube heat exchanger, as will be described later.
  • the compressor 102 may be a speed compressor such as a centrifugal compressor or a positive displacement compressor such as a scroll compressor.
  • the model of the condenser 103 is not particularly limited. Heat exchangers such as plate heat exchangers and shell and tube heat exchangers can be used in the condenser 103.
  • the refrigeration cycle device 100 is, for example, an air conditioner for business use or home use.
  • the heat medium cooled by the evaporator 101 is supplied into the room through the circuit 105 and used for cooling the room.
  • the heat medium heated by the condenser 103 is supplied into the room through the circuit 106 and used for heating the room.
  • the heat medium is, for example, water.
  • the refrigeration cycle device 100 is not limited to the air conditioner, and may be another device such as a chiller or a heat storage device.
  • the refrigeration cycle device 100 may be an absorption chiller equipped with an evaporator, an absorber, a regenerator and a condenser.
  • the circuit 105 is a circuit that circulates a heat medium in the evaporator 101.
  • the circuit 106 is a circuit for circulating a heat medium in the condenser 103.
  • the circuit 105 and the circuit 106 may be a closed circuit isolated from the outside air.
  • the heat medium is the first fluid flowing through each of the circuit 105 and the circuit 106.
  • the heat medium is not limited to water, and may be a liquid such as oil or brine, or a gas such as air.
  • the composition of the heat medium of the circuit 105 may be different from the composition of the heat medium of the circuit 106.
  • the compressor 102 When the compressor 102 is started, the refrigerant is heated and evaporated in the evaporator 101. This produces a gas phase refrigerant. The vapor phase refrigerant is sucked into the compressor 102 and compressed. The compressed vapor phase refrigerant is supplied from the compressor 102 to the condenser 103. The vapor phase refrigerant is cooled by the condenser 103 to condense and liquefy. This produces a liquid phase refrigerant. The liquid phase refrigerant is returned from the condenser 103 to the evaporator 101 via the flow valve 104.
  • the type of refrigerant is not particularly limited.
  • the refrigerant include chlorofluorocarbon refrigerants, low GWP (Global Warming Potential) refrigerants, and natural refrigerants.
  • chlorofluorocarbon refrigerants include HCFC (hydrochlorofluorocarbon) and HFC (hydrofluorocarbon).
  • the low GWP refrigerant include HFO-1234yf and water.
  • the natural refrigerant include carbon dioxide and water.
  • the refrigerant may be a refrigerant containing a substance having a negative saturated vapor pressure at room temperature as a main component.
  • a refrigerant examples include a refrigerant containing water, alcohol or ether as a main component.
  • the "main component” means the component contained most in the mass ratio.
  • Negative pressure means pressure that is absolute and lower than atmospheric pressure.
  • Room temperature means a temperature within the range of 20 ° C ⁇ 15 ° C according to the Japanese Industrial Standards (JIS Z8703).
  • the refrigerant is an example of a second fluid that should exchange heat with a heat medium that is the first fluid.
  • FIG. 2 is a vertical sectional view of the evaporator 101 along the line II-II.
  • FIG. 3 is a cross-sectional view of the evaporator 101 along the line III-III.
  • the evaporator 101 is configured as a shell-and-tube heat exchanger.
  • the evaporator 101 includes a shell 21, a plurality of heat transfer tubes 22, a plurality of nozzles 24, a circulation circuit 25, and a circulation pump 26.
  • the plurality of heat transfer tubes 22 and the plurality of nozzles 24 are arranged inside the shell 21.
  • the plurality of nozzles 24 include a plurality of first nozzles 24a, a plurality of second nozzles 24b, a plurality of third nozzles 24c, and a plurality of fourth nozzles 24d.
  • a plurality of heat transfer tubes 22 are arranged between a nozzle group including a plurality of first nozzles 24a and a plurality of second nozzles 24b and a nozzle group including a plurality of third nozzles 24c and a plurality of fourth nozzles 24d. ..
  • the coefficient of performance (COP) of the refrigeration cycle can be improved by efficiently evaporating the refrigerant in the evaporator 101.
  • the plurality of heat transfer tubes 22 include a circular tube having a circular cross section. In FIGS. 2 and 3, all of the plurality of heat transfer tubes 22 are circular tubes having a circular cross section.
  • Each of the plurality of heat transfer tubes 22 penetrates the facing surfaces of the shell 21.
  • the plurality of heat transfer tubes 22 are arranged parallel to each other inside the shell 21. Specifically, the plurality of heat transfer tubes 22 are regularly arranged in a plurality of rows and a plurality of stages inside the shell 21. The regular arrangement is advantageous for uniform thinning of the liquid film on the surface of the heat transfer tube 22.
  • the direction parallel to the longitudinal direction of the heat transfer tube 22 is defined as the X direction.
  • the direction vertical to the X direction is defined as the Y direction.
  • the direction perpendicular to the X and Y directions is defined as the Z direction.
  • the Y direction and the Z direction are the step direction and the column direction, respectively.
  • the Y direction can be parallel to the direction of gravity.
  • the X and Z directions can be parallel to the horizontal direction.
  • the plurality of heat transfer tubes 22 are located on the grid points of the square lattice. Specifically, the center of each heat transfer tube 22 is located at a grid point in a square grid.
  • the arrangement of the heat transfer tubes 22 is not particularly limited.
  • the plurality of heat transfer tubes 22 may be arranged so that the center of each heat transfer tube 22 is located at a grid point in a rectangular lattice, for example.
  • the plurality of heat transfer tubes 22 are arranged in 8 stages and 12 rows. The number of stages and the number of columns are also not limited to specific values.
  • the pipe constituting the heat transfer pipe 22 may be a machined pipe in which the inside of the pipe, the outside of the pipe, or both of them are grooved.
  • a heat medium that exchanges heat with the refrigerant flows inside the heat transfer tube 22.
  • the heat medium is a fluid such as water, ethylene glycol, or propylene glycol.
  • the heat medium absorbs heat in the atmosphere through a heat exchanger such as a fin-and-tube heat exchanger and flows into each heat transfer tube 22 of the evaporator 101. In each heat transfer tube 22, the heat medium is cooled by the refrigerant.
  • Examples of the material of the heat transfer tube 22 include metal materials such as aluminum, aluminum alloy, stainless steel, and copper.
  • the refrigerant is sprayed from each of the first nozzle 24a to the fourth nozzle 24d toward the plurality of heat transfer tubes 22.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b spray the refrigerant from the first side to the second side in the Z direction.
  • the plurality of third nozzles 24c and the plurality of fourth nozzles 24d spray the refrigerant from the second side to the first side in the Z direction.
  • the "first side” is, for example, one side in the width direction of the heat transfer tube 22.
  • the "second side” is the other side in the width direction of the heat transfer tube 22.
  • the width direction of the heat transfer tube 22 may be the width direction with respect to the horizontal direction.
  • the nozzle 24 is, for example, a pressure injection type spray nozzle.
  • the pressure injection type spray nozzle is configured to receive the pressurized refrigerant from the inlet, apply a swirling force to the refrigerant by a swirling mechanism inside the nozzle, and inject it into the space.
  • the injected refrigerant spreads in a conical shape due to the centrifugal force due to the swirling speed, is thinned and liquefied, and then splits into a group of droplets.
  • the same spray nozzle can be used for each of the first nozzle 24a to the fourth nozzle 24d.
  • the phrase "identical" means that the design structure and design characteristics are identical. However, the structures and dimensions of the first nozzle 24a to the fourth nozzle 24d may be different from each other.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b are present at the same position in the Z direction.
  • the plurality of third nozzles 24c and the plurality of fourth nozzles 24d are present at the same position in the Z direction.
  • the plurality of first nozzles 24a and the plurality of third nozzles 24c are present at the same position in the Y direction.
  • the plurality of second nozzles 24b and the plurality of fourth nozzles 24d are present at the same position in the Y direction.
  • the first nozzle 24a and the second nozzle 24b are each provided in one stage.
  • the third nozzle 24c and the fourth nozzle 24d are each provided in one stage.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b may be arranged in a matrix in the X direction and the Y direction.
  • the plurality of third nozzles 24c and the plurality of fourth nozzles 24d may be arranged in a matrix in the X direction and the Y direction.
  • FIG. 4A is a side view of the evaporator 101 along the IVA-IVA line.
  • elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b are staggered.
  • the arrangement pattern of is shown.
  • the projected image is, in detail, an image obtained by orthographically projecting a plurality of first nozzles 24a and a plurality of second nozzles 24b onto an arbitrary projection surface perpendicular to the Z direction.
  • FIG. 4B is a side view of the evaporator 101 along the IVB-IVB line.
  • elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
  • the plurality of third nozzles 24c and the plurality of fourth nozzles 24d are staggered.
  • the arrangement pattern of is shown.
  • the projected image is, in detail, an image obtained by orthographically projecting a plurality of third nozzles 24c and a plurality of fourth nozzles 24d onto an arbitrary projection surface perpendicular to the Z direction.
  • the plurality of first nozzles 24a are arranged in the X direction.
  • the plurality of second nozzles 24b are arranged in the X direction.
  • the position of the first nozzle 24a in the Y direction is different from the position of the second nozzle 24b in the Y direction.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b are located on the same plane perpendicular to the Z direction.
  • the plurality of third nozzles 24c are arranged in the X direction.
  • the plurality of fourth nozzles 24d are arranged in the X direction.
  • the position of the third nozzle 24c in the Y direction is different from the position of the fourth nozzle 24d in the Y direction.
  • the plurality of third nozzles 24c and the plurality of fourth nozzles 24d are located on the same plane perpendicular to the Z direction.
  • FIG. 5A is a cross-sectional view of the evaporator 101 along the VA-VA line
  • FIG. 5B is a cross-sectional view of the evaporator 101 along the IVB-IVB line.
  • elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
  • the spray shaft O1 of the first nozzle 24a and the spray shaft O2 of the second nozzle 24b are parallel to each other in the X direction and the Z direction.
  • the spray shaft O1 is the central shaft of the spray flow of the refrigerant produced by the first nozzle 24a.
  • the spray shaft O2 is the central shaft of the spray flow of the refrigerant produced by the second nozzle 24b.
  • the spray shaft O1 and the spray shaft O2 are each inclined with respect to the row direction (Z direction). According to such a configuration, the refrigerant can be sprayed over a wide range by the first nozzle 24a and the second nozzle 24b. This also contributes to a uniform thinning of the liquid film on the surface of the heat transfer tube 22.
  • the spray shaft O3 of the third nozzle 24c and the spray shaft O4 of the fourth nozzle 24d are parallel to the inclined direction with respect to both the X direction and the Z direction.
  • the spray shaft O3 is the central shaft of the spray flow of the refrigerant produced by the third nozzle 24c.
  • the spray shaft O4 is the central shaft of the spray flow of the refrigerant produced by the fourth nozzle 24d.
  • the spray shaft O3 and the spray shaft O4 are each inclined with respect to the row direction (Z direction). According to such a configuration, the refrigerant can be sprayed over a wide range by the third nozzle 24c and the fourth nozzle 24d.
  • the "spray axis O1" can also be regarded as the central axis of the first nozzle 24a.
  • the spray shaft O1 may be a shaft that passes through the center of the opening of the first nozzle 24a.
  • the "spray axis O2" can also be regarded as the central axis of the second nozzle 24b.
  • the spray shaft O2 may be a shaft that passes through the center of the opening of the second nozzle 24b.
  • the “spray axis O3" can also be regarded as the central axis of the third nozzle 24c.
  • the spray shaft O3 may be a shaft that passes through the center of the opening of the third nozzle 24c.
  • the "spray axis O4" can also be regarded as the central axis of the fourth nozzle 24d.
  • the spray shaft O4 may be a shaft that passes through the center of the opening of the fourth nozzle 24d.
  • the spray axis O1 of the first nozzle 24a is inclined in the clockwise direction with respect to the first reference line L1 which passes through the center of the opening of the first nozzle 24a and is parallel to the Z direction.
  • the spray shaft O2 of the second nozzle 24b is inclined counterclockwise with respect to the second reference line L2 which passes through the center of the opening of the second nozzle 24b and is parallel to the Z direction. According to such a configuration, the refrigerant can be sprayed over a wide range by the minimum necessary number of the first nozzles 24a and the second nozzles 24b.
  • the spray axis O3 of the third nozzle 24c is inclined in the clockwise direction with respect to the third reference line L3 which passes through the center of the opening of the third nozzle 24c and is parallel to the Z direction.
  • the spray shaft O4 of the fourth nozzle 24d is inclined in the counterclockwise direction with respect to the fourth reference line L4 which passes through the center of the opening of the fourth nozzle 24d and is parallel to the Z direction.
  • the angle ⁇ 1 formed by the spray shaft O1 of the first nozzle 24a and the first reference line L1 is equal to the angle ⁇ 2 formed by the spray shaft O2 of the second nozzle 24b and the second reference line L2. ..
  • the angle ⁇ 3 formed by the spray axis O3 of the third nozzle 24c and the third reference line L3 is equal to the angle ⁇ 4 formed by the spray axis O4 of the fourth nozzle 24d and the fourth reference line L4. ..
  • the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 may be equal to or different from each other.
  • the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 may be such that at least one of the outer edges of the spray stream of the refrigerant is non-parallel to the longitudinal direction (X direction) of the heat transfer tube 22.
  • the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 are, for example, 30 to 40 degrees, typically 30 degrees.
  • the broken line indicates the spread angle ⁇ of the spray flow of the refrigerant.
  • the spread angle ⁇ of the spray flow shows a spread symmetrical with respect to each of the spray axes O1, O2, O3 and O4.
  • the spread angle ⁇ of the spray flow may be an acute angle, for example, 60 degrees.
  • the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 can be half of the spread angle ⁇ of the spray flow.
  • one of the outer edges of the spray stream of the refrigerant is substantially parallel to the reference lines L1, L2, L3 and L4. As a result, the generation of the component of the flow of the refrigerant that goes against the moving direction of the refrigerant that moves along the surface of the heat transfer tube 22 is suppressed.
  • the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 are determined according to conditions such as the number of nozzles 24 and the distance between adjacent nozzles 24.
  • the plurality of first nozzles 24a are arranged at predetermined intervals in the X direction.
  • the distance between the first nozzles 24a adjacent to each other in the X direction is the distance W.
  • the plurality of second nozzles 24b are arranged at predetermined intervals in the X direction.
  • the distance between the second nozzles 24b adjacent to each other in the X direction is the distance W.
  • the plurality of third nozzles 24c are arranged at predetermined intervals in the X direction.
  • the distance between the third nozzles 24c adjacent to each other in the X direction is the distance W.
  • the plurality of fourth nozzles 24d are arranged at predetermined intervals in the X direction.
  • the distance between the fourth nozzles 24d adjacent to each other in the X direction is the distance W.
  • the distance between the first nozzles 24a adjacent to each other in the X direction, the distance between the second nozzles 24b, the distance between the third nozzles 24c, and the distance between the fourth nozzles 24d are equal to each other.
  • the interval W is appropriately determined according to the angle ⁇ of the nozzle 24 and the distance from the nozzle 24 to the heat transfer tube 22.
  • the distance between the nozzles 24 adjacent to each other in the X direction is defined as the distance between the centers of the openings of the adjacent nozzles 24.
  • the distance between the first nozzle 24a and the second nozzle 24b in the X direction is 1/2 of the distance between the first nozzles 24a adjacent to each other in the X direction.
  • the distance between the third nozzle 24c and the fourth nozzle 24d in the X direction is 1 ⁇ 2 of the distance between the third nozzles 24c adjacent to each other in the X direction. That is, the distance between the first nozzle 24a and the second nozzle 24b in the X direction is W / 2.
  • the distance between the third nozzle 24c and the fourth nozzle 2 in the X direction is W / 2.
  • the positions of the plurality of third nozzles 24c are offset in the X direction with respect to the positions of the plurality of first nozzles 24a. Further, in a plan view from the Y direction, the positions of the plurality of fourth nozzles 24d are offset in the X direction with respect to the positions of the plurality of second nozzles 24b.
  • Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Z direction.
  • the spray shafts O1 of the plurality of first nozzles 24a pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the positions of the plurality of first nozzles 24a are set so that the spray shaft O1 passes through the space between the heat transfer tubes 22 adjacent to each other in the Y direction.
  • the spray shafts O2 of the plurality of second nozzles 24b pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the positions of the plurality of second nozzles 24b are set so that the spray shaft O2 passes through the space between the heat transfer tubes 22 adjacent to each other in the Y direction.
  • the reach of the spray flow in the row direction (Z direction) is extended. This not only contributes to the miniaturization of the evaporator 101, but also contributes to the uniform thinning of the liquid film on the surface of the heat transfer tube 22.
  • the spray shafts O3 of the plurality of third nozzles 24c pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the position of the third nozzle 24c in the Y direction is determined so that the spray shaft O3 passes through the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction.
  • the spray shafts O4 of the plurality of fourth nozzles 24d pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the position of the fourth nozzle 24d in the Y direction is determined so that the spray shaft O4 passes through the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction. According to such a configuration, the reach of the spray flow in the row direction (Z direction) is extended.
  • FIG. 4A there are at least one or more heat transfer tubes 22 between the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Y direction.
  • FIG. 4B there is at least one or more heat transfer tubes 22 between the plurality of third nozzles 24c and the plurality of fourth nozzles 24d in the Y direction.
  • In the Y direction there are three stages of heat transfer tubes 22 between the plurality of third nozzles 24c and the plurality of fourth nozzles 24d.
  • the shell 21 is configured to store a liquid phase refrigerant at the bottom thereof.
  • the circulation circuit 25 connects the bottom of the shell 21 to each of the plurality of nozzles 24.
  • a circulation pump 26 is arranged in the circulation circuit 25. By the action of the circulation pump 26, the liquid phase refrigerant stored in the bottom of the shell 21 is supplied to the plurality of nozzles 24 through the circulation circuit 25. According to such a configuration, the liquid phase refrigerant can be easily recovered, and the energy consumption for supplying the liquid phase refrigerant to the plurality of nozzles 24 can be suppressed.
  • the shell 21 is provided with an inflow pipe 27 and a discharge pipe 28.
  • the inflow pipe 27 is a flow path for guiding the refrigerant into the shell 21.
  • the discharge pipe 28 is a flow path that guides the refrigerant evaporated on the surfaces of the plurality of heat transfer pipes 22 to the outside of the shell 21.
  • a flow path 110d and a flow path 110a may be connected to the inflow pipe 27 and the discharge pipe 28, respectively.
  • the plurality of nozzles 24 are connected to the circulation circuit 25 via the header 23.
  • a flow path cover 29a is attached to the shell 21 so as to cover one end of a plurality of heat transfer tubes 22.
  • a flow path cover 29b is attached to the shell 21 so as to cover the other ends of the plurality of heat transfer tubes 22.
  • the flow path cover 29a has two partition plates 31 inside.
  • the flow path cover 29b has one partition plate 31 inside.
  • the flow path cover 29a has a secondary side inflow port 32 and a secondary side outflow port 33.
  • the secondary side inflow port 32 may be provided on the flow path cover 29b.
  • the secondary side outlet 33 may be provided on the flow path cover 29b.
  • the number of passes in the evaporator 101 of the present embodiment increases by "1" each time the flow direction of the refrigerant is reversed at the flow path cover 29a or 29b.
  • the secondary side inflow port 32 and the secondary side outflow port 33 are arranged on the flow path cover 29a so that the number of passes is “4”.
  • the shell 21 has a rectangular cross-sectional shape.
  • the shape of the shell 21 is not limited.
  • the shell 21 may have a circular cross-sectional shape.
  • the shell 21 may be a pressure resistant container.
  • the liquid phase refrigerant is supplied from the bottom of the shell 21 to the plurality of nozzles 24 via the header 23.
  • the liquid phase refrigerant is sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b onto the plurality of heat transfer tubes 22. Further, the liquid phase refrigerant is sprayed from each of the plurality of third nozzles 24c and the plurality of fourth nozzles 24d onto the plurality of heat transfer tubes 22.
  • the heat medium flows into the flow path cover 29a from the secondary side inflow port 32 and flows through the heat transfer tube 22. Next, the heat medium reverses the flow direction at the flow path cover 29b and flows through the heat transfer tube 22.
  • the heat medium reverses the flow direction again at the flow path cover 29a and flows through the heat transfer tube 22.
  • the heat medium again reverses the flow direction at the flow path cover 29b and flows through the heat transfer tube 22.
  • the heat medium flows out from the secondary side outlet 33 and is discharged to the outside of the evaporator 101. If the liquid phase refrigerant is sprayed toward the heat transfer tube 22 while flowing the heat medium through the heat transfer tube 22, heat exchange between the heat medium and the liquid phase refrigerant is performed in the heat transfer tube 22, and the refrigerant evaporates to produce the gas phase refrigerant. Generated.
  • FIGS. 5A and 5B the components of the refrigerant sprayed from each nozzle 24 will be described with reference to FIGS. 5A and 5B.
  • the arrows on the heat transfer tube 22 indicate the main directions of movement of the sprayed refrigerant.
  • the spray flow of the refrigerant sprayed from the first nozzle 24a has a flow component C1 along the spray shaft O1 and a flow component C2 along the surface of the heat transfer tube 22.
  • the component C1 is a component of the flow of the refrigerant sprayed and spread from the first nozzle 24a.
  • the component C1 is a component of the flow of the refrigerant that moves in the space between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction along the spray shaft O1.
  • the component C2 is a component of the flow of the refrigerant that moves on the surface of the heat transfer tube 22 with a velocity component in the X direction.
  • the spray flow of the refrigerant sprayed from the second nozzle 24b has a flow component C3 along the spray shaft O2 and a flow component C4 along the surface of the heat transfer tube 22.
  • the spray flow of the refrigerant sprayed from the third nozzle 24c has a flow component C5 along the spray shaft O3 and a flow component C6 along the surface of the heat transfer tube 22.
  • the spray stream of the refrigerant sprayed from the fourth nozzle 24d has a flow component C7 along the spray shaft O4 and a flow component C8 along the surface of the heat transfer tube 22.
  • the flow of the refrigerant having the component C1, the component C3, the component C5 and the component C7 travels in the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction, respectively.
  • the refrigerant moves while contacting the lower surface of the heat transfer tube 22 located on the upper side and the upper surface of the heat transfer tube 22 located on the lower side.
  • the flow of the refrigerant having the component C2 and the component C8 moves on the surface of the heat transfer tube 22 along the X direction, respectively.
  • the flow of the refrigerant having the component C4 and the component C6 moves on the surface of the heat transfer tube 22 in the direction opposite to the direction of the flow of the refrigerant having the component C2 and the component C8, respectively.
  • the refrigerant having these components exchanges heat with the heat medium circulating inside the heat transfer tube 22 on the surface of the heat transfer tube 22 and evaporates.
  • the unevaporated refrigerant drops toward the heat transfer tube 22 located below.
  • FIG. 6 is a diagram showing a moving direction and a dropping state of the refrigerant sprayed from the first nozzle 24a and the third nozzle 24c onto the plurality of heat transfer tubes 22.
  • FIG. 6 shows a part of a portion viewed from the Z direction, which is visible from the surface including the frontmost heat transfer tube 22 with respect to the front, and a part visible from the surface including the innermost heat transfer tube 22. There is.
  • the arrow on the heat transfer tube 22 indicates the main moving direction of the sprayed refrigerant.
  • the spray stream of the refrigerant sprayed from the first nozzle 24a forms a space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction from the first side to the second side in the Z direction and the X direction. Proceed in the direction between and.
  • the spray shaft O1 is located between the heat transfer tube 22 and the heat transfer tube 22 in the Y direction.
  • the spray stream of the refrigerant sprayed from the third nozzle 24c forms a space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction from the second side to the first side in the Z direction and the X direction. Proceed in the direction between and.
  • the spray shaft O3 is located between the heat transfer tube 22 and the heat transfer tube 22 in the Y direction.
  • a part of the refrigerant (component C2) sprayed from the first nozzle 24a moves on the surface of the heat transfer tube 22 along the X direction.
  • a part of the refrigerant sprayed from the third nozzle 24c (component C6) moves on the surface of the heat transfer tube 22 along the X direction.
  • the refrigerant flow component C2 is a component in the opposite direction to the refrigerant flow component C6.
  • the components (components C1 and C5) of the flow of the refrigerant sprayed from the first nozzle 24a and the third nozzle 24c hardly reach the heat transfer tube 22 located below the heat transfer tube 22. Therefore, heat exchange is performed by dropping the unevaporated refrigerant in the heat transfer tube 22 located above.
  • the same description can be applied to the second nozzle 24b and the fourth nozzle 24d.
  • FIG. 7A is a diagram showing the positional relationship between the nozzle surface defined by the first nozzle 24a and the third nozzle 24c and the nozzle surface defined by the second nozzle 24b and the fourth nozzle 24d.
  • FIG. 7A for ease of understanding, only one first nozzle 24a, one second nozzle 24b, one third nozzle 24c, and one fourth nozzle 24d are shown.
  • the third nozzle 24c is on the same nozzle surface as the second nozzle 24b.
  • the n-th nozzle surface is defined as an XZ surface defined by the spray shaft O1 of the first nozzle 24a (not shown in FIG. 7A) and the spray shaft O3 of the third nozzle 24c (not shown in FIG. 7A).
  • the heat transfer tube 22 located above the spray shaft O1 of the first nozzle 24a is defined as the heat transfer tube 22a.
  • the heat transfer tube 22 located below the spray shaft O1 of the first nozzle 24a is defined as the heat transfer tube 22b.
  • the heat transfer tube 22a and the heat transfer tube 22b are adjacent to each other in the Y direction.
  • the n-th nozzle surface includes a lower surface of the heat transfer tube 22a and an upper surface of the heat transfer tube 22b.
  • the first (n + 1) nozzle surface is defined as an XZ surface defined by the spray shaft O2 of the second nozzle 24b (not shown in FIG. 7A) and the spray shaft O4 of the fourth nozzle 24d (not shown in FIG. 7A).
  • the heat transfer tube 22 located above the spray shaft O2 of the second nozzle 24b is defined as the heat transfer tube 22c.
  • the heat transfer tube 22 located below the spray shaft O2 of the second nozzle 24b is defined as the heat transfer tube 22d.
  • the heat transfer tube 22c and the heat transfer tube 22d are adjacent to each other in the Y direction.
  • the first (n + 1) nozzle surface includes a lower surface of the heat transfer tube 22c and an upper surface of the heat transfer tube 22d.
  • a predetermined number of heat transfer tubes 22 exist between the nth nozzle surface and the (n + 1) th nozzle surface.
  • FIG. 7B is a diagram showing the state of the refrigerant on the nth nozzle surface and the (n + 1) th nozzle surface after spraying the refrigerant.
  • the arrow indicates the direction in which the refrigerant is dropped.
  • the refrigerant as shown in FIG. 7B is on the nth nozzle surface and the (n + 1) nozzle surface.
  • a coarse and dense state occurs. Specifically, on the nth nozzle surface and the (n + 1) th nozzle surface, dense regions and coarse regions of the refrigerant are generated in a staggered manner.
  • the refrigerant sufficiently reaches the region including the heat transfer tube 22 in the vicinity of the first nozzle 24a and the third nozzle 24c by the components of the flow of the refrigerant (components C1 and C5). ..
  • the components of the flow of the refrigerant allow the refrigerant to sufficiently move on the surface of the heat transfer tube 22.
  • a dense region of the refrigerant is formed on the n-th nozzle surface, and a liquid film of the refrigerant is formed.
  • the refrigerant sufficiently reaches the region including the heat transfer tube 22 in the vicinity of the second nozzle 24b and the fourth nozzle 24d by the components of the flow of the refrigerant (components C3 and C7). do.
  • the components of the flow of the refrigerant (components C4 and C8) allow the refrigerant to sufficiently move on the surface of the heat transfer tube 22.
  • a dense region of the refrigerant is formed on the (n + 1) th nozzle surface, and a liquid film of the refrigerant is formed.
  • the amount of the refrigerant that reaches is not sufficient or the refrigerant does not reach the region including the heat transfer tube 22 that is located away from the first nozzle 24a and the third nozzle 24c. Therefore, as shown in FIG. 7B, a rough region of the refrigerant is generated.
  • the amount of the refrigerant that reaches is not sufficient or the refrigerant does not reach the region including the heat transfer tube 22 that is located away from the second nozzle 24b and the fourth nozzle 24d. Therefore, as shown in FIG. 7B, a rough region of the refrigerant is generated.
  • the unevaporated refrigerant drops from the dense region of the n-th nozzle surface to the rough region of the (n + 1) th nozzle surface, so that the wet state of the rough region is improved.
  • the surface of the plurality of heat transfer tubes 22 can be uniformly wetted by the refrigerant sprayed from the plurality of first nozzles 24a to the fourth nozzle 24d. This makes it possible to prevent the generation of a dry-out surface that the refrigerant does not reach. Therefore, the heat transfer performance of the evaporator 101 can be improved.
  • This embodiment is particularly effective when there is a heat transfer tube 22 having a large number of rows of heat transfer tubes 22 and a small amount of refrigerant reaching from the nozzle 24.
  • the difference in wet state on each nozzle surface is determined by the superimposing action of the refrigerant supply action by the spray type and the refrigerant supply action by the flowing liquid film type from both sides of the plurality of heat transfer tubes 22.
  • the heat transfer coefficient is improved by the forced convection, so that the heat exchange efficiency can be further improved.
  • the first nozzle 24a may be provided in a plurality of stages.
  • the second nozzle 24b may be provided in a plurality of stages.
  • the number of stages of the first nozzle 22a may or may not match the number of stages of the second nozzle 24b.
  • the third nozzle 24a may be provided in a plurality of stages.
  • the second nozzle 24b may be provided in a plurality of stages.
  • the number of stages of the third nozzle 22c may or may not match the number of stages of the fourth nozzle 24d.
  • the distances between the first nozzles 24a adjacent to each other in the Y direction may be equal to or different from each other.
  • Such a configuration also applies to the second nozzle 24b, the third nozzle 24c and the fourth nozzle 24d.
  • the distance between the first nozzle 24a and the second nozzle 24b in the Y direction may be 1 ⁇ 2 of the distance between the first nozzles 24a adjacent to each other in the Y direction.
  • the distance between the third nozzle 24c and the fourth nozzle 24d in the Y direction may be 1 ⁇ 2 of the distance between the third nozzles 24c adjacent to each other in the Y direction.
  • first nozzles 24a and second nozzles 24b When viewed in a plan view from the Z direction, a plurality of first nozzles 24a and second nozzles 24b may be arranged in a matrix.
  • the second nozzle 24b When four first nozzles 24a forming the four vertices of the quadrangle having the smallest area are selected in a plan view from the Z direction, the second nozzle 24b may be located at the center of the quadrangle formed by the four first nozzles 24a. ..
  • the first nozzle is located in the center of the quadrangle formed by the four second nozzles 24b. 24a can be located.
  • the plurality of third nozzles 24c and the fourth nozzle 24d may be arranged in a matrix.
  • the fourth nozzle 24d may be located in the center of the quadrangle formed by the four third nozzles 24c. ..
  • the third nozzle is located in the center of the quadrangle formed by the four fourth nozzles 24d.
  • a plurality of first nozzles 24a having two or more stages and a plurality of second nozzles 24b having two or more stages may be provided along the Y direction.
  • the distance between the first nozzles 24a adjacent to each other in the Y direction may be wider than the distance W between the first nozzles 24a adjacent to each other in the X direction.
  • the distance between the second nozzles 24b adjacent to each other in the Y direction may be wider than the distance W between the second nozzles 24b adjacent to each other in the X direction.
  • Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Y direction.
  • a plurality of third nozzles 24c having two or more stages and a plurality of fourth nozzles 24d having two or more stages may be provided along the Y direction.
  • the distance between the third nozzles 24c adjacent to each other in the Y direction may be wider than the distance W between the third nozzles 24c adjacent to each other in the X direction.
  • the distance between the fourth nozzles 24d adjacent to each other in the Y direction may be wider than the distance W between the fourth nozzles 24d adjacent to each other in the X direction.
  • Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Y direction.
  • a plurality of first nozzles 24a having two or more stages and a plurality of second nozzles 24b having two or more stages may be provided along the Y direction.
  • the distance between the first nozzles 24a adjacent to each other in the Y direction may be equal to the distance between the second nozzles 24b adjacent to each other in the Y direction.
  • the distance between the first nozzle 24a and the second nozzle 24b in the Y direction may be 1 ⁇ 2 of the distance between the first nozzles 24a adjacent to each other in the Y direction.
  • a plurality of third nozzles 24c having two or more stages and a plurality of fourth nozzles 24d having two or more stages may be provided along the Y direction.
  • the distance between the third nozzles 24c adjacent to each other in the Y direction may be equal to the distance between the fourth nozzles 24d adjacent to each other in the Y direction.
  • the distance between the third nozzle 24c and the fourth nozzle 24d in the Y direction may be 1 ⁇ 2 of the distance between the third nozzles 24c adjacent to each other in the Y direction.
  • the refrigeration cycle apparatus 100 of the present embodiment includes the shell-and-tube heat exchanger of the present embodiment.
  • the shell-and-tube heat exchanger may be used in the evaporator 101 or in the condenser 103.
  • the efficiency of the refrigeration cycle apparatus 100 can be improved.
  • FIG. 8 is a cross-sectional view of the evaporator 111 according to the second embodiment of the present disclosure.
  • FIG. 8 corresponds to FIG. 3 of the first embodiment.
  • the evaporator 111 of the present embodiment does not include the plurality of third nozzles 24c and the plurality of fourth nozzles 24d, and the number of rows of the plurality of heat transfer tubes 22 is six. It has the same configuration as the evaporator 101 of 1.
  • FIG. 9 is a side view of the evaporator 111 along the IX-IX line.
  • elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
  • the plurality of first nozzles 24a and the plurality of second nozzles 24b are staggered. The arrangement pattern of is shown.
  • FIG. 10A is a cross-sectional view of the evaporator 111 along the line XA-XA
  • FIG. 10B is a cross-sectional view of the evaporator 111 along the line XB-XB.
  • elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
  • the liquid phase refrigerant is supplied from the bottom of the shell 21 to the plurality of first nozzles 24a and the plurality of second nozzles 24b via the header 23.
  • the liquid phase refrigerant is sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b onto the plurality of heat transfer tubes 22.
  • the moving direction and the dropping state of the refrigerant sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b are as described in the first embodiment.
  • This embodiment is also effective when the number of rows of the heat transfer tubes 22 is small. According to the present embodiment, it is possible to improve the difference in the density of the wet state on each nozzle surface by the superimposing action between the supply action of the refrigerant by the spray type and the supply action of the refrigerant by the flowing liquid film type. This makes it possible to prevent the formation of a dry-out surface.
  • the first nozzle 24a may be provided in a plurality of stages.
  • the second nozzle 24b may be provided in a plurality of stages.
  • the number of stages of the first nozzle 22a may or may not match the number of stages of the second nozzle 24b.
  • the same description as in the first embodiment may be applied to such a configuration.
  • the plurality of first nozzles 24a and the plurality of third nozzles 24c are arranged so as to define the same nozzle surface. Further, a plurality of second nozzles 24b and a plurality of fourth nozzles 24d are arranged so as to define the same nozzle surface.
  • the plurality of first nozzles 24a and the plurality of third nozzles 24c may be arranged on different nozzle surfaces. Further, the plurality of second nozzles 24b and the plurality of fourth nozzles 24d may be arranged on different nozzle surfaces. That is, the position of the first nozzle 24a in the Y direction may be different from the position of the third nozzle 24c in the Y direction.
  • the position of the second nozzle 24b in the Y direction may be different from the position of the fourth nozzle 24d in the Y direction.
  • the third nozzle 24c, the plurality of second nozzles 24b, and the plurality of fourth nozzles 24d may exhibit a staggered arrangement pattern.
  • FIG. 11 shows the configuration of a refrigeration cycle device 200 equipped with a shell-and-tube heat exchanger.
  • the refrigerating cycle device 200 includes an evaporator 201, a compressor 202, a condenser 203, a flow valve 204, a flow path 210a, a flow path 210b, a flow path 210c, and a flow path 210d.
  • the outlet of the evaporator 201 is connected to the inlet of the compressor 202 by the flow path 210a.
  • the outlet of the compressor 202 is connected to the inlet of the condenser 203 by the flow path 210b.
  • the outlet of the condenser 203 is connected to the inlet of the flow valve 204 by the flow path 210c.
  • the outlet of the flow valve 204 is connected to the inlet of the evaporator 201 by the flow path 210d.
  • the flow paths 210a and 210b are paths through which the gas phase refrigerant passes.
  • the flow path 210c and the flow path 210d are paths through which the liquid phase refrigerant passes. Each path is composed of, for example, at least one metal pipe.
  • the liquid phase refrigerant is heated and evaporated in the evaporator 201 to generate a vapor phase refrigerant.
  • the gas phase refrigerant is sucked into the compressor 202 and compressed.
  • the compressed vapor phase refrigerant is supplied from the compressor 202 to the condenser 203.
  • the vapor phase refrigerant is cooled by the condenser 203 to condense and liquefy. This produces a liquid phase refrigerant.
  • the liquid phase refrigerant is returned from the condenser 203 to the evaporator 201 via the flow valve 204.
  • the refrigerant in the refrigeration cycle device 200 is not limited to a specific refrigerant.
  • the refrigerant include chlorofluorocarbon refrigerants, low GWP (Global Warming Potential) refrigerants, and natural refrigerants.
  • chlorofluorocarbon refrigerants include hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
  • HCFCs hydrochlorofluorocarbons
  • HFCs hydrofluorocarbons
  • Examples of the low GWP refrigerant include HFO-1234yf and water.
  • the natural refrigerant include carbon dioxide and water.
  • the refrigerant may be a refrigerant containing a substance having a negative saturated vapor pressure at room temperature as a main component.
  • a refrigerant examples include a refrigerant containing water, alcohol, or ether as a main component.
  • the "main component” means the component contained most in the mass ratio.
  • Negative pressure means pressure that is absolute and lower than atmospheric pressure.
  • Room temperature means a temperature within the range of 20 ° C ⁇ 15 ° C according to the Japanese Industrial Standards (JIS Z8703).
  • the evaporator 201 is composed of a shell-and-tube heat exchanger as described later.
  • the compressor 202 may be a speed compressor such as a centrifugal compressor or a positive displacement compressor such as a scroll compressor.
  • the model of the condenser 203 is not limited to a specific type. Heat exchangers such as plate heat exchangers and shell and tube heat exchangers can be used in the condenser 203.
  • the refrigeration cycle device 200 is, for example, an air conditioner for business use or home use.
  • the heat medium cooled by the evaporator 201 is supplied into the room through the circuit 205 and used for cooling the room.
  • the heat medium heated by the condenser 203 is supplied into the room through the circuit 206 and used for heating the room.
  • the heat medium is, for example, water.
  • the refrigeration cycle device 200 is not limited to the air conditioner, but may be another device such as a chiller or a heat storage device.
  • the refrigeration cycle device 200 may be an absorption chiller including an evaporator, an absorber, a regenerator, and a condenser.
  • Circuit 205 is a circuit that circulates a heat medium in the evaporator 201.
  • the circuit 206 is a circuit for circulating a heat medium in the condenser 203.
  • the circuit 205 and the circuit 206 may be a closed circuit isolated from the outside air.
  • the heat medium is a fluid flowing through each of the circuit 205 and the circuit 206.
  • the heat medium is not limited to water, and may be a liquid such as oil or brine, or a gas such as air.
  • the composition of the heat medium of the circuit 205 may be different from the composition of the heat medium of the circuit 206.
  • FIG. 12 is a vertical cross-sectional view of the evaporator 201 having the line II-II in FIG. 11 as a cutting line.
  • the evaporator 201 is configured as a shell-and-tube heat exchanger.
  • the evaporator 201 includes a shell 221, a heat transfer tube group 222, and a nozzle 224.
  • the heat transfer tube group 222 is arranged inside the shell 221.
  • the nozzle 224 sprays the liquid phase refrigerant toward the heat transfer tube group 222.
  • the heat transfer tube group 222 is composed of, for example, a plurality of heat transfer tubes 222p arranged in parallel.
  • the heat transfer tube 222p has a circular cross section perpendicular to the longitudinal direction. Grooves may be applied to the inner surface of the heat transfer tube 222p, the outer surface of the heat transfer tube 222p, or both.
  • the shell 221 has, for example, a rectangular cross-sectional shape.
  • the shell 221 may have a circular cross-sectional shape.
  • the shell 221 may be a pressure resistant container.
  • the evaporator 201 further includes, for example, a header 223, a circulation circuit 225, a pump 226, an inflow pipe 227a, an outflow pipe 227b, a first cover 229a, and a second cover 229b.
  • the nozzle 224 is connected to the circulation circuit 225 by the header 223.
  • the pump 226 is arranged in the circulation circuit 225.
  • a liquid phase refrigerant is stored in the bottom of the shell 221.
  • the pump 226 By the action of the pump 226, the liquid phase refrigerant stored in the bottom of the shell 221 is supplied to the nozzle 224 through the circulation circuit 225 and the header 223.
  • the inflow pipe 227a and the outflow pipe 227b are attached to the shell 221.
  • the inflow pipe 227a forms a flow path for guiding the refrigerant inside the shell 221.
  • the discharge pipe 227b forms a flow path that guides the vapor phase refrigerant generated inside the evaporator 201 to the outside of the shell 221.
  • a flow path 210d and a flow path 210a can be connected to the flow path formed by the inflow pipe 227a and the discharge pipe 227b, respectively.
  • the first cover 229a is attached to the shell 221 and covers one end of the heat transfer tube group 222 in the longitudinal direction (X-axis direction) of the heat transfer tube 222p.
  • the second cover 229b is attached to the shell 221 and covers the other end of the heat transfer tube group 222 in the longitudinal direction of the heat transfer tube 222p.
  • the first cover 229a has two partition plates 229c inside thereof.
  • the second cover 229b has one partition plate 229d inside.
  • the first cover 229a has, for example, a secondary side inlet 228a and a secondary side outlet 228b. Each of the secondary side inlet 228a and the secondary side outlet 228b may be formed on the second cover 229b.
  • the number of passes in the evaporator 201 increases by "1" each time the flow direction of the heat medium inside the heat transfer tube 222p is reversed at the flow path cover 229a or 229b.
  • the flow path cover 229a has a secondary side inflow port 228a and a secondary side outflow port 228b so that the number of passes is “4”.
  • the evaporator 201 includes a plurality of nozzles 224.
  • the plurality of nozzles 224 are arranged at predetermined intervals in the longitudinal direction (X-axis direction) of the heat transfer tube 222p. Further, the plurality of nozzles 224 are alternately arranged on a pair of straight lines parallel to the Y-axis direction in the longitudinal direction of the heat transfer tube 222p. Further, each nozzle 224 is arranged so as to spray the liquid phase refrigerant toward, for example, between the adjacent heat transfer tubes 222p in the Y-axis direction.
  • FIGS. 13A and 13B show the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224.
  • the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray axis Am.
  • the spray axis Am can also be regarded as the central axis of the nozzle 224.
  • the spray axis Am can be an axis that passes through the center of the opening of the nozzle 224.
  • the liquid phase refrigerant sprayed from the nozzle 224 forms a fan-shaped spray area M.
  • the shape of the spray region S that appears when this spray pattern is projected onto the plane H perpendicular to the spray axis Am is flat.
  • the liquid phase refrigerant sprayed in such a spray pattern passes between the heat transfer tubes 222p.
  • FIG. 14 is a vertical cross-sectional view of the evaporator 201 having the IV-IV line in FIG. 11 as a cutting line.
  • the number of heat transfer tubes 222p arranged in the Z-axis direction is not limited to a specific value.
  • 12 heat transfer tubes 222p are arranged in the Z-axis direction.
  • the spray shaft Am passes between the pair of heat transfer tubes 222p closest to the nozzle 224 in the direction perpendicular to the longitudinal direction of the heat transfer tube 222p (Z-axis direction), and the spray region S is a pair of transfer tubes.
  • the liquid phase refrigerant is sprayed so as to pass between the hot tubes 222p.
  • the spray axis Am extends horizontally, for example.
  • the nozzle 224 is arranged only at one end of the heat transfer tube group 222 in the Z-axis direction, and is not arranged at the other end of the heat transfer tube group 222 in the Z-axis direction, for example. Therefore, the nozzle 224 sprays the liquid phase refrigerant in the positive direction of the Z axis, for example, on the plane (YZ plane) perpendicular to the longitudinal direction of the heat transfer tube 222p.
  • FIG. 15 shows a region where the liquid phase refrigerant is sprayed from the nozzle 224.
  • the spray area M of the liquid phase refrigerant sprayed from the heat transfer tube group 222 and the nozzle 224 is seen along the Y-axis direction.
  • the nozzle 224 is arranged, for example, at a distance L from the heat transfer tube 222p closest to the Z-axis direction in the heat transfer tube group 222.
  • the spray area M has a first contour line W1 and a second contour line W2 formed so as to form a central angle ⁇ .
  • the central angle ⁇ is not limited to a specific size.
  • the central angle ⁇ is, for example, 90 ° or more and 120 ° or less.
  • FIG. 16 is a diagram showing a state of spraying and flow of the liquid phase refrigerant sprayed from the nozzle 224 toward the heat transfer tube group 222.
  • the heat transfer tube group 222 includes a first stage 222a and a second stage 222b.
  • the first stage 222a has a plurality of heat transfer tubes 222p arranged along the first plane.
  • the second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and has the first stage 222a in the direction perpendicular to the first plane (Y-axis direction). Next to each other.
  • the first plane and the second plane are planes parallel to the ZX plane.
  • the first stage 222a intersects a tangible object from one end to the other end in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a.
  • the plurality of heat transfer tubes 222p in the first stage 222a and the plurality of heat transfer tubes 222p in the second stage 222b are rectangular in a third plane perpendicular to the longitudinal direction (X-axis direction) of the heat transfer tube 222p. It forms a grid, a square grid, or a parallelogram grid.
  • the third plane is a plane parallel to the YZ plane.
  • the spray axis Am of the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 is the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the plurality of transmissions of the second stage 222b. It passes between the hot tube 222p and the second end 222k.
  • the first end portion 222j is an end portion close to the second stage 222b in the direction perpendicular to the first plane (Y-axis direction).
  • the second end portion 222k is an end portion close to the first stage 222a in the direction perpendicular to the first plane (Y-axis direction).
  • the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 passes between the first stage 222a and the second stage 222b.
  • the second stage 222b is arranged below the first stage 222a in the direction of gravity, for example.
  • the heat transfer tube group 222 includes, for example, the lower heat transfer tube group 222c.
  • the lower heat transfer tube group 222c has a plurality of heat transfer tubes 222p and is arranged below the second stage 222b in the direction of gravity.
  • Each of the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c is arranged directly under any one of the plurality of heat transfer tubes 222p of the second stage 222b, for example.
  • the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c form a rectangular lattice or a square lattice in the third plane together with, for example, the plurality of heat transfer tubes 222p of the second stage 222b.
  • the pump 226 operates and the liquid phase refrigerant is supplied to the nozzle 224 through the circulation circuit 225 and the header 223.
  • the liquid phase refrigerant is sprayed from the nozzle 224 toward the heat transfer tube group 222.
  • the heat medium is guided from the outside of the evaporator 201 to the inside of the first cover 229a through the secondary side inflow port 228a.
  • the heat medium passes through the inside of the heat transfer tube 222p in the positive direction of the X-axis and is guided to the space below the partition plate 229d inside the second cover 229b.
  • the direction of the flow of the heat medium is reversed inside the second cover 229b, and the heat medium passes through the inside of the heat transfer tube 222p in the negative direction of the X-axis and is between the two partition plates 229c inside the first cover 229a. Guided to space.
  • the direction of the flow of the heat medium is reversed inside the first cover 229a, and the heat medium passes through the inside of the heat transfer tube 222p in the positive direction of the X axis and is above the partition plate 229d inside the second cover 229b. Guided to the space of.
  • the direction of the flow of the heat medium is reversed inside the second cover 229b, and the heat medium passes through the inside of the heat transfer tube 222p in the negative direction of the X-axis and is guided to the inside of the first cover 229a. After that, the heat medium is guided to the outside of the evaporator 201 through the secondary side outlet 228b.
  • the nozzle 224 sprays the liquid phase refrigerant toward the space between the two adjacent stages of heat transfer tubes in the Y-axis direction.
  • the liquid phase refrigerant is sprayed in a spray pattern in which the spray axis Am extends between the two stages.
  • the mist-like liquid-phase refrigerant generated by spraying the liquid-phase refrigerant adheres to the outer surface of the heat transfer tube 222p.
  • the liquid phase refrigerant evaporates to generate a gas phase refrigerant.
  • the liquid-phase refrigerant that has not evaporated flows along the outer surface of the heat transfer tube 222p and is dropped toward the lower heat transfer tube 222p.
  • the spray axis Am is perpendicular to the central axis Ax of the heat transfer tube 222p of the first stage 222a.
  • a spray pattern of the liquid phase refrigerant is formed so as to extend.
  • the distance L between the heat transfer tube 222p closest to the nozzle 224 in the Z-axis direction and the nozzle 224 has a predetermined size.
  • the spray area M of the liquid phase refrigerant gradually expands from the front row heat transfer tube 222p in the first stage 222a toward the last row heat transfer tube 222p, and the outer surface of the last row heat transfer tube 222p in the first stage 222a. A sufficient range of is wet with the liquid phase refrigerant.
  • the liquid phase refrigerant sprayed from the nozzle 224 is transmitted in the first stage 222a and the second stage 222b arranged so as to form a rectangular grid, a square grid, or a parallelogram grid in the third plane. It passes between the hot tubes 222p. Between the first stage 222a and the second stage 222b, there is no member such as a heat transfer tube that directly hinders the progress of the liquid phase refrigerant sprayed from the nozzle 224. Therefore, the liquid phase refrigerant sprayed from the nozzle 224 easily travels straight between the first stage 222a and the second stage 222b.
  • a part of the liquid phase refrigerant sprayed from the nozzle 224 comes into contact with the first end portion 222j of the heat transfer tube 222p of the first stage 222a and the second end portion 222k of the heat transfer tube 222p of the second stage 222b.
  • a part of the liquid phase refrigerant in contact with the heat transfer tube 222p of the first stage 222a flows in the positive direction of the Y axis along the leading edge of the heat transfer tube 222p with respect to the flow of the liquid phase refrigerant.
  • a part of the liquid phase refrigerant in contact with the heat transfer tube 222p of the second stage 222b flows in the negative direction on the Y axis along the leading edge of the heat transfer tube 222p.
  • another portion of the liquid phase refrigerant flows in the negative Y-axis direction along the trailing edge of the heat transfer tube 222p of the second stage 222b.
  • Such a flow of the liquid phase refrigerant occurs around the heat transfer tubes 222p in each row of the first stage 222a and the second stage 222b.
  • the liquid phase refrigerant comes into direct contact with the outer surface of the heat transfer tube 222p to cause heat transfer accompanied by forced convection, and the liquid phase refrigerant occurs. Heat exchange between and the heat medium is promoted.
  • the liquid phase refrigerant forms a liquid film while flowing in the negative direction of the Y axis on the outer surface of the heat transfer tube 222p of the second stage 222b, and a part of the liquid phase refrigerant forming the liquid film evaporates.
  • the unevaporated liquid-phase refrigerant that could not be completely evaporated in the upper heat transfer tube group 222m is dropped from the lowermost portion of the heat transfer tube 222p of the second stage 222b toward the heat transfer tube 222p of the lower heat transfer tube group 222c.
  • the dropped liquid phase refrigerant flows downward while forming a liquid film on the outer surface of the heat transfer tube 222p, some of the liquid phase refrigerant evaporates, and another part of the liquid phase refrigerant is further below the heat transfer tube 222p. It is dropped toward. Such flow and dripping of the liquid phase refrigerant occurs around the heat transfer tubes 22p in each row of the lower heat transfer tube group 222c. In this way, the liquid phase refrigerant sprayed from the nozzle 224 is dropped from the heat transfer tube 222p of the upper heat transfer tube group 222m and indirectly supplied around the heat transfer tube 222p of the lower heat transfer tube group 222c. The liquid phase refrigerant remaining after the dropping is stored in the bottom of the shell 221.
  • the liquid phase refrigerant sprayed from the nozzle 224 is directly supplied to generate forced convection. Since the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray shaft Am, the liquid phase refrigerant easily travels straight between the first stage 222a and the second stage 222b. As a result, in the upper heat transfer tube group 222 m, forced convection of the liquid phase refrigerant is likely to occur even around the heat transfer tube 222p far from the nozzle 224. Therefore, the outer surface of the heat transfer tube 222p distant from the nozzle 224 is easily wetted with the liquid phase refrigerant, and dryout is less likely to occur on the outer surface of the heat transfer tube 222p distant from the nozzle 224.
  • the evaporator 201 configured as a shell-and-tube heat exchanger includes a shell 221, a heat transfer tube group 222, and a nozzle 224.
  • the heat transfer tube group 222 is arranged inside the shell 221.
  • the nozzle 224 sprays the liquid phase refrigerant toward the heat transfer tube group 222.
  • the heat transfer tube group 222 includes a first stage 222a and a second stage 222b.
  • the first stage 222a has a plurality of heat transfer tubes 222p arranged along the first plane.
  • the second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and is adjacent to the first stage 222a in the direction perpendicular to the first plane.
  • the nozzle 224 has a spray axis Am and sprays the liquid phase refrigerant in a flat spray pattern passing between the first stage 222a and the second stage 222b.
  • the spray shaft Am passes between the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b.
  • the first end portion 222j is an end portion close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a in the direction perpendicular to the first plane.
  • the second end portion 222k is an end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b in the direction perpendicular to the first plane.
  • the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray shaft Am, so that the liquid phase refrigerant easily travels straight between the first stage 222a and the second stage 222b. Therefore, in the first stage 222a and the second stage 222b, forced convection of the liquid phase refrigerant is likely to occur even around the heat transfer tube 222p far from the nozzle 224. As a result, the outer surface of the heat transfer tube 222p distant from the nozzle 224 is easily wetted with the liquid phase refrigerant, and dryout is less likely to occur on the outer surface of the heat transfer tube 222p distant from the nozzle 224.
  • the first stage 222a does not intersect the tangible object from one end to the other end in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a.
  • a virtual plane may exist.
  • the liquid phase refrigerant easily travels straight from one end to the other end of the first stage 222a, and dryout occurs more reliably on the outer surface of the distant heat transfer tube 222p. It's hard to do.
  • the plurality of heat transfer tubes 222p of the first stage 222a and the plurality of heat transfer tubes 222p of the second stage 222b are rectangular grids, square grids, in a third plane perpendicular to the longitudinal direction of the heat transfer tubes 222p. Alternatively, it may form a parallelogram lattice.
  • the flow of the liquid phase refrigerant between the first stage 222a and the second stage 222b is likely to be stable and straight. As a result, dryout is less likely to occur more reliably on the outer surface of the distant heat transfer tube 222p.
  • the second stage 222b may be arranged below the first stage 222a in the direction of gravity.
  • the heat transfer tube group 222 may include a lower heat transfer tube group 222c having a plurality of heat transfer tubes 222p and arranged below the second stage 222b in the direction of gravity.
  • the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c together with the plurality of heat transfer tubes 222p of the second stage 222b, form a rectangular lattice or a square lattice in the third plane.
  • the liquid phase refrigerant dropped from the plurality of heat transfer tubes 222p of the second stage 222b more reliably forms a liquid film on the outer surface of each heat transfer tube 222p of the lower heat transfer tube group 222c, and it is easy to wet the outer surface thereof.
  • dryout is less likely to occur more reliably on the outer surface of the distant heat transfer tube 222p of the lower heat transfer tube group 222c.
  • a refrigeration cycle apparatus 200 provided with an evaporator 201 configured as a shell-and-tube heat exchanger. Since dryout is unlikely to occur on the outer surface of the heat transfer tube 222p far from the nozzle 224, the refrigeration cycle apparatus 200 tends to exhibit a high coefficient of performance (COP).
  • COP coefficient of performance
  • a heat medium is passed inside the heat transfer tube group 222 including the first stage 222a and the second stage 222b.
  • the first stage 222a has a plurality of heat transfer tubes arranged along the first plane.
  • the second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and is adjacent to the first stage 222a in the direction perpendicular to the first plane.
  • a liquid phase refrigerant is sprayed toward the heat transfer tube group 222 with a flat spray pattern having a spray shaft Am and passing between the first stage 222a and the second stage 222b, and the heat medium and the liquid are sprayed. Heat exchanges with the phase refrigerant.
  • the spray shaft Am has a first end portion 222j close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a and a second end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b. Pass between 222k.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described with reference to FIG.
  • the fourth embodiment is configured in the same manner as the third embodiment except for a part to be described in particular.
  • the same components as those of the third embodiment or the corresponding components of the fourth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of Embodiment 3 also applies to Embodiment 4, as long as it is not technically inconsistent.
  • FIG. 17 shows a region where the liquid phase refrigerant is sprayed from the nozzle 224 in the fourth embodiment.
  • the spray area M of the liquid phase refrigerant sprayed from the heat transfer tube group 222 and the nozzle 224 is seen along the Y-axis direction.
  • the spray axis Am of the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 is a straight line. It forms an acute angle ⁇ of a predetermined size with respect to P.
  • the straight line P extends perpendicularly to the longitudinal direction (X-axis direction) of the heat transfer tube 222p of the first stage 222a.
  • the acute angle ⁇ is not limited to a specific value.
  • the acute angle ⁇ is, for example, ⁇ / 2.
  • is the central angle of the spray area M.
  • the central angle ⁇ is 80 ° and the acute angle ⁇ is 40 °.
  • the liquid phase refrigerant is sprayed from the nozzle 224 so that the spray axis Am forms an acute angle ⁇ with respect to the straight line P.
  • the range of the heat transfer tube group 222 that overlaps with the spray area M on the XZ plane tends to be large.
  • the first contour line W1 of the spray area M tends to extend along the straight line P
  • the second contour line W2 of the spray area M tends to extend along the central axis Ax of the heat transfer tube 22p.
  • the nozzle 224 is arranged so that the spray axis Am is parallel to the straight line P, in other words, the nozzle 224 is arranged so that the spray axis Am is perpendicular to the central axis Ax of the heat transfer tube 222p. think.
  • the distance L is small and the nozzle 224 is arranged near the heat transfer tube group 222, the range in which the heat transfer tube 222p near the nozzle 224 of the heat transfer tube group 222 and the spray area M overlap on the XZ plane is small.
  • the portion of the heat transfer tube 222p away from the nozzle 224 in the longitudinal direction is unlikely to overlap with the spray area M.
  • the liquid phase refrigerant sprayed from the nozzle 224 causes a flow C1 and a flow C2.
  • the flow C1 is a flow of the liquid phase refrigerant passing between the heat transfer tubes 222p in the first stage 222a and the second stage 222b.
  • the flow C2 is a flow of the liquid phase refrigerant that collides with the leading edge of the outer surface of the heat transfer tube 222p and moves along the longitudinal direction (X-axis direction) of the heat transfer tube 222p.
  • the flow C1 is a flow of the liquid phase refrigerant spread so as to form the spray area M at the central angle ⁇ sprayed from the nozzle 224.
  • the liquid phase refrigerant in this flow C1 is in contact with the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a or the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b, while being in contact with the first stage. It passes between 222a and the second stage 222b.
  • the spray axis Am has a predetermined size with respect to the straight line P. Makes an acute angle ⁇ .
  • the central angle in the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 becomes small, and the spray area M may become narrow. Further, the flow rate of the liquid phase refrigerant sprayed from the nozzle 224 may decrease.
  • the desired range of the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with the liquid phase refrigerant, and the outer surface of the heat transfer tube 222p is dried out. Is unlikely to occur.
  • Embodiment 5 Hereinafter, the fifth embodiment will be described with reference to FIG.
  • the fifth embodiment is configured in the same manner as the third embodiment except for a part to be described in particular.
  • the same components as those of the third embodiment or the corresponding components of the fifth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of Embodiment 3 also applies to Embodiment 5, as long as it is not technically inconsistent.
  • FIG. 18 shows the state of spraying and flow of the liquid phase refrigerant in the evaporator 201 according to the fifth embodiment.
  • the heat transfer tube group 222 has a distal heat transfer tube 222d.
  • the distal heat transfer tube 222d is arranged at a position intersecting the spray axis Am.
  • the distal heat transfer tube 222d intersects the central axis of the nozzle 224.
  • the first stage 222a is arranged between the nozzle 224 and the distal heat transfer tube 222d in the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 222p of the first stage 222a.
  • the heat transfer tube group 222 has, for example, a lower heat transfer tube 222e.
  • the lower heat transfer tube 222e is arranged directly below the distal heat transfer tube 222d in the direction of gravity.
  • the distal heat transfer tube 222d and the lower heat transfer tube 222e have, for example, the same shape and dimensions as the heat transfer tube 222p in the first stage 222a, the second stage 222b, or the lower heat transfer tube group 222c.
  • the outer surface of the distal heat transfer tube 222d located distant from the nozzle 224 can be wetted with the liquid phase refrigerant, and dryout can be suppressed on the outer surface of the heat transfer tube distant from the nozzle 224.
  • the liquid phase refrigerant that has collided with the distal heat transfer tube 222d flows along the outer surface of the distal heat transfer tube 222d and is dropped toward the lower heat transfer tube 222e.
  • the outer surface of the lower heat transfer tube 222e located far from the nozzle 224 can be wetted with the liquid phase refrigerant, and dryout can be suppressed on the outer surface of the heat transfer tube far from the nozzle 224.
  • the heat transfer tube group 222 has the distal heat transfer tube 222d, and the distal heat transfer tube 222d is arranged at a position where the distal heat transfer tube 222d intersects the spray axis Am.
  • the first stage 222a is arranged between the nozzle 224 and the distal heat transfer tube 222d in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a.
  • the heat transfer tube group is stable regardless of the supply pressure of the liquid phase refrigerant to the nozzle 224.
  • the outer surface of the heat transfer tube 222p of 222 can be wetted. Therefore, the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with a liquid phase refrigerant in a desired state under a wide range of operating conditions including light load conditions and overload conditions.
  • the refrigeration cycle device 200 is an absorption chiller
  • the vapor phase refrigerant generated in the evaporator 201 can be supplied toward the absorber.
  • the liquid phase refrigerant that has passed between the first stage 222a and the second stage 222b collides with the distal heat transfer tube 222d and is captured. Therefore, it is easy to prevent the liquid phase refrigerant from being guided from the evaporator 201 toward the absorber.
  • the heat transfer tube group 222 may have a lower heat transfer tube 222e arranged directly under the distal heat transfer tube 222d in the direction of gravity. As a result, the outer surface of the lower heat transfer tube 222e can be wetted with the liquid phase refrigerant dropped from the distal heat transfer tube 222d.
  • embodiments 3, 4, and 5 have been described as examples of the techniques disclosed in the present application.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made.
  • the evaporator 201 provided with the nozzle 224 for spraying the liquid phase refrigerant is shown.
  • the nozzle 224 may be any one that sprays a liquid. Therefore, the liquid sprayed from the nozzle 224 is not limited to the liquid phase refrigerant. Therefore, the liquid sprayed from the nozzle 224 may be a cooling liquid used for condensing the gas phase refrigerant in the condenser of the refrigerating cycle device, or may be another liquid. However, if the liquid sprayed from the nozzle 224 is a liquid phase refrigerant, the shell-and-tube heat exchanger can be used as an evaporator in the refrigeration cycle apparatus.
  • the evaporator 201 in which the spray shaft Am extends horizontally is shown.
  • the spray shaft Am has a first end portion 222j close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a and a second end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b. Anything that passes between 222k and 22k may be used. Therefore, the spray axis Am may be inclined with respect to the horizontal plane. However, when the spray shaft Am extends horizontally, it is easy to arrange the plurality of heat transfer tubes 222p in the first stage 222a and the second stage 222b.
  • the spray shaft Am is between the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b. Should have passed.
  • a member such as a wire rod or a rod that has almost no effect on the flow of the liquid sprayed from the nozzle 224 and does not affect the formation of the spray shaft Am. May be arranged.
  • the distal heat transfer tube 222d has the same shape and dimensions as the heat transfer tube 222p.
  • the distal heat transfer tube 222d may be arranged at a position intersecting the spray axis Am. Therefore, the shape and dimensions of the distal heat transfer tube 222d are not limited to the same as the shape and dimensions of the heat transfer tube 222p. However, if the distal heat transfer tube 222d has the same shape and dimensions as the heat transfer tube 222p, it is not necessary to prepare the distal heat transfer tube 222d separately from the heat transfer tube 222p, and production control is easy.
  • distal heat transfer tube 222d a tube having an outer diameter larger than the outer diameter of the heat transfer tube 222p may be used. In this case, the liquid phase refrigerant can be more reliably captured by the distal heat transfer tube 222d.
  • the shell-and-tube heat exchangers disclosed herein are particularly useful for air conditioners such as commercial air conditioners.
  • the shell-and-tube heat exchanger may be used as a condenser as well as an evaporator.
  • the refrigerating cycle device disclosed in the present specification is not limited to the air conditioner, and may be another device such as an absorption chiller, a chiller, or a heat storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In the present invention, an evaporator 101 is constituted by a shell-and-tube heat exchanger. The evaporator 101 includes: a plurality of heat transfer tubes 22 through which a first fluid flows; and a plurality of nozzles 24 that spray a second fluid toward the plurality of heat transfer tubes 22. When a direction parallel to the longitudinal direction of the plurality of heat transfer tubes 22 is defined as an X direction, a direction vertical to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction, the plurality of nozzles 24 include a plurality of first nozzles 24a that spray the second fluid from a first side toward a second side in the Z direction, and a plurality of second nozzles 24b that spray the second fluid from the first side toward the second side in the Z direction. In a projected image obtained by projecting the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Z direction, the plurality of first nozzles 24a and the plurality of second nozzles 24b exhibit a staggered arrangement pattern.

Description

シェルアンドチューブ式熱交換器、冷凍サイクル装置、及び熱交換方法Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
 本開示は、シェルアンドチューブ式熱交換器、冷凍サイクル装置、及び熱交換方法に関する。 The present disclosure relates to shell and tube heat exchangers, refrigeration cycle devices, and heat exchange methods.
 伝熱管に向けて冷却水を散布することによって、伝熱管の内部の冷媒を冷却する技術が知られている。図19は、特許文献1(図9)に記載された従来の蒸発式凝縮器を示している。蒸発式凝縮器300の散水部330は、冷却水CWを凝縮コイル326に向けて散水する複数の散水ノズル334を有している。冷却水CWと凝縮コイル326を流通する冷媒Rとが熱交換することによって、冷却水CWが蒸発し、冷媒Rが冷却されて凝縮する。 A technique for cooling the refrigerant inside the heat transfer tube by spraying cooling water toward the heat transfer tube is known. FIG. 19 shows a conventional evaporative condenser described in Patent Document 1 (FIG. 9). The watering unit 330 of the evaporative condenser 300 has a plurality of watering nozzles 334 that sprinkle the cooling water CW toward the condensing coil 326. By exchanging heat between the cooling water CW and the refrigerant R flowing through the condensing coil 326, the cooling water CW evaporates, and the refrigerant R is cooled and condensed.
国際公開第2017/073367号International Publication No. 2017/073367
 本開示は、複数の伝熱管の外面においてドライアウトを抑制する観点から有利なシェルアンドチューブ式熱交換器を提供する。 The present disclosure provides a shell-and-tube heat exchanger that is advantageous from the viewpoint of suppressing dryout on the outer surface of a plurality of heat transfer tubes.
 本開示のシェルアンドチューブ式熱交換器は、
 シェルと、
 前記シェルの内部に配置された複数の伝熱管と、
 ノズルと、を備え、
 下記(Ia)、(Ib)、(Ic)、及び(Id)の条件、又は、下記(IIa)、(IIb)、(IIc)、及び(IId)の条件を満たす。
(Ia)前記複数の伝熱管は前記シェルの内部に互いに平行に配置され、かつ、前記複数の伝熱管を第1流体が流れる。
(Ib)前記ノズルは、前記シェルの内部に配置され、前記複数の伝熱管に向かって第2流体を噴霧する複数のノズルを含む。
(Ic)前記複数の伝熱管の長手方向に平行な方向をX方向と定義し、前記X方向に垂直な方向をY方向と定義し、前記X方向及び前記Y方向に垂直な方向をZ方向と定義したとき、
 前記複数のノズルは、前記Z方向における第1側から第2側に向かって前記第2流体を噴霧する複数の第1ノズルと、前記Z方向における前記第1側から前記第2側に向かって前記第2流体を噴霧する複数の第2ノズルとを含む。
(Id)前記複数の第1ノズル及び前記複数の第2ノズルを前記Z方向に投影することによって得られる投影像において、前記複数の第1ノズルと前記複数の第2ノズルとが千鳥状の配列パターンを示す。
(IIa)前記複数の伝熱管は、伝熱管群をなしている。
(IIb)前記ノズルは、前記伝熱管群に向かって液体を噴霧する。
(IIc)前記伝熱管群は、第一平面に沿って配列された複数の伝熱管を有する第一段と、前記第一平面に平行な第二平面に沿って配列された複数の伝熱管を有し、かつ、前記第一平面に垂直な方向において前記第一段と隣り合っている第二段とを含む。
(IId)前記ノズルは、前記第一平面に垂直な方向において前記第一段の前記複数の伝熱管の前記第二段に近い第一端部と、前記第一平面に垂直な方向において前記第二段の前記複数の伝熱管の前記第一段に近い第二端部との間を通過する噴霧軸を有し、かつ、前記第一段と前記第二段との間を通過する扁平な噴霧パターンで前記液体を噴霧する。
The shell-and-tube heat exchangers of the present disclosure are:
With the shell
A plurality of heat transfer tubes arranged inside the shell,
Equipped with a nozzle,
The following conditions (Ia), (Ib), (Ic), and (Id), or the following conditions (IIa), (IIb), (IIc), and (IId) are satisfied.
(Ia) The plurality of heat transfer tubes are arranged parallel to each other inside the shell, and the first fluid flows through the plurality of heat transfer tubes.
(Ib) The nozzle is arranged inside the shell and includes a plurality of nozzles that spray a second fluid toward the plurality of heat transfer tubes.
(Ic) The direction parallel to the longitudinal direction of the plurality of heat transfer tubes is defined as the X direction, the direction perpendicular to the X direction is defined as the Y direction, and the X direction and the direction perpendicular to the Y direction are the Z direction. When defined as
The plurality of nozzles include a plurality of first nozzles that spray the second fluid from the first side to the second side in the Z direction, and the first side to the second side in the Z direction. It includes a plurality of second nozzles for spraying the second fluid.
(Id) In a projection image obtained by projecting the plurality of first nozzles and the plurality of second nozzles in the Z direction, the plurality of first nozzles and the plurality of second nozzles are arranged in a staggered pattern. Show the pattern.
(IIa) The plurality of heat transfer tubes form a heat transfer tube group.
(IIb) The nozzle sprays a liquid toward the heat transfer tube group.
(IIc) The heat transfer tube group has a first stage having a plurality of heat transfer tubes arranged along the first plane and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane. And includes a second stage adjacent to the first stage in a direction perpendicular to the first plane.
(IId) The nozzle has a first end portion of the plurality of heat transfer tubes in the first stage near the second stage in a direction perpendicular to the first plane, and the first stage in a direction perpendicular to the first plane. A flat spray pattern that has a spray shaft that passes between the two-stage heat transfer tubes and the second end near the first stage, and that passes between the first stage and the second stage. The liquid is sprayed with.
 また、本開示の熱交換方法は、
 第一平面に沿って配列された複数の伝熱管を有する第一段と、前記第一平面に平行な第二平面に沿って配列された複数の伝熱管を有し、かつ、前記第一平面に垂直な方向において前記第一段と隣り合っている第二段とを含む伝熱管群の内部において熱媒体を通過させることと、
 前記第一平面に垂直な方向において前記第一段の前記複数の伝熱管の前記第二段に近い第一端部と、前記第一平面に垂直な方向において前記第二段の前記複数の伝熱管の前記第一段に近い第二端部との間を通過する噴霧軸を有し、かつ、前記第一段と前記第二段との間を通過する扁平な噴霧パターンで前記伝熱管群に向かって液体を噴霧し、前記熱媒体と前記液体とを熱交換させることとを、含む。
Further, the heat exchange method of the present disclosure is described.
It has a first stage having a plurality of heat transfer tubes arranged along the first plane, and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane, and is perpendicular to the first plane. Passing the heat medium inside the heat transfer tube group including the first stage and the second stage adjacent to the first stage in the above direction.
The first end portion of the plurality of heat transfer tubes in the first stage near the second stage in the direction perpendicular to the first plane, and the plurality of heat transfer tubes in the second stage in the direction perpendicular to the first plane. It has a spray shaft that passes between the second end of the heat tube near the first stage, and has a flat spray pattern that passes between the first stage and the second stage toward the heat transfer tube group. The liquid is sprayed to exchange heat between the heat medium and the liquid.
 本開示のシェルアンドチューブ式熱交換器によれば、(Ia)、(Ib)、(Ic)、及び(Id)の条件が満たされると、複数の第1ノズルから第4ノズルによって噴霧された第2流体によって、複数の伝熱管の表面を均一的に濡らすことができる。これにより、ドライアウトを抑制できる。また、(IIa)、(IIb)、(IIc)、及び(IId)の条件が満たされると、第一段の複数の伝熱管の第一端部と、第二段の複数の伝熱管の第二端部との間を通過する噴霧軸を有する扁平な噴霧パターンで伝熱管群に向かって液体を噴霧できる。その噴霧パターンは、第一段と第二段との間を通過する。本開示の熱交換方法によれば、そのような噴霧パターンで伝熱管群に向かって液体を噴霧できる。これにより、ドライアウトを抑制できる。 According to the shell-and-tube heat exchanger of the present disclosure, when the conditions (Ia), (Ib), (Ic), and (Id) are satisfied, the particles are sprayed from the plurality of first nozzles to the fourth nozzle. The surface of the plurality of heat transfer tubes can be uniformly wetted by the second fluid. As a result, dryout can be suppressed. Further, when the conditions of (IIa), (IIb), (IIc), and (IId) are satisfied, the first end of the plurality of heat transfer tubes in the first stage and the first of the plurality of heat transfer tubes in the second stage. A flat spray pattern with a spray shaft passing between the two ends can spray the liquid towards the heat transfer tube group. The spray pattern passes between the first and second stages. According to the heat exchange method of the present disclosure, the liquid can be sprayed toward the heat transfer tube group by such a spray pattern. As a result, dryout can be suppressed.
本開示の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle device according to the first embodiment of the present disclosure. 図1におけるII-II線に沿った蒸発器の縦断面図Longitudinal section of the evaporator along line II-II in FIG. 図1におけるIII-III線に沿った蒸発器の横断面図Cross-sectional view of the evaporator along lines III-III in FIG. 図2におけるIVA-IVA線に沿った蒸発器の側面図Side view of the evaporator along the IVA-IVA line in FIG. 図2におけるIVB-IVB線に沿った蒸発器の側面図Side view of the evaporator along the IVB-IVB line in FIG. 図2におけるVA-VA線に沿った蒸発器の断面図Cross-sectional view of the evaporator along the VA-VA line in FIG. 図2におけるVB-VB線に沿った蒸発器の断面図Sectional drawing of the evaporator along the VB-VB line in FIG. 第1ノズル及び第3ノズルから複数の伝熱管に噴霧された冷媒の移動方向及び滴下状態を示す図The figure which shows the moving direction and the dropping state of the refrigerant sprayed from the 1st nozzle and the 3rd nozzle to a plurality of heat transfer tubes. 第1ノズル及び第3ノズルにより定められるノズル面と第2ノズル及び第4ノズルにより定められるノズル面との位置関係を示す図The figure which shows the positional relationship between the nozzle surface defined by the 1st nozzle and the 3rd nozzle, and the nozzle surface defined by the 2nd nozzle and the 4th nozzle. 冷媒を噴霧した後の各ノズル面における冷媒の状態を示す図The figure which shows the state of the refrigerant on each nozzle surface after spraying the refrigerant. 本開示の実施の形態2における蒸発器の横断面図Cross-sectional view of the evaporator according to the second embodiment of the present disclosure. 図8におけるIX-IX線に沿った蒸発器の側面図Side view of the evaporator along the IX-IX line in FIG. 図8におけるXA-XA線に沿った蒸発器の断面図Sectional drawing of the evaporator along the XA-XA line in FIG. 図8におけるXB-XB線に沿った蒸発器の断面図Sectional drawing of the evaporator along the XB-XB line in FIG. 本開示の実施の形態3における冷凍サイクル装置の構成を示す図The figure which shows the structure of the refrigerating cycle apparatus in Embodiment 3 of this disclosure. 図11におけるII-II線を切断線とする蒸発器の縦断面図Longitudinal cross-sectional view of the evaporator with the line II-II as the cutting line in FIG. ノズルから噴霧される液相冷媒の噴霧パターンを示す図The figure which shows the spraying pattern of the liquid phase refrigerant sprayed from a nozzle ノズルから噴霧される液相冷媒の噴霧パターンを示す図The figure which shows the spraying pattern of the liquid phase refrigerant sprayed from a nozzle 図11におけるIV-IV線を切断線とする蒸発器の縦断面図Longitudinal cross-sectional view of the evaporator with the IV-IV line in FIG. 11 as the cutting line. 液相冷媒が噴霧される領域を示す図The figure which shows the region where the liquid phase refrigerant is sprayed. 液相冷媒の噴霧及び流動の状態を示す図The figure which shows the state of spraying and flow of a liquid phase refrigerant. 本開示の実施の形態4において液相冷媒が噴霧される領域を示す図The figure which shows the region where the liquid phase refrigerant is sprayed in Embodiment 4 of this disclosure. 本開示の実施の形態5において液相冷媒の噴霧及び流動の状態を示す図The figure which shows the state of spraying and flow | flow of a liquid phase refrigerant in Embodiment 5 of this disclosure. 従来の蒸発式凝縮器の断面図Sectional view of a conventional evaporative condenser
(本開示の基礎となった知見等)
 従来のノズルの構成をシェルアンドチューブ式熱交換器に適用すると、特定の位置においてドライアウトが発生しがちである。ドライアウトが発生した表面においては、熱交換が起こらず、シェルアンドチューブ式熱交換器の性能が十分に発揮されない。ドライアウトの発生を防ぐことができれば、シェルアンドチューブ式熱交換器の性能を十分に発揮させることができる。このような知見に基づき、本発明者は、本開示の主題を構成するに至った。なお、「ドライアウト面」は、冷媒の液膜が存在しない面を意味する。
(Knowledge, etc. that became the basis of this disclosure)
When the conventional nozzle configuration is applied to shell and tube heat exchangers, dryouts tend to occur at specific locations. Heat exchange does not occur on the surface where dryout occurs, and the performance of the shell-and-tube heat exchanger is not fully exhibited. If the occurrence of dryout can be prevented, the performance of the shell-and-tube heat exchanger can be fully exhibited. Based on such findings, the inventor has come to constitute the subject matter of the present disclosure. The “dry-out surface” means a surface on which the liquid film of the refrigerant does not exist.
 本発明者が本開示を想到するに至った当時、シェルアンドチューブ式熱交換器において、ノズルを用いて冷却水等の液体を伝熱管に向かって噴霧することが試みられていた。そうした状況下において、本発明者は、ノズルから噴霧された液体の流れをヒントにして、シェルアンドチューブ式熱交換器の性能を高め得るという着想を得た。そして、本発明者は、その着想を実現するには、例えば、液相冷媒の噴霧パターンが円錐形状であると、ノズルに対して遠方の伝熱管の外面には霧状の液相冷媒が到達しにくくドライアウトが発生しやすいという課題があることを発見した。本発明者は、その課題を解決するために、本開示の主題を構成するに至った。 At the time when the present inventor came up with the present disclosure, it was attempted to spray a liquid such as cooling water toward a heat transfer tube using a nozzle in a shell-and-tube heat exchanger. Under such circumstances, the present inventor has come up with the idea that the performance of the shell-and-tube heat exchanger can be improved by using the flow of the liquid sprayed from the nozzle as a hint. Then, in order to realize the idea, for example, when the spray pattern of the liquid phase refrigerant is conical, the atomized liquid phase refrigerant reaches the outer surface of the heat transfer tube far from the nozzle. I discovered that there is a problem that it is difficult to do and dryout is likely to occur. The present inventor has come to construct the subject matter of the present disclosure in order to solve the problem.
 そこで、本開示は、複数の伝熱管の外面においてドライアウトを抑制する観点から有利なシェルアンドチューブ式熱交換器を提供する。 Therefore, the present disclosure provides a shell-and-tube heat exchanger that is advantageous from the viewpoint of suppressing dryout on the outer surface of a plurality of heat transfer tubes.
 以下、図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、又は、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
 以下、図1から図7Bを用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 7B.
 [1-1.構成]
 図1は、シェルアンドチューブ式熱交換器を用いた冷凍サイクル装置の構成を示している。冷凍サイクル装置100は、蒸発器101、圧縮機102、凝縮器103、流量弁104、流路110a、流路110b、流路110c、及び流路110dを備えている。蒸発器101の出口は流路110aによって圧縮機102の入口に接続されている。圧縮機102の出口は流路110bによって凝縮器103の入口に接続されている。凝縮器103の出口は、流路110cによって流量弁104の入口に接続されている。流量弁104の出口は流路110dによって蒸発器101の入口に接続されている。流路110a及び110bは蒸気経路である。流路110c及び流路110dは液経路である。各経路は、例えば、少なくとも1つの金属製の配管で構成されている。
[1-1. Constitution]
FIG. 1 shows the configuration of a refrigeration cycle device using a shell-and-tube heat exchanger. The refrigeration cycle device 100 includes an evaporator 101, a compressor 102, a condenser 103, a flow valve 104, a flow path 110a, a flow path 110b, a flow path 110c, and a flow path 110d. The outlet of the evaporator 101 is connected to the inlet of the compressor 102 by the flow path 110a. The outlet of the compressor 102 is connected to the inlet of the condenser 103 by the flow path 110b. The outlet of the condenser 103 is connected to the inlet of the flow valve 104 by the flow path 110c. The outlet of the flow valve 104 is connected to the inlet of the evaporator 101 by the flow path 110d. The flow paths 110a and 110b are steam paths. The flow path 110c and the flow path 110d are liquid paths. Each path is composed of, for example, at least one metal pipe.
 蒸発器101は、後述するように、シェルアンドチューブ式熱交換器によって構成されている。 The evaporator 101 is composed of a shell-and-tube heat exchanger, as will be described later.
 圧縮機102は、遠心圧縮機などの速度型圧縮機であってもよく、スクロール圧縮機などの容積型圧縮機であってもよい。 The compressor 102 may be a speed compressor such as a centrifugal compressor or a positive displacement compressor such as a scroll compressor.
 凝縮器103の型式は特に限定されない。プレート式熱交換器、シェルアンドチューブ式熱交換器などの熱交換器が凝縮器103に使用されうる。 The model of the condenser 103 is not particularly limited. Heat exchangers such as plate heat exchangers and shell and tube heat exchangers can be used in the condenser 103.
 冷凍サイクル装置100は、例えば、業務用又は家庭用の空気調和装置である。蒸発器101で冷却された熱媒体が回路105を通じて室内に供給され、室内の冷房に使用される。あるいは、凝縮器103で加熱された熱媒体が回路106を通じて室内に供給され、室内の暖房に利用される。熱媒体は、例えば、水である。ただし、冷凍サイクル装置100は空気調和装置に限定されず、チラー、蓄熱装置など他の装置であってもよい。冷凍サイクル装置100は、蒸発器、吸収器、再生器及び凝縮器を備えた吸収式冷凍機であってもよい。 The refrigeration cycle device 100 is, for example, an air conditioner for business use or home use. The heat medium cooled by the evaporator 101 is supplied into the room through the circuit 105 and used for cooling the room. Alternatively, the heat medium heated by the condenser 103 is supplied into the room through the circuit 106 and used for heating the room. The heat medium is, for example, water. However, the refrigeration cycle device 100 is not limited to the air conditioner, and may be another device such as a chiller or a heat storage device. The refrigeration cycle device 100 may be an absorption chiller equipped with an evaporator, an absorber, a regenerator and a condenser.
 回路105は、蒸発器101に熱媒体を循環させる回路である。回路106は、凝縮器103に熱媒体を循環させる回路である。回路105及び回路106は、外気から隔離された密閉回路であってもよい。 The circuit 105 is a circuit that circulates a heat medium in the evaporator 101. The circuit 106 is a circuit for circulating a heat medium in the condenser 103. The circuit 105 and the circuit 106 may be a closed circuit isolated from the outside air.
 熱媒体は、回路105及び回路106のそれぞれを流れる第1流体である。熱媒体は水に限定されず、オイル、ブラインなどの液体であってもよく、空気などの気体であってもよい。回路105の熱媒体の組成が回路106の熱媒体の組成と異なっていてもよい。 The heat medium is the first fluid flowing through each of the circuit 105 and the circuit 106. The heat medium is not limited to water, and may be a liquid such as oil or brine, or a gas such as air. The composition of the heat medium of the circuit 105 may be different from the composition of the heat medium of the circuit 106.
 圧縮機102を起動すると、蒸発器101において冷媒が加熱されて蒸発する。これにより、気相冷媒が生成される。気相冷媒は圧縮機102に吸入されて圧縮される。圧縮された気相冷媒は圧縮機102から凝縮器103に供給される。気相冷媒は凝縮器103で冷却されて凝縮及び液化する。これにより、液相冷媒が生成される。液相冷媒は、流量弁104を経由して凝縮器103から蒸発器101に戻される。 When the compressor 102 is started, the refrigerant is heated and evaporated in the evaporator 101. This produces a gas phase refrigerant. The vapor phase refrigerant is sucked into the compressor 102 and compressed. The compressed vapor phase refrigerant is supplied from the compressor 102 to the condenser 103. The vapor phase refrigerant is cooled by the condenser 103 to condense and liquefy. This produces a liquid phase refrigerant. The liquid phase refrigerant is returned from the condenser 103 to the evaporator 101 via the flow valve 104.
 冷媒の種類は特に限定されない。冷媒としては、フロン冷媒、低GWP(Global Warming Potential)冷媒、自然冷媒などが挙げられる。フロン冷媒としては、HCFC(hydrochlorofluorocarbon)及びHFC(hydrofluorocarbon)が挙げられる。低GWP冷媒としては、HFO-1234yf及び水が挙げられる。自然冷媒としては、二酸化炭素及び水が挙げられる。 The type of refrigerant is not particularly limited. Examples of the refrigerant include chlorofluorocarbon refrigerants, low GWP (Global Warming Potential) refrigerants, and natural refrigerants. Examples of chlorofluorocarbon refrigerants include HCFC (hydrochlorofluorocarbon) and HFC (hydrofluorocarbon). Examples of the low GWP refrigerant include HFO-1234yf and water. Examples of the natural refrigerant include carbon dioxide and water.
 冷媒は、常温での飽和蒸気圧が負圧の物質を主成分として含む冷媒であってもよい。このような冷媒としては、水、アルコール又はエーテルを主成分として含む冷媒が挙げられる。「主成分」とは、質量比で最も多く含まれた成分を意味する。「負圧」は、絶対圧で大気圧よりも低い圧力を意味する。「常温」は、日本産業規格(JIS Z8703)によれば、20℃±15℃の範囲内の温度を意味する。 The refrigerant may be a refrigerant containing a substance having a negative saturated vapor pressure at room temperature as a main component. Examples of such a refrigerant include a refrigerant containing water, alcohol or ether as a main component. The "main component" means the component contained most in the mass ratio. "Negative pressure" means pressure that is absolute and lower than atmospheric pressure. "Room temperature" means a temperature within the range of 20 ° C ± 15 ° C according to the Japanese Industrial Standards (JIS Z8703).
 冷媒は、第1流体である熱媒体と熱交換するべき第2流体の一例である。 The refrigerant is an example of a second fluid that should exchange heat with a heat medium that is the first fluid.
 図2は、II-II線に沿った蒸発器101の縦断面図である。図3は、III-III線に沿った蒸発器101の横断面図である。図2及び図3に示すように、蒸発器101は、シェルアンドチューブ式熱交換器として構成されている。蒸発器101は、シェル21、複数の伝熱管22、複数のノズル24、循環回路25及び循環ポンプ26を備えている。複数の伝熱管22及び複数のノズル24は、シェル21の内部に配置されている。複数のノズル24は、複数の第1ノズル24a、複数の第2ノズル24b、複数の第3ノズル24c、及び複数の第4ノズル24dを含む。複数の第1ノズル24a及び複数の第2ノズル24bを含むノズル群と、複数の第3ノズル24c及び複数の第4ノズル24dを含むノズル群との間に複数の伝熱管22が配置されている。蒸発器101において冷媒を効率的に蒸発させることによって冷凍サイクルの成績係数(COP)が向上しうる。 FIG. 2 is a vertical sectional view of the evaporator 101 along the line II-II. FIG. 3 is a cross-sectional view of the evaporator 101 along the line III-III. As shown in FIGS. 2 and 3, the evaporator 101 is configured as a shell-and-tube heat exchanger. The evaporator 101 includes a shell 21, a plurality of heat transfer tubes 22, a plurality of nozzles 24, a circulation circuit 25, and a circulation pump 26. The plurality of heat transfer tubes 22 and the plurality of nozzles 24 are arranged inside the shell 21. The plurality of nozzles 24 include a plurality of first nozzles 24a, a plurality of second nozzles 24b, a plurality of third nozzles 24c, and a plurality of fourth nozzles 24d. A plurality of heat transfer tubes 22 are arranged between a nozzle group including a plurality of first nozzles 24a and a plurality of second nozzles 24b and a nozzle group including a plurality of third nozzles 24c and a plurality of fourth nozzles 24d. .. The coefficient of performance (COP) of the refrigeration cycle can be improved by efficiently evaporating the refrigerant in the evaporator 101.
 複数の伝熱管22は、円形の断面を有する円管を含む。図2及び図3では、複数の伝熱管22すべてが、円形の断面を有する円管である。伝熱管22の入口から出口に向かって第1流体である熱媒体が流れる。複数の伝熱管22のそれぞれは、シェル21の互いに向かい合う面を貫通している。 The plurality of heat transfer tubes 22 include a circular tube having a circular cross section. In FIGS. 2 and 3, all of the plurality of heat transfer tubes 22 are circular tubes having a circular cross section. A heat medium, which is the first fluid, flows from the inlet to the outlet of the heat transfer tube 22. Each of the plurality of heat transfer tubes 22 penetrates the facing surfaces of the shell 21.
 複数の伝熱管22は、シェル21の内部において、互いに平行に配置されている。詳細には、複数の伝熱管22は、シェル21の内部において、複数列及び複数段で規則的に並べられている。規則的な並びは、伝熱管22の表面における液膜の均一な薄膜化に有利である。 The plurality of heat transfer tubes 22 are arranged parallel to each other inside the shell 21. Specifically, the plurality of heat transfer tubes 22 are regularly arranged in a plurality of rows and a plurality of stages inside the shell 21. The regular arrangement is advantageous for uniform thinning of the liquid film on the surface of the heat transfer tube 22.
 本実施の形態では、伝熱管22の長手方向に平行な方向をX方向と定義する。X方向に鉛直な方向をY方向と定義する。X方向及びY方向に垂直な方向をZ方向と定義する。Y方向及びZ方向は、それぞれ、段方向及び列方向である。Y方向は重力方向に平行な方向でありうる。X方向及びZ方向は、水平方向に平行な方向でありうる。 In this embodiment, the direction parallel to the longitudinal direction of the heat transfer tube 22 is defined as the X direction. The direction vertical to the X direction is defined as the Y direction. The direction perpendicular to the X and Y directions is defined as the Z direction. The Y direction and the Z direction are the step direction and the column direction, respectively. The Y direction can be parallel to the direction of gravity. The X and Z directions can be parallel to the horizontal direction.
 図3に示すように、X方向に垂直かつY方向及びZ方向に平行な断面において、複数の伝熱管22は、正方格子の格子点上に位置している。詳細には、正方格子における格子点に各伝熱管22の中心が位置している。ただし、伝熱管22の並べ方は特に限定されない。複数の伝熱管22は、例えば、矩形格子における格子点に各伝熱管22の中心が位置するように配置されていてもよい。図2及び図3において、複数の伝熱管22は、8段及び12列で並べられている。段数及び列数も特定の値に限定されない。 As shown in FIG. 3, in a cross section perpendicular to the X direction and parallel to the Y and Z directions, the plurality of heat transfer tubes 22 are located on the grid points of the square lattice. Specifically, the center of each heat transfer tube 22 is located at a grid point in a square grid. However, the arrangement of the heat transfer tubes 22 is not particularly limited. The plurality of heat transfer tubes 22 may be arranged so that the center of each heat transfer tube 22 is located at a grid point in a rectangular lattice, for example. In FIGS. 2 and 3, the plurality of heat transfer tubes 22 are arranged in 8 stages and 12 rows. The number of stages and the number of columns are also not limited to specific values.
 伝熱管22を構成する配管は、管の内部、管の外部又はその両方に溝加工が施された加工管であってもよい。 The pipe constituting the heat transfer pipe 22 may be a machined pipe in which the inside of the pipe, the outside of the pipe, or both of them are grooved.
 伝熱管22の内部には、冷媒と熱交換する熱媒体が流れる。熱媒体は、水、エチレングリコール、プロピレングリコールなどの流体である。熱媒体は、例えば、フィンアンドチューブ式熱交換器などの熱交換器を介して大気中の熱を吸熱し、蒸発器101の各伝熱管22に流入する。各伝熱管22において、熱媒体は冷媒によって冷却される。 A heat medium that exchanges heat with the refrigerant flows inside the heat transfer tube 22. The heat medium is a fluid such as water, ethylene glycol, or propylene glycol. The heat medium absorbs heat in the atmosphere through a heat exchanger such as a fin-and-tube heat exchanger and flows into each heat transfer tube 22 of the evaporator 101. In each heat transfer tube 22, the heat medium is cooled by the refrigerant.
 伝熱管22の材料としては、アルミニウム、アルミニウム合金、ステンレス、及び銅などの金属材料が挙げられる。 Examples of the material of the heat transfer tube 22 include metal materials such as aluminum, aluminum alloy, stainless steel, and copper.
 図2及び図3に示すように、第1ノズル24aから第4ノズル24dのそれぞれから、複数の伝熱管22に向かって冷媒が噴霧される。複数の第1ノズル24a及び複数の第2ノズル24bは、Z方向における第1側から第2側に向かって冷媒を噴霧する。複数の第3ノズル24c及び複数の第4ノズル24dは、Z方向における第2側から第1側に向かって冷媒を噴霧する。「第1側」は、例えば、伝熱管22の幅方向における一方の側である。「第2側」は、伝熱管22の幅方向における他方の側である。伝熱管22の幅方向は、水平方向に関する幅方向でありうる。 As shown in FIGS. 2 and 3, the refrigerant is sprayed from each of the first nozzle 24a to the fourth nozzle 24d toward the plurality of heat transfer tubes 22. The plurality of first nozzles 24a and the plurality of second nozzles 24b spray the refrigerant from the first side to the second side in the Z direction. The plurality of third nozzles 24c and the plurality of fourth nozzles 24d spray the refrigerant from the second side to the first side in the Z direction. The "first side" is, for example, one side in the width direction of the heat transfer tube 22. The "second side" is the other side in the width direction of the heat transfer tube 22. The width direction of the heat transfer tube 22 may be the width direction with respect to the horizontal direction.
 ノズル24は、例えば、圧力噴射型の噴霧ノズルである。圧力噴射型の噴霧ノズルは、加圧された冷媒を入口から受け入れ、ノズルの内部の旋回機構によって冷媒に旋回力を与え、空間に噴射するように構成されている。それにより、噴射された冷媒は、旋回速度による遠心力で円錐状に広がり、薄膜化及び液糸化された後、液滴群へと分裂する。 The nozzle 24 is, for example, a pressure injection type spray nozzle. The pressure injection type spray nozzle is configured to receive the pressurized refrigerant from the inlet, apply a swirling force to the refrigerant by a swirling mechanism inside the nozzle, and inject it into the space. As a result, the injected refrigerant spreads in a conical shape due to the centrifugal force due to the swirling speed, is thinned and liquefied, and then splits into a group of droplets.
 第1ノズル24aから第4ノズル24dのそれぞれに、同一の噴霧ノズルが使用されうる。「同一」の語句は、設計上の構造及び設計上の特性が同一であることを意味する。ただし、第1ノズル24aから第4ノズル24dの構造及び寸法は、それぞれ異なっていてもよい。 The same spray nozzle can be used for each of the first nozzle 24a to the fourth nozzle 24d. The phrase "identical" means that the design structure and design characteristics are identical. However, the structures and dimensions of the first nozzle 24a to the fourth nozzle 24d may be different from each other.
 本実施の形態において、複数の第1ノズル24aと複数の第2ノズル24bとがZ方向に関して同じ位置に存在している。複数の第3ノズル24cと複数の第4ノズル24dとがZ方向に関して同じ位置に存在している。また、複数の第1ノズル24aと複数の第3ノズル24cとがY方向に関して同じ位置に存在している。複数の第2ノズル24bと複数の第4ノズル24dとがY方向に関して同じ位置に存在している。図2及び図3では、第1ノズル24a及び第2ノズル24bは、それぞれ、1段ずつ設けられている。第3ノズル24c及び第4ノズル24dは、それぞれ、1段ずつ設けられている。複数の第1ノズル24a及び複数の第2ノズル24bは、X方向とY方向とにマトリクス状に配列されていてもよい。複数の第3ノズル24c及び複数の第4ノズル24dは、X方向とY方向とにマトリクス状に配列されていてもよい。 In the present embodiment, the plurality of first nozzles 24a and the plurality of second nozzles 24b are present at the same position in the Z direction. The plurality of third nozzles 24c and the plurality of fourth nozzles 24d are present at the same position in the Z direction. Further, the plurality of first nozzles 24a and the plurality of third nozzles 24c are present at the same position in the Y direction. The plurality of second nozzles 24b and the plurality of fourth nozzles 24d are present at the same position in the Y direction. In FIGS. 2 and 3, the first nozzle 24a and the second nozzle 24b are each provided in one stage. The third nozzle 24c and the fourth nozzle 24d are each provided in one stage. The plurality of first nozzles 24a and the plurality of second nozzles 24b may be arranged in a matrix in the X direction and the Y direction. The plurality of third nozzles 24c and the plurality of fourth nozzles 24d may be arranged in a matrix in the X direction and the Y direction.
 図4Aは、IVA-IVA線に沿った蒸発器101の側面図である。図4Aでは、伝熱管22及びノズル24以外の要素は省略されている。図4Aに示すように、複数の第1ノズル24a及び複数の第2ノズル24bをZ方向に投影することによって得られる投影像において、複数の第1ノズル24a及び複数の第2ノズル24bは千鳥状の配列パターンを示す。投影像は、詳細には、Z方向に垂直な任意の投影面に複数の第1ノズル24a及び複数の第2ノズル24bを正射影することによって得られる像である。 FIG. 4A is a side view of the evaporator 101 along the IVA-IVA line. In FIG. 4A, elements other than the heat transfer tube 22 and the nozzle 24 are omitted. As shown in FIG. 4A, in the projection image obtained by projecting the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Z direction, the plurality of first nozzles 24a and the plurality of second nozzles 24b are staggered. The arrangement pattern of is shown. The projected image is, in detail, an image obtained by orthographically projecting a plurality of first nozzles 24a and a plurality of second nozzles 24b onto an arbitrary projection surface perpendicular to the Z direction.
 図4Bは、IVB-IVB線に沿った蒸発器101の側面図である。図4Bでは、伝熱管22及びノズル24以外の要素は省略されている。図4Bに示すように、複数の第3ノズル24c及び複数の第4ノズル24dをZ方向に投影することによって得られる投影像において、複数の第3ノズル24c及び複数の第4ノズル24dは千鳥状の配列パターンを示す。投影像は、詳細には、Z方向に垂直な任意の投影面に複数の第3ノズル24c及び複数の第4ノズル24dを正射影することによって得られる像である。 FIG. 4B is a side view of the evaporator 101 along the IVB-IVB line. In FIG. 4B, elements other than the heat transfer tube 22 and the nozzle 24 are omitted. As shown in FIG. 4B, in the projection image obtained by projecting the plurality of third nozzles 24c and the plurality of fourth nozzles 24d in the Z direction, the plurality of third nozzles 24c and the plurality of fourth nozzles 24d are staggered. The arrangement pattern of is shown. The projected image is, in detail, an image obtained by orthographically projecting a plurality of third nozzles 24c and a plurality of fourth nozzles 24d onto an arbitrary projection surface perpendicular to the Z direction.
 図4Aに示すように、複数の第1ノズル24aはX方向に配列されている。複数の第2ノズル24bはX方向に配列されている。Y方向に関する第1ノズル24aの位置は、Y方向に関する第2ノズル24bの位置と異なっている。複数の第1ノズル24a及び複数の第2ノズル24bは、Z方向に垂直な同一平面上に位置している。 As shown in FIG. 4A, the plurality of first nozzles 24a are arranged in the X direction. The plurality of second nozzles 24b are arranged in the X direction. The position of the first nozzle 24a in the Y direction is different from the position of the second nozzle 24b in the Y direction. The plurality of first nozzles 24a and the plurality of second nozzles 24b are located on the same plane perpendicular to the Z direction.
 図4Bに示すように、複数の第3ノズル24cはX方向に配列されている。複数の第4ノズル24dはX方向に配列されている。Y方向に関する第3ノズル24cの位置は、Y方向に関する第4ノズル24dの位置と異なっている。複数の第3ノズル24c及び複数の第4ノズル24dは、Z方向に垂直な同一平面上に位置している。 As shown in FIG. 4B, the plurality of third nozzles 24c are arranged in the X direction. The plurality of fourth nozzles 24d are arranged in the X direction. The position of the third nozzle 24c in the Y direction is different from the position of the fourth nozzle 24d in the Y direction. The plurality of third nozzles 24c and the plurality of fourth nozzles 24d are located on the same plane perpendicular to the Z direction.
 図5Aは、VA-VA線に沿った蒸発器101の断面図であり、図5Bは、IVB-IVB線に沿った蒸発器101の断面図である。図5A及び図5Bでは、伝熱管22及びノズル24以外の要素は省略されている。 FIG. 5A is a cross-sectional view of the evaporator 101 along the VA-VA line, and FIG. 5B is a cross-sectional view of the evaporator 101 along the IVB-IVB line. In FIGS. 5A and 5B, elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
 第1ノズル24aの噴霧軸O1及び第2ノズル24bの噴霧軸O2はX方向及びZ方向の両方向に対して傾斜した方向に平行である。噴霧軸O1は、第1ノズル24aによって作り出された冷媒の噴霧流の中心軸である。噴霧軸O2は、第2ノズル24bによって作り出された冷媒の噴霧流の中心軸である。噴霧軸O1及び噴霧軸O2は、それぞれ、列方向(Z方向)に対して傾斜している。このような構成によれば、第1ノズル24a及び第2ノズル24bによって広範囲にわたって冷媒を噴霧することができる。このことは、伝熱管22の表面における液膜の均一な薄膜化にも寄与する。 The spray shaft O1 of the first nozzle 24a and the spray shaft O2 of the second nozzle 24b are parallel to each other in the X direction and the Z direction. The spray shaft O1 is the central shaft of the spray flow of the refrigerant produced by the first nozzle 24a. The spray shaft O2 is the central shaft of the spray flow of the refrigerant produced by the second nozzle 24b. The spray shaft O1 and the spray shaft O2 are each inclined with respect to the row direction (Z direction). According to such a configuration, the refrigerant can be sprayed over a wide range by the first nozzle 24a and the second nozzle 24b. This also contributes to a uniform thinning of the liquid film on the surface of the heat transfer tube 22.
 第3ノズル24cの噴霧軸O3及び第4ノズル24dの噴霧軸O4はX方向及びZ方向の両方向に対して傾斜した方向に平行である。噴霧軸O3は、第3ノズル24cによって作り出された冷媒の噴霧流の中心軸である。噴霧軸O4は、第4ノズル24dによって作り出された冷媒の噴霧流の中心軸である。噴霧軸O3及び噴霧軸O4は、それぞれ、列方向(Z方向)に対して傾斜している。このような構成によれば、第3ノズル24c及び第4ノズル24dによって広範囲にわたって冷媒を噴霧することができる。 The spray shaft O3 of the third nozzle 24c and the spray shaft O4 of the fourth nozzle 24d are parallel to the inclined direction with respect to both the X direction and the Z direction. The spray shaft O3 is the central shaft of the spray flow of the refrigerant produced by the third nozzle 24c. The spray shaft O4 is the central shaft of the spray flow of the refrigerant produced by the fourth nozzle 24d. The spray shaft O3 and the spray shaft O4 are each inclined with respect to the row direction (Z direction). According to such a configuration, the refrigerant can be sprayed over a wide range by the third nozzle 24c and the fourth nozzle 24d.
 「噴霧軸O1」は、第1ノズル24aの中心軸と捉えることもできる。噴霧軸O1は、第1ノズル24aの開口の中心を通る軸でありうる。「噴霧軸O2」は、第2ノズル24bの中心軸と捉えることもできる。噴霧軸O2は、第2ノズル24bの開口の中心を通る軸でありうる。「噴霧軸O3」は、第3ノズル24cの中心軸と捉えることもできる。噴霧軸O3は、第3ノズル24cの開口の中心を通る軸でありうる。「噴霧軸O4」は、第4ノズル24dの中心軸と捉えることもできる。噴霧軸O4は、第4ノズル24dの開口の中心を通る軸でありうる。 The "spray axis O1" can also be regarded as the central axis of the first nozzle 24a. The spray shaft O1 may be a shaft that passes through the center of the opening of the first nozzle 24a. The "spray axis O2" can also be regarded as the central axis of the second nozzle 24b. The spray shaft O2 may be a shaft that passes through the center of the opening of the second nozzle 24b. The "spray axis O3" can also be regarded as the central axis of the third nozzle 24c. The spray shaft O3 may be a shaft that passes through the center of the opening of the third nozzle 24c. The "spray axis O4" can also be regarded as the central axis of the fourth nozzle 24d. The spray shaft O4 may be a shaft that passes through the center of the opening of the fourth nozzle 24d.
 Y方向から平面視したとき、第1ノズル24aの噴霧軸O1は、第1ノズル24aの開口の中心を通りZ方向に平行な第1基準線L1に対して時計回り方向に傾斜している。第2ノズル24bの噴霧軸O2は、第2ノズル24bの開口の中心を通りZ方向に平行な第2基準線L2に対して反時計回り方向に傾斜している。このような構成によれば、必要最小限の数の第1ノズル24a及び第2ノズル24bによって広範囲にわたって冷媒を噴霧することができる。 When viewed in a plan view from the Y direction, the spray axis O1 of the first nozzle 24a is inclined in the clockwise direction with respect to the first reference line L1 which passes through the center of the opening of the first nozzle 24a and is parallel to the Z direction. The spray shaft O2 of the second nozzle 24b is inclined counterclockwise with respect to the second reference line L2 which passes through the center of the opening of the second nozzle 24b and is parallel to the Z direction. According to such a configuration, the refrigerant can be sprayed over a wide range by the minimum necessary number of the first nozzles 24a and the second nozzles 24b.
 Y方向から平面視したとき、第3ノズル24cの噴霧軸O3は、第3ノズル24cの開口の中心を通りZ方向に平行な第3基準線L3に対して時計回り方向に傾斜している。第4ノズル24dの噴霧軸O4は、第4ノズル24dの開口の中心を通りZ方向に平行な第4基準線L4に対して反時計回り方向に傾斜している。このような構成によれば、必要最小限の数の第1ノズル24a及び第2ノズル24bによって広範囲にわたって冷媒を噴霧することができる。 When viewed in a plan view from the Y direction, the spray axis O3 of the third nozzle 24c is inclined in the clockwise direction with respect to the third reference line L3 which passes through the center of the opening of the third nozzle 24c and is parallel to the Z direction. The spray shaft O4 of the fourth nozzle 24d is inclined in the counterclockwise direction with respect to the fourth reference line L4 which passes through the center of the opening of the fourth nozzle 24d and is parallel to the Z direction. According to such a configuration, the refrigerant can be sprayed over a wide range by the minimum necessary number of the first nozzles 24a and the second nozzles 24b.
 Y方向から平面視したとき、第1ノズル24aの噴霧軸O1と第1基準線L1とのなす角度θ1は、第2ノズル24bの噴霧軸O2と第2基準線L2とのなす角度θ2に等しい。 When viewed in a plan view from the Y direction, the angle θ1 formed by the spray shaft O1 of the first nozzle 24a and the first reference line L1 is equal to the angle θ2 formed by the spray shaft O2 of the second nozzle 24b and the second reference line L2. ..
 Y方向から平面視したとき、第3ノズル24cの噴霧軸O3と第3基準線L3とのなす角度θ3は、第4ノズル24dの噴霧軸O4と第4基準線L4とのなす角度θ4に等しい。 When viewed in a plan view from the Y direction, the angle θ3 formed by the spray axis O3 of the third nozzle 24c and the third reference line L3 is equal to the angle θ4 formed by the spray axis O4 of the fourth nozzle 24d and the fourth reference line L4. ..
 角度θ1、角度θ2、角度θ3及び角度θ4は、互いに等しくてもよく、異なっていてもよい。角度θ1、角度θ2、角度θ3及び角度θ4は、冷媒の噴霧流の外縁の少なくとも一方が、伝熱管22の長手方向(X方向)に対して非平行となるような角度であってもよい。角度θ1、角度θ2、角度θ3及び角度θ4は、例えば、30度から40度であり、典型的には、30度である。図5A及び図5Bにおいて、破線は、冷媒の噴霧流の広がり角度αを示している。噴霧流の広がり角度αは、噴霧軸O1,O2,O3及びO4のそれぞれに対して対称的な広がりを示す。噴霧流の広がり角度αは、鋭角であってもよく、例えば、60度である。角度θ1、角度θ2、角度θ3及び角度θ4は、噴霧流の広がり角度αの半分でありうる。このような構成によれば、冷媒の噴霧流の外縁の一方が、基準線L1,L2,L3及びL4と略平行となる。これにより、伝熱管22の表面に沿って移動する冷媒の移動方向に逆行する冷媒の流れの成分の発生が抑制される。伝熱管22の表面上での冷媒の移動が促進されるので、移動速度の向上による熱伝達率の向上を期待できる。角度θ1、角度θ2、角度θ3及び角度θ4は、ノズル24の数、隣り合うノズル24の間隔などの条件に応じて定められる。 The angle θ1, the angle θ2, the angle θ3, and the angle θ4 may be equal to or different from each other. The angle θ1, the angle θ2, the angle θ3, and the angle θ4 may be such that at least one of the outer edges of the spray stream of the refrigerant is non-parallel to the longitudinal direction (X direction) of the heat transfer tube 22. The angle θ1, the angle θ2, the angle θ3, and the angle θ4 are, for example, 30 to 40 degrees, typically 30 degrees. In FIGS. 5A and 5B, the broken line indicates the spread angle α of the spray flow of the refrigerant. The spread angle α of the spray flow shows a spread symmetrical with respect to each of the spray axes O1, O2, O3 and O4. The spread angle α of the spray flow may be an acute angle, for example, 60 degrees. The angle θ1, the angle θ2, the angle θ3, and the angle θ4 can be half of the spread angle α of the spray flow. According to such a configuration, one of the outer edges of the spray stream of the refrigerant is substantially parallel to the reference lines L1, L2, L3 and L4. As a result, the generation of the component of the flow of the refrigerant that goes against the moving direction of the refrigerant that moves along the surface of the heat transfer tube 22 is suppressed. Since the movement of the refrigerant on the surface of the heat transfer tube 22 is promoted, it can be expected that the heat transfer coefficient will be improved by improving the movement speed. The angle θ1, the angle θ2, the angle θ3, and the angle θ4 are determined according to conditions such as the number of nozzles 24 and the distance between adjacent nozzles 24.
 複数の第1ノズル24aは、X方向に所定間隔で配列されている。X方向において互いに隣り合う第1ノズル24a同士の間隔は、間隔Wである。複数の第2ノズル24bは、X方向に所定間隔で配列されている。X方向において互いに隣り合う第2ノズル24b同士の間隔は、間隔Wである。複数の第3ノズル24cは、X方向に所定間隔で配列されている。X方向において互いに隣り合う第3ノズル24c同士の間隔は、間隔Wである。複数の第4ノズル24dは、X方向に所定間隔で配列されている。X方向において互いに隣り合う第4ノズル24d同士の間隔は、間隔Wである。つまり、X方向において互いに隣り合う第1ノズル24a同士の間隔、第2ノズル24b同士の間隔、第3ノズル24c同士の間隔、及び第4ノズル24d同士の間隔は、互いに等しい。間隔Wは、ノズル24の角度θと、ノズル24から伝熱管22までの距離とに応じて適切に定められている。X方向において互いに隣り合うノズル24同士の間隔は、隣り合うノズル24の開口の中心の間の距離として定義される。 The plurality of first nozzles 24a are arranged at predetermined intervals in the X direction. The distance between the first nozzles 24a adjacent to each other in the X direction is the distance W. The plurality of second nozzles 24b are arranged at predetermined intervals in the X direction. The distance between the second nozzles 24b adjacent to each other in the X direction is the distance W. The plurality of third nozzles 24c are arranged at predetermined intervals in the X direction. The distance between the third nozzles 24c adjacent to each other in the X direction is the distance W. The plurality of fourth nozzles 24d are arranged at predetermined intervals in the X direction. The distance between the fourth nozzles 24d adjacent to each other in the X direction is the distance W. That is, the distance between the first nozzles 24a adjacent to each other in the X direction, the distance between the second nozzles 24b, the distance between the third nozzles 24c, and the distance between the fourth nozzles 24d are equal to each other. The interval W is appropriately determined according to the angle θ of the nozzle 24 and the distance from the nozzle 24 to the heat transfer tube 22. The distance between the nozzles 24 adjacent to each other in the X direction is defined as the distance between the centers of the openings of the adjacent nozzles 24.
 X方向における第1ノズル24aと第2ノズル24bとの間隔は、X方向において互いに隣り合う第1ノズル24a同士の間隔の1/2である。X方向における第3ノズル24cと第4ノズル24dとの間隔は、X方向において互いに隣り合う第3ノズル24c同士の間隔の1/2である。つまり、X方向における第1ノズル24aと第2ノズル24bとの間隔はW/2である。X方向における第3ノズル24cと第4ノズル2との間隔はW/2である。 The distance between the first nozzle 24a and the second nozzle 24b in the X direction is 1/2 of the distance between the first nozzles 24a adjacent to each other in the X direction. The distance between the third nozzle 24c and the fourth nozzle 24d in the X direction is ½ of the distance between the third nozzles 24c adjacent to each other in the X direction. That is, the distance between the first nozzle 24a and the second nozzle 24b in the X direction is W / 2. The distance between the third nozzle 24c and the fourth nozzle 2 in the X direction is W / 2.
 Y方向からの平面視において、複数の第3ノズル24cの位置は、複数の第1ノズル24aの位置に対して、X方向にオフセットしている。また、Y方向からの平面視において、複数の第4ノズル24dの位置は、複数の第2ノズル24bの位置に対して、X方向にオフセットしている。このような構成は、Z方向において冷媒の流れが重複することを回避するのに有利である。 In a plan view from the Y direction, the positions of the plurality of third nozzles 24c are offset in the X direction with respect to the positions of the plurality of first nozzles 24a. Further, in a plan view from the Y direction, the positions of the plurality of fourth nozzles 24d are offset in the X direction with respect to the positions of the plurality of second nozzles 24b. Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Z direction.
 複数の第1ノズル24aの噴霧軸O1は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間を通る。言い換えると、複数の第1ノズル24aの位置は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を噴霧軸O1が通るように定められている。複数の第2ノズル24bの噴霧軸O2は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間を通る。言い換えると、複数の第2ノズル24bの位置は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を噴霧軸O2が通るように定められている。このような構成によれば、列方向(Z方向)への噴霧流の到達距離が伸びる。このことは、蒸発器101の小型化に寄与するだけでなく、伝熱管22の表面における液膜の均一な薄膜化にも寄与する。 The spray shafts O1 of the plurality of first nozzles 24a pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the positions of the plurality of first nozzles 24a are set so that the spray shaft O1 passes through the space between the heat transfer tubes 22 adjacent to each other in the Y direction. The spray shafts O2 of the plurality of second nozzles 24b pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the positions of the plurality of second nozzles 24b are set so that the spray shaft O2 passes through the space between the heat transfer tubes 22 adjacent to each other in the Y direction. According to such a configuration, the reach of the spray flow in the row direction (Z direction) is extended. This not only contributes to the miniaturization of the evaporator 101, but also contributes to the uniform thinning of the liquid film on the surface of the heat transfer tube 22.
 複数の第3ノズル24cの噴霧軸O3は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間を通る。言い換えると、Y方向において、第3ノズル24cの位置は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を噴霧軸O3が通るように定められている。複数の第4ノズル24dの噴霧軸O4は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間を通る。言い換えると、Y方向において、第4ノズル24dの位置は、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を噴霧軸O4が通るように定められている。このような構成によれば、列方向(Z方向)への噴霧流の到達距離が伸びる。 The spray shafts O3 of the plurality of third nozzles 24c pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the position of the third nozzle 24c in the Y direction is determined so that the spray shaft O3 passes through the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction. The spray shafts O4 of the plurality of fourth nozzles 24d pass between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction. In other words, the position of the fourth nozzle 24d in the Y direction is determined so that the spray shaft O4 passes through the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction. According to such a configuration, the reach of the spray flow in the row direction (Z direction) is extended.
 図4Aに示すように、Y方向に関して、複数の第1ノズル24aと複数の第2ノズル24bとの間には、少なくとも1段以上の伝熱管22が存在する。図4Bに示すように、Y方向に関して、複数の第3ノズル24cと複数の第4ノズル24dとの間には、少なくとも1段以上の伝熱管22が存在する。本実施の形態では、Y方向に関して、複数の第1ノズル24aと複数の第2ノズル24bとの間に3段の伝熱管22が存在する。Y方向に関して、複数の第3ノズル24cと複数の第4ノズル24dとの間に3段の伝熱管22が存在する。 As shown in FIG. 4A, there are at least one or more heat transfer tubes 22 between the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Y direction. As shown in FIG. 4B, there is at least one or more heat transfer tubes 22 between the plurality of third nozzles 24c and the plurality of fourth nozzles 24d in the Y direction. In the present embodiment, there are three stages of heat transfer tubes 22 between the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Y direction. In the Y direction, there are three stages of heat transfer tubes 22 between the plurality of third nozzles 24c and the plurality of fourth nozzles 24d.
 図2に示すように、シェル21は、その底部に液相冷媒を貯留するように構成されている。循環回路25は、シェル21の底部と複数のノズル24のそれぞれとを接続している。循環回路25に循環ポンプ26が配置されている。循環ポンプ26の働きにより、シェル21の底部に貯留された液相冷媒が循環回路25を通じて複数のノズル24に供給される。このような構成によれば、液相冷媒の回収が容易であるとともに、複数のノズル24に液相冷媒を供給するためのエネルギー消費を抑えることができる。 As shown in FIG. 2, the shell 21 is configured to store a liquid phase refrigerant at the bottom thereof. The circulation circuit 25 connects the bottom of the shell 21 to each of the plurality of nozzles 24. A circulation pump 26 is arranged in the circulation circuit 25. By the action of the circulation pump 26, the liquid phase refrigerant stored in the bottom of the shell 21 is supplied to the plurality of nozzles 24 through the circulation circuit 25. According to such a configuration, the liquid phase refrigerant can be easily recovered, and the energy consumption for supplying the liquid phase refrigerant to the plurality of nozzles 24 can be suppressed.
 シェル21には、流入管27及び排出管28が設けられている。流入管27は、シェル21の内部に冷媒を導く流路である。排出管28は、複数の伝熱管22の表面で蒸発した冷媒をシェル21の外部に導く流路である。流入管27及び排出管28には、それぞれ、流路110d及び流路110aが接続されうる。 The shell 21 is provided with an inflow pipe 27 and a discharge pipe 28. The inflow pipe 27 is a flow path for guiding the refrigerant into the shell 21. The discharge pipe 28 is a flow path that guides the refrigerant evaporated on the surfaces of the plurality of heat transfer pipes 22 to the outside of the shell 21. A flow path 110d and a flow path 110a may be connected to the inflow pipe 27 and the discharge pipe 28, respectively.
 複数のノズル24は、ヘッダー23を介して循環回路25と接続されている。 The plurality of nozzles 24 are connected to the circulation circuit 25 via the header 23.
 複数の伝熱管22の一端部を覆うように、シェル21に流路カバー29aが取り付けられている。複数の伝熱管22の他端部を覆うように、シェル21に流路カバー29bが取り付けられている。流路カバー29aは、内部に2つの仕切板31を有する。流路カバー29bは、内部に1つの仕切板31を有する。流路カバー29aは二次側流入口32及び二次側流出口33を有する。二次側流入口32は、流路カバー29bに設けられていてもよい。二次側流出口33は、流路カバー29bに設けられていてもよい。本実施の形態の蒸発器101におけるパス数は、冷媒の流れ方向が流路カバー29a又は29bにおいて反転する毎に「1」増加する。本実施の形態では、パス数が「4」となるように、流路カバー29aに二次側流入口32及び二次側流出口33が配置されている。 A flow path cover 29a is attached to the shell 21 so as to cover one end of a plurality of heat transfer tubes 22. A flow path cover 29b is attached to the shell 21 so as to cover the other ends of the plurality of heat transfer tubes 22. The flow path cover 29a has two partition plates 31 inside. The flow path cover 29b has one partition plate 31 inside. The flow path cover 29a has a secondary side inflow port 32 and a secondary side outflow port 33. The secondary side inflow port 32 may be provided on the flow path cover 29b. The secondary side outlet 33 may be provided on the flow path cover 29b. The number of passes in the evaporator 101 of the present embodiment increases by "1" each time the flow direction of the refrigerant is reversed at the flow path cover 29a or 29b. In the present embodiment, the secondary side inflow port 32 and the secondary side outflow port 33 are arranged on the flow path cover 29a so that the number of passes is “4”.
 本実施の形態において、シェル21は矩形の断面形状を有している。ただし、シェル21の形状は限定されない。シェル21は、円形の断面形状を有してもよい。シェル21は、耐圧容器であってもよい。 In the present embodiment, the shell 21 has a rectangular cross-sectional shape. However, the shape of the shell 21 is not limited. The shell 21 may have a circular cross-sectional shape. The shell 21 may be a pressure resistant container.
 [1-2.動作]
 以上のように構成された蒸発器101について、以下その動作及び作用を説明する。
[1-2. motion]
The operation and operation of the evaporator 101 configured as described above will be described below.
 循環ポンプ26を起動すると、液相冷媒がシェル21の底部からヘッダー23を介して複数のノズル24に供給される。液相冷媒は、複数の第1ノズル24a及び複数の第2ノズル24bのそれぞれから、複数の伝熱管22に噴霧される。また、液相冷媒は、複数の第3ノズル24c及び複数の第4ノズル24dのそれぞれから、複数の伝熱管22に噴霧される。熱媒体は、二次側流入口32から流路カバー29aに流入し、伝熱管22を流通する。次に、熱媒体は、流路カバー29bで流通方向を反転し、伝熱管22を流通する。次に、熱媒体は、流路カバー29aで流通方向を再度反転し、伝熱管22を流通する。熱媒体は、再び、流路カバー29bで流通方向を反転し、伝熱管22を流通する。その後、熱媒体は、二次側流出口33から流出し、蒸発器101の外部に排出される。伝熱管22に熱媒体を流しながら伝熱管22に向けて液相冷媒を噴霧すれば、伝熱管22において熱媒体と液相冷媒との熱交換が行われ、冷媒が蒸発して気相冷媒が生成される。 When the circulation pump 26 is started, the liquid phase refrigerant is supplied from the bottom of the shell 21 to the plurality of nozzles 24 via the header 23. The liquid phase refrigerant is sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b onto the plurality of heat transfer tubes 22. Further, the liquid phase refrigerant is sprayed from each of the plurality of third nozzles 24c and the plurality of fourth nozzles 24d onto the plurality of heat transfer tubes 22. The heat medium flows into the flow path cover 29a from the secondary side inflow port 32 and flows through the heat transfer tube 22. Next, the heat medium reverses the flow direction at the flow path cover 29b and flows through the heat transfer tube 22. Next, the heat medium reverses the flow direction again at the flow path cover 29a and flows through the heat transfer tube 22. The heat medium again reverses the flow direction at the flow path cover 29b and flows through the heat transfer tube 22. After that, the heat medium flows out from the secondary side outlet 33 and is discharged to the outside of the evaporator 101. If the liquid phase refrigerant is sprayed toward the heat transfer tube 22 while flowing the heat medium through the heat transfer tube 22, heat exchange between the heat medium and the liquid phase refrigerant is performed in the heat transfer tube 22, and the refrigerant evaporates to produce the gas phase refrigerant. Generated.
 ここで、各ノズル24から噴霧された冷媒の成分について、図5A及び図5Bを用いて説明する。図5A及び図5Bにおいて、伝熱管22上の矢印は、噴霧された冷媒の主な移動方向を示している。 Here, the components of the refrigerant sprayed from each nozzle 24 will be described with reference to FIGS. 5A and 5B. In FIGS. 5A and 5B, the arrows on the heat transfer tube 22 indicate the main directions of movement of the sprayed refrigerant.
 第1ノズル24aから噴霧された冷媒の噴霧流は、噴霧軸O1に沿った流れの成分C1と、伝熱管22の表面に沿った流れの成分C2とを有する。成分C1は、第1ノズル24aから噴霧されて拡がる冷媒の流れの成分である。成分C1は、噴霧軸O1に沿って、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を移動する冷媒の流れの成分である。成分C2は、X方向の速度成分を持って伝熱管22の表面を移動する冷媒の流れの成分である。第2ノズル24bから噴霧された冷媒の噴霧流は、噴霧軸O2に沿った流れの成分C3と、伝熱管22の表面に沿った流れの成分C4とを有する。第3ノズル24cから噴霧された冷媒の噴霧流は、噴霧軸O3に沿った流れの成分C5と、伝熱管22の表面に沿った流れの成分C6とを有する。第4ノズル24dから噴霧された冷媒の噴霧流は、噴霧軸O4に沿った流れの成分C7と、伝熱管22の表面に沿った流れの成分C8とを有する。 The spray flow of the refrigerant sprayed from the first nozzle 24a has a flow component C1 along the spray shaft O1 and a flow component C2 along the surface of the heat transfer tube 22. The component C1 is a component of the flow of the refrigerant sprayed and spread from the first nozzle 24a. The component C1 is a component of the flow of the refrigerant that moves in the space between the heat transfer tubes 22 and the heat transfer tubes 22 that are adjacent to each other in the Y direction along the spray shaft O1. The component C2 is a component of the flow of the refrigerant that moves on the surface of the heat transfer tube 22 with a velocity component in the X direction. The spray flow of the refrigerant sprayed from the second nozzle 24b has a flow component C3 along the spray shaft O2 and a flow component C4 along the surface of the heat transfer tube 22. The spray flow of the refrigerant sprayed from the third nozzle 24c has a flow component C5 along the spray shaft O3 and a flow component C6 along the surface of the heat transfer tube 22. The spray stream of the refrigerant sprayed from the fourth nozzle 24d has a flow component C7 along the spray shaft O4 and a flow component C8 along the surface of the heat transfer tube 22.
 成分C1、成分C3、成分C5及び成分C7を持つ冷媒の流れは、それぞれ、Y方向において互いに隣り合う伝熱管22と伝熱管22との間の空間を進む。そのとき、冷媒は、上側に位置する伝熱管22の下表面及び下側に位置する伝熱管22の上表面に接触しながら移動する。成分C2及び成分C8を持つ冷媒の流れは、それぞれ、X方向に沿って伝熱管22の表面を移動する。成分C4及び成分C6を持つ冷媒の流れは、それぞれ、成分C2及び成分C8を持つ冷媒の流れの方向とは逆方向へと伝熱管22の表面を移動する。これらの成分を持つ冷媒は、伝熱管22の表面で伝熱管22の内部を流通する熱媒体と熱交換を行い蒸発する。未蒸発の冷媒は、下方に位置する伝熱管22に向かって滴下する。 The flow of the refrigerant having the component C1, the component C3, the component C5 and the component C7 travels in the space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction, respectively. At that time, the refrigerant moves while contacting the lower surface of the heat transfer tube 22 located on the upper side and the upper surface of the heat transfer tube 22 located on the lower side. The flow of the refrigerant having the component C2 and the component C8 moves on the surface of the heat transfer tube 22 along the X direction, respectively. The flow of the refrigerant having the component C4 and the component C6 moves on the surface of the heat transfer tube 22 in the direction opposite to the direction of the flow of the refrigerant having the component C2 and the component C8, respectively. The refrigerant having these components exchanges heat with the heat medium circulating inside the heat transfer tube 22 on the surface of the heat transfer tube 22 and evaporates. The unevaporated refrigerant drops toward the heat transfer tube 22 located below.
 図6は、第1ノズル24a及び第3ノズル24cから複数の伝熱管22に噴霧された冷媒の移動方向及び滴下状態を示す図である。図6は、Z方向から見た状態であって、最も手前の伝熱管22を含む面から手前に関して見える部分、及び最も奥の伝熱管22を含む面より奥に関して見える部分の一部を示している。図6において、伝熱管22上の矢印は、噴霧された冷媒の主な移動方向を示している。 FIG. 6 is a diagram showing a moving direction and a dropping state of the refrigerant sprayed from the first nozzle 24a and the third nozzle 24c onto the plurality of heat transfer tubes 22. FIG. 6 shows a part of a portion viewed from the Z direction, which is visible from the surface including the frontmost heat transfer tube 22 with respect to the front, and a part visible from the surface including the innermost heat transfer tube 22. There is. In FIG. 6, the arrow on the heat transfer tube 22 indicates the main moving direction of the sprayed refrigerant.
 第1ノズル24aから噴霧された冷媒の噴霧流は、第1側から第2側に向かって、Y方向に互いに隣り合う伝熱管22と伝熱管22との間の空間を、Z方向とX方向との間の方向に進む。噴霧軸O1は、Y方向において、伝熱管22と伝熱管22との間に位置する。第3ノズル24cから噴霧された冷媒の噴霧流は、第2側から第1側に向かって、Y方向に互いに隣り合う伝熱管22と伝熱管22との間の空間を、Z方向とX方向との間の方向に進む。噴霧軸O3は、Y方向において、伝熱管22と伝熱管22との間に位置する。 The spray stream of the refrigerant sprayed from the first nozzle 24a forms a space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction from the first side to the second side in the Z direction and the X direction. Proceed in the direction between and. The spray shaft O1 is located between the heat transfer tube 22 and the heat transfer tube 22 in the Y direction. The spray stream of the refrigerant sprayed from the third nozzle 24c forms a space between the heat transfer tubes 22 and the heat transfer tubes 22 adjacent to each other in the Y direction from the second side to the first side in the Z direction and the X direction. Proceed in the direction between and. The spray shaft O3 is located between the heat transfer tube 22 and the heat transfer tube 22 in the Y direction.
 このとき、第1ノズル24aから噴霧された冷媒の一部(成分C2)は、X方向に沿って、伝熱管22の表面上を移動する。第3ノズル24cから噴霧された冷媒の一部(成分C6)は、X方向に沿って、伝熱管22の表面上を移動する。冷媒の流れの成分C2は、冷媒の流れの成分C6と逆方向の成分である。X方向の移動速度が低下すると、下方に位置する伝熱管22に向かって冷媒の滴下が始まる。一方、これらの伝熱管22よりも下方に位置する伝熱管22には、第1ノズル24a及び第3ノズル24cから噴霧された冷媒の流れの成分(成分C1及び成分C5)がほとんど到達しない。そのため、上方に位置する伝熱管22において未蒸発の冷媒が滴下することによって熱交換が行われる。第2ノズル24b及び第4ノズル24dについても同じ説明が適用されうる。 At this time, a part of the refrigerant (component C2) sprayed from the first nozzle 24a moves on the surface of the heat transfer tube 22 along the X direction. A part of the refrigerant sprayed from the third nozzle 24c (component C6) moves on the surface of the heat transfer tube 22 along the X direction. The refrigerant flow component C2 is a component in the opposite direction to the refrigerant flow component C6. When the moving speed in the X direction decreases, the refrigerant starts to drip toward the heat transfer tube 22 located below. On the other hand, the components (components C1 and C5) of the flow of the refrigerant sprayed from the first nozzle 24a and the third nozzle 24c hardly reach the heat transfer tube 22 located below the heat transfer tube 22. Therefore, heat exchange is performed by dropping the unevaporated refrigerant in the heat transfer tube 22 located above. The same description can be applied to the second nozzle 24b and the fourth nozzle 24d.
 図7Aは、第1ノズル24a及び第3ノズル24cにより定められるノズル面と第2ノズル24b及び第4ノズル24dにより定められるノズル面との位置関係を示す図である。図7Aでは、理解を容易にするために、第1ノズル24a、第2ノズル24b、第3ノズル24c、及び第4ノズル24dをそれぞれ1つのみ示している。第3ノズル24cは、第2ノズル24bと同一のノズル面にある。Y方向に関して、第1ノズル24aと第2ノズル24bとの間に3段の伝熱管22が存在する。同様に、Y方向に関して、第3ノズル24cと第4ノズル24dとの間に3段の伝熱管22が存在する。 FIG. 7A is a diagram showing the positional relationship between the nozzle surface defined by the first nozzle 24a and the third nozzle 24c and the nozzle surface defined by the second nozzle 24b and the fourth nozzle 24d. In FIG. 7A, for ease of understanding, only one first nozzle 24a, one second nozzle 24b, one third nozzle 24c, and one fourth nozzle 24d are shown. The third nozzle 24c is on the same nozzle surface as the second nozzle 24b. In the Y direction, there is a three-stage heat transfer tube 22 between the first nozzle 24a and the second nozzle 24b. Similarly, in the Y direction, there is a three-stage heat transfer tube 22 between the third nozzle 24c and the fourth nozzle 24d.
 第nノズル面は、第1ノズル24aの噴霧軸O1(図7Aでは不図示)及び第3ノズル24cの噴霧軸O3(図7Aでは不図示)により定められるXZ面として定義される。第1ノズル24aの噴霧軸O1の上側に位置する伝熱管22を伝熱管22aと定義する。第1ノズル24aの噴霧軸O1の下側に位置する伝熱管22を伝熱管22bと定義する。伝熱管22aと伝熱管22bとは、Y方向において互いに隣り合っている。第nノズル面には、伝熱管22aの下表面及び伝熱管22bの上表面が含まれる。第(n+1)ノズル面は、第2ノズル24bの噴霧軸O2(図7Aでは不図示)及び第4ノズル24dの噴霧軸O4(図7Aでは不図示)により定められるXZ面として定義される。第2ノズル24bの噴霧軸O2の上側に位置する伝熱管22を伝熱管22cと定義する。第2ノズル24bの噴霧軸O2の下側に位置する伝熱管22を伝熱管22dと定義する。伝熱管22cと伝熱管22dとは、Y方向において互いに隣り合っている。第(n+1)ノズル面には、伝熱管22cの下表面及び伝熱管22dの上表面が含まれる。 The n-th nozzle surface is defined as an XZ surface defined by the spray shaft O1 of the first nozzle 24a (not shown in FIG. 7A) and the spray shaft O3 of the third nozzle 24c (not shown in FIG. 7A). The heat transfer tube 22 located above the spray shaft O1 of the first nozzle 24a is defined as the heat transfer tube 22a. The heat transfer tube 22 located below the spray shaft O1 of the first nozzle 24a is defined as the heat transfer tube 22b. The heat transfer tube 22a and the heat transfer tube 22b are adjacent to each other in the Y direction. The n-th nozzle surface includes a lower surface of the heat transfer tube 22a and an upper surface of the heat transfer tube 22b. The first (n + 1) nozzle surface is defined as an XZ surface defined by the spray shaft O2 of the second nozzle 24b (not shown in FIG. 7A) and the spray shaft O4 of the fourth nozzle 24d (not shown in FIG. 7A). The heat transfer tube 22 located above the spray shaft O2 of the second nozzle 24b is defined as the heat transfer tube 22c. The heat transfer tube 22 located below the spray shaft O2 of the second nozzle 24b is defined as the heat transfer tube 22d. The heat transfer tube 22c and the heat transfer tube 22d are adjacent to each other in the Y direction. The first (n + 1) nozzle surface includes a lower surface of the heat transfer tube 22c and an upper surface of the heat transfer tube 22d.
 第nノズル面と第(n+1)ノズル面との間には、所定の段数の伝熱管22が存在する。 A predetermined number of heat transfer tubes 22 exist between the nth nozzle surface and the (n + 1) th nozzle surface.
 図7Bは、冷媒を噴霧した後の第nノズル面及び第(n+1)ノズル面における冷媒の状態を示す図である。図7Bにおいて、矢印は冷媒の滴下方向を示している。第1ノズル24a、第2ノズル24b、第3ノズル24c、及び第4ノズル24dのそれぞれから冷媒が噴霧されると、第nノズル面及び第(n+1)ノズル面に、図7Bに示すような冷媒の粗密状態が発生する。具体的には、第nノズル面及び第(n+1)ノズル面において、冷媒の密領域と粗領域とが千鳥状に生ずる。 FIG. 7B is a diagram showing the state of the refrigerant on the nth nozzle surface and the (n + 1) th nozzle surface after spraying the refrigerant. In FIG. 7B, the arrow indicates the direction in which the refrigerant is dropped. When the refrigerant is sprayed from each of the first nozzle 24a, the second nozzle 24b, the third nozzle 24c, and the fourth nozzle 24d, the refrigerant as shown in FIG. 7B is on the nth nozzle surface and the (n + 1) nozzle surface. A coarse and dense state occurs. Specifically, on the nth nozzle surface and the (n + 1) th nozzle surface, dense regions and coarse regions of the refrigerant are generated in a staggered manner.
 詳細には、第nノズル面において、第1ノズル24a及び第3ノズル24cの近傍の伝熱管22を含む領域には、冷媒の流れの成分(成分C1及び成分C5)により冷媒が十分に到達する。冷媒の流れの成分(成分C2及び成分C6)により伝熱管22の表面上を冷媒が十分に移動する。これにより、図7Bに示すように、第nノズル面に冷媒の密領域が生じ、冷媒の液膜が形成される。同様に、第(n+1)ノズル面において、第2ノズル24b及び第4ノズル24dの近傍の伝熱管22を含む領域には、冷媒の流れの成分(成分C3及び成分C7)により冷媒が十分に到達する。冷媒の流れの成分(成分C4及び成分C8)により伝熱管22の表面上を冷媒が十分に移動する。これにより、図7Bに示すように、第(n+1)ノズル面に冷媒の密領域が生じ、冷媒の液膜が形成される。 Specifically, on the n-th nozzle surface, the refrigerant sufficiently reaches the region including the heat transfer tube 22 in the vicinity of the first nozzle 24a and the third nozzle 24c by the components of the flow of the refrigerant (components C1 and C5). .. The components of the flow of the refrigerant (components C2 and C6) allow the refrigerant to sufficiently move on the surface of the heat transfer tube 22. As a result, as shown in FIG. 7B, a dense region of the refrigerant is formed on the n-th nozzle surface, and a liquid film of the refrigerant is formed. Similarly, on the first (n + 1) nozzle surface, the refrigerant sufficiently reaches the region including the heat transfer tube 22 in the vicinity of the second nozzle 24b and the fourth nozzle 24d by the components of the flow of the refrigerant (components C3 and C7). do. The components of the flow of the refrigerant (components C4 and C8) allow the refrigerant to sufficiently move on the surface of the heat transfer tube 22. As a result, as shown in FIG. 7B, a dense region of the refrigerant is formed on the (n + 1) th nozzle surface, and a liquid film of the refrigerant is formed.
 一方、第nノズル面において、第1ノズル24a及び第3ノズル24cから離れた位置にある伝熱管22を含む領域には、到達する冷媒の量が十分でないか、冷媒が到達しない。そのため、図7Bに示すように冷媒の粗領域が生じる。同様に第(n+1)ノズル面において、第2ノズル24b及び第4ノズル24dから離れた位置にある伝熱管22を含む領域には、到達する冷媒の量が十分でないか、冷媒が到達しない。そのため、図7Bに示すように冷媒の粗領域が生じる。しかし、未蒸発の冷媒が、第nノズル面の密領域から第(n+1)ノズル面の粗領域に滴下することにより、粗領域の濡れ状態が改善される。 On the other hand, on the nth nozzle surface, the amount of the refrigerant that reaches is not sufficient or the refrigerant does not reach the region including the heat transfer tube 22 that is located away from the first nozzle 24a and the third nozzle 24c. Therefore, as shown in FIG. 7B, a rough region of the refrigerant is generated. Similarly, on the first (n + 1) nozzle surface, the amount of the refrigerant that reaches is not sufficient or the refrigerant does not reach the region including the heat transfer tube 22 that is located away from the second nozzle 24b and the fourth nozzle 24d. Therefore, as shown in FIG. 7B, a rough region of the refrigerant is generated. However, the unevaporated refrigerant drops from the dense region of the n-th nozzle surface to the rough region of the (n + 1) th nozzle surface, so that the wet state of the rough region is improved.
 [1-3.効果等]
 以上のように、本実施の形態において、複数の第1ノズル24a及び複数の第2ノズル24bをZ方向に投影することによって得られる投影像において、複数の第1ノズル24a及び複数の第2ノズル24bは千鳥状の配列パターンを示す。また、複数の第3ノズル24c及び複数の第4ノズル24dをZ方向に投影することによって得られる投影像において、複数の第3ノズル24c及び複数の第4ノズル24dは千鳥状の配列パターンを示す。
[1-3. Effect, etc.]
As described above, in the projection image obtained by projecting the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Z direction in the present embodiment, the plurality of first nozzles 24a and the plurality of second nozzles are present. Reference numeral 24b shows a staggered arrangement pattern. Further, in the projection image obtained by projecting the plurality of third nozzles 24c and the plurality of fourth nozzles 24d in the Z direction, the plurality of third nozzles 24c and the plurality of fourth nozzles 24d show a staggered arrangement pattern. ..
 このような構成によれば、複数の第1ノズル24aから第4ノズル24dによって噴霧された冷媒により、複数の伝熱管22の表面を均一的に濡らすことができる。これにより、冷媒が届かないドライアウト面の発生を防ぐことができる。そのため、蒸発器101の伝熱性能を向上させることができる。 According to such a configuration, the surface of the plurality of heat transfer tubes 22 can be uniformly wetted by the refrigerant sprayed from the plurality of first nozzles 24a to the fourth nozzle 24d. This makes it possible to prevent the generation of a dry-out surface that the refrigerant does not reach. Therefore, the heat transfer performance of the evaporator 101 can be improved.
 本実施の形態は、伝熱管22の列数が多く、ノズル24からの冷媒の到達量が少ない伝熱管22が存在している場合に特に有効である。本実施の形態によれば、複数の伝熱管22の両側から、噴霧式による冷媒の供給作用と流下液膜式による冷媒の供給作用との重畳作用により各ノズル面における濡れ状態の粗密の差を改善することができる。これにより、ドライアウト面の形成を防ぐことができる。また、冷媒の噴霧流が直接到達し、かつ、冷媒が表面を移動する伝熱管22を含む領域では、強制対流によって熱伝達率が向上するので、熱交換効率をさらに向上させることができる。 This embodiment is particularly effective when there is a heat transfer tube 22 having a large number of rows of heat transfer tubes 22 and a small amount of refrigerant reaching from the nozzle 24. According to the present embodiment, the difference in wet state on each nozzle surface is determined by the superimposing action of the refrigerant supply action by the spray type and the refrigerant supply action by the flowing liquid film type from both sides of the plurality of heat transfer tubes 22. Can be improved. This makes it possible to prevent the formation of a dry-out surface. Further, in the region including the heat transfer tube 22 where the spray stream of the refrigerant directly reaches and the refrigerant moves on the surface, the heat transfer coefficient is improved by the forced convection, so that the heat exchange efficiency can be further improved.
 本実施の形態において、第1ノズル24aが複数段で設けられていてもよい。第2ノズル24bが複数段で設けられていてもよい。第1ノズル22aの段数が第2ノズル24bの段数と一致していてもよく、一致していなくてもよい。第3ノズル24aが複数段で設けられていてもよい。第2ノズル24bが複数段で設けられていてもよい。第3ノズル22cの段数が第4ノズル24dの段数と一致していてもよく、一致していなくてもよい。このような構成によれば、複数の伝熱管22の段数が多い場合であっても、下方に位置するノズル面への冷媒の滴下によって、冷媒が届かない領域の発生をより十分に抑制できる。 In the present embodiment, the first nozzle 24a may be provided in a plurality of stages. The second nozzle 24b may be provided in a plurality of stages. The number of stages of the first nozzle 22a may or may not match the number of stages of the second nozzle 24b. The third nozzle 24a may be provided in a plurality of stages. The second nozzle 24b may be provided in a plurality of stages. The number of stages of the third nozzle 22c may or may not match the number of stages of the fourth nozzle 24d. According to such a configuration, even when the number of stages of the plurality of heat transfer tubes 22 is large, it is possible to more sufficiently suppress the generation of a region where the refrigerant does not reach due to the dropping of the refrigerant on the nozzle surface located below.
 Y方向に沿って3段以上の複数の第1ノズル24aが設けられている場合、Y方向において互いに隣り合う第1ノズル24a同士の間隔は、互いに等しくてもよく、異なっていてもよい。このような構成は、第2ノズル24b、第3ノズル24c及び第4ノズル24dにも当てはまる。Y方向における第1ノズル24aと第2ノズル24bとの間隔は、Y方向において互いに隣り合う第1ノズル24a同士の間隔の1/2であってもよい。Y方向における第3ノズル24cと第4ノズル24dとの間隔は、Y方向において互いに隣り合う第3ノズル24c同士の間隔の1/2であってもよい。 When a plurality of first nozzles 24a having three or more stages are provided along the Y direction, the distances between the first nozzles 24a adjacent to each other in the Y direction may be equal to or different from each other. Such a configuration also applies to the second nozzle 24b, the third nozzle 24c and the fourth nozzle 24d. The distance between the first nozzle 24a and the second nozzle 24b in the Y direction may be ½ of the distance between the first nozzles 24a adjacent to each other in the Y direction. The distance between the third nozzle 24c and the fourth nozzle 24d in the Y direction may be ½ of the distance between the third nozzles 24c adjacent to each other in the Y direction.
 Z方向から平面視したとき、複数の第1ノズル24aと第2ノズル24bとがマトリクス状に配列されていてもよい。Z方向から平面視し、最小面積の四角形の4つの頂点をなす4つの第1ノズル24aを選択したとき、それら4つの第1ノズル24aがなす四角形の中央部に第2ノズル24bが位置しうる。同様に、Z方向から平面視し、最小面積の四角形の4つの頂点をなすように4つの第2ノズル24bを選択したとき、それら4つの第2ノズル24bがなす四角形の中央部に第1ノズル24aが位置しうる。 When viewed in a plan view from the Z direction, a plurality of first nozzles 24a and second nozzles 24b may be arranged in a matrix. When four first nozzles 24a forming the four vertices of the quadrangle having the smallest area are selected in a plan view from the Z direction, the second nozzle 24b may be located at the center of the quadrangle formed by the four first nozzles 24a. .. Similarly, when four second nozzles 24b are selected so as to form the four vertices of the quadrangle having the smallest area in a plan view from the Z direction, the first nozzle is located in the center of the quadrangle formed by the four second nozzles 24b. 24a can be located.
 Z方向から平面視したとき、複数の第3ノズル24cと第4ノズル24dとがマトリクス状に配列されていてもよい。Z方向から平面視し、最小面積の四角形の4つの頂点をなす4つの第3ノズル24cを選択したとき、それら4つの第3ノズル24cがなす四角形の中央部に第4ノズル24dが位置しうる。同様に、Z方向から平面視し、最小面積の四角形の4つの頂点をなすように4つの第4ノズル24dを選択したとき、それら4つの第4ノズル24dがなす四角形の中央部に第3ノズル24cが位置しうる。 When viewed in a plan view from the Z direction, the plurality of third nozzles 24c and the fourth nozzle 24d may be arranged in a matrix. When four third nozzles 24c forming the four vertices of the quadrangle having the smallest area are selected in a plan view from the Z direction, the fourth nozzle 24d may be located in the center of the quadrangle formed by the four third nozzles 24c. .. Similarly, when the four fourth nozzles 24d are selected so as to form the four vertices of the quadrangle having the smallest area when viewed in a plan view from the Z direction, the third nozzle is located in the center of the quadrangle formed by the four fourth nozzles 24d. 24c can be located.
 Y方向に沿って2段以上の複数の第1ノズル24a及び2段以上の複数の第2ノズル24bが設けられていてもよい。この場合、Y方向において互いに隣り合う第1ノズル24a同士の間隔は、X方向において互いに隣り合う第1ノズル24a同士の間隔Wよりも広くてもよい。Y方向において互いに隣り合う第2ノズル24b同士の間隔は、X方向において互いに隣り合う第2ノズル24b同士の間隔Wよりも広くてもよい。このような構成は、Y方向において冷媒の流れが重複することを回避するのに有利である。 A plurality of first nozzles 24a having two or more stages and a plurality of second nozzles 24b having two or more stages may be provided along the Y direction. In this case, the distance between the first nozzles 24a adjacent to each other in the Y direction may be wider than the distance W between the first nozzles 24a adjacent to each other in the X direction. The distance between the second nozzles 24b adjacent to each other in the Y direction may be wider than the distance W between the second nozzles 24b adjacent to each other in the X direction. Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Y direction.
 Y方向に沿って2段以上の複数の第3ノズル24c及び2段以上の複数の第4ノズル24dが設けられていてもよい。この場合、Y方向において互いに隣り合う第3ノズル24c同士の間隔は、X方向において互いに隣り合う第3ノズル24c同士の間隔Wよりも広くてもよい。Y方向において互いに隣り合う第4ノズル24d同士の間隔は、X方向において互いに隣り合う第4ノズル24d同士の間隔Wよりも広くてもよい。このような構成は、Y方向において冷媒の流れが重複することを回避するのに有利である。 A plurality of third nozzles 24c having two or more stages and a plurality of fourth nozzles 24d having two or more stages may be provided along the Y direction. In this case, the distance between the third nozzles 24c adjacent to each other in the Y direction may be wider than the distance W between the third nozzles 24c adjacent to each other in the X direction. The distance between the fourth nozzles 24d adjacent to each other in the Y direction may be wider than the distance W between the fourth nozzles 24d adjacent to each other in the X direction. Such a configuration is advantageous in avoiding overlapping refrigerant flows in the Y direction.
 Y方向に沿って2段以上の複数の第1ノズル24a及び2段以上の複数の第2ノズル24bが設けられていてもよい。この場合、Y方向において互いに隣り合う第1ノズル24a同士の間隔は、Y方向において互いに隣り合う第2ノズル24b同士の間隔に等しくてもよい。Y方向における第1ノズル24aと第2ノズル24bとの間隔がY方向において互いに隣り合う第1ノズル24a同士の間隔の1/2であってもよい。このような構成によれば、上述した効果をより十分に得ることができる。 A plurality of first nozzles 24a having two or more stages and a plurality of second nozzles 24b having two or more stages may be provided along the Y direction. In this case, the distance between the first nozzles 24a adjacent to each other in the Y direction may be equal to the distance between the second nozzles 24b adjacent to each other in the Y direction. The distance between the first nozzle 24a and the second nozzle 24b in the Y direction may be ½ of the distance between the first nozzles 24a adjacent to each other in the Y direction. With such a configuration, the above-mentioned effect can be more sufficiently obtained.
 Y方向に沿って2段以上の複数の第3ノズル24c及び2段以上の複数の第4ノズル24dが設けられていてもよい。この場合、Y方向において互いに隣り合う第3ノズル24c同士の間隔は、Y方向において互いに隣り合う第4ノズル24d同士の間隔に等しくてもよい。Y方向における第3ノズル24cと第4ノズル24dとの間隔がY方向において互いに隣り合う第3ノズル24c同士の間隔の1/2であってもよい。このような構成によれば、上述した効果をより十分に得ることができる。 A plurality of third nozzles 24c having two or more stages and a plurality of fourth nozzles 24d having two or more stages may be provided along the Y direction. In this case, the distance between the third nozzles 24c adjacent to each other in the Y direction may be equal to the distance between the fourth nozzles 24d adjacent to each other in the Y direction. The distance between the third nozzle 24c and the fourth nozzle 24d in the Y direction may be ½ of the distance between the third nozzles 24c adjacent to each other in the Y direction. With such a configuration, the above-mentioned effect can be more sufficiently obtained.
 本実施の形態の冷凍サイクル装置100は、本実施の形態のシェルアンドチューブ式熱交換器を備えている。シェルアンドチューブ式熱交換器は、蒸発器101に使用されてもよく、凝縮器103に使用されてもよい。本実施の形態のシェルアンドチューブ式熱交換器を使用することによって、冷凍サイクル装置100の効率を向上させることができる。 The refrigeration cycle apparatus 100 of the present embodiment includes the shell-and-tube heat exchanger of the present embodiment. The shell-and-tube heat exchanger may be used in the evaporator 101 or in the condenser 103. By using the shell-and-tube heat exchanger of the present embodiment, the efficiency of the refrigeration cycle apparatus 100 can be improved.
 (実施の形態2)
 以下、図8から図10を用いて、実施の形態2を説明する。実施の形態1と同一の構成要素には同一番号を付して詳細な説明を省略する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to FIGS. 8 to 10. The same components as those in the first embodiment are designated by the same numbers, and detailed description thereof will be omitted.
 [2-1.蒸発器の構成]
 図8は、本開示の実施の形態2における蒸発器111の横断面図である。図8は、実施の形態1の図3に対応している。本実施の形態の蒸発器111は、複数の第3ノズル24c及び複数の第4ノズル24dを備えていないこと、及び複数の伝熱管22の列数が6列であることを除き、実施の形態1の蒸発器101と同一の構成を有する。
[2-1. Evaporator configuration]
FIG. 8 is a cross-sectional view of the evaporator 111 according to the second embodiment of the present disclosure. FIG. 8 corresponds to FIG. 3 of the first embodiment. The evaporator 111 of the present embodiment does not include the plurality of third nozzles 24c and the plurality of fourth nozzles 24d, and the number of rows of the plurality of heat transfer tubes 22 is six. It has the same configuration as the evaporator 101 of 1.
 図9は、IX-IX線に沿った蒸発器111の側面図である。図9では、伝熱管22及びノズル24以外の要素は省略されている。図9に示すように、複数の第1ノズル24a及び複数の第2ノズル24bをZ方向に投影することによって得られる投影像において、複数の第1ノズル24a及び複数の第2ノズル24bは千鳥状の配列パターンを示す。 FIG. 9 is a side view of the evaporator 111 along the IX-IX line. In FIG. 9, elements other than the heat transfer tube 22 and the nozzle 24 are omitted. As shown in FIG. 9, in the projection image obtained by projecting the plurality of first nozzles 24a and the plurality of second nozzles 24b in the Z direction, the plurality of first nozzles 24a and the plurality of second nozzles 24b are staggered. The arrangement pattern of is shown.
 図10Aは、XA-XA線に沿った蒸発器111の断面図であり、図10Bは、XB-XB線に沿った蒸発器111の断面図である。図10A及び図10Bでは、伝熱管22及びノズル24以外の要素は省略されている。 FIG. 10A is a cross-sectional view of the evaporator 111 along the line XA-XA, and FIG. 10B is a cross-sectional view of the evaporator 111 along the line XB-XB. In FIGS. 10A and 10B, elements other than the heat transfer tube 22 and the nozzle 24 are omitted.
 [2-2.動作]
 実施の形態1で説明したように、循環ポンプ26を起動すると、液相冷媒がシェル21の底部からヘッダー23を介して複数の第1ノズル24a及び複数の第2ノズル24bに供給される。液相冷媒は、複数の第1ノズル24a及び複数の第2ノズル24bのそれぞれから、複数の伝熱管22に噴霧される。
[2-2. motion]
As described in the first embodiment, when the circulation pump 26 is started, the liquid phase refrigerant is supplied from the bottom of the shell 21 to the plurality of first nozzles 24a and the plurality of second nozzles 24b via the header 23. The liquid phase refrigerant is sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b onto the plurality of heat transfer tubes 22.
 複数の第1ノズル24a及び複数の第2ノズル24bのそれぞれから噴霧された冷媒の移動方向及び滴下状態は、実施の形態1において説明した通りである。 The moving direction and the dropping state of the refrigerant sprayed from each of the plurality of first nozzles 24a and the plurality of second nozzles 24b are as described in the first embodiment.
 [2-3.効果等]
 本実施の形態は、伝熱管22の列数が少ない場合にも有効である。本実施の形態によれば、噴霧式による冷媒の供給作用と流下液膜式による冷媒の供給作用との重畳作用により各ノズル面における濡れ状態の粗密の差を改善することができる。これにより、ドライアウト面の形成を防ぐことができる。
[2-3. Effect, etc.]
This embodiment is also effective when the number of rows of the heat transfer tubes 22 is small. According to the present embodiment, it is possible to improve the difference in the density of the wet state on each nozzle surface by the superimposing action between the supply action of the refrigerant by the spray type and the supply action of the refrigerant by the flowing liquid film type. This makes it possible to prevent the formation of a dry-out surface.
 本実施の形態において、第1ノズル24aが複数段で設けられていてもよい。第2ノズル24bが複数段で設けられていてもよい。第1ノズル22aの段数が第2ノズル24bの段数と一致していてもよく、一致していなくてもよい。このような構成には、実施の形態1における説明と同じ説明が適用されうる。 In the present embodiment, the first nozzle 24a may be provided in a plurality of stages. The second nozzle 24b may be provided in a plurality of stages. The number of stages of the first nozzle 22a may or may not match the number of stages of the second nozzle 24b. The same description as in the first embodiment may be applied to such a configuration.
 (他の実施の形態)
 上述の実施の形態1では、複数の第1ノズル24a及び複数の第3ノズル24cが、同一のノズル面を定めるように配置されている。また、複数の第2ノズル24b及び複数の第4ノズル24dが、同一のノズル面を定めるように配置されている。複数の第1ノズル24a及び複数の第3ノズル24cは、異なるノズル面に配置されていてもよい。また、複数の第2ノズル24b及び複数の第4ノズル24dは、異なるノズル面に配置されていてもよい。つまり、Y方向に関する第1ノズル24aの位置は、Y方向に関する第3ノズル24cの位置と異なっていてもよい。また、Y方向に関する第2ノズル24bの位置は、Y方向に関する第4ノズル24dの位置と異なっていてもよい。複数の第1ノズル24a、複数の第3ノズル24c、複数の第2ノズル24b、及び複数の第4ノズル24dをZ方向に投影することによって得られる投影像において、複数の第1ノズル24a、複数の第3ノズル24c、複数の第2ノズル24b及び複数の第4ノズル24dが千鳥状の配列パターンを示してもよい。
(Other embodiments)
In the first embodiment described above, the plurality of first nozzles 24a and the plurality of third nozzles 24c are arranged so as to define the same nozzle surface. Further, a plurality of second nozzles 24b and a plurality of fourth nozzles 24d are arranged so as to define the same nozzle surface. The plurality of first nozzles 24a and the plurality of third nozzles 24c may be arranged on different nozzle surfaces. Further, the plurality of second nozzles 24b and the plurality of fourth nozzles 24d may be arranged on different nozzle surfaces. That is, the position of the first nozzle 24a in the Y direction may be different from the position of the third nozzle 24c in the Y direction. Further, the position of the second nozzle 24b in the Y direction may be different from the position of the fourth nozzle 24d in the Y direction. A plurality of first nozzles 24a, a plurality of first nozzles 24a, in a projection image obtained by projecting a plurality of first nozzles 24a, a plurality of third nozzles 24c, a plurality of second nozzles 24b, and a plurality of fourth nozzles 24d in the Z direction. The third nozzle 24c, the plurality of second nozzles 24b, and the plurality of fourth nozzles 24d may exhibit a staggered arrangement pattern.
(実施の形態3)
 以下、図11から図16を用いて、実施の形態3を説明する。
(Embodiment 3)
Hereinafter, the third embodiment will be described with reference to FIGS. 11 to 16.
 [3-1.構成]
 図11は、シェルアンドチューブ式熱交換器を備えた冷凍サイクル装置200の構成を示している。図11に示す通り、冷凍サイクル装置200は、蒸発器201、圧縮機202、凝縮器203、流量弁204、流路210a、流路210b、流路210c、及び流路210dを備えている。蒸発器201の出口は、流路210aによって圧縮機202の入口に接続されている。圧縮機202の出口は、流路210bによって凝縮器203の入口に接続されている。凝縮器203の出口は、流路210cによって流量弁204の入口に接続されている。流量弁204の出口は、流路210dによって蒸発器201の入口に接続されている。流路210a及び210bは気相冷媒が通過する経路である。流路210c及び流路210dは液相冷媒が通過する経路である。各経路は、例えば、少なくとも1つの金属製の配管で構成されている。
[3-1. Constitution]
FIG. 11 shows the configuration of a refrigeration cycle device 200 equipped with a shell-and-tube heat exchanger. As shown in FIG. 11, the refrigerating cycle device 200 includes an evaporator 201, a compressor 202, a condenser 203, a flow valve 204, a flow path 210a, a flow path 210b, a flow path 210c, and a flow path 210d. The outlet of the evaporator 201 is connected to the inlet of the compressor 202 by the flow path 210a. The outlet of the compressor 202 is connected to the inlet of the condenser 203 by the flow path 210b. The outlet of the condenser 203 is connected to the inlet of the flow valve 204 by the flow path 210c. The outlet of the flow valve 204 is connected to the inlet of the evaporator 201 by the flow path 210d. The flow paths 210a and 210b are paths through which the gas phase refrigerant passes. The flow path 210c and the flow path 210d are paths through which the liquid phase refrigerant passes. Each path is composed of, for example, at least one metal pipe.
 蒸発器201において液相冷媒が加熱されて蒸発し、気相冷媒が生成される。気相冷媒は、圧縮機202に吸入されて圧縮される。圧縮された気相冷媒は圧縮機202から凝縮器203に供給される。気相冷媒は凝縮器203で冷却されて凝縮及び液化する。これにより、液相冷媒が生成される。液相冷媒は、流量弁204を経由して凝縮器203から蒸発器201に戻される。 The liquid phase refrigerant is heated and evaporated in the evaporator 201 to generate a vapor phase refrigerant. The gas phase refrigerant is sucked into the compressor 202 and compressed. The compressed vapor phase refrigerant is supplied from the compressor 202 to the condenser 203. The vapor phase refrigerant is cooled by the condenser 203 to condense and liquefy. This produces a liquid phase refrigerant. The liquid phase refrigerant is returned from the condenser 203 to the evaporator 201 via the flow valve 204.
 冷凍サイクル装置200における冷媒は、特定の冷媒に限定されない。冷媒としては、フロン冷媒、低GWP(Global Warming Potential)冷媒、自然冷媒などが挙げられる。フロン冷媒としては、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が挙げられる。低GWP冷媒としては、HFO-1234yf及び水が挙げられる。自然冷媒としては、二酸化炭素及び水が挙げられる。 The refrigerant in the refrigeration cycle device 200 is not limited to a specific refrigerant. Examples of the refrigerant include chlorofluorocarbon refrigerants, low GWP (Global Warming Potential) refrigerants, and natural refrigerants. Examples of chlorofluorocarbon refrigerants include hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Examples of the low GWP refrigerant include HFO-1234yf and water. Examples of the natural refrigerant include carbon dioxide and water.
 冷媒は、常温での飽和蒸気圧が負圧の物質を主成分として含む冷媒であってもよい。このような冷媒としては、水、アルコール、又はエーテルを主成分として含む冷媒が挙げられる。「主成分」とは、質量比で最も多く含まれた成分を意味する。「負圧」は、絶対圧で大気圧よりも低い圧力を意味する。「常温」は、日本産業規格(JIS Z8703)によれば、20℃±15℃の範囲内の温度を意味する。 The refrigerant may be a refrigerant containing a substance having a negative saturated vapor pressure at room temperature as a main component. Examples of such a refrigerant include a refrigerant containing water, alcohol, or ether as a main component. The "main component" means the component contained most in the mass ratio. "Negative pressure" means pressure that is absolute and lower than atmospheric pressure. "Room temperature" means a temperature within the range of 20 ° C ± 15 ° C according to the Japanese Industrial Standards (JIS Z8703).
 蒸発器201は、後述の通り、シェルアンドチューブ式熱交換器によって構成されている。 The evaporator 201 is composed of a shell-and-tube heat exchanger as described later.
 圧縮機202は、遠心圧縮機等の速度型圧縮機であってもよく、スクロール圧縮機等の容積型圧縮機であってもよい。 The compressor 202 may be a speed compressor such as a centrifugal compressor or a positive displacement compressor such as a scroll compressor.
 凝縮器203の型式は特定の形式に限定されない。プレート式熱交換器及びシェルアンドチューブ式熱交換器等の熱交換器が凝縮器203に使用されうる。 The model of the condenser 203 is not limited to a specific type. Heat exchangers such as plate heat exchangers and shell and tube heat exchangers can be used in the condenser 203.
 冷凍サイクル装置200は、例えば、業務用又は家庭用の空気調和装置である。蒸発器201で冷却された熱媒体が回路205を通じて室内に供給され、室内の冷房に使用される。あるいは、凝縮器203で加熱された熱媒体が回路206を通じて室内に供給され、室内の暖房に利用される。熱媒体は、例えば、水である。冷凍サイクル装置200は、空気調和装置に限定されず、チラー、蓄熱装置など他の装置であってもよい。冷凍サイクル装置200は、蒸発器、吸収器、再生器、及び凝縮器を備えた吸収式冷凍機であってもよい。 The refrigeration cycle device 200 is, for example, an air conditioner for business use or home use. The heat medium cooled by the evaporator 201 is supplied into the room through the circuit 205 and used for cooling the room. Alternatively, the heat medium heated by the condenser 203 is supplied into the room through the circuit 206 and used for heating the room. The heat medium is, for example, water. The refrigeration cycle device 200 is not limited to the air conditioner, but may be another device such as a chiller or a heat storage device. The refrigeration cycle device 200 may be an absorption chiller including an evaporator, an absorber, a regenerator, and a condenser.
 回路205は、蒸発器201に熱媒体を循環させる回路である。回路206は、凝縮器203に熱媒体を循環させる回路である。回路205及び回路206は、外気から隔離された密閉回路であってもよい。 Circuit 205 is a circuit that circulates a heat medium in the evaporator 201. The circuit 206 is a circuit for circulating a heat medium in the condenser 203. The circuit 205 and the circuit 206 may be a closed circuit isolated from the outside air.
 熱媒体は、回路205及び回路206のそれぞれを流れる流体である。熱媒体は水に限定されず、オイル、ブラインなどの液体であってもよく、空気などの気体であってもよい。回路205の熱媒体の組成は回路206の熱媒体の組成と異なっていてもよい。 The heat medium is a fluid flowing through each of the circuit 205 and the circuit 206. The heat medium is not limited to water, and may be a liquid such as oil or brine, or a gas such as air. The composition of the heat medium of the circuit 205 may be different from the composition of the heat medium of the circuit 206.
 図12は、図11におけるII-II線を切断線とする蒸発器201の縦断面図である。図12に示す通り、蒸発器201は、シェルアンドチューブ式熱交換器として構成されている。蒸発器201は、シェル221と、伝熱管群222と、ノズル224とを備えている。伝熱管群222は、シェル221の内部に配置されている。ノズル224は、伝熱管群222に向かって液相冷媒を噴霧する。伝熱管群222は、例えば、平行に配置された複数の伝熱管222pによって構成されている。例えば、伝熱管222pの長手方向に垂直な断面が円形を有する。伝熱管222pの内面、伝熱管222pの外面、又はその両方に溝加工が施されていてもよい。 FIG. 12 is a vertical cross-sectional view of the evaporator 201 having the line II-II in FIG. 11 as a cutting line. As shown in FIG. 12, the evaporator 201 is configured as a shell-and-tube heat exchanger. The evaporator 201 includes a shell 221, a heat transfer tube group 222, and a nozzle 224. The heat transfer tube group 222 is arranged inside the shell 221. The nozzle 224 sprays the liquid phase refrigerant toward the heat transfer tube group 222. The heat transfer tube group 222 is composed of, for example, a plurality of heat transfer tubes 222p arranged in parallel. For example, the heat transfer tube 222p has a circular cross section perpendicular to the longitudinal direction. Grooves may be applied to the inner surface of the heat transfer tube 222p, the outer surface of the heat transfer tube 222p, or both.
 図12に示す通り、シェル221は、例えば、矩形の断面形状を有している。シェル221は、円形の断面形状を有していてもよい。シェル221は、耐圧容器であってもよい。 As shown in FIG. 12, the shell 221 has, for example, a rectangular cross-sectional shape. The shell 221 may have a circular cross-sectional shape. The shell 221 may be a pressure resistant container.
 蒸発器201は、例えば、ヘッダー223、循環回路225、ポンプ226、流入管227a、流出管227b、第一カバー229a、及び第二カバー229bをさらに備えている。 The evaporator 201 further includes, for example, a header 223, a circulation circuit 225, a pump 226, an inflow pipe 227a, an outflow pipe 227b, a first cover 229a, and a second cover 229b.
 ノズル224は、ヘッダー223によって循環回路225に接続されている。ポンプ226は、循環回路225に配置されている。シェル221の底部には液相冷媒が貯留されている。ポンプ226の働きにより、シェル221の底部に貯留された液相冷媒が循環回路225及びヘッダー223を通じてノズル224に供給される。 The nozzle 224 is connected to the circulation circuit 225 by the header 223. The pump 226 is arranged in the circulation circuit 225. A liquid phase refrigerant is stored in the bottom of the shell 221. By the action of the pump 226, the liquid phase refrigerant stored in the bottom of the shell 221 is supplied to the nozzle 224 through the circulation circuit 225 and the header 223.
 流入管227aは及び流出管227bは、シェル221に取り付けられている。流入管227aは、シェル221の内部に冷媒を導く流路を形成している。排出管227bは、蒸発器201の内部で生成された気相冷媒をシェル221の外部に導く流路を形成している。流入管227a及び排出管227bがなす流路には、それぞれ、流路210d及び流路210aが接続されうる。 The inflow pipe 227a and the outflow pipe 227b are attached to the shell 221. The inflow pipe 227a forms a flow path for guiding the refrigerant inside the shell 221. The discharge pipe 227b forms a flow path that guides the vapor phase refrigerant generated inside the evaporator 201 to the outside of the shell 221. A flow path 210d and a flow path 210a can be connected to the flow path formed by the inflow pipe 227a and the discharge pipe 227b, respectively.
 第一カバー229aは、シェル221に取り付けられており、伝熱管222pの長手方向(X軸方向)における伝熱管群222の一端部を覆っている。第二カバー229bは、シェル221に取り付けられており、伝熱管222pの長手方向における伝熱管群222の他端部を覆っている。第一カバー229aは、その内部に2つの仕切板229cを有する。第二カバー229bは、その内部に1つの仕切板229dを有する。第一カバー229aは、例えば、二次側流入口228a及び二次側流出口228bを有する。二次側流入口228a及び二次側流出口228bのそれぞれは、第二カバー229bに形成されていてもよい。蒸発器201におけるパス数は、伝熱管222pの内部の熱媒体の流れ方向が流路カバー229a又は229bにおいて反転する毎に「1」増加する。本実施の形態では、パス数が「4」となるように、流路カバー229aが二次側流入口228a及び二次側流出口228bを有する。 The first cover 229a is attached to the shell 221 and covers one end of the heat transfer tube group 222 in the longitudinal direction (X-axis direction) of the heat transfer tube 222p. The second cover 229b is attached to the shell 221 and covers the other end of the heat transfer tube group 222 in the longitudinal direction of the heat transfer tube 222p. The first cover 229a has two partition plates 229c inside thereof. The second cover 229b has one partition plate 229d inside. The first cover 229a has, for example, a secondary side inlet 228a and a secondary side outlet 228b. Each of the secondary side inlet 228a and the secondary side outlet 228b may be formed on the second cover 229b. The number of passes in the evaporator 201 increases by "1" each time the flow direction of the heat medium inside the heat transfer tube 222p is reversed at the flow path cover 229a or 229b. In the present embodiment, the flow path cover 229a has a secondary side inflow port 228a and a secondary side outflow port 228b so that the number of passes is “4”.
 図12に示す通り、蒸発器201は、複数のノズル224を備えている。複数のノズル224は、伝熱管222pの長手方向(X軸方向)において所定の間隔で配置されている。また、複数のノズル224は、伝熱管222pの長手方向において、Y軸方向に平行な一対の直線上に交互に配置されている。また、各ノズル224は、例えば、Y軸方向において隣り合う伝熱管222pの間に向かって液相冷媒を噴霧するように配置されている。 As shown in FIG. 12, the evaporator 201 includes a plurality of nozzles 224. The plurality of nozzles 224 are arranged at predetermined intervals in the longitudinal direction (X-axis direction) of the heat transfer tube 222p. Further, the plurality of nozzles 224 are alternately arranged on a pair of straight lines parallel to the Y-axis direction in the longitudinal direction of the heat transfer tube 222p. Further, each nozzle 224 is arranged so as to spray the liquid phase refrigerant toward, for example, between the adjacent heat transfer tubes 222p in the Y-axis direction.
 図13A及び図13Bは、ノズル224から噴霧される液相冷媒の噴霧パターンを示す。図13A及び図13Bに示す通り、ノズル224は、噴霧軸Amを有する扁平な噴霧パターンで液相冷媒を噴霧する。噴霧軸Amは、ノズル224の中心軸と捉えることもできる。噴霧軸Amは、ノズル224の開口の中心を通る軸でありうる。図13Aに示す通り、ノズル224から噴霧される液相冷媒は、扇形状の噴霧エリアMを形成する。また、噴霧軸Amに垂直な平面Hにこの噴霧パターンを投影したときに現れる噴霧領域Sの形状は扁平である。このような噴霧パターンで噴霧される液相冷媒が伝熱管222p同士の間を通過する。 13A and 13B show the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224. As shown in FIGS. 13A and 13B, the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray axis Am. The spray axis Am can also be regarded as the central axis of the nozzle 224. The spray axis Am can be an axis that passes through the center of the opening of the nozzle 224. As shown in FIG. 13A, the liquid phase refrigerant sprayed from the nozzle 224 forms a fan-shaped spray area M. Further, the shape of the spray region S that appears when this spray pattern is projected onto the plane H perpendicular to the spray axis Am is flat. The liquid phase refrigerant sprayed in such a spray pattern passes between the heat transfer tubes 222p.
 図14は、図11におけるIV-IV線を切断線とする蒸発器201の縦断面図である。伝熱管群222において、Z軸方向に配列される伝熱管222pの本数は特定の値に限定されない。伝熱管群222において、例えば、Z軸方向に12本の伝熱管222pが配列されている。ノズル224は、伝熱管222pの長手方向に垂直な方向(Z軸方向)においてノズル224に最も近い一対の伝熱管222p同士の間を噴霧軸Amが通過し、かつ、噴霧領域Sが一対の伝熱管222p同士の間を通過するように、液相冷媒を噴霧する。噴霧軸Amは、例えば、水平に延びている。 FIG. 14 is a vertical cross-sectional view of the evaporator 201 having the IV-IV line in FIG. 11 as a cutting line. In the heat transfer tube group 222, the number of heat transfer tubes 222p arranged in the Z-axis direction is not limited to a specific value. In the heat transfer tube group 222, for example, 12 heat transfer tubes 222p are arranged in the Z-axis direction. In the nozzle 224, the spray shaft Am passes between the pair of heat transfer tubes 222p closest to the nozzle 224 in the direction perpendicular to the longitudinal direction of the heat transfer tube 222p (Z-axis direction), and the spray region S is a pair of transfer tubes. The liquid phase refrigerant is sprayed so as to pass between the hot tubes 222p. The spray axis Am extends horizontally, for example.
 図14に示す通り、ノズル224は、例えば、Z軸方向における伝熱管群222の一端部のみに配置されており、Z軸方向における伝熱管群222の他端部には配置されていない。このため、ノズル224は、伝熱管222pの長手方向に垂直な平面(YZ平面)において、例えばZ軸正方向に液相冷媒を噴霧する。 As shown in FIG. 14, the nozzle 224 is arranged only at one end of the heat transfer tube group 222 in the Z-axis direction, and is not arranged at the other end of the heat transfer tube group 222 in the Z-axis direction, for example. Therefore, the nozzle 224 sprays the liquid phase refrigerant in the positive direction of the Z axis, for example, on the plane (YZ plane) perpendicular to the longitudinal direction of the heat transfer tube 222p.
 図15は、ノズル224から液相冷媒が噴霧される領域を示している。図15において、Y軸方向に沿って伝熱管群222及びノズル224から噴霧される液相冷媒の噴霧エリアMを見ている。ノズル224は、例えば、伝熱管群222においてZ軸方向に最も近い伝熱管222pから距離Lだけ離れて配置されている。また、噴霧エリアMは、中心角αをなすように形成された第一輪郭線W1及び第二輪郭線W2を有する。中心角αは特定の大きさに限定されない。中心角αは、例えば、90°以上120°以下である。 FIG. 15 shows a region where the liquid phase refrigerant is sprayed from the nozzle 224. In FIG. 15, the spray area M of the liquid phase refrigerant sprayed from the heat transfer tube group 222 and the nozzle 224 is seen along the Y-axis direction. The nozzle 224 is arranged, for example, at a distance L from the heat transfer tube 222p closest to the Z-axis direction in the heat transfer tube group 222. Further, the spray area M has a first contour line W1 and a second contour line W2 formed so as to form a central angle α. The central angle α is not limited to a specific size. The central angle α is, for example, 90 ° or more and 120 ° or less.
 図16は、ノズル224から伝熱管群222に向かって噴霧された液相冷媒の噴霧及び流動の状態を示す図である。図16に示す通り、伝熱管群222は、第一段222aと、第二段222bとを含んでいる。第一段222aは、第一平面に沿って配列された複数の伝熱管222pを有する。第二段222bは、第一平面に平行な第二平面に沿って配列された複数の伝熱管222pを有し、かつ、第一平面に垂直な方向(Y軸方向)において第一段222aと隣り合っている。第一平面及び第二平面は、ZX平面に平行な平面である。 FIG. 16 is a diagram showing a state of spraying and flow of the liquid phase refrigerant sprayed from the nozzle 224 toward the heat transfer tube group 222. As shown in FIG. 16, the heat transfer tube group 222 includes a first stage 222a and a second stage 222b. The first stage 222a has a plurality of heat transfer tubes 222p arranged along the first plane. The second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and has the first stage 222a in the direction perpendicular to the first plane (Y-axis direction). Next to each other. The first plane and the second plane are planes parallel to the ZX plane.
 図16に示す通り、例えば、第一段222aと第二段222bとの間には、第一段222aの複数の伝熱管222pの配列方向における第一段222aの一端から他端まで有体物に交差しない仮想平面が存在する。 As shown in FIG. 16, for example, between the first stage 222a and the second stage 222b, the first stage 222a intersects a tangible object from one end to the other end in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a. There is a virtual plane that does not.
 図16に示す通り、例えば、第一段222aの複数の伝熱管222p及び第二段222bの複数の伝熱管222pは、伝熱管222pの長手方向(X軸方向)に垂直な第三平面において長方形格子、正方形格子、又は平行四辺形格子をなす。第三平面は、YZ平面に平行な平面である。 As shown in FIG. 16, for example, the plurality of heat transfer tubes 222p in the first stage 222a and the plurality of heat transfer tubes 222p in the second stage 222b are rectangular in a third plane perpendicular to the longitudinal direction (X-axis direction) of the heat transfer tube 222p. It forms a grid, a square grid, or a parallelogram grid. The third plane is a plane parallel to the YZ plane.
 図16に示す通り、ノズル224から噴霧される液相冷媒の噴霧パターンの噴霧軸Amは、第一段222aの複数の伝熱管222pの第一端部222jと、第二段222bの複数の伝熱管222pの第二端部222kとの間を通過する。第一端部222jは、第一平面に垂直な方向(Y軸方向)において第二段222bに近い端部である。第二端部222kは、第一平面に垂直な方向(Y軸方向)において第一段222aに近い端部である。ノズル224から噴霧される液相冷媒の噴霧パターンは、第一段222aと第二段222bとの間を通過する。 As shown in FIG. 16, the spray axis Am of the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 is the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the plurality of transmissions of the second stage 222b. It passes between the hot tube 222p and the second end 222k. The first end portion 222j is an end portion close to the second stage 222b in the direction perpendicular to the first plane (Y-axis direction). The second end portion 222k is an end portion close to the first stage 222a in the direction perpendicular to the first plane (Y-axis direction). The spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 passes between the first stage 222a and the second stage 222b.
 第二段222bは、例えば、重力方向において第一段222aの下方に配置されている。伝熱管群222は、例えば、下部伝熱管群222cを含む。下部伝熱管群222cは、複数の伝熱管222pを有し、かつ、重力方向において第二段222bの下方に配置されている。下部伝熱管群222cの複数の伝熱管222pのそれぞれは、例えば、第二段222bの複数の伝熱管222pのいずれかの真下に配置されている。 The second stage 222b is arranged below the first stage 222a in the direction of gravity, for example. The heat transfer tube group 222 includes, for example, the lower heat transfer tube group 222c. The lower heat transfer tube group 222c has a plurality of heat transfer tubes 222p and is arranged below the second stage 222b in the direction of gravity. Each of the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c is arranged directly under any one of the plurality of heat transfer tubes 222p of the second stage 222b, for example.
 図16に示す通り、下部伝熱管群222cの複数の伝熱管222pは、例えば、第二段222bの複数の伝熱管222pとともに、第三平面において長方形格子又は正方形格子をなしている。 As shown in FIG. 16, the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c form a rectangular lattice or a square lattice in the third plane together with, for example, the plurality of heat transfer tubes 222p of the second stage 222b.
 [3-2.動作]
 以上のように、シェルアンドチューブ式熱交換器として構成された蒸発器201について、以下その動作、作用を説明する。
[3-2. motion]
As described above, the operation and operation of the evaporator 201 configured as the shell-and-tube heat exchanger will be described below.
 冷凍サイクル装置200の定常運転において、蒸発器201では、ポンプ226が作動し、液相冷媒が循環回路225及びヘッダー223を通ってノズル224に供給される。これにより、ノズル224から伝熱管群222に向かって液相冷媒が噴霧される。一方、蒸発器201の外部から二次側流入口228aを通って第一カバー229aの内部に熱媒体が導かれる。次に、熱媒体は、X軸正方向に伝熱管222pの内部を通過して第二カバー229bの内部の仕切板229dの下方の空間に導かれる。第二カバー229bの内部において熱媒体の流れの向きが反転し、熱媒体は、X軸負方向に伝熱管222pの内部を通過して第一カバー229aの内部の2つの仕切板229cの間の空間に導かれる。次に、第一カバー229aの内部において熱媒体の流れの向きが反転し、熱媒体は、X軸正方向に伝熱管222pの内部を通過して第二カバー229bの内部の仕切板229dの上方の空間に導かれる。第二カバー229bの内部において熱媒体の流れの向きが反転し、熱媒体は、X軸負方向に伝熱管222pの内部を通過して第一カバー229aの内部に導かれる。その後、熱媒体は、二次側流出口228bを通って、蒸発器201の外部に導かれる。 In the steady operation of the refrigeration cycle device 200, in the evaporator 201, the pump 226 operates and the liquid phase refrigerant is supplied to the nozzle 224 through the circulation circuit 225 and the header 223. As a result, the liquid phase refrigerant is sprayed from the nozzle 224 toward the heat transfer tube group 222. On the other hand, the heat medium is guided from the outside of the evaporator 201 to the inside of the first cover 229a through the secondary side inflow port 228a. Next, the heat medium passes through the inside of the heat transfer tube 222p in the positive direction of the X-axis and is guided to the space below the partition plate 229d inside the second cover 229b. The direction of the flow of the heat medium is reversed inside the second cover 229b, and the heat medium passes through the inside of the heat transfer tube 222p in the negative direction of the X-axis and is between the two partition plates 229c inside the first cover 229a. Guided to space. Next, the direction of the flow of the heat medium is reversed inside the first cover 229a, and the heat medium passes through the inside of the heat transfer tube 222p in the positive direction of the X axis and is above the partition plate 229d inside the second cover 229b. Guided to the space of. The direction of the flow of the heat medium is reversed inside the second cover 229b, and the heat medium passes through the inside of the heat transfer tube 222p in the negative direction of the X-axis and is guided to the inside of the first cover 229a. After that, the heat medium is guided to the outside of the evaporator 201 through the secondary side outlet 228b.
 図14に示す通り、ノズル224は、Y軸方向において隣り合った2つの段の伝熱管の間の空間に向かって液相冷媒を噴霧する。液相冷媒は、2つの段の間で噴霧軸Amが延びる噴霧パターンで噴霧される。液相冷媒の噴霧により生じた霧状の液相冷媒は、伝熱管222pの外面に付着する。伝熱管222pの内部の熱媒体と伝熱管222pの外面に付着した液相冷媒との間の熱交換により、液相冷媒が蒸発して気相冷媒が生成される。蒸発しなかった液相冷媒は、伝熱管222pの外面に沿って流動し、下方の伝熱管222pに向かって滴下される。 As shown in FIG. 14, the nozzle 224 sprays the liquid phase refrigerant toward the space between the two adjacent stages of heat transfer tubes in the Y-axis direction. The liquid phase refrigerant is sprayed in a spray pattern in which the spray axis Am extends between the two stages. The mist-like liquid-phase refrigerant generated by spraying the liquid-phase refrigerant adheres to the outer surface of the heat transfer tube 222p. By heat exchange between the heat medium inside the heat transfer tube 222p and the liquid phase refrigerant adhering to the outer surface of the heat transfer tube 222p, the liquid phase refrigerant evaporates to generate a gas phase refrigerant. The liquid-phase refrigerant that has not evaporated flows along the outer surface of the heat transfer tube 222p and is dropped toward the lower heat transfer tube 222p.
 図15に示す通り、例えば、第一平面に垂直な方向(Y軸方向)から第一段222aを見たときに、第一段222aの伝熱管222pの中心軸Axに垂直に噴霧軸Amが延びるように、液相冷媒の噴霧パターンが形成される。伝熱管群222においてZ軸方向においてノズル224に最も近い伝熱管222pとノズル224との間の距離Lが所定の大きさを有する。このため、第一段222aにおける最前列の伝熱管222pから最後列の伝熱管222pに向かって液相冷媒の噴霧エリアMが徐々に拡大し、第一段222aの最後列の伝熱管222pの外面の十分な範囲が液相冷媒で濡れる。 As shown in FIG. 15, for example, when the first stage 222a is viewed from the direction perpendicular to the first plane (Y-axis direction), the spray axis Am is perpendicular to the central axis Ax of the heat transfer tube 222p of the first stage 222a. A spray pattern of the liquid phase refrigerant is formed so as to extend. In the heat transfer tube group 222, the distance L between the heat transfer tube 222p closest to the nozzle 224 in the Z-axis direction and the nozzle 224 has a predetermined size. Therefore, the spray area M of the liquid phase refrigerant gradually expands from the front row heat transfer tube 222p in the first stage 222a toward the last row heat transfer tube 222p, and the outer surface of the last row heat transfer tube 222p in the first stage 222a. A sufficient range of is wet with the liquid phase refrigerant.
 図16に示す通り、ノズル224から噴霧された液相冷媒は、第三平面において長方形格子、正方形格子、又は平行四辺形格子をなすように配置された第一段222a及び第二段222bにおける伝熱管222p同士の間を通過する。第一段222aと第二段222bとの間には、ノズル224から噴霧された液相冷媒の進行を直接妨げる伝熱管等の部材は存在しない。このため、第一段222aと第二段222bとの間においてノズル224から噴霧された液相冷媒が直進しやすい。一方、ノズル224から噴霧された液相冷媒の一部は、第一段222aの伝熱管222pの第一端部222j及び第二段222bの伝熱管222pの第二端部222kに接触する。第一段222aの伝熱管222pに接触した液相冷媒の一部は、液相冷媒の流れに対する伝熱管222pの前縁に沿ってY軸正方向に流動する。一方、第二段222bの伝熱管222pに接触した液相冷媒の一部は、伝熱管222pの前縁に沿ってY軸負方向に流動する。加えて、液相冷媒の別の一部は、第二段222bの伝熱管222pの後縁に沿ってY軸負方向に流動する。このような液相冷媒の流動が第一段222a及び第二段222bの各列の伝熱管222pの周囲で生じる。 As shown in FIG. 16, the liquid phase refrigerant sprayed from the nozzle 224 is transmitted in the first stage 222a and the second stage 222b arranged so as to form a rectangular grid, a square grid, or a parallelogram grid in the third plane. It passes between the hot tubes 222p. Between the first stage 222a and the second stage 222b, there is no member such as a heat transfer tube that directly hinders the progress of the liquid phase refrigerant sprayed from the nozzle 224. Therefore, the liquid phase refrigerant sprayed from the nozzle 224 easily travels straight between the first stage 222a and the second stage 222b. On the other hand, a part of the liquid phase refrigerant sprayed from the nozzle 224 comes into contact with the first end portion 222j of the heat transfer tube 222p of the first stage 222a and the second end portion 222k of the heat transfer tube 222p of the second stage 222b. A part of the liquid phase refrigerant in contact with the heat transfer tube 222p of the first stage 222a flows in the positive direction of the Y axis along the leading edge of the heat transfer tube 222p with respect to the flow of the liquid phase refrigerant. On the other hand, a part of the liquid phase refrigerant in contact with the heat transfer tube 222p of the second stage 222b flows in the negative direction on the Y axis along the leading edge of the heat transfer tube 222p. In addition, another portion of the liquid phase refrigerant flows in the negative Y-axis direction along the trailing edge of the heat transfer tube 222p of the second stage 222b. Such a flow of the liquid phase refrigerant occurs around the heat transfer tubes 222p in each row of the first stage 222a and the second stage 222b.
 図16に示す通り、第一段222a及び第二段222bからなる上部伝熱管群222mにおいて、液相冷媒が伝熱管222pの外面に直接接触して強制対流を伴う熱伝達が生じ、液相冷媒と熱媒体との間の熱交換が促進される。 As shown in FIG. 16, in the upper heat transfer tube group 222m composed of the first stage 222a and the second stage 222b, the liquid phase refrigerant comes into direct contact with the outer surface of the heat transfer tube 222p to cause heat transfer accompanied by forced convection, and the liquid phase refrigerant occurs. Heat exchange between and the heat medium is promoted.
 第二段222bの伝熱管222pの外面において液相冷媒はY軸負方向に流動しながら液膜を形成し、液膜をなす液相冷媒の一部が蒸発する。上部伝熱管群222mにおいて蒸発しきれなかった未蒸発の液相冷媒は、第二段222bの伝熱管222pの最下部から下部伝熱管群222cの伝熱管222pに向かって滴下される。滴下された液相冷媒は、伝熱管222pの外面で液膜を形成しながら下方に流動し、一部の液相冷媒は蒸発し、別の一部の液相冷媒はさらに下方の伝熱管222pに向かって滴下される。このような液相冷媒の流動及び滴下が下部伝熱管群222cの各列の伝熱管22pの周囲で生じる。このように、下部伝熱管群222cの伝熱管222pの周囲には、ノズル224から噴霧された液相冷媒が上部伝熱管群222mの伝熱管222pから滴下されて間接的に供給される。滴下後に残った液相冷媒は、シェル221の底部に貯留される。 The liquid phase refrigerant forms a liquid film while flowing in the negative direction of the Y axis on the outer surface of the heat transfer tube 222p of the second stage 222b, and a part of the liquid phase refrigerant forming the liquid film evaporates. The unevaporated liquid-phase refrigerant that could not be completely evaporated in the upper heat transfer tube group 222m is dropped from the lowermost portion of the heat transfer tube 222p of the second stage 222b toward the heat transfer tube 222p of the lower heat transfer tube group 222c. The dropped liquid phase refrigerant flows downward while forming a liquid film on the outer surface of the heat transfer tube 222p, some of the liquid phase refrigerant evaporates, and another part of the liquid phase refrigerant is further below the heat transfer tube 222p. It is dropped toward. Such flow and dripping of the liquid phase refrigerant occurs around the heat transfer tubes 22p in each row of the lower heat transfer tube group 222c. In this way, the liquid phase refrigerant sprayed from the nozzle 224 is dropped from the heat transfer tube 222p of the upper heat transfer tube group 222m and indirectly supplied around the heat transfer tube 222p of the lower heat transfer tube group 222c. The liquid phase refrigerant remaining after the dropping is stored in the bottom of the shell 221.
 上部伝熱管群222mの伝熱管222pの周囲には、ノズル224から噴霧された液相冷媒が直接供給されて強制対流が生じる。ノズル224は、噴霧軸Amを有する扁平な噴霧パターンで液相冷媒を噴霧するので、液相冷媒が第一段222aと第二段222bとの間で直進しやすい。これにより、上部伝熱管群222mにおいて、ノズル224に対して遠方の伝熱管222pの周囲でも液相冷媒の強制対流が生じやすい。このため、ノズル224に対して遠方の伝熱管222pの外面が液相冷媒で濡れやすく、遠方の伝熱管222pの外面においてドライアウトが発生しにくい。 Around the heat transfer tube 222p of the upper heat transfer tube group 222m, the liquid phase refrigerant sprayed from the nozzle 224 is directly supplied to generate forced convection. Since the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray shaft Am, the liquid phase refrigerant easily travels straight between the first stage 222a and the second stage 222b. As a result, in the upper heat transfer tube group 222 m, forced convection of the liquid phase refrigerant is likely to occur even around the heat transfer tube 222p far from the nozzle 224. Therefore, the outer surface of the heat transfer tube 222p distant from the nozzle 224 is easily wetted with the liquid phase refrigerant, and dryout is less likely to occur on the outer surface of the heat transfer tube 222p distant from the nozzle 224.
 加えて、上部伝熱管群222mの伝熱管222pから下部伝熱管群22cに向かって液相冷媒の滴下が生じるので、下部伝熱管群222cにおいて、ノズル224に対して遠方の伝熱管222pの外面でも液相冷媒の液膜が形成されやすい。このため、ノズル224に対して遠方に位置する伝熱管22pの外面が液相冷媒で濡れやすく、遠方の伝熱管222pの外面においてドライアウトが発生しにくい。 In addition, since the liquid phase refrigerant is dropped from the heat transfer tube 222p of the upper heat transfer tube group 222m toward the lower heat transfer tube group 22c, even on the outer surface of the heat transfer tube 222p far from the nozzle 224 in the lower heat transfer tube group 222c. A liquid film of a liquid phase refrigerant is likely to be formed. Therefore, the outer surface of the heat transfer tube 22p located far from the nozzle 224 is easily wetted with the liquid phase refrigerant, and dryout is unlikely to occur on the outer surface of the heat transfer tube 222p far away.
 [3-3.効果等]
 以上のように、本実施形態において、シェルアンドチューブ式熱交換器として構成された蒸発器201は、シェル221と、伝熱管群222と、ノズル224とを備えている。伝熱管群222は、シェル221の内部に配置されている。ノズル224は、伝熱管群222に向かって液相冷媒を噴霧する。伝熱管群222は、第一段222aと、第二段222bとを含んでいる。第一段222aは、第一平面に沿って配列された複数の伝熱管222pを有する。第二段222bは、第一平面に平行な第二平面に沿って配列された複数の伝熱管222pを有し、かつ、第一平面に垂直な方向において第一段222aと隣り合っている。ノズル224は、噴霧軸Amを有し、かつ、第一段222aと第二段222bとの間を通過する扁平な噴霧パターンで液相冷媒を噴霧する。噴霧軸Amは、第一段222aの複数の伝熱管222pの第一端部222jと、第二段222bの複数の伝熱管222pの第二端部222kとの間を通過する。第一端部222jは、第一平面に垂直な方向において第一段222aの複数の伝熱管222pの第二段222bに近い端部である。第二端部222kは、第一平面に垂直な方向において第二段222bの複数の伝熱管222pの第一段222aに近い端部である。
[3-3. Effect, etc.]
As described above, in the present embodiment, the evaporator 201 configured as a shell-and-tube heat exchanger includes a shell 221, a heat transfer tube group 222, and a nozzle 224. The heat transfer tube group 222 is arranged inside the shell 221. The nozzle 224 sprays the liquid phase refrigerant toward the heat transfer tube group 222. The heat transfer tube group 222 includes a first stage 222a and a second stage 222b. The first stage 222a has a plurality of heat transfer tubes 222p arranged along the first plane. The second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and is adjacent to the first stage 222a in the direction perpendicular to the first plane. The nozzle 224 has a spray axis Am and sprays the liquid phase refrigerant in a flat spray pattern passing between the first stage 222a and the second stage 222b. The spray shaft Am passes between the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b. The first end portion 222j is an end portion close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a in the direction perpendicular to the first plane. The second end portion 222k is an end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b in the direction perpendicular to the first plane.
 これにより、ノズル224は、噴霧軸Amを有する扁平な噴霧パターンで液相冷媒を噴霧するので、液相冷媒が第一段222aと第二段222bとの間で直進しやすい。このため、第一段222a及び第二段222bにおいて、ノズル224に対して遠方の伝熱管222pの周囲でも液相冷媒の強制対流が生じやすい。その結果、ノズル224に対して遠方の伝熱管222pの外面が液相冷媒で濡れやすく、遠方の伝熱管222pの外面においてドライアウトが発生しにくい。 As a result, the nozzle 224 sprays the liquid phase refrigerant in a flat spray pattern having a spray shaft Am, so that the liquid phase refrigerant easily travels straight between the first stage 222a and the second stage 222b. Therefore, in the first stage 222a and the second stage 222b, forced convection of the liquid phase refrigerant is likely to occur even around the heat transfer tube 222p far from the nozzle 224. As a result, the outer surface of the heat transfer tube 222p distant from the nozzle 224 is easily wetted with the liquid phase refrigerant, and dryout is less likely to occur on the outer surface of the heat transfer tube 222p distant from the nozzle 224.
 本実施形態のように、第一段222aと第二段222bとの間には、第一段222aの複数の伝熱管222pの配列方向における第一段222aの一端から他端まで有体物に交差しない仮想平面が存在していてもよい。これにより、第一段222aと第二段222bとの間において、第一段222aの一端から他端まで液相冷媒が直進しやすく、遠方の伝熱管222pの外面においてより確実にドライアウトが発生しにくい。 As in the present embodiment, between the first stage 222a and the second stage 222b, the first stage 222a does not intersect the tangible object from one end to the other end in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a. A virtual plane may exist. As a result, between the first stage 222a and the second stage 222b, the liquid phase refrigerant easily travels straight from one end to the other end of the first stage 222a, and dryout occurs more reliably on the outer surface of the distant heat transfer tube 222p. It's hard to do.
 本実施形態のように、第一段222aの複数の伝熱管222p及び第二段222bの複数の伝熱管222pは、伝熱管222pの長手方向に垂直な第三平面において、長方形格子、正方形格子、又は平行四辺形格子をなしていてもよい。これにより、第一段222aと第二段222bとの間における液相冷媒の流れが安定しやすく直進しやすい。その結果、遠方の伝熱管222pの外面においてより確実にドライアウトが発生しにくい。 As in the present embodiment, the plurality of heat transfer tubes 222p of the first stage 222a and the plurality of heat transfer tubes 222p of the second stage 222b are rectangular grids, square grids, in a third plane perpendicular to the longitudinal direction of the heat transfer tubes 222p. Alternatively, it may form a parallelogram lattice. As a result, the flow of the liquid phase refrigerant between the first stage 222a and the second stage 222b is likely to be stable and straight. As a result, dryout is less likely to occur more reliably on the outer surface of the distant heat transfer tube 222p.
 本実施形態のように、第二段222bは、重力方向において第一段222aの下方に配置されていてもよい。加えて、伝熱管群222は、複数の伝熱管222pを有し、かつ、重力方向において第二段222bの下方に配置されている下部伝熱管群222cを含んでいてもよい。これにより、第二段222bから下部伝熱管群222cに向かって液相冷媒の滴下が生じ、下部伝熱管群222cにおいてノズル224に対して遠方の伝熱管222pの外面も液相冷媒で濡れやすい。その結果、下部伝熱管群222cの遠方の伝熱管222pの外面においてドライアウトが発生しにくい。この場合、第一段222aの複数の伝熱管222p及び第二段222bの複数の伝熱管222pは、伝熱管222pの長手方向に垂直な第三平面において、長方形格子又は正方形格子をなしていてもよい。これにより、下部伝熱管群222cに向かってより確実に液相冷媒の滴下が生じやすい。 As in the present embodiment, the second stage 222b may be arranged below the first stage 222a in the direction of gravity. In addition, the heat transfer tube group 222 may include a lower heat transfer tube group 222c having a plurality of heat transfer tubes 222p and arranged below the second stage 222b in the direction of gravity. As a result, the liquid phase refrigerant is dropped from the second stage 222b toward the lower heat transfer tube group 222c, and the outer surface of the heat transfer tube 222p distant from the nozzle 224 in the lower heat transfer tube group 222c is also easily wetted by the liquid phase refrigerant. As a result, dryout is unlikely to occur on the outer surface of the distant heat transfer tube 222p of the lower heat transfer tube group 222c. In this case, even if the plurality of heat transfer tubes 222p of the first stage 222a and the plurality of heat transfer tubes 222p of the second stage 222b form a rectangular grid or a square grid in a third plane perpendicular to the longitudinal direction of the heat transfer tube 222p. good. As a result, the liquid phase refrigerant is more likely to drip toward the lower heat transfer tube group 222c more reliably.
 本実施形態のように、下部伝熱管群222cの複数の伝熱管222pは、第二段222bの複数の伝熱管222pとともに、第三平面において長方形格子又は正方形格子をなしている。これにより、第二段222bの複数の伝熱管222pから滴下された液相冷媒が下部伝熱管群222cの各伝熱管222pの外面においてより確実に液膜を形成してその外面を濡らしやすい。その結果、下部伝熱管群222cの遠方の伝熱管222pの外面においてより確実にドライアウトが発生しにくい。 As in the present embodiment, the plurality of heat transfer tubes 222p of the lower heat transfer tube group 222c, together with the plurality of heat transfer tubes 222p of the second stage 222b, form a rectangular lattice or a square lattice in the third plane. As a result, the liquid phase refrigerant dropped from the plurality of heat transfer tubes 222p of the second stage 222b more reliably forms a liquid film on the outer surface of each heat transfer tube 222p of the lower heat transfer tube group 222c, and it is easy to wet the outer surface thereof. As a result, dryout is less likely to occur more reliably on the outer surface of the distant heat transfer tube 222p of the lower heat transfer tube group 222c.
 本実施形態のように、シェルアンドチューブ式熱交換器として構成された蒸発器201を備えた、冷凍サイクル装置200を提供できる。ノズル224に対して遠方の伝熱管222pの外面においてドライアウトが発生しにくいので、冷凍サイクル装置200が高い成績係数(COP)を発揮しやすい。 As in the present embodiment, it is possible to provide a refrigeration cycle apparatus 200 provided with an evaporator 201 configured as a shell-and-tube heat exchanger. Since dryout is unlikely to occur on the outer surface of the heat transfer tube 222p far from the nozzle 224, the refrigeration cycle apparatus 200 tends to exhibit a high coefficient of performance (COP).
 本実施形態によれば、下記の事項(I)及び(II)を含む熱交換方法を提供できる。
(I)第一段222aと、第二段222bとを含む伝熱管群222の内部において熱媒体を通過させる。第一段222aは、第一平面に沿って配列された複数の伝熱管を有する。第二段222bは、第一平面に平行な第二平面に沿って配列された複数の伝熱管222pを有し、かつ、第一平面に垂直な方向において第一段222aと隣り合っている。
(II)噴霧軸Amを有し、かつ、第一段222aと第二段222bとの間を通過する扁平な噴霧パターンで伝熱管群222に向かって液相冷媒を噴霧し、熱媒体と液相冷媒とを熱交換させる。噴霧軸Amは、第一段222aの複数の伝熱管222pの第二段222bに近い第一端部222jと、第二段222bの複数の伝熱管222pの第一段222aに近い第二端部222kとの間を通過する。
According to this embodiment, it is possible to provide a heat exchange method including the following items (I) and (II).
(I) A heat medium is passed inside the heat transfer tube group 222 including the first stage 222a and the second stage 222b. The first stage 222a has a plurality of heat transfer tubes arranged along the first plane. The second stage 222b has a plurality of heat transfer tubes 222p arranged along the second plane parallel to the first plane, and is adjacent to the first stage 222a in the direction perpendicular to the first plane.
(II) A liquid phase refrigerant is sprayed toward the heat transfer tube group 222 with a flat spray pattern having a spray shaft Am and passing between the first stage 222a and the second stage 222b, and the heat medium and the liquid are sprayed. Heat exchanges with the phase refrigerant. The spray shaft Am has a first end portion 222j close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a and a second end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b. Pass between 222k.
 (実施の形態4)
 以下、図17をいて、実施の形態4を説明する。実施の形態4は、特に説明する部分を除き、実施の形態3と同様に構成されている。実施の形態3の構成要素と同一又は対応する実施の形態4の構成要素には同一の符号を付し、詳細な説明を省略する。実施の形態3に関する説明は、技術的に矛盾しない限り、実施の形態4にもあてはまる。
(Embodiment 4)
Hereinafter, the fourth embodiment will be described with reference to FIG. The fourth embodiment is configured in the same manner as the third embodiment except for a part to be described in particular. The same components as those of the third embodiment or the corresponding components of the fourth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. The description of Embodiment 3 also applies to Embodiment 4, as long as it is not technically inconsistent.
 [4-1.構成]
 図17は、実施の形態4において、ノズル224から液相冷媒が噴霧される領域を示している。図17において、Y軸方向に沿って伝熱管群222及びノズル224から噴霧される液相冷媒の噴霧エリアMを見ている。図17に示す通り、第一平面に垂直な方向(Y軸方向)に沿って第一段222aを見たときに、ノズル224から噴霧される液相冷媒の噴霧パターンの噴霧軸Amは、直線Pに対して所定の大きさの鋭角θをなす。直線Pは、第一段222aの伝熱管222pの長手方向(X軸方向)に垂直に延びている。
[4-1. Constitution]
FIG. 17 shows a region where the liquid phase refrigerant is sprayed from the nozzle 224 in the fourth embodiment. In FIG. 17, the spray area M of the liquid phase refrigerant sprayed from the heat transfer tube group 222 and the nozzle 224 is seen along the Y-axis direction. As shown in FIG. 17, when the first stage 222a is viewed along the direction perpendicular to the first plane (Y-axis direction), the spray axis Am of the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 is a straight line. It forms an acute angle θ of a predetermined size with respect to P. The straight line P extends perpendicularly to the longitudinal direction (X-axis direction) of the heat transfer tube 222p of the first stage 222a.
 鋭角θは特定の値に限定されない。鋭角θは、例えば、α/2である。αは、噴霧エリアMの中心角である。例えば、中心角αが80°であり、鋭角θが40°である。 The acute angle θ is not limited to a specific value. The acute angle θ is, for example, α / 2. α is the central angle of the spray area M. For example, the central angle α is 80 ° and the acute angle θ is 40 °.
 [4-2.動作]
 以上のように構成された実施の形態2について、以下その動作、作用を説明する。
[4-2. motion]
The operation and operation of the second embodiment configured as described above will be described below.
 図17に示す通り、噴霧軸Amが直線Pに対して鋭角θをなすようにノズル224から液相冷媒が噴霧される。ノズル224が伝熱管群222の近くに配置された場合でも、XZ平面において噴霧エリアMと重なる伝熱管群222の範囲が大きくなりやすい。例えば、噴霧エリアMの第一輪郭線W1が直線Pに沿って延び、噴霧エリアMの第二輪郭線W2が伝熱管22pの中心軸Axに沿って延びやすい。 As shown in FIG. 17, the liquid phase refrigerant is sprayed from the nozzle 224 so that the spray axis Am forms an acute angle θ with respect to the straight line P. Even when the nozzle 224 is arranged near the heat transfer tube group 222, the range of the heat transfer tube group 222 that overlaps with the spray area M on the XZ plane tends to be large. For example, the first contour line W1 of the spray area M tends to extend along the straight line P, and the second contour line W2 of the spray area M tends to extend along the central axis Ax of the heat transfer tube 22p.
 噴霧軸Amが直線Pと平行になるようにノズル224が配置されている場合、換言すると、噴霧軸Amが伝熱管222pの中心軸Axに垂直になるようにノズル224が配置されている場合を考える。この場合、距離Lが小さく、ノズル224が伝熱管群222の近くに配置されていると、XZ平面において、伝熱管群222のノズル224に近い伝熱管222pと噴霧エリアMとが重なる範囲が小さくなる。特に、伝熱管222pの長手方向においてノズル224から離れた部分が噴霧エリアMと重なりにくい。これにより、伝熱管群222の伝熱管222pの外面において、ノズル224から噴霧された液相冷媒が到達しにくい部分が生じやすい。一方、本実施形態によれば、このような状態が発生することを抑制できる。このため、伝熱管群222の伝熱管222pの外面の広い範囲を液相冷媒で濡らすことができ、伝熱管222pの外面においてドライアウトが発生しにくい。 When the nozzle 224 is arranged so that the spray axis Am is parallel to the straight line P, in other words, the nozzle 224 is arranged so that the spray axis Am is perpendicular to the central axis Ax of the heat transfer tube 222p. think. In this case, when the distance L is small and the nozzle 224 is arranged near the heat transfer tube group 222, the range in which the heat transfer tube 222p near the nozzle 224 of the heat transfer tube group 222 and the spray area M overlap on the XZ plane is small. Become. In particular, the portion of the heat transfer tube 222p away from the nozzle 224 in the longitudinal direction is unlikely to overlap with the spray area M. As a result, on the outer surface of the heat transfer tube 222p of the heat transfer tube group 222, a portion where the liquid phase refrigerant sprayed from the nozzle 224 is difficult to reach is likely to occur. On the other hand, according to the present embodiment, it is possible to suppress the occurrence of such a state. Therefore, a wide range of the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with the liquid phase refrigerant, and dryout is less likely to occur on the outer surface of the heat transfer tube 222p.
 図17に示す通り、噴霧軸Amが直線Pに対して鋭角θをなすように液相冷媒が噴霧されると、ノズル224から噴霧された液相冷媒は流れC1及び流れC2を生じさせる。流れC1は、第一段222a及び第二段222bにおける伝熱管222p同士の間を通過する液相冷媒の流れである。流れC2は、伝熱管222pの外面の前縁に衝突して伝熱管222pの長手方向(X軸方向)に沿って移動する液相冷媒の流れである。ノズル224から噴霧された液相冷媒の一部は、X軸方向の速度成分を有している状態で伝熱管222pの外面の前縁に衝突するので、このような液相冷媒の流れが生じる。 As shown in FIG. 17, when the liquid phase refrigerant is sprayed so that the spray axis Am forms an acute angle θ with respect to the straight line P, the liquid phase refrigerant sprayed from the nozzle 224 causes a flow C1 and a flow C2. The flow C1 is a flow of the liquid phase refrigerant passing between the heat transfer tubes 222p in the first stage 222a and the second stage 222b. The flow C2 is a flow of the liquid phase refrigerant that collides with the leading edge of the outer surface of the heat transfer tube 222p and moves along the longitudinal direction (X-axis direction) of the heat transfer tube 222p. Since a part of the liquid phase refrigerant sprayed from the nozzle 224 collides with the front edge of the outer surface of the heat transfer tube 222p in a state of having a velocity component in the X-axis direction, such a flow of the liquid phase refrigerant occurs. ..
 流れC1は、ノズル224から噴霧された中心角αの噴霧エリアMをなすように広がる液相冷媒の流れである。この流れC1における液相冷媒は、第一段222aの複数の伝熱管222pの第一端部222j又は第二段222bの複数の伝熱管222pの第二端部222kに接触しながら、第一段222aと第二段222bとの間を通過する。 The flow C1 is a flow of the liquid phase refrigerant spread so as to form the spray area M at the central angle α sprayed from the nozzle 224. The liquid phase refrigerant in this flow C1 is in contact with the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a or the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b, while being in contact with the first stage. It passes between 222a and the second stage 222b.
 流れC1及び流れC2の発生により、第一段222aにおける複数の伝熱管222pの配列方向(Z軸方向)への液相冷媒の移動に加え、伝熱管22pの長手方向(X軸方向)への液相冷媒の移動も生じる。このため、強制対流を伴う熱伝達が促進される。加えて、上記の通り、ノズル224に近い伝熱管222pを含む、伝熱管群222の伝熱管222pの外面の広い範囲が液相冷媒で濡れる。 Due to the generation of the flow C1 and the flow C2, in addition to the movement of the liquid phase refrigerant in the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 222p in the first stage 222a, in addition to the movement of the liquid phase refrigerant in the longitudinal direction (X-axis direction) of the heat transfer tubes 22p. The movement of the liquid phase refrigerant also occurs. Therefore, heat transfer accompanied by forced convection is promoted. In addition, as described above, a wide range of the outer surface of the heat transfer tube 222p of the heat transfer tube group 222, including the heat transfer tube 222p close to the nozzle 224, is wetted with the liquid phase refrigerant.
 [4-3.効果等]
 以上のように、本実施の形態においては、第一平面に垂直な方向(Y軸方向)に沿って第一段222aを見たときに、噴霧軸Amは、直線Pに対して所定の大きさの鋭角θをなす。
[4-3. Effect, etc.]
As described above, in the present embodiment, when the first stage 222a is viewed along the direction perpendicular to the first plane (Y-axis direction), the spray axis Am has a predetermined size with respect to the straight line P. Makes an acute angle θ.
 これにより、ノズル224が伝熱管群222の近くに配置されていても、伝熱管群222の伝熱管222pの外面の広い範囲を液相冷媒で濡らすことができ、伝熱管222pの外面においてドライアウトが発生しにくい。 As a result, even if the nozzle 224 is arranged near the heat transfer tube group 222, a wide range of the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with the liquid phase refrigerant, and the dry out on the outer surface of the heat transfer tube 222p. Is unlikely to occur.
 例えば、冷凍サイクル装置200の軽負荷条件での運転に対応させるために、ノズル224への液相冷媒の供給圧力を低下させることが考えられる。この場合、ノズル224から噴霧される液相冷媒の噴霧パターンにおける中心角が小さくなり、噴霧エリアMが狭くなりうる。また、ノズル224から噴霧される液相冷媒の流量が低下しうる。しかし、本実施形態によれば、このような場合であっても、伝熱管群222の伝熱管222pの外面の所望の範囲を液相冷媒で濡らすことができ、伝熱管222pの外面においてドライアウトが発生しにくい。 For example, in order to support the operation of the refrigeration cycle device 200 under a light load condition, it is conceivable to reduce the supply pressure of the liquid phase refrigerant to the nozzle 224. In this case, the central angle in the spray pattern of the liquid phase refrigerant sprayed from the nozzle 224 becomes small, and the spray area M may become narrow. Further, the flow rate of the liquid phase refrigerant sprayed from the nozzle 224 may decrease. However, according to the present embodiment, even in such a case, the desired range of the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with the liquid phase refrigerant, and the outer surface of the heat transfer tube 222p is dried out. Is unlikely to occur.
 (実施の形態5)
 以下、図18を用いて、実施の形態5を説明する。実施の形態5は、特に説明する部分を除き、実施の形態3と同様に構成されている。実施の形態3の構成要素と同一又は対応する実施の形態5の構成要素には同一の符号を付し、詳細な説明を省略する。実施の形態3に関する説明は、技術的に矛盾しない限り、実施の形態5にもあてはまる。
(Embodiment 5)
Hereinafter, the fifth embodiment will be described with reference to FIG. The fifth embodiment is configured in the same manner as the third embodiment except for a part to be described in particular. The same components as those of the third embodiment or the corresponding components of the fifth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. The description of Embodiment 3 also applies to Embodiment 5, as long as it is not technically inconsistent.
 [5-1.構成]
 図18は、実施の形態5に係る蒸発器201における液相冷媒の噴霧及び流動の状態を示す。図18に示す通り、伝熱管群222は、遠位伝熱管222dを有する。遠位伝熱管222dは、噴霧軸Amと交差する位置に配置されている。例えば、遠位伝熱管222dは、ノズル224の中心軸と交差している。第一段222aは、第一段222aの複数の伝熱管222pの配列方向(Z軸方向)において、ノズル224と遠位伝熱管222dとの間に配置されている。
[5-1. Constitution]
FIG. 18 shows the state of spraying and flow of the liquid phase refrigerant in the evaporator 201 according to the fifth embodiment. As shown in FIG. 18, the heat transfer tube group 222 has a distal heat transfer tube 222d. The distal heat transfer tube 222d is arranged at a position intersecting the spray axis Am. For example, the distal heat transfer tube 222d intersects the central axis of the nozzle 224. The first stage 222a is arranged between the nozzle 224 and the distal heat transfer tube 222d in the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 222p of the first stage 222a.
 図18に示す通り、伝熱管群222は、例えば下部伝熱管222eを有する。下部伝熱管222eは、重力方向において遠位伝熱管222dの真下に配置されている。 As shown in FIG. 18, the heat transfer tube group 222 has, for example, a lower heat transfer tube 222e. The lower heat transfer tube 222e is arranged directly below the distal heat transfer tube 222d in the direction of gravity.
 遠位伝熱管222d及び下部伝熱管222eは、例えば、第一段222a、第二段222b、又は下部伝熱管群222cにおける伝熱管222pと同様の形状及び寸法を有している。 The distal heat transfer tube 222d and the lower heat transfer tube 222e have, for example, the same shape and dimensions as the heat transfer tube 222p in the first stage 222a, the second stage 222b, or the lower heat transfer tube group 222c.
 [5-2.動作]
 以上のように構成された実施の形態5について、以下その動作、作用を説明する。
[5-2. motion]
The operation and operation of the fifth embodiment configured as described above will be described below.
 第一段222aと第二段222bとの間を通過した液相冷媒は、遠位伝熱管222dに衝突して捕捉される。このため、遠位伝熱管222dの周囲における強制対流に伴う熱伝達は、第一段222a及び第二段222bにおける伝熱管222pの周囲における強制対流に伴う熱伝達に比べて、大幅に促進される。加えて、ノズル224に対して遠方に位置する遠位伝熱管222dの外面を液相冷媒で濡らすことができ、ノズル224に対して遠方の伝熱管の外面においてドライアウトを抑制できる。 The liquid phase refrigerant that has passed between the first stage 222a and the second stage 222b collides with the distal heat transfer tube 222d and is captured. Therefore, the heat transfer associated with forced convection around the distal heat transfer tube 222d is significantly promoted as compared with the heat transfer associated with forced convection around the heat transfer tube 222p in the first stage 222a and the second stage 222b. .. In addition, the outer surface of the distal heat transfer tube 222d located distant from the nozzle 224 can be wetted with the liquid phase refrigerant, and dryout can be suppressed on the outer surface of the heat transfer tube distant from the nozzle 224.
 遠位伝熱管222dに衝突した液相冷媒は、遠位伝熱管222dの外面に沿って流動し、下部伝熱管222eに向かって滴下される。これにより、ノズル224に対して遠方に位置する下部伝熱管222eの外面を液相冷媒で濡らすことができ、ノズル224に対して遠方の伝熱管の外面においてドライアウトを抑制できる。 The liquid phase refrigerant that has collided with the distal heat transfer tube 222d flows along the outer surface of the distal heat transfer tube 222d and is dropped toward the lower heat transfer tube 222e. As a result, the outer surface of the lower heat transfer tube 222e located far from the nozzle 224 can be wetted with the liquid phase refrigerant, and dryout can be suppressed on the outer surface of the heat transfer tube far from the nozzle 224.
 [5-3.効果等]
 以上のように、本実施の形態においては、伝熱管群222は、遠位伝熱管222dを有し、遠位伝熱管222dが噴霧軸Amと交差する位置に配置されている。加えて、第一段222aは、第一段222aの複数の伝熱管222pの配列方向において、ノズル224と遠位伝熱管222dとの間に配置されている。
[5-3. Effect, etc.]
As described above, in the present embodiment, the heat transfer tube group 222 has the distal heat transfer tube 222d, and the distal heat transfer tube 222d is arranged at a position where the distal heat transfer tube 222d intersects the spray axis Am. In addition, the first stage 222a is arranged between the nozzle 224 and the distal heat transfer tube 222d in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a.
 これにより、遠位伝熱管222dの周囲における強制対流に伴う熱伝達が大幅に促進されるとともに、ノズル224に対して遠方に位置する遠位伝熱管222dの外面においてドライアウトを抑制できる。 As a result, heat transfer associated with forced convection around the distal heat transfer tube 222d is greatly promoted, and dryout can be suppressed on the outer surface of the distal heat transfer tube 222d located far from the nozzle 224.
 例えば、冷凍サイクル装置200において急激な負荷変動が生じ、ノズル224への液相冷媒の供給圧力が変化する場合でも、ノズル224への液相冷媒の供給圧力によらずに安定的に伝熱管群222の伝熱管222pの外面を濡らすことができる。このため、軽負荷条件及び過負荷条件を含む広範囲の運転条件において伝熱管群222の伝熱管222pの外面を液相冷媒で所望の状態に濡らすことができる。 For example, even when a sudden load fluctuation occurs in the refrigerating cycle device 200 and the supply pressure of the liquid phase refrigerant to the nozzle 224 changes, the heat transfer tube group is stable regardless of the supply pressure of the liquid phase refrigerant to the nozzle 224. The outer surface of the heat transfer tube 222p of 222 can be wetted. Therefore, the outer surface of the heat transfer tube 222p of the heat transfer tube group 222 can be wetted with a liquid phase refrigerant in a desired state under a wide range of operating conditions including light load conditions and overload conditions.
 例えば、冷凍サイクル装置200が吸収式冷凍機である場合、蒸発器201で発生した気相冷媒が吸収器に向かって供給されうる。このとき、吸収式冷凍機のCOPを高める観点から、蒸発器201から供給される気相冷媒の流れに乗って液相冷媒が吸収器に導かれることを阻止することが望ましい。本実施の形態によれば、第一段222aと第二段222bとの間を通過した液相冷媒は、遠位伝熱管222dに衝突して捕捉される。このため、蒸発器201から吸収器に向かって液相冷媒が導かれることを阻止しやすい。 For example, when the refrigeration cycle device 200 is an absorption chiller, the vapor phase refrigerant generated in the evaporator 201 can be supplied toward the absorber. At this time, from the viewpoint of increasing the COP of the absorption chiller, it is desirable to prevent the liquid phase refrigerant from being guided to the absorber by riding on the flow of the gas phase refrigerant supplied from the evaporator 201. According to the present embodiment, the liquid phase refrigerant that has passed between the first stage 222a and the second stage 222b collides with the distal heat transfer tube 222d and is captured. Therefore, it is easy to prevent the liquid phase refrigerant from being guided from the evaporator 201 toward the absorber.
 本実施形態のように、伝熱管群222は、重力方向において遠位伝熱管222dの真下に配置された下部伝熱管222eを有していてもよい。これにより、遠位伝熱管222dから滴下された液相冷媒で下部伝熱管222eの外面を濡らすことができる。 As in the present embodiment, the heat transfer tube group 222 may have a lower heat transfer tube 222e arranged directly under the distal heat transfer tube 222d in the direction of gravity. As a result, the outer surface of the lower heat transfer tube 222e can be wetted with the liquid phase refrigerant dropped from the distal heat transfer tube 222d.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態3、4、及び5を説明した。しかし、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態3、4、及び5で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施形態を例示する。
(Other embodiments)
As described above, embodiments 3, 4, and 5 have been described as examples of the techniques disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. Further, it is also possible to combine the constituent elements described in the above-described embodiments 3, 4, and 5 to form a new embodiment. Therefore, other embodiments will be exemplified below.
 実施の形態3では、シェルアンドチューブ式熱交換器の一例として、液相冷媒を噴霧するノズル224を備えた蒸発器201を示した。シェルアンドチューブ式熱交換器において、ノズル224は、液体を噴霧するものであればよい。したがって、ノズル224から噴霧される液体は、液相冷媒に限定されない。したがって、ノズル224から噴霧される液体は、冷凍サイクル装置の凝縮器で気相冷媒を凝縮させるために用いられる冷却液であってもよいし、他の液体であってもよい。ただし、ノズル224から噴霧される液体が液相冷媒であると、シェルアンドチューブ式熱交換器を冷凍サイクル装置における蒸発器として利用できる。 In the third embodiment, as an example of the shell-and-tube heat exchanger, the evaporator 201 provided with the nozzle 224 for spraying the liquid phase refrigerant is shown. In the shell-and-tube heat exchanger, the nozzle 224 may be any one that sprays a liquid. Therefore, the liquid sprayed from the nozzle 224 is not limited to the liquid phase refrigerant. Therefore, the liquid sprayed from the nozzle 224 may be a cooling liquid used for condensing the gas phase refrigerant in the condenser of the refrigerating cycle device, or may be another liquid. However, if the liquid sprayed from the nozzle 224 is a liquid phase refrigerant, the shell-and-tube heat exchanger can be used as an evaporator in the refrigeration cycle apparatus.
 実施の形態3では、シェルアンドチューブ式熱交換器の一例として、噴霧軸Amが水平に延びている蒸発器201を示した。噴霧軸Amは、第一段222aの複数の伝熱管222pの第二段222bに近い第一端部222jと、第二段222bの複数の伝熱管222pの第一段222aに近い第二端部222kとの間を通過するものであればよい。したがって、噴霧軸Amは、水平面に対して傾斜していてもよい。ただし、噴霧軸Amが水平に延びていると、第一段222a及び第二段222bにおける複数の伝熱管222pの配置が容易である。 In the third embodiment, as an example of the shell-and-tube heat exchanger, the evaporator 201 in which the spray shaft Am extends horizontally is shown. The spray shaft Am has a first end portion 222j close to the second stage 222b of the plurality of heat transfer tubes 222p of the first stage 222a and a second end portion close to the first stage 222a of the plurality of heat transfer tubes 222p of the second stage 222b. Anything that passes between 222k and 22k may be used. Therefore, the spray axis Am may be inclined with respect to the horizontal plane. However, when the spray shaft Am extends horizontally, it is easy to arrange the plurality of heat transfer tubes 222p in the first stage 222a and the second stage 222b.
 実施の形態3では、第一段222aと第二段222bとの間には、第一段222aの複数の伝熱管222pの配列方向における第一段222aの一端から他端まで有体物に交差しない仮想平面が存在していてもよいことを説明した。シェルアンドチューブ式熱交換器において、第一段222aの複数の伝熱管222pの第一端部222jと、第二段222bの複数の伝熱管222pの第二端部222kとの間を噴霧軸Amが通過していればよい。したがって、第一段222aと第二段222bとの間には、ノズル224から噴霧された液体の流れに影響をほとんど及ぼさず、噴霧軸Amの形成に影響を及ぼさない線材又は棒材等の部材が配置されていてもよい。 In the third embodiment, between the first stage 222a and the second stage 222b, a virtual object that does not intersect the tangible object from one end to the other end of the first stage 222a in the arrangement direction of the plurality of heat transfer tubes 222p of the first stage 222a. Explained that a plane may exist. In the shell-and-tube heat exchanger, the spray shaft Am is between the first end portion 222j of the plurality of heat transfer tubes 222p of the first stage 222a and the second end portion 222k of the plurality of heat transfer tubes 222p of the second stage 222b. Should have passed. Therefore, between the first stage 222a and the second stage 222b, a member such as a wire rod or a rod that has almost no effect on the flow of the liquid sprayed from the nozzle 224 and does not affect the formation of the spray shaft Am. May be arranged.
 実施の形態5では、遠位伝熱管222dが伝熱管222pと同様の形状及び寸法を有している例を説明した。シェルアンドチューブ式熱交換器において、遠位伝熱管222dは、噴霧軸Amと交差する位置に配置できるものであればよい。したがって、遠位伝熱管222dの形状及び寸法は、伝熱管222pの形状及び寸法と同一のものに限定されない。ただし、遠位伝熱管222dが伝熱管222pと同様の形状及び寸法を有していれば、遠位伝熱管222dを伝熱管222pと別に準備する必要がなく、生産管理が容易である。また、遠位伝熱管222dとして、伝熱管222pの外径よりも大きい外径を有する管を用いてもよい。この場合、遠位伝熱管222dによって液相冷媒をより確実に捕捉できる。 In the fifth embodiment, an example in which the distal heat transfer tube 222d has the same shape and dimensions as the heat transfer tube 222p has been described. In the shell-and-tube heat exchanger, the distal heat transfer tube 222d may be arranged at a position intersecting the spray axis Am. Therefore, the shape and dimensions of the distal heat transfer tube 222d are not limited to the same as the shape and dimensions of the heat transfer tube 222p. However, if the distal heat transfer tube 222d has the same shape and dimensions as the heat transfer tube 222p, it is not necessary to prepare the distal heat transfer tube 222d separately from the heat transfer tube 222p, and production control is easy. Further, as the distal heat transfer tube 222d, a tube having an outer diameter larger than the outer diameter of the heat transfer tube 222p may be used. In this case, the liquid phase refrigerant can be more reliably captured by the distal heat transfer tube 222d.
 本明細書に開示されたシェルアンドチューブ式熱交換器は、業務用エアコンなどの空気調和装置に特に有用である。シェルアンドチューブ式熱交換器は、蒸発器のみならず、凝縮器として使用されてもよい。本明細書に開示された冷凍サイクル装置は、空気調和装置に限定されず、吸収式冷凍機、チラー、蓄熱装置などの他の装置であってもよい。
 
The shell-and-tube heat exchangers disclosed herein are particularly useful for air conditioners such as commercial air conditioners. The shell-and-tube heat exchanger may be used as a condenser as well as an evaporator. The refrigerating cycle device disclosed in the present specification is not limited to the air conditioner, and may be another device such as an absorption chiller, a chiller, or a heat storage device.

Claims (25)

  1.  シェルと、
     前記シェルの内部に配置された複数の伝熱管と、
     ノズルと、を備え、
     下記(Ia)、(Ib)、(Ic)、及び(Id)の条件、又は、下記(IIa)、(IIb)、(IIc)、及び(IId)の条件を満たす、
     シェルアンドチューブ式熱交換器。
    (Ia)前記複数の伝熱管は前記シェルの内部に互いに平行に配置され、かつ、前記複数の伝熱管を第1流体が流れる。
    (Ib)前記ノズルは、前記シェルの内部に配置され、前記複数の伝熱管に向かって第2流体を噴霧する複数のノズルを含む。
    (Ic)前記複数の伝熱管の長手方向に平行な方向をX方向と定義し、前記X方向に垂直な方向をY方向と定義し、前記X方向及び前記Y方向に垂直な方向をZ方向と定義したとき、
     前記複数のノズルは、前記Z方向における第1側から第2側に向かって前記第2流体を噴霧する複数の第1ノズルと、前記Z方向における前記第1側から前記第2側に向かって前記第2流体を噴霧する複数の第2ノズルとを含む。
    (Id)前記複数の第1ノズル及び前記複数の第2ノズルを前記Z方向に投影することによって得られる投影像において、前記複数の第1ノズルと前記複数の第2ノズルとが千鳥状の配列パターンを示す。
    (IIa)前記複数の伝熱管は伝熱管群をなしている。
    (IIb)前記ノズルは、前記伝熱管群に向かって液体を噴霧する。
    (IIc)前記伝熱管群は、第一平面に沿って配列された複数の伝熱管を有する第一段と、前記第一平面に平行な第二平面に沿って配列された複数の伝熱管を有し、かつ、前記第一平面に垂直な方向において前記第一段と隣り合っている第二段とを含む。
    (IId)前記ノズルは、前記第一平面に垂直な方向において前記第一段の前記複数の伝熱管の前記第二段に近い第一端部と、前記第一平面に垂直な方向において前記第二段の前記複数の伝熱管の前記第一段に近い第二端部との間を通過する噴霧軸を有し、かつ、前記第一段と前記第二段との間を通過する扁平な噴霧パターンで前記液体を噴霧する。
    With the shell
    A plurality of heat transfer tubes arranged inside the shell,
    Equipped with a nozzle,
    The following conditions (Ia), (Ib), (Ic), and (Id), or the following conditions (IIa), (IIb), (IIc), and (IId),
    Shell and tube heat exchanger.
    (Ia) The plurality of heat transfer tubes are arranged parallel to each other inside the shell, and the first fluid flows through the plurality of heat transfer tubes.
    (Ib) The nozzle is arranged inside the shell and includes a plurality of nozzles that spray a second fluid toward the plurality of heat transfer tubes.
    (Ic) The direction parallel to the longitudinal direction of the plurality of heat transfer tubes is defined as the X direction, the direction perpendicular to the X direction is defined as the Y direction, and the X direction and the direction perpendicular to the Y direction are the Z direction. When defined as
    The plurality of nozzles include a plurality of first nozzles that spray the second fluid from the first side to the second side in the Z direction, and the first side to the second side in the Z direction. It includes a plurality of second nozzles for spraying the second fluid.
    (Id) In a projection image obtained by projecting the plurality of first nozzles and the plurality of second nozzles in the Z direction, the plurality of first nozzles and the plurality of second nozzles are arranged in a staggered pattern. Show the pattern.
    (IIa) The plurality of heat transfer tubes form a heat transfer tube group.
    (IIb) The nozzle sprays a liquid toward the heat transfer tube group.
    (IIc) The heat transfer tube group has a first stage having a plurality of heat transfer tubes arranged along the first plane and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane. And includes a second stage adjacent to the first stage in a direction perpendicular to the first plane.
    (IId) The nozzle has a first end portion of the plurality of heat transfer tubes in the first stage near the second stage in a direction perpendicular to the first plane, and the first stage in a direction perpendicular to the first plane. A flat spray pattern that has a spray shaft that passes between the two-stage heat transfer tubes and the second end near the first stage, and that passes between the first stage and the second stage. The liquid is sprayed with.
  2.  前記(Ia)、(Ib)、(Ic)、及び(Id)の条件を満たす、請求項1に記載のシェルアンドチューブ式熱交換器。 The shell-and-tube heat exchanger according to claim 1, which satisfies the conditions of (Ia), (Ib), (Ic), and (Id).
  3.  前記第1ノズルの噴霧軸及び前記第2ノズルの噴霧軸は、前記X方向及び前記Z方向の両方向に対して傾斜した方向に平行である、
     請求項2に記載のシェルアンドチューブ式熱交換器。
    The spray axis of the first nozzle and the spray axis of the second nozzle are parallel to the inclined direction with respect to both the X direction and the Z direction.
    The shell-and-tube heat exchanger according to claim 2.
  4.  前記Y方向から平面視したとき、前記第1ノズルの前記噴霧軸は、前記第1ノズルの開口の中心を通り前記Z方向に平行な第1基準線に対して時計回り方向に傾斜しており、
     前記Y方向から平面視したとき、前記第2ノズルの前記噴霧軸は、前記第2ノズルの開口の中心を通り前記Z方向に平行な第2基準線に対して反時計回り方向に傾斜している、
     請求項3に記載のシェルアンドチューブ式熱交換器。
    When viewed in a plan view from the Y direction, the spray axis of the first nozzle passes through the center of the opening of the first nozzle and is inclined clockwise with respect to the first reference line parallel to the Z direction. ,
    When viewed in a plan view from the Y direction, the spray axis of the second nozzle passes through the center of the opening of the second nozzle and is inclined counterclockwise with respect to the second reference line parallel to the Z direction. Yes,
    The shell-and-tube heat exchanger according to claim 3.
  5.  前記Y方向から平面視したとき、前記第1ノズルの前記噴霧軸と前記第1基準線とのなす角度は、前記第2ノズルの前記噴霧軸と前記第2基準線とのなす角度に等しい、
     請求項4に記載のシェルアンドチューブ式熱交換器。
    When viewed in a plan view from the Y direction, the angle formed by the spray axis of the first nozzle and the first reference line is equal to the angle formed by the spray axis of the second nozzle and the second reference line.
    The shell-and-tube heat exchanger according to claim 4.
  6.  前記複数のノズルは、前記Z方向における前記第2側から前記第1側に向かって前記第2流体を噴霧する複数の第3ノズルと、前記Z方向における前記第2側から前記第1側に向かって前記第2流体を噴霧する複数の第4ノズルとを含み、
     前記複数の第3ノズル及び前記複数の第4ノズルを前記Z方向に投影することによって得られる投影像において、前記複数の第3ノズルと前記複数の第4ノズルとが千鳥状の配列パターンを示す、
     請求項2から5のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    The plurality of nozzles are a plurality of third nozzles that spray the second fluid from the second side to the first side in the Z direction, and from the second side to the first side in the Z direction. Includes a plurality of fourth nozzles that spray the second fluid towards.
    In the projection image obtained by projecting the plurality of third nozzles and the plurality of fourth nozzles in the Z direction, the plurality of third nozzles and the plurality of fourth nozzles show a staggered arrangement pattern. ,
    The shell-and-tube heat exchanger according to any one of claims 2 to 5.
  7.  前記第3ノズルの噴霧軸及び前記第4ノズルの噴霧軸は、前記X方向及び前記Z方向の両方向に対して傾斜した方向に平行である、
     請求項6に記載のシェルアンドチューブ式熱交換器。
    The spray axis of the third nozzle and the spray axis of the fourth nozzle are parallel to the inclined direction with respect to both the X direction and the Z direction.
    The shell and tube heat exchanger according to claim 6.
  8.  前記Y方向から平面視したとき、前記第3ノズルの前記噴霧軸は、前記第3ノズルの開口の中心を通り前記Z方向に平行な第3基準線に対して時計回り方向に傾斜しており、
     前記Y方向から平面視したとき、前記第4ノズルの前記噴霧軸は、前記第4ノズルの開口の中心を通り前記Z方向に平行な第4基準線に対して反時計回り方向に傾斜している、
     請求項7に記載のシェルアンドチューブ式熱交換器。
    When viewed in a plan view from the Y direction, the spray axis of the third nozzle passes through the center of the opening of the third nozzle and is inclined clockwise with respect to the third reference line parallel to the Z direction. ,
    When viewed in a plan view from the Y direction, the spray axis of the fourth nozzle passes through the center of the opening of the fourth nozzle and is inclined counterclockwise with respect to the fourth reference line parallel to the Z direction. Yes,
    The shell-and-tube heat exchanger according to claim 7.
  9.  前記Y方向から平面視したとき、前記第3ノズルの前記噴霧軸と前記第3基準線とのなす角度は、前記第4ノズルの前記噴霧軸と前記第4基準線とのなす角度に等しい、
     請求項7又は8に記載のシェルアンドチューブ式熱交換器。
    When viewed in a plan view from the Y direction, the angle formed by the spray axis of the third nozzle and the third reference line is equal to the angle formed by the spray axis of the fourth nozzle and the fourth reference line.
    The shell-and-tube heat exchanger according to claim 7 or 8.
  10.  前記Y方向からの平面視において、前記複数の第3ノズルの位置は、前記複数の第1ノズルの位置に対して、前記X方向にオフセットしており、
     前記Y方向からの平面視において、前記複数の第4ノズルの位置は、前記複数の第2ノズルの位置に対して、前記X方向にオフセットしている、
     請求項6から9のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    In a plan view from the Y direction, the positions of the plurality of third nozzles are offset in the X direction with respect to the positions of the plurality of first nozzles.
    In a plan view from the Y direction, the positions of the plurality of fourth nozzles are offset in the X direction with respect to the positions of the plurality of second nozzles.
    The shell-and-tube heat exchanger according to any one of claims 6 to 9.
  11.  前記Y方向において、前記複数の第1ノズルの前記噴霧軸は、互いに隣り合う前記伝熱管と前記伝熱管との間を通り、
     前記Y方向において、前記複数の第2ノズルの前記噴霧軸は、互いに隣り合う前記伝熱管と前記伝熱管との間を通る、
     請求項2から10のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    In the Y direction, the spray shafts of the plurality of first nozzles pass between the heat transfer tubes adjacent to each other and the heat transfer tubes.
    In the Y direction, the spray shafts of the plurality of second nozzles pass between the heat transfer tubes adjacent to each other and the heat transfer tubes.
    The shell-and-tube heat exchanger according to any one of claims 2 to 10.
  12.  前記Y方向において、前記複数の第3ノズルの前記噴霧軸は、互いに隣り合う前記伝熱管と前記伝熱管との間を通り、
     前記Y方向において、前記複数の第4ノズルの前記噴霧軸は、互いに隣り合う前記伝熱管と前記伝熱管との間を通る、
     請求項6から10のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    In the Y direction, the spray shafts of the plurality of third nozzles pass between the heat transfer tubes adjacent to each other and the heat transfer tubes.
    In the Y direction, the spray shafts of the plurality of fourth nozzles pass between the heat transfer tubes adjacent to each other and the heat transfer tubes.
    The shell-and-tube heat exchanger according to any one of claims 6 to 10.
  13.  前記X方向に垂直かつ前記Y方向及び前記Z方向に平行な断面において、前記複数の伝熱管は、正方格子の格子点上に位置している、
     請求項2から12のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    In a cross section perpendicular to the X direction and parallel to the Y direction and the Z direction, the plurality of heat transfer tubes are located on grid points of a square lattice.
    The shell-and-tube heat exchanger according to any one of claims 2 to 12.
  14.  前記複数の伝熱管は、円形の断面を有する円管を含む、
     請求項2から13のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    The plurality of heat transfer tubes include a circular tube having a circular cross section.
    The shell-and-tube heat exchanger according to any one of claims 2 to 13.
  15.  請求項2から14のいずれか1項に記載のシェルアンドチューブ式熱交換器を備えた、冷凍サイクル装置。 A refrigeration cycle apparatus provided with the shell-and-tube heat exchanger according to any one of claims 2 to 14.
  16.  前記(IIa)、(IIb)、(IIc)、及び(IId)の条件を満たす、請求項1に記載のシェルアンドチューブ式熱交換器。 The shell-and-tube heat exchanger according to claim 1, which satisfies the conditions of (IIa), (IIb), (IIc), and (IId).
  17.  前記第一段と前記第二段との間には、前記第一段の前記複数の伝熱管の配列方向における前記第一段の一端から他端まで有体物に交差しない仮想平面が存在する、
     請求項16に記載のシェルアンドチューブ式熱交換器。
    Between the first stage and the second stage, there is a virtual plane that does not intersect the tangible object from one end to the other end of the first stage in the arrangement direction of the plurality of heat transfer tubes of the first stage.
    The shell-and-tube heat exchanger according to claim 16.
  18.  前記第一段の前記複数の伝熱管及び前記第二段の前記複数の伝熱管は、前記伝熱管の長手方向に垂直な第三平面において、長方形格子、正方形格子、又は平行四辺形格子をなしている、
     請求項16又は17に記載のシェルアンドチューブ式熱交換器。
    The plurality of heat transfer tubes in the first stage and the plurality of heat transfer tubes in the second stage form a rectangular grid, a square grid, or a parallelogram grid in a third plane perpendicular to the longitudinal direction of the heat transfer tubes. ing,
    The shell-and-tube heat exchanger according to claim 16 or 17.
  19.  前記第二段は、重力方向において前記第一段の下方に配置されており、
     前記伝熱管群は、複数の伝熱管を有し、かつ、重力方向において前記第二段の下方に配置されている下部伝熱管群を含む、
     請求項16から18のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    The second stage is arranged below the first stage in the direction of gravity.
    The heat transfer tube group includes a lower heat transfer tube group having a plurality of heat transfer tubes and arranged below the second stage in the direction of gravity.
    The shell-and-tube heat exchanger according to any one of claims 16 to 18.
  20.  前記下部伝熱管群の前記複数の伝熱管は、前記第二段の前記複数の伝熱管とともに、前記伝熱管の長手方向に垂直な第三平面において長方形格子又は正方形格子をなしている、
     請求項19に記載のシェルアンドチューブ式熱交換器。
    The plurality of heat transfer tubes of the lower heat transfer tube group, together with the plurality of heat transfer tubes of the second stage, form a rectangular lattice or a square lattice in a third plane perpendicular to the longitudinal direction of the heat transfer tubes.
    The shell-and-tube heat exchanger according to claim 19.
  21.  前記第一平面に垂直な方向に沿って前記第一段を見たときに、前記噴霧軸は、前記第一段の前記伝熱管の長手方向に垂直に延びる直線に対して所定の大きさの鋭角をなす、
     請求項16から20のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    When the first stage is viewed along a direction perpendicular to the first plane, the spray axis has a predetermined size with respect to a straight line extending perpendicular to the longitudinal direction of the heat transfer tube of the first stage. Make a sharp angle,
    The shell-and-tube heat exchanger according to any one of claims 16 to 20.
  22.  前記伝熱管群は、前記噴霧軸と交差する位置に配置された遠位伝熱管を有し、
     前記第一段は、前記第一段の前記複数の伝熱管の配列方向において、前記ノズルと前記遠位伝熱管との間に配置されている、
     請求項16から21のいずれか1項に記載のシェルアンドチューブ式熱交換器。
    The heat transfer tube group has a distal heat transfer tube arranged at a position intersecting the spray axis.
    The first stage is arranged between the nozzle and the distal heat transfer tube in the arrangement direction of the plurality of heat transfer tubes of the first stage.
    The shell-and-tube heat exchanger according to any one of claims 16 to 21.
  23.  前記伝熱管群は、重力方向において前記遠位伝熱管の真下に配置された下部伝熱管を有する、
     請求項22に記載のシェルアンドチューブ式熱交換器。
    The group of heat transfer tubes has a lower heat transfer tube arranged directly below the distal heat transfer tube in the direction of gravity.
    22. The shell and tube heat exchanger according to claim 22.
  24.  請求項16から23のいずれか1項に記載のシェルアンドチューブ式熱交換器を備えた、冷凍サイクル装置。 A refrigeration cycle apparatus provided with the shell-and-tube heat exchanger according to any one of claims 16 to 23.
  25.  第一平面に沿って配列された複数の伝熱管を有する第一段と、前記第一平面に平行な第二平面に沿って配列された複数の伝熱管を有し、かつ、前記第一平面に垂直な方向において前記第一段と隣り合っている第二段とを含む伝熱管群の内部において熱媒体を通過させることと、
     前記第一平面に垂直な方向において前記第一段の前記複数の伝熱管の前記第二段に近い第一端部と、前記第一平面に垂直な方向において前記第二段の前記複数の伝熱管の前記第一段に近い第二端部との間を通過する噴霧軸を有し、かつ、前記第一段と前記第二段との間を通過する扁平な噴霧パターンで前記伝熱管群に向かって液体を噴霧し、前記熱媒体と前記液体とを熱交換させることとを、含む
     熱交換方法。
     
    It has a first stage having a plurality of heat transfer tubes arranged along the first plane, and a plurality of heat transfer tubes arranged along a second plane parallel to the first plane, and is perpendicular to the first plane. Passing the heat medium inside the heat transfer tube group including the first stage and the second stage adjacent to the first stage in the above direction.
    The first end portion of the plurality of heat transfer tubes in the first stage near the second stage in the direction perpendicular to the first plane, and the plurality of heat transfer tubes in the second stage in the direction perpendicular to the first plane. It has a spray shaft that passes between the second end of the heat tube near the first stage, and has a flat spray pattern that passes between the first stage and the second stage toward the heat transfer tube group. A heat exchange method comprising spraying a liquid and exchanging heat between the heat medium and the liquid.
PCT/JP2021/044142 2020-12-17 2021-12-01 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method WO2022130986A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180083940.XA CN116583702A (en) 2020-12-17 2021-12-01 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
EP21906349.2A EP4265982A1 (en) 2020-12-17 2021-12-01 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-208993 2020-12-17
JP2020208993A JP2022096089A (en) 2020-12-17 2020-12-17 Shell-and-tube type heat exchanger and refrigeration cycle device
JP2021-027382 2021-02-24
JP2021027382A JP2022128910A (en) 2021-02-24 2021-02-24 Shell-and-tube type heat exchanger, refrigeration cycle device, and heat exchange method

Publications (1)

Publication Number Publication Date
WO2022130986A1 true WO2022130986A1 (en) 2022-06-23

Family

ID=82057534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044142 WO2022130986A1 (en) 2020-12-17 2021-12-01 Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method

Country Status (2)

Country Link
EP (1) EP4265982A1 (en)
WO (1) WO2022130986A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158805A (en) * 1993-12-01 1995-06-20 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2008286473A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Refrigerating cycle device
JP2013053620A (en) * 2011-08-10 2013-03-21 Usui Kokusai Sangyo Kaisha Ltd Multi-tube type heat exchanger
WO2017073367A1 (en) 2015-10-28 2017-05-04 八洋エンジニアリング株式会社 Evaporative condenser and refrigeration system equipped with said evaporative condenser
US20190107332A1 (en) * 2017-10-11 2019-04-11 Schneider Electric It Corporation System and method of a water management for an indirect evaporative cooler
JP2019132460A (en) * 2018-01-29 2019-08-08 パナソニック株式会社 Shell-and-tube type heat exchanger
JP2020056532A (en) * 2018-10-02 2020-04-09 パナソニックIpマネジメント株式会社 Shell and tube type heat exchanger
CN210980875U (en) * 2019-11-08 2020-07-10 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Spray atomization device for peak cooling system of air cooling unit
JP2020153592A (en) * 2019-03-20 2020-09-24 パナソニック株式会社 Shell-and-tube type heat exchanger and refrigeration cycle device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158805A (en) * 1993-12-01 1995-06-20 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2008286473A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Refrigerating cycle device
JP2013053620A (en) * 2011-08-10 2013-03-21 Usui Kokusai Sangyo Kaisha Ltd Multi-tube type heat exchanger
WO2017073367A1 (en) 2015-10-28 2017-05-04 八洋エンジニアリング株式会社 Evaporative condenser and refrigeration system equipped with said evaporative condenser
US20190107332A1 (en) * 2017-10-11 2019-04-11 Schneider Electric It Corporation System and method of a water management for an indirect evaporative cooler
JP2019132460A (en) * 2018-01-29 2019-08-08 パナソニック株式会社 Shell-and-tube type heat exchanger
JP2020056532A (en) * 2018-10-02 2020-04-09 パナソニックIpマネジメント株式会社 Shell and tube type heat exchanger
JP2020153592A (en) * 2019-03-20 2020-09-24 パナソニック株式会社 Shell-and-tube type heat exchanger and refrigeration cycle device
CN210980875U (en) * 2019-11-08 2020-07-10 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Spray atomization device for peak cooling system of air cooling unit

Also Published As

Publication number Publication date
EP4265982A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2017073087A1 (en) Evaporative condenser and refrigeration system equipped with said evaporative condenser
JP7174927B2 (en) shell and tube heat exchanger
JP2016138547A (en) Ejector and heat pump device
JP2540228B2 (en) Evaporative heat exchanger
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
JP2004077039A (en) Evaporation type condenser
WO2022130986A1 (en) Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
WO2022224554A1 (en) Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JP7445438B2 (en) Shell and tube heat exchanger and refrigeration cycle equipment
JP2022096089A (en) Shell-and-tube type heat exchanger and refrigeration cycle device
CN116583702A (en) Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
JP2019132460A (en) Shell-and-tube type heat exchanger
JP2016023925A (en) Evaporation air conditioning system
JP2019135418A (en) Shell-and-tube heat exchanger
EP4431844A1 (en) Shell-and-tube heat exchanger, operation method therefor, and refrigeration device provided therewith
JP7570007B2 (en) Shell and tube type heat exchanger and refrigeration cycle device
JP7411423B2 (en) Shell and tube heat exchanger and refrigeration cycle equipment
JP2020153592A (en) Shell-and-tube type heat exchanger and refrigeration cycle device
WO2019198554A1 (en) Shell-and-tube-type heat exchanger and spray method thereof
JP2019184228A (en) Shell-and-tube type heat exchanger and atomizing method in it
JP7300639B2 (en) Heat exchange unit and absorption chiller
JP2021167681A (en) Shell-and-tube type heat exchanger and refrigeration cycle device
JP2017053223A (en) Ejector and heat pump device
EP4403850A1 (en) Absorber unit, heat exchange unit, and absorption-type refrigerator
JP7386436B2 (en) Shell and tube absorber and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083940.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906349

Country of ref document: EP

Effective date: 20230717