JP7386436B2 - Shell and tube absorber and refrigerator - Google Patents

Shell and tube absorber and refrigerator Download PDF

Info

Publication number
JP7386436B2
JP7386436B2 JP2019144167A JP2019144167A JP7386436B2 JP 7386436 B2 JP7386436 B2 JP 7386436B2 JP 2019144167 A JP2019144167 A JP 2019144167A JP 2019144167 A JP2019144167 A JP 2019144167A JP 7386436 B2 JP7386436 B2 JP 7386436B2
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger tube
row
shell
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019144167A
Other languages
Japanese (ja)
Other versions
JP2020159679A (en
Inventor
文紀 河野
修和 下田平
朋一郎 田村
秀樹 府内
英一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2020159679A publication Critical patent/JP2020159679A/en
Application granted granted Critical
Publication of JP7386436B2 publication Critical patent/JP7386436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、シェルアンドチューブ式吸収器及び冷凍機に関する。 The present disclosure relates to shell-and-tube absorbers and refrigerators.

従来、吸収器を備えた吸収式冷凍機が知られている。 Conventionally, absorption refrigerators equipped with an absorber have been known.

特許文献1には、図9に示す通り、伝熱管301と、蒸気流路302と、流入部303と、吸収液散布装置304と、抽気口307と、吸収液排出口308とを備えた吸収器300が記載されている。吸収液散布装置304から伝熱管301に向かって吸収液305が散布される。吸収器300によれば、伝熱管301が密に配置された管群領域と壁面との間の蒸気流路302により、蒸気の流動抵抗を低減でき、抽気口307から不凝縮性ガスを高効率に排出できる。 Patent Document 1 describes, as shown in FIG. 9, an absorption system including a heat exchanger tube 301, a steam flow path 302, an inflow section 303, an absorption liquid distribution device 304, an air bleed port 307, and an absorption liquid discharge port 308. A container 300 is described. Absorption liquid 305 is sprayed from absorption liquid spraying device 304 toward heat transfer tube 301 . According to the absorber 300, the steam flow path 302 between the tube group region where the heat transfer tubes 301 are densely arranged and the wall surface can reduce the flow resistance of steam, and the non-condensable gas can be extracted from the bleed port 307 with high efficiency. can be discharged.

特開平6-307735号公報Japanese Patent Application Publication No. 6-307735

特許文献1に記載の技術は、伝熱管の高密度な配置と、吸収液によって伝熱管を適切に濡らすこととを両立する観点から、再検討の余地を有している。 The technique described in Patent Document 1 has room for reexamination from the viewpoint of achieving both a high-density arrangement of heat exchanger tubes and appropriate wetting of the heat exchanger tubes with an absorbing liquid.

そこで、本開示は、伝熱管の高密度な配置と、吸収液によって伝熱管を適切に濡らすこととを両立する観点から有利な吸収器を提供する。 Therefore, the present disclosure provides an advantageous absorber from the viewpoint of achieving both a high-density arrangement of heat exchanger tubes and appropriate wetting of the heat exchanger tubes with an absorbing liquid.

本開示は、
吸収液を貯留するシェルと、
前記シェルの内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置された、熱媒体が流れる複数の伝熱管を有する伝熱管群と、
前記シェルに前記吸収液を供給する第一供給路と、
前記シェルに冷媒蒸気を供給する第二供給路と、
前記第一供給路によって供給された前記吸収液を前記伝熱管群に向かって滴下する滴下器と、を備え、
前記伝熱管群は、隣り合う左列及び右列を含み、前記伝熱管の長手方向に沿って前記左列及び前記右列を見たときに、前記右列において前記伝熱管の中心軸を含む水平な平面が前記左列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置する、又は、前記左列における前記伝熱管の中心軸を含む水平な平面が前記右列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置し、
前記左列の任意の上段の前記伝熱管の中心軸と前記左列の前記上段の一段下の下段の前記伝熱管の中心軸との距離は、前記左列の前記上段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸と前記左列の前記下段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸との距離と等しい、
シェルアンドチューブ式吸収器を提供する。
This disclosure:
A shell that stores the absorbent liquid;
A heat exchanger tube group having a plurality of heat exchanger tubes in which a heat medium flows, which are arranged in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity and arranged parallel to each other inside the shell;
a first supply path that supplies the absorption liquid to the shell;
a second supply path for supplying refrigerant vapor to the shell;
a dropper that drops the absorption liquid supplied by the first supply path toward the heat exchanger tube group,
The heat exchanger tube group includes a left row and a right row that are adjacent to each other, and when the left row and the right row are viewed along the longitudinal direction of the heat exchanger tubes, the center axis of the heat exchanger tubes is included in the right row. A horizontal plane is located between a pair of horizontal planes including the central axes of two heat exchanger tubes adjacent in the direction of gravity in the left row, or a horizontal plane including the central axes of the heat exchanger tubes in the left row A plane is located between a pair of horizontal planes including central axes of the two heat exchanger tubes adjacent in the direction of gravity in the right row,
The distance between the central axis of the heat exchanger tube in any upper stage of the left row and the central axis of the lower heat exchanger tube one stage below the upper stage in the left row is such that the distance is adjacent to the upper heat exchanger tube in the left row. equal to the distance between the central axis of the heat exchanger tube in the right row and the central axis of the heat exchanger tube in the right row adjacent to the lower heat exchanger tube in the left row;
Provides shell and tube type absorbers.

本開示のシェルアンドチューブ式吸収器は、伝熱管の高密度な配置と、吸収液によって伝熱管を適切に濡らすこととを両立する観点から有利である。 The shell-and-tube type absorber of the present disclosure is advantageous from the viewpoint of achieving both a high-density arrangement of heat exchanger tubes and appropriate wetting of the heat exchanger tubes with an absorbing liquid.

図1は、本開示の実施形態の一例に係るシェルアンドチューブ式吸収器の断面図である。FIG. 1 is a cross-sectional view of a shell-and-tube absorber according to an example of an embodiment of the present disclosure. 図2は、図1に示すシェルアンドチューブ式吸収器の滴下器を示す断面図である。FIG. 2 is a sectional view showing the dropper of the shell-and-tube absorber shown in FIG. 1. 図3は、参考例に係るシェルアンドチューブ式吸収器の断面図である。FIG. 3 is a sectional view of a shell-and-tube absorber according to a reference example. 図4は、本実施形態の冷凍機の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of the refrigerator of this embodiment. 図5は、本開示の実施形態の別の一例に係るシェルアンドチューブ式吸収器の断面図である。FIG. 5 is a cross-sectional view of a shell-and-tube absorber according to another example of the embodiment of the present disclosure. 図6は、本開示の実施形態のさらに別の一例に係るシェルアンドチューブ式吸収器の断面図である。FIG. 6 is a cross-sectional view of a shell-and-tube absorber according to yet another example of the embodiment of the present disclosure. 図7は、図6に示すシェルアンドチューブ式吸収器の滴下器を示す断面図である。FIG. 7 is a cross-sectional view of the dropper of the shell-and-tube absorber shown in FIG. 6. 図8は、本開示の実施形態のさらに別の一例に係るシェルアンドチューブ式吸収器の断面図である。FIG. 8 is a cross-sectional view of a shell-and-tube absorber according to yet another example of the embodiment of the present disclosure. 図9は、従来の吸収器を示す断面図である。FIG. 9 is a sectional view showing a conventional absorber.

(本開示の基礎となった知見)
シェルアンドチューブ式吸収器において、典型的に、吸収液への冷媒蒸気の吸収により発生した吸収熱が伝熱管を流れる熱媒体に放熱される。吸収液を所望の状態に保ちつつ滴下する観点から、重力方向に複数段をなす伝熱管を吸収液によって適切に濡らすことが有利である。シェルアンドチューブ式吸収器のシェルの内部において、重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなすように複数の伝熱管を互いに平行に配置して、伝熱管群を形成することが考えられる。この場合、隣り合う2つの伝熱管の列において、2つの伝熱管の列の一方の重力方向に隣り合う2つの伝熱管の間に、2つの伝熱管の列の他方の伝熱管を配置することが考えられる。本明細書において、このような伝熱管の配置を千鳥配置と呼ぶ。千鳥配置によれば、この伝熱管の配置における伝熱管同士の距離及び伝熱管群の高さを、複数の伝熱管の格子状の配置における伝熱管同士の距離及び伝熱管群の高さと同等に保つことができる。加えて、伝熱管群の重力方向に垂直な方向の幅が小さくなり、伝熱管の高密度な配置を実現しやすい。
(Findings that formed the basis of this disclosure)
In shell-and-tube absorbers, the absorbed heat typically generated by absorption of refrigerant vapor into an absorbing liquid is radiated to a heat transfer medium flowing through heat transfer tubes. From the viewpoint of dripping the absorption liquid while maintaining it in a desired state, it is advantageous to appropriately wet the heat transfer tubes, which are arranged in multiple stages in the direction of gravity, with the absorption liquid. Inside the shell of a shell-and-tube type absorber, multiple heat transfer tubes are arranged parallel to each other in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity to form a group of heat transfer tubes. It is possible to do so. In this case, in two adjacent rows of heat transfer tubes, the other heat transfer tube of the two rows of heat transfer tubes is arranged between two heat transfer tubes that are adjacent to each other in the gravity direction of one of the rows of two heat transfer tubes. is possible. In this specification, such an arrangement of heat exchanger tubes is referred to as a staggered arrangement. According to the staggered arrangement, the distance between heat exchanger tubes and the height of a group of heat exchanger tubes in this arrangement of heat exchanger tubes are equal to the distance between heat exchanger tubes and the height of a group of heat exchanger tubes in a lattice arrangement of multiple heat exchanger tubes. can be kept. In addition, the width of the heat exchanger tube group in the direction perpendicular to the direction of gravity is reduced, making it easier to realize a high-density arrangement of the heat exchanger tubes.

一方、本発明者らは、シェルアンドチューブ式吸収器において、複数の伝熱管を千鳥配置しようとすると、吸収液によって伝熱管を適切に濡らすことが難しくなる場合があることを新たに見出した。例えば、隣り合う2つの伝熱管の列の一方の重力方向に隣り合う2つの伝熱管同士の距離が、隣り合う2つの伝熱管の列の他方においてその2つの伝熱管のそれぞれと隣り合う伝熱管同士の距離が狭くなることがある。重力方向に隣り合う2つの伝熱管同士の距離が小さいと、その伝熱管同士の間を通過する冷媒蒸気の流速が高くなる。これにより、隣の列において伝熱管同士の距離が広い空間を落下している吸収液が高流速の冷媒蒸気の流れによりドラッグされる。その結果、下段の伝熱管に吸収液が接触しにくくなり、吸収液によって伝熱管を適切に濡らすことが難しくなる。 On the other hand, the present inventors have newly discovered that in a shell-and-tube type absorber, when a plurality of heat exchanger tubes are arranged in a staggered manner, it may become difficult to appropriately wet the heat exchanger tubes with an absorbing liquid. For example, the distance between two adjacent heat exchanger tubes in the gravity direction of one row of two adjacent heat exchanger tubes is the same as the distance between each of the two heat exchanger tubes in the other row of two adjacent heat exchanger tubes. The distance between them may become narrower. When the distance between two heat exchanger tubes adjacent to each other in the gravity direction is small, the flow rate of refrigerant vapor passing between the heat exchanger tubes increases. As a result, the absorption liquid falling through the space where the distance between the heat transfer tubes in the adjacent row is wide is dragged by the flow of the refrigerant vapor at a high flow rate. As a result, it becomes difficult for the absorption liquid to come into contact with the heat exchanger tubes in the lower stage, and it becomes difficult to properly wet the heat exchanger tubes with the absorption liquid.

そこで、本発明者らは、複数の伝熱管を千鳥配置にしても、吸収液によって伝熱管を適切に濡らすことが可能な伝熱管の配置について鋭意検討を重ね、本開示のシェルアンドチューブ式吸収器を案出した。 Therefore, the present inventors have conducted extensive studies on the arrangement of heat exchanger tubes that can appropriately wet the heat exchanger tubes with absorbent liquid even when a plurality of heat exchanger tubes are arranged in a staggered manner. I devised a container.

(本開示に係る一態様の概要)
本開示の第1態様に係るシェルアンドチューブ式吸収器は、
吸収液を貯留するシェルと、
前記シェルの内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置された、熱媒体が流れる複数の伝熱管を有する伝熱管群と、
前記シェルに前記吸収液を供給する第一供給路と、
前記シェルに冷媒蒸気を供給する第二供給路と、
前記第一供給路によって供給された前記吸収液を前記伝熱管群に向かって滴下する滴下器と、を備え、
前記伝熱管群は、隣り合う左列及び右列を含み、前記伝熱管の長手方向に沿って前記左列及び前記右列を見たときに、前記右列における前記伝熱管の中心軸を含む水平な平面が前記左列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置する、又は、前記左列における前記伝熱管の中心軸を含む水平な平面が前記右列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置し、
前記左列の任意の上段の前記伝熱管の中心軸と前記左列の前記上段の一段下の下段の前記伝熱管の中心軸との距離は、前記左列の前記上段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸と前記左列の前記下段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸との距離と等しい。
(Summary of one aspect of the present disclosure)
The shell and tube absorber according to the first aspect of the present disclosure includes:
a shell that stores the absorbent liquid;
A heat exchanger tube group having a plurality of heat exchanger tubes in which a heat medium flows, which are arranged in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity and arranged parallel to each other inside the shell;
a first supply path that supplies the absorption liquid to the shell;
a second supply path for supplying refrigerant vapor to the shell;
a dropper that drops the absorption liquid supplied by the first supply path toward the heat exchanger tube group,
The heat exchanger tube group includes an adjacent left row and a right row, and includes a central axis of the heat exchanger tubes in the right row when looking at the left row and the right row along the longitudinal direction of the heat exchanger tubes. A horizontal plane is located between a pair of horizontal planes including the central axes of two heat exchanger tubes adjacent in the direction of gravity in the left row, or a horizontal plane including the central axes of the heat exchanger tubes in the left row A plane is located between a pair of horizontal planes including central axes of the two heat exchanger tubes adjacent in the direction of gravity in the right row,
The distance between the central axis of the heat exchanger tube in any upper stage of the left row and the central axis of the lower heat exchanger tube one stage below the upper stage in the left row is such that the distance is adjacent to the upper heat exchanger tube in the left row. The distance between the center axis of the heat transfer tube in the right row and the center axis of the heat transfer tube in the right row adjacent to the lower heat transfer tube in the left row is equal to the distance between the center axis of the heat transfer tube in the right row.

第1態様によれば、隣り合う左列及び右列において伝熱管が上記のように配置されていることにより、伝熱管群において伝熱管を高密度に配置できる。加えて、左列の上段の伝熱管の中心軸と左列の下段の伝熱管の中心軸との距離が、これらの伝熱管に隣接している右列の伝熱管の中心軸同士の距離と等しいので、冷媒蒸気の流速が低く保たれやすい。また、吸収液が落下する距離が短くなりやすく、吸収液が冷媒蒸気の流れによりドラッグされにくい。その結果、吸収液によって伝熱管を適切に濡らすことができる。 According to the first aspect, by arranging the heat exchanger tubes as described above in the adjacent left and right rows, the heat exchanger tubes can be arranged in a high density in the heat exchanger tube group. In addition, the distance between the center axis of the upper heat transfer tube in the left row and the center axis of the lower heat transfer tube in the left row is the same as the distance between the center axes of the heat transfer tubes in the right row adjacent to these heat transfer tubes. Since they are equal, the flow rate of refrigerant vapor tends to be kept low. Furthermore, the distance that the absorbing liquid falls tends to be shortened, and the absorbing liquid is less likely to be dragged by the flow of refrigerant vapor. As a result, the heat exchanger tubes can be appropriately wetted with the absorbing liquid.

本開示の第2態様において、例えば、第1態様に係るシェルアンドチューブ式吸収器では、前記左列において隣り合う2つの前記伝熱管の中心軸同士の距離は、第一長さと、前記第一長さより長い第二長さとを含んでいてもよい。第2態様によれば、左列において隣り合う2つの伝熱管の中心軸同士の距離が、何らかの理由により異なる場合でも、その距離が長くなる部分において冷媒蒸気の流速が低く保たれやすい。このため、吸収液が冷媒蒸気の流れによりドラッグされにくい。吸収液によって伝熱管を適切に濡らすことができる。 In a second aspect of the present disclosure, for example, in the shell-and-tube absorber according to the first aspect, the distance between the central axes of the two adjacent heat exchanger tubes in the left row is the first length and the first length. It may also include a second length that is longer than the length. According to the second aspect, even if the distance between the center axes of two adjacent heat transfer tubes in the left row differs for some reason, the flow rate of the refrigerant vapor is likely to be kept low in the portion where the distance is longer. Therefore, the absorption liquid is less likely to be dragged by the flow of refrigerant vapor. The heat exchanger tubes can be appropriately wetted by the absorbing liquid.

本開示の第3態様において、例えば、第1態様又は第2態様に係るシェルアンドチューブ式吸収器では、前記伝熱管群は、前記熱媒体が特定方向に流れる第一伝熱管群と、重力方向において第一伝熱管群の上方に配置され、前記特定方向と反対方向に前記熱媒体が流れる第二伝熱管群とを有していてもよい。第一伝熱管群と第二伝熱管群との間の距離を、第一伝熱管群における伝熱管同士の距離及び第二伝熱管群における伝熱管同士の距離に合わせることが難しい場合がある。第3態様によれば、この場合でも、第一伝熱管群と第二伝熱管群との間の空間において、冷媒蒸気の流速が低く保たれやすい。このため、吸収液が冷媒蒸気の流れによりドラッグされにくい。吸収液によって伝熱管を適切に濡らすことができる。 In a third aspect of the present disclosure, for example, in the shell-and-tube absorber according to the first aspect or the second aspect, the heat exchanger tube group includes a first heat exchanger tube group in which the heat medium flows in a specific direction, and a gravitational direction. may include a second heat exchanger tube group that is arranged above the first heat exchanger tube group and in which the heat medium flows in a direction opposite to the specific direction. It may be difficult to match the distance between the first heat exchanger tube group and the second heat exchanger tube group to the distance between the heat exchanger tubes in the first heat exchanger tube group and the distance between the heat exchanger tubes in the second heat exchanger tube group. According to the third aspect, even in this case, the flow rate of the refrigerant vapor is likely to be kept low in the space between the first heat exchanger tube group and the second heat exchanger tube group. Therefore, the absorption liquid is less likely to be dragged by the flow of refrigerant vapor. The heat exchanger tubes can be appropriately wetted by the absorbing liquid.

本開示の第4態様において、例えば、第3態様に係るシェルアンドチューブ式吸収器では、前記熱媒体は、前記第一伝熱管群を通過した後に前記第二伝熱管群に導かれてもよく、又は、前記第二伝熱管群を通過した後に前記第一伝熱管群に導かれてもよい。第4態様によれば、シェルの内部における熱媒体の流路が長くなり、吸収液への冷媒蒸気の吸収により発生した吸収熱を効果的に熱媒体に放熱できる。 In the fourth aspect of the present disclosure, for example, in the shell-and-tube absorber according to the third aspect, the heat medium may be guided to the second heat exchanger tube group after passing through the first heat exchanger tube group. Alternatively, the heat exchanger may be guided to the first heat exchanger tube group after passing through the second heat exchanger tube group. According to the fourth aspect, the flow path of the heat medium inside the shell becomes long, and the absorbed heat generated by absorption of refrigerant vapor into the absorption liquid can be effectively radiated to the heat medium.

本開示の第5態様において、例えば、第3態様又は第4態様に係るシェルアンドチューブ式吸収器は、前記第一伝熱管群の各列における最上段の前記伝熱管と、前記第二伝熱管群の各列における最下段の前記伝熱管との間に前記冷媒蒸気が流入することを阻害する、仕切り部品をさらに備えていてもよく、前記伝熱管の長手方向及び重力方向に垂直な方向に沿って前記仕切り部品を見たとき、前記仕切り部品の少なくとも一部は、重力方向において、前記伝熱管の長手方向及び重力方向に垂直な方向における前記最上段の前記仕切り部品に近い端部に位置する前記伝熱管と、前記端部と同じ側の前記最下段の端部に位置する前記伝熱管との間に位置していてもよい。第5態様によれば、第一伝熱管群の各列における最上段の伝熱管と、第二伝熱管群の各列における最下段の伝熱管との間に冷媒蒸気が流入することが阻害され、この部分における冷媒蒸気の流量及び流速が減少する。このため、第二伝熱管群の各列における最下段から第一伝熱管群の各列における最上段の伝熱管に向かって落下する吸収液が冷媒蒸気の流れによりドラッグされにくい。その結果、吸収液によって伝熱管を適切に濡らすことができる。 In a fifth aspect of the present disclosure, for example, the shell-and-tube absorber according to the third aspect or the fourth aspect includes the uppermost heat exchanger tube in each row of the first heat exchanger tube group, and the second heat exchanger tube. It may further include a partition component that prevents the refrigerant vapor from flowing between the heat exchanger tubes at the lowest stage in each row of the group, and in a direction perpendicular to the longitudinal direction of the heat exchanger tubes and the direction of gravity. When the partition component is viewed along the gravitational direction, at least a portion of the partition component is located at an end close to the uppermost partition component in the longitudinal direction of the heat exchanger tube and in a direction perpendicular to the gravitational direction. The heat exchanger tube may be located between the heat exchanger tube located at the lowermost end on the same side as the end. According to the fifth aspect, refrigerant vapor is prevented from flowing between the uppermost heat transfer tube in each row of the first heat transfer tube group and the lowermost heat transfer tube in each row of the second heat transfer tube group. , the flow rate and flow velocity of the refrigerant vapor in this section is reduced. For this reason, the absorption liquid falling from the lowest stage in each row of the second heat exchanger tube group toward the uppermost heat exchanger tube in each row of the first heat exchanger tube group is less likely to be dragged by the flow of refrigerant vapor. As a result, the heat exchanger tubes can be appropriately wetted with the absorbing liquid.

本開示の第6態様において、例えば、第1態様から第5態様のいずれか1つの態様に係るシェルアンドチューブ式吸収器では、前記左列の最上段の前記伝熱管の中心軸と前記左列の最下段の前記伝熱管の中心軸との距離は、前記右列の最上段の前記伝熱管の中心軸と前記右列の最下段の前記伝熱管の中心軸との距離と等しくてもよい。第6態様によれば、左列における伝熱管の数と右列における伝熱管の数とを一致させやすい。 In a sixth aspect of the present disclosure, for example, in the shell-and-tube absorber according to any one of the first to fifth aspects, the central axis of the uppermost heat transfer tube in the left row and the left row The distance between the central axis of the heat exchanger tube at the lowest stage of the heat exchanger tube may be equal to the distance between the central axis of the heat exchanger tube at the uppermost stage of the right row and the central axis of the heat exchanger tube at the lowermost stage of the right row. . According to the sixth aspect, it is easy to match the number of heat exchanger tubes in the left row with the number of heat exchanger tubes in the right row.

本開示の第7態様において、例えば、第1態様から第6態様のいずれか1つの態様に係るシェルアンドチューブ式吸収器では、前記滴下器は、前記左列の前記伝熱管に前記吸収液を滴下する第一滴下口と、前記右列の前記伝熱管に前記吸収液を滴下する第二滴下口とを有していてもよく、前記伝熱管の長手方向に沿って前記滴下器を見たとき、前記第二滴下口は、重力方向において前記第一滴下口を含む水平な平面から外れた位置に配置されていてもよい。第7態様によれば、右列の最上段に位置する伝熱管と第二滴下口との距離を、左列の最上段に位置する伝熱管と第一滴下口との距離と合わせやすい。これにより、左列の最上段の伝熱管及び右列の最上段の伝熱管と、滴下器との間を通過する冷媒蒸気の流速を低く保ちやすい。加えて、右列の最上段に位置する伝熱管と第二滴下口との距離及び左列の最上段に位置する伝熱管と第一滴下口との距離が適切に調整されやすく、吸収液が冷媒蒸気の流れによりドラッグされにくい。その結果、吸収液によって伝熱管を適切に濡らすことができる。 In a seventh aspect of the present disclosure, for example, in the shell-and-tube absorber according to any one of the first to sixth aspects, the dripper supplies the absorption liquid to the heat transfer tubes in the left row. It may have a first dripping port for dripping, and a second dripping port for dripping the absorption liquid onto the heat transfer tubes in the right row, and the dripping device may be viewed along the longitudinal direction of the heat transfer tubes. In this case, the second dripping port may be located at a position away from a horizontal plane including the first dripping port in the direction of gravity. According to the seventh aspect, it is easy to match the distance between the heat exchanger tube located at the top of the right row and the second dripping port with the distance between the heat exchanger tube located at the top of the left row and the first dripping port. This makes it easy to maintain a low flow rate of the refrigerant vapor passing between the top heat transfer tube in the left row, the top heat transfer tube in the right row, and the dropper. In addition, the distance between the heat transfer tube located at the top of the right row and the second dripping port and the distance between the heat transfer tube located at the top of the left row and the first dripping port are easily adjusted, and the absorption liquid is less likely to be dragged by the flow of refrigerant vapor. As a result, the heat exchanger tubes can be appropriately wetted with the absorbing liquid.

本開示の第8態様に係るシェルアンドチューブ式吸収器は、
吸収液を貯留するシェルと、
前記シェルの内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置された、熱媒体が流れる複数の伝熱管を有し、かつ、第一伝熱管群と、重力方向において前記第一伝熱管群の上方に配置された第二伝熱管群とを有する、伝熱管群と、
前記シェルに前記吸収液を供給する第一供給路と、
前記シェルに冷媒蒸気を供給する第二供給路と、
前記第一供給路によって供給された前記吸収液を前記伝熱管群に向かって滴下する滴下器と、
前記第一伝熱管群の各列における最上段の前記伝熱管と、前記第二伝熱管群の各列における最下段の前記伝熱管との間に前記冷媒蒸気が流入することを阻害する、仕切り部品と、を備え、
前記伝熱管群は、隣り合う左列及び右列を含み、前記伝熱管の長手方向に沿って前記左列及び前記右列を見たときに、前記右列における前記伝熱管の中心軸を含む水平な平面が前記左列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置する、又は、前記左列における前記伝熱管の中心軸を含む水平な平面が前記右列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置し、
前記伝熱管の長手方向及び重力方向に垂直な方向に沿って前記仕切り部品を見たとき、前記仕切り部品の少なくとも一部は、重力方向において、前記第一伝熱管群において前記仕切り部品に最も近い前記最上段の前記伝熱管である下側伝熱管と、前記第二伝熱管群において前記仕切り部品に最も近い前記最下段の前記伝熱管である上側伝熱管との間に位置し、
前記下側伝熱管の中心軸と前記上側伝熱管の中心軸との距離は、前記下側伝熱管を含む前記第一伝熱管群の列と隣り合う列における前記最上段の前記伝熱管と、前記上側伝熱管を含む前記第二伝熱管群の列と隣り合う列における前記最下段の前記伝熱管との距離より長い。
The shell and tube absorber according to the eighth aspect of the present disclosure includes:
A shell that stores the absorbent liquid;
The shell has a plurality of heat exchanger tubes arranged in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity and arranged parallel to each other, through which a heat medium flows, and a first heat exchanger tube. a group of heat exchanger tubes, and a second group of heat exchanger tubes arranged above the first group of heat exchanger tubes in the direction of gravity;
a first supply path that supplies the absorption liquid to the shell;
a second supply path for supplying refrigerant vapor to the shell;
a dropper that drops the absorption liquid supplied by the first supply path toward the heat exchanger tube group;
a partition that prevents the refrigerant vapor from flowing between the uppermost heat transfer tube in each row of the first heat transfer tube group and the lowermost heat transfer tube in each row of the second heat transfer tube group; comprising parts and
The heat exchanger tube group includes an adjacent left row and a right row, and includes a central axis of the heat exchanger tubes in the right row when looking at the left row and the right row along the longitudinal direction of the heat exchanger tubes. A horizontal plane is located between a pair of horizontal planes including the central axes of two heat exchanger tubes adjacent in the direction of gravity in the left row, or a horizontal plane including the central axes of the heat exchanger tubes in the left row A plane is located between a pair of horizontal planes including central axes of the two heat exchanger tubes adjacent in the direction of gravity in the right row,
When the partition component is viewed along a direction perpendicular to the longitudinal direction of the heat exchanger tubes and the direction of gravity, at least a portion of the partition component is closest to the partition component in the first heat exchanger tube group in the direction of gravity. located between the lower heat exchanger tube, which is the heat exchanger tube at the uppermost stage, and the upper heat exchanger tube, which is the heat exchanger tube at the lowermost stage, which is closest to the partition component in the second heat exchanger tube group;
The distance between the center axis of the lower heat exchanger tube and the center axis of the upper heat exchanger tube is the same as the distance between the center axis of the lower heat exchanger tube and the uppermost heat exchanger tube in the row adjacent to the row of the first heat exchanger tube group including the lower heat exchanger tube, The distance is longer than the distance between the row of the second heat exchanger tube group including the upper heat exchanger tube and the lowermost heat exchanger tube in the adjacent row.

第8態様によれば、上側伝熱管と下側伝熱管との間に流入する冷媒蒸気の量及び冷媒蒸気の流速が所望の範囲に保たれやすく、冷媒蒸気が流入する方向と吸収液が滴下する方向とのなす角が小さくなりやすい。これにより、上側伝熱管から滴下される吸収液は、伝熱管の長手方向及び重力方向に垂直な方向にドラッグされにくい。このため、第一伝熱管群及び第二伝熱管群に流れ込む冷媒蒸気の量が所望の範囲に保たれ、第二伝熱管群の最下段の伝熱管から滴下された吸収液が第一伝熱管群の最上段の伝熱管に付着しやすい。その結果、例えば、一時的に吸収液における冷媒蒸気の吸収量が増加する、吸収液希釈運転等の運転においても、第一伝熱管群の伝熱管を吸収液で濡らすことができる、吸収器の熱通過率が向上しやすい。 According to the eighth aspect, the amount of refrigerant vapor flowing between the upper heat exchanger tube and the lower heat exchanger tube and the flow rate of the refrigerant vapor are easily maintained within a desired range, and the direction in which the refrigerant vapor flows and the absorption liquid drips. The angle formed with the direction in which the Thereby, the absorption liquid dripped from the upper heat exchanger tube is less likely to be dragged in a direction perpendicular to the longitudinal direction of the heat exchanger tube and the direction of gravity. Therefore, the amount of refrigerant vapor flowing into the first heat exchanger tube group and the second heat exchanger tube group is maintained within a desired range, and the absorption liquid dripped from the lowest heat exchanger tube of the second heat exchanger tube group is transferred to the first heat exchanger tube group. It tends to adhere to the heat transfer tubes at the top of the group. As a result, even in operations such as absorption liquid dilution operation, in which the absorption amount of refrigerant vapor in the absorption liquid temporarily increases, the absorber is able to wet the heat transfer tubes of the first heat transfer tube group with the absorption liquid. Easily improves heat transfer rate.

本開示の第9態様において、例えば、第8態様に係るシェルアンドチューブ式吸収器では、前記熱媒体は、前記第一伝熱管群において特定方向に流れ、かつ、前記第二伝熱管群において前記特定方向と反対方向に流れてもよい。第9態様によれば、吸収液への冷媒蒸気の吸収により発生した吸収熱を効果的に熱媒体に放熱できる。 In a ninth aspect of the present disclosure, for example, in the shell-and-tube type absorber according to the eighth aspect, the heat medium flows in a specific direction in the first heat exchanger tube group, and the heat medium flows in a specific direction in the second heat exchanger tube group. It may flow in the opposite direction to the specific direction. According to the ninth aspect, the absorbed heat generated by absorption of refrigerant vapor into the absorption liquid can be effectively radiated to the heat medium.

本開示の第10態様において、例えば、第8態様又は第9態様に係るシェルアンドチューブ式吸収器では、前記仕切り部品は、重力方向において、前記上側伝熱管の下方に位置してもよく、重力方向において、前記上側伝熱管の中心軸と前記仕切り部品の上端との距離は、前記前記下側伝熱管の中心軸と前記仕切り部品の下端との距離より長くてもよい。第10態様によれば、冷媒蒸気が流入する方向と吸収液が滴下する方向とのなす角がより確実に小さくなりやすく、上側伝熱管から滴下される吸収液が伝熱管の長手方向及び重力方向に垂直な方向にドラッグされにくい。 In a tenth aspect of the present disclosure, for example, in the shell-and-tube absorber according to the eighth aspect or the ninth aspect, the partition component may be located below the upper heat exchanger tube in the direction of gravity; In the direction, the distance between the central axis of the upper heat exchanger tube and the upper end of the partition component may be longer than the distance between the central axis of the lower heat exchanger tube and the lower end of the partition component. According to the tenth aspect, the angle between the direction in which the refrigerant vapor flows in and the direction in which the absorption liquid drips tends to be smaller more reliably, and the absorption liquid dripped from the upper heat exchanger tube flows in the longitudinal direction of the heat exchanger tube and in the gravitational direction. It is difficult to be dragged in a direction perpendicular to .

本開示の第8態様に係る冷凍機は、第1態様から第7態様のいずれか1つの態様に係るシェルアンドチューブ式吸収器を備える。第8態様によれば、高い成績係数(COP)を発揮できる小型な冷凍機を提供できる。 A refrigerator according to an eighth aspect of the present disclosure includes a shell-and-tube absorber according to any one of the first to seventh aspects. According to the eighth aspect, it is possible to provide a compact refrigerator that can exhibit a high coefficient of performance (COP).

以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。 Embodiments of the present disclosure will be described below with reference to the drawings. This disclosure is not limited to the following embodiments.

図1は、本開示の実施形態の一例に係るシェルアンドチューブ式吸収器1aの断面図である。本明細書において、「シェルアンドチューブ式吸収器」を単に「吸収器」と記載することがある。なお、添付の図面においてZ軸負方向が重力方向であり、XY平面が水平である。X軸及びY軸は互いに直交している。 FIG. 1 is a cross-sectional view of a shell-and-tube absorber 1a according to an example of an embodiment of the present disclosure. In this specification, a "shell and tube absorber" may be simply referred to as an "absorber." Note that in the attached drawings, the Z-axis negative direction is the direction of gravity, and the XY plane is horizontal. The X-axis and Y-axis are orthogonal to each other.

図1に示すように、吸収器1aは、シェル2と、伝熱管群3gと、第一供給路4と、第二供給路7と、滴下器8とを備えている。シェル2は、吸収液を貯留する。伝熱管群3gは、熱媒体が流れる複数の伝熱管3を有する。伝熱管群3gにおいて、複数の伝熱管3は、シェル2の内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置されている。第一供給路4は、シェル2に吸収液を供給する経路である。第二供給路7は、シェル2に冷媒蒸気を供給する経路である。滴下器8は、第一供給路4によって供給された吸収液を伝熱管群3gに向かって滴下する。図2は、滴下器8を示す断面図である。 As shown in FIG. 1, the absorber 1a includes a shell 2, a heat exchanger tube group 3g, a first supply path 4, a second supply path 7, and a dripper 8. Shell 2 stores absorbent liquid. The heat exchanger tube group 3g has a plurality of heat exchanger tubes 3 through which a heat medium flows. In the heat exchanger tube group 3g, the plurality of heat exchanger tubes 3 form multiple stages in the direction of gravity inside the shell 2, form multiple rows in a direction perpendicular to the direction of gravity, and are arranged parallel to each other. The first supply path 4 is a path for supplying the absorption liquid to the shell 2. The second supply path 7 is a path for supplying refrigerant vapor to the shell 2 . The dropper 8 drops the absorption liquid supplied by the first supply path 4 toward the heat transfer tube group 3g. FIG. 2 is a sectional view showing the dropper 8.

吸収器1aにおいて、典型的には、吸収液への冷媒蒸気の吸収により発生した吸収熱が伝熱管3を流れる熱媒体に放熱される。重力方向に複数段をなす伝熱管3を吸収液によって適切に濡らすことによって、吸収液を所望の状態、例えば、過冷却状態に保ちつつ滴下できる。 In the absorber 1a, typically, absorbed heat generated by absorption of refrigerant vapor into the absorption liquid is radiated to the heat medium flowing through the heat transfer tubes 3. By appropriately wetting the heat transfer tubes 3 arranged in multiple stages in the direction of gravity with the absorbing liquid, the absorbing liquid can be dripped while being maintained in a desired state, for example, a supercooled state.

伝熱管群3gは、隣り合う左列3h及び右列3mを含む。伝熱管3の長手方向(Y軸方向)に沿って左列3h及び右列3mを見たときに、伝熱管3の中心軸が配置I又は配置IIを示す。配置Iにおいて、右列3mにおいて伝熱管3の中心軸を含む水平な平面が左列3hにおいて重力方向に隣り合う2つの伝熱管3の中心軸を含む一対の水平な平面の間に位置する。配置IIにおいて、伝熱管3の長手方向に沿って左列3h及び右列3mを見たときに、左列3hにおいて伝熱管3の中心軸を含む水平な平面が右列3mにおいて重力方向に隣り合う2つの伝熱管3の中心軸を含む一対の水平な平面の間に位置する。これにより、伝熱管群3gにおいて伝熱管3を高密度に配置することができる。なお、左列3h及び右列3mにおいて、伝熱管3の中心軸が配置I又は配置IIを示さない領域が存在していてもよい。例えば、右列3mの最下段を含む領域では、伝熱管3の中心軸は配置Iを示さない。 The heat exchanger tube group 3g includes a left row 3h and a right row 3m that are adjacent to each other. When looking at the left row 3h and the right row 3m along the longitudinal direction (Y-axis direction) of the heat exchanger tubes 3, the central axis of the heat exchanger tubes 3 indicates arrangement I or arrangement II. In arrangement I, a horizontal plane containing the central axes of the heat exchanger tubes 3 in the right row 3m is located between a pair of horizontal planes containing the central axes of two heat exchanger tubes 3 adjacent in the direction of gravity in the left row 3h. In arrangement II, when looking at the left row 3h and the right row 3m along the longitudinal direction of the heat exchanger tubes 3, the horizontal plane containing the central axis of the heat exchanger tubes 3 in the left row 3h is adjacent to the right row 3m in the gravity direction. It is located between a pair of horizontal planes that include the central axes of the two matching heat exchanger tubes 3. Thereby, the heat exchanger tubes 3 can be arranged with high density in the heat exchanger tube group 3g. Note that in the left row 3h and the right row 3m, there may be a region where the central axis of the heat exchanger tubes 3 does not indicate the arrangement I or arrangement II. For example, in the region including the bottom row of the right row 3m, the central axis of the heat exchanger tubes 3 does not indicate the arrangement I.

例えば、伝熱管群3gの隣り合う2つの列において、第二供給路7に対して近位の列が左列3hに該当し、第二供給路7に対して遠位の列が右列3mに該当する。 For example, in two adjacent rows of the heat exchanger tube group 3g, the row proximal to the second supply path 7 corresponds to the left row 3h, and the row distal to the second supply path 7 corresponds to the right row 3m. Applies to.

左列3hの任意の上段の伝熱管3の中心軸と左列3hの上段の一段下の下段の伝熱管3の中心軸との距離L1は、距離L2と等しい。距離L2は、左列3hの上段の伝熱管3に隣接している右列3mの伝熱管3の中心軸と左列3hの下段の伝熱管3に隣接している右列3mの伝熱管3の中心軸との距離である。なお、距離L1が距離L2と等しいとは、これらが実質的に等しいことを意味する。吸収器1aの製造上の理由により距離L1と距離L2とが完全に一致していなくても、例えば、距離L1が距離L2の90~110%の範囲であれば、距離L1が距離L2と等しいとみなせる。 The distance L1 between the center axis of any upper heat exchanger tube 3 in the left row 3h and the center axis of the lower heat exchanger tube 3 one step below the upper row in the left row 3h is equal to the distance L2. The distance L2 is the center axis of the heat exchanger tube 3 in the right row 3m adjacent to the upper heat exchanger tube 3 in the left row 3h and the heat exchanger tube 3 in the right row 3m adjacent to the lower heat exchanger tube 3 in the left row 3h. is the distance from the central axis of Note that the distance L1 being equal to the distance L2 means that these are substantially equal. Even if the distance L1 and the distance L2 do not completely match due to manufacturing reasons of the absorber 1a, for example, if the distance L1 is in the range of 90 to 110% of the distance L2, the distance L1 is equal to the distance L2. It can be considered as

図3は、参考例に係るシェルアンドチューブ式吸収器1rの断面図である。吸収器1rは、特に説明する部分を除き吸収器1aと同様に構成されている。吸収器1aの構成要素と同一又は対応する吸収器1rの構成要素には同一の符号を付し、詳細な説明を省略する。 FIG. 3 is a cross-sectional view of a shell-and-tube absorber 1r according to a reference example. The absorber 1r is configured in the same manner as the absorber 1a except for the parts to be specifically explained. Components of the absorber 1r that are the same as or correspond to the components of the absorber 1a are given the same reference numerals, and detailed explanations are omitted.

吸収器1rの伝熱管群3gにおける複数の伝熱管3の配置は、千鳥配置である。吸収器1rの伝熱管群3gの隣り合う左列3h及び右列3mにおいて、特定の領域で、距離L1が距離L2より小さくなっている。これにより、特定の領域における左列3hの伝熱管3同士の間を通過する冷媒蒸気の流速が高くなる。このため、右列3mにおいて伝熱管3同士の距離が広い空間を落下している吸収液が高流速の冷媒蒸気の流れによりドラッグされる。その結果、下段の伝熱管3に吸収液が接触しにくくなり、吸収液によって伝熱管3を適切に濡らすことが難しくなる。 The plurality of heat exchanger tubes 3 in the heat exchanger tube group 3g of the absorber 1r are arranged in a staggered manner. In the adjacent left row 3h and right row 3m of the heat exchanger tube group 3g of the absorber 1r, the distance L1 is smaller than the distance L2 in a specific region. Thereby, the flow velocity of the refrigerant vapor passing between the heat exchanger tubes 3 in the left row 3h in the specific region increases. Therefore, in the right row 3m, the absorption liquid falling through the space where the distance between the heat transfer tubes 3 is wide is dragged by the flow of the refrigerant vapor at a high flow rate. As a result, it becomes difficult for the absorption liquid to come into contact with the heat exchanger tubes 3 in the lower stage, and it becomes difficult to properly wet the heat exchanger tubes 3 with the absorption liquid.

一方、吸収器1aによれば、距離L1が距離L2と等しいので、左列3hにおいて伝熱管3同士を通過する冷媒蒸気の流速が低く保たれやすい。また、右列3mにおいて吸収液が落下する距離が短くなりやすく、吸収液が冷媒蒸気の流れによりドラッグされにくい。このため、吸収液によって伝熱管3を適切に濡らすことができる。その結果、吸収器1aにおいて熱通過率が高くなりやすく、吸収器1aは、小型化又は高いCOPを発揮できる冷凍機の提供の観点から有利である。例えば、吸収器1aの熱通過率を格子配列の伝熱管群を有する従来の吸収器の熱通過率の約1.3倍に調整することも可能である。 On the other hand, according to the absorber 1a, since the distance L1 is equal to the distance L2, the flow rate of the refrigerant vapor passing through the heat exchanger tubes 3 in the left row 3h is likely to be kept low. Further, in the right row of 3 m, the distance that the absorbing liquid falls tends to be short, and the absorbing liquid is less likely to be dragged by the flow of refrigerant vapor. Therefore, the heat exchanger tubes 3 can be appropriately wetted with the absorption liquid. As a result, the heat transfer rate in the absorber 1a tends to be high, and the absorber 1a is advantageous from the viewpoint of downsizing or providing a refrigerator that can exhibit a high COP. For example, it is also possible to adjust the heat transfer rate of the absorber 1a to about 1.3 times the heat transfer rate of a conventional absorber having a group of heat exchanger tubes arranged in a lattice arrangement.

図1に示す通り、吸収器1aにおいて、左列3hにおいて隣り合う2つの伝熱管3の中心軸同士の距離は、第一長さL3と、第一長さL3より長い第二長さL1とを含む。吸収器1aにおいて、例えば、伝熱管3に接続される部材の配置等の理由により、左列3hにおいて隣り合う2つの伝熱管3の中心軸同士の距離が異なることがある。吸収器1aによれば、伝熱管3の中心軸同士の距離が第二の長さL1を示す領域で冷媒蒸気の流速が低く保たれやすい。このため、吸収液が冷媒蒸気の流れによりドラッグされにくく、吸収液によって伝熱管3を適切に濡らすことができる。 As shown in FIG. 1, in the absorber 1a, the distance between the center axes of two adjacent heat exchanger tubes 3 in the left row 3h is a first length L3, a second length L1 longer than the first length L3, and a second length L1 longer than the first length L3. including. In the absorber 1a, the distance between the central axes of two adjacent heat exchanger tubes 3 in the left row 3h may differ due to reasons such as the arrangement of members connected to the heat exchanger tubes 3, for example. According to the absorber 1a, the flow rate of the refrigerant vapor is likely to be kept low in the region where the distance between the central axes of the heat exchanger tubes 3 indicates the second length L1. Therefore, the absorption liquid is less likely to be dragged by the flow of refrigerant vapor, and the heat exchanger tubes 3 can be appropriately wetted by the absorption liquid.

図1に示す通り、吸収器1aの伝熱管群3gの全体において、複数の伝熱管3の配置が千鳥配置である。一方、吸収器1aの伝熱管群3gの一部において、複数の伝熱管3が格子状に配置されていてもよい。 As shown in FIG. 1, the plurality of heat exchanger tubes 3 are arranged in a staggered manner in the entire heat exchanger tube group 3g of the absorber 1a. On the other hand, a plurality of heat exchanger tubes 3 may be arranged in a grid in a part of the heat exchanger tube group 3g of the absorber 1a.

伝熱管群3gにおいて、左列3hは、例えば、伝熱管群3gにおいて第二供給路7に最も近い。 In the heat exchanger tube group 3g, the left row 3h is, for example, closest to the second supply path 7 in the heat exchanger tube group 3g.

伝熱管群3gにおいて、左列3hにおける伝熱管3の数及び右列3mにおける伝熱管3の数のそれぞれは、例えば、奇数である。 In the heat exchanger tube group 3g, the number of heat exchanger tubes 3 in the left row 3h and the number of heat exchanger tubes 3 in the right row 3m are, for example, odd numbers.

吸収器1aの伝熱管群3gは、例えば、第一伝熱管群3aと、第二伝熱管群3bとを有している。第一伝熱管群3aにおいて、熱媒体が特定方向に流れる。特定方向は、例えば、Y軸正方向である。第二伝熱管群3bは、重力方向において第一伝熱管群3aの上方に配置されている。第二伝熱管群3bにおいて、熱媒体が特定方向と反対方向に流れる。反対方向は、例えば、Y軸負方向である。この場合、第一伝熱管群3aと第二伝熱管群3bとの間の距離を、第一伝熱管群3aにおける伝熱管3同士の距離及び第二伝熱管群3bにおける伝熱管3同士の距離に合わせることが難しい場合がある。しかし、左列3h及び右列3mにおいて、複数の伝熱管3が上記のように配置されているので、第一伝熱管群3aと第二伝熱管群3bとの間の空間において、冷媒蒸気の流速が低く保たれやすい。このため、吸収液が冷媒蒸気の流れによりドラッグされにくく、吸収液によって伝熱管3を適切に濡らすことができる。第二伝熱管群3bにおいて、熱媒体は特定方向に流れてもよい。 The heat exchanger tube group 3g of the absorber 1a includes, for example, a first heat exchanger tube group 3a and a second heat exchanger tube group 3b. In the first heat exchanger tube group 3a, the heat medium flows in a specific direction. The specific direction is, for example, the positive Y-axis direction. The second heat exchanger tube group 3b is arranged above the first heat exchanger tube group 3a in the direction of gravity. In the second heat exchanger tube group 3b, the heat medium flows in a direction opposite to the specific direction. The opposite direction is, for example, the Y-axis negative direction. In this case, the distance between the first heat exchanger tube group 3a and the second heat exchanger tube group 3b is defined as the distance between the heat exchanger tubes 3 in the first heat exchanger tube group 3a and the distance between the heat exchanger tubes 3 in the second heat exchanger tube group 3b. It may be difficult to match. However, in the left row 3h and the right row 3m, a plurality of heat exchanger tubes 3 are arranged as described above, so in the space between the first heat exchanger tube group 3a and the second heat exchanger tube group 3b, refrigerant vapor is Flow velocity tends to be kept low. Therefore, the absorption liquid is less likely to be dragged by the flow of refrigerant vapor, and the heat exchanger tubes 3 can be appropriately wetted by the absorption liquid. In the second heat exchanger tube group 3b, the heat medium may flow in a specific direction.

吸収器1aにおいて、例えば、熱媒体は、第一伝熱管群3aを通過した後に第二伝熱管群3bに導かれる、又は、第二伝熱管群3bを通過した後に第一伝熱管群3aに導かれる。この場合、シェル2の内部における熱媒体の流路が長くなり、吸収液への冷媒蒸気の吸収により発生した吸収熱を効果的に熱媒体に放熱できる。 In the absorber 1a, for example, the heat medium is guided to the second heat exchanger tube group 3b after passing through the first heat exchanger tube group 3a, or is guided to the first heat exchanger tube group 3a after passing through the second heat exchanger tube group 3b. be guided. In this case, the flow path of the heat medium inside the shell 2 becomes long, and the absorbed heat generated by absorption of refrigerant vapor into the absorption liquid can be effectively radiated to the heat medium.

吸収器1aにおいて、熱媒体が、第二伝熱管群3bを通過した後に第一伝熱管群3aに導かれる場合、吸収液への冷媒蒸気の吸収により発生する吸収熱の放熱に関する温度効率が高くなりやすい。なぜなら、この場合、熱媒体と吸収液との間の伝熱が、対向流による伝熱に類似したものとなるからである。 In the absorber 1a, when the heat medium is guided to the first heat exchanger tube group 3a after passing through the second heat exchanger tube group 3b, the temperature efficiency regarding heat dissipation of absorbed heat generated by absorption of refrigerant vapor into the absorption liquid is high. Prone. This is because in this case, the heat transfer between the heat medium and the absorbing liquid is similar to heat transfer by countercurrent flow.

吸収器1aにおいて、例えば、左列3hの最上段の伝熱管3の中心軸と左列3hの最下段の伝熱管3の中心軸との距離は、右列3mの最上段の伝熱管3の中心軸と右列3mの最下段の伝熱管3の中心軸との距離と等しい。この場合、左列3hにおける伝熱管3の数と右列3mにおける伝熱管3の数とを一致させやすい。 In the absorber 1a, for example, the distance between the central axis of the uppermost heat exchanger tube 3 in the left row 3h and the central axis of the lowermost heat exchanger tube 3 in the left row 3h is the same as that of the uppermost heat exchanger tube 3 in the right row 3m. It is equal to the distance between the central axis and the central axis of the lowest heat exchanger tube 3 in the right row 3 m. In this case, it is easy to match the number of heat exchanger tubes 3 in the left row 3h with the number of heat exchanger tubes 3 in the right row 3m.

図1に示す通り、吸収器1aは、例えば、排出路5と、ポンプ6と、エリミネータ9とをさらに備えている。吸収液は、冷媒蒸気を吸収できる限り、特定の液に限定されない。吸収液の主成分は、例えば、臭化リチウム水溶液である。本明細書において、主成分とは、質量基準で最も多く含まれている成分を意味する。この場合、吸収液には、微量のオクチルアルコールが添加されていてもよい。 As shown in FIG. 1, the absorber 1a further includes, for example, a discharge path 5, a pump 6, and an eliminator 9. The absorption liquid is not limited to a specific liquid as long as it can absorb refrigerant vapor. The main component of the absorption liquid is, for example, an aqueous lithium bromide solution. As used herein, the term "main component" refers to the component that is contained the most on a mass basis. In this case, a trace amount of octyl alcohol may be added to the absorption liquid.

シェル2は、例えば、断熱性及び耐圧性を有する。シェル2は、典型的には、吸収液を貯留するとともに、シェル2の内部の吸収液及び冷媒蒸気を外気(例えば、大気圧の空気)から隔離する。 The shell 2 has, for example, heat insulation and pressure resistance. The shell 2 typically stores the absorption liquid and isolates the absorption liquid and refrigerant vapor inside the shell 2 from outside air (eg, air at atmospheric pressure).

伝熱管3の内面及び伝熱管3の外面の少なくとも一方には、溝が形成されていてもよい。伝熱管3を流れる熱媒体は、特定の流体に限定されない。伝熱管3を流れる熱媒体は、例えば、水である。 A groove may be formed in at least one of the inner surface of the heat exchanger tube 3 and the outer surface of the heat exchanger tube 3. The heat medium flowing through the heat exchanger tubes 3 is not limited to a specific fluid. The heat medium flowing through the heat exchanger tubes 3 is, for example, water.

第一供給路4は、例えば、断熱性及び耐圧性を有する配管によって構成されている。第一供給路4によって、例えば、再生器等の吸収器1aの外部で濃縮された吸収液がシェル2の内部に供給される。第一供給路4における吸収液の臭化リチウムの濃度は、約63重量%であり、第一供給路4における吸収液の温度は、例えば約50℃である。第一供給路4には、絞り弁が配置されていてもよい。この場合、第一供給路4における吸収液のフラッシュ蒸発を防止しやすい。 The first supply path 4 is constituted by, for example, a pipe having heat insulation properties and pressure resistance. The first supply path 4 supplies, for example, an absorption liquid concentrated outside the absorber 1a such as a regenerator to the inside of the shell 2. The concentration of lithium bromide in the absorption liquid in the first supply path 4 is about 63% by weight, and the temperature of the absorption liquid in the first supply path 4 is, for example, about 50°C. A throttle valve may be arranged in the first supply path 4. In this case, flash evaporation of the absorption liquid in the first supply path 4 can be easily prevented.

排出路5は、シェル2の内部で冷媒蒸気を吸収することにより希釈された吸収液を排出し、再生器等の吸収器1aの外部に導くための経路である。排出路5は、例えば、断熱性及び耐圧性を有する配管によって構成されている。排出路5における吸収液の臭化リチウムの濃度は、約57重量%であり、排出路5における吸収液の温度は、例えば約36℃である。 The discharge path 5 is a path for discharging the diluted absorption liquid by absorbing refrigerant vapor inside the shell 2 and guiding it to the outside of the absorber 1a such as a regenerator. The discharge path 5 is constituted by, for example, a pipe having heat insulation properties and pressure resistance. The concentration of lithium bromide in the absorption liquid in the discharge passage 5 is about 57% by weight, and the temperature of the absorption liquid in the discharge passage 5 is, for example, about 36°C.

ポンプ6は、例えば、排出路5に配置されている。ポンプ6の作動により、シェル2の内部から再生器等の吸収器1aの外部に吸収液が送られる。ポンプ6は、例えば、速度型のポンプである。この場合、ポンプ6によって吸収液に運動量が与えられ、その後吸収液の流速が低下することにより、吸収液の圧力が上昇する。速度型のポンプとして、遠心ポンプ、斜流ポンプ、及び軸流ポンプを例示できる。ポンプ6は、回転数を変化させるための機構を備えていてもよい。その機構は、例えば、インバータによって駆動されるモータである。 The pump 6 is arranged in the discharge path 5, for example. By operating the pump 6, absorption liquid is sent from the inside of the shell 2 to the outside of the absorber 1a such as a regenerator. The pump 6 is, for example, a speed type pump. In this case, momentum is given to the absorption liquid by the pump 6, and then the flow rate of the absorption liquid decreases, thereby increasing the pressure of the absorption liquid. Examples of speed type pumps include centrifugal pumps, mixed flow pumps, and axial flow pumps. The pump 6 may include a mechanism for changing the rotation speed. The mechanism is, for example, a motor driven by an inverter.

第二供給路7は、例えば、断熱性及び耐圧性を有する配管によって構成されている。例えば、蒸発器から供給された冷媒蒸気が第二供給路7に導かれ、シェル2に冷媒蒸気が供給される。 The second supply path 7 is constituted by, for example, a pipe having heat insulation properties and pressure resistance. For example, refrigerant vapor supplied from the evaporator is guided to the second supply path 7, and the refrigerant vapor is supplied to the shell 2.

図2に示す通り、滴下器8は、第一滴下口14aと、第二滴下口14bとを有する。第一滴下口14aは、例えば、左列3hの伝熱管3に向かって吸収液を滴下する。第二滴下口14bは、例えば、右列3mの伝熱管3に向かって吸収液を滴下する。 As shown in FIG. 2, the dripper 8 has a first dripping port 14a and a second dripping port 14b. The first dripping port 14a drips the absorption liquid toward the heat exchanger tubes 3 in the left row 3h, for example. The second dripping port 14b drops the absorption liquid toward the heat exchanger tubes 3 in the right row 3m, for example.

滴下器8は、例えば、上トレイ12、側板13、及び滴下部14を備えている。上トレイ12は、例えば、ステンレス製の薄板によって構成されている。上トレイ12の底面には貫通穴が形成されている。側板13は、例えば、テンレス製の薄板によって構成されている。滴下部14は、例えば、上トレイ12の底部の外面の一部に接合されている。また、滴下部14の側部の外面には、一対の側板13が接合されている。滴下部14には、第一滴下口14a及び第二滴下口14bが形成されている。 The dripper 8 includes, for example, an upper tray 12, a side plate 13, and a dripping part 14. The upper tray 12 is made of, for example, a thin plate made of stainless steel. A through hole is formed in the bottom surface of the upper tray 12. The side plate 13 is made of a thin plate made of stainless steel, for example. The dripping part 14 is joined to a part of the outer surface of the bottom of the upper tray 12, for example. Further, a pair of side plates 13 are joined to the outer surface of the side portion of the dripping portion 14 . The dripping portion 14 is formed with a first dripping port 14a and a second dripping port 14b.

第一供給路4によってシェル2に供給された吸収液は、上トレイ12に導かれる。吸収液は、上トレイ12の底面の貫通穴を通過して上トレイ12の外部に排出される。側板13は、上トレイ12から排出された吸収液を貯留するための堰としての役割を果たす。側板13によって貯留された吸収液は、第一滴下口14a及び第二滴下口14bから主に重力の作用により滴下される。 The absorption liquid supplied to the shell 2 through the first supply path 4 is guided to the upper tray 12. The absorbent liquid passes through the through hole in the bottom of the upper tray 12 and is discharged to the outside of the upper tray 12 . The side plate 13 serves as a dam for storing the absorption liquid discharged from the upper tray 12. The absorption liquid stored by the side plate 13 is dripped mainly by the action of gravity from the first dripping port 14a and the second dripping port 14b.

エリミネータ9は、例えば、ステンレス製の薄板によって構成されている。エリミネータ9は、例えば、第二供給路7において山なりに曲がった流路を形成している。吸収器1aに供給される冷媒蒸気に液滴が含まれている場合、山なりに曲がった流路に沿って冷媒蒸気の流れ方向が変わること伴う遠心力により、冷媒蒸気の流れから液滴が分離される。 The eliminator 9 is made of, for example, a thin plate made of stainless steel. The eliminator 9 forms, for example, a channel curved like a mountain in the second supply channel 7 . If the refrigerant vapor supplied to the absorber 1a contains droplets, the centrifugal force that accompanies the change in the flow direction of the refrigerant vapor along the mountain-curved flow path causes the droplets to be separated from the flow of the refrigerant vapor. separated.

吸収器1aの動作の一例を説明する。夜間等の所定期間、吸収器1aが放置された場合、吸収器1aの内部は、吸収器1aが置かれた環境の温度及び圧力にほぼ保たれている。例えば、吸収器1aが置かれた環境の温度が25℃のとき、吸収器1aの内部の温度は約25℃に保たれている。伝熱管群3gの複数の伝熱管3の内部には、例えば、大気に熱を放出した熱媒体が流れている。熱媒体が伝熱管3に流入するときの温度は、例えば32℃である。 An example of the operation of the absorber 1a will be explained. When the absorber 1a is left alone for a predetermined period such as at night, the inside of the absorber 1a is maintained at approximately the same temperature and pressure as the environment in which the absorber 1a is placed. For example, when the temperature of the environment in which the absorber 1a is placed is 25°C, the temperature inside the absorber 1a is maintained at about 25°C. For example, a heat medium that has released heat to the atmosphere flows inside the plurality of heat exchanger tubes 3 of the heat exchanger tube group 3g. The temperature when the heat medium flows into the heat transfer tube 3 is, for example, 32°C.

最初に、ポンプ6が起動される。これにより、シェル2の内部に貯留された吸収液がシェル2から抜き取られ、排出路5を通って、例えば再生器等の吸収器1aの外部に送られる。例えば、再生器に送られた吸収液は、濃縮され、第一供給路4を通って、シェル2の内部に供給される。例えば、シェル2に供給される吸収液における臭化リチウムの濃度は約63質量%であり、シェル2に供給される吸収液の温度は約50℃である。また、蒸発器等の吸収器1aの外部で生成された冷媒蒸気が第二供給路7を通って、エリミネータ9において冷媒蒸気の流から液滴が分離される。その後、冷媒蒸気がシェル2に供給される。供給される冷媒蒸気の温度は例えば6℃である。 First, pump 6 is started. As a result, the absorbent liquid stored inside the shell 2 is extracted from the shell 2 and sent through the discharge path 5 to the outside of the absorber 1a, such as a regenerator. For example, the absorption liquid sent to the regenerator is concentrated and supplied to the interior of the shell 2 through the first supply path 4 . For example, the concentration of lithium bromide in the absorption liquid supplied to shell 2 is about 63% by mass, and the temperature of the absorption liquid supplied to shell 2 is about 50°C. Further, refrigerant vapor generated outside the absorber 1a such as an evaporator passes through the second supply path 7, and droplets are separated from the flow of refrigerant vapor in the eliminator 9. Thereafter, refrigerant vapor is supplied to the shell 2. The temperature of the supplied refrigerant vapor is, for example, 6°C.

第一供給路4によって供給された吸収液は、滴下器8に貯留され、伝熱管群3gに向かって滴下される。伝熱管群3gへ滴下された吸収液は、伝熱管群3gの伝熱管3の外面で広がり、冷媒蒸気を吸収する。冷媒蒸気を吸収した吸収液は、希釈され、希釈と同時に吸収熱により冷媒蒸気の温度が上昇する。しかし、吸収液は、伝熱管3gの内部を流れる熱媒体によって冷却されることで、過冷却状態となり、再び、冷媒蒸気を吸収する。このように、吸収液は、冷媒蒸気の吸収、温度上昇、及び冷却を繰り返しながら、重力方向に伝熱管群3gの伝熱管3の外面に接触しつつ流下していく過程で希釈される。希釈された吸収液がシェル2の下部に貯留される。その後、シェル2の内部に貯留された吸収液が排出路5を再び通って再生器等の吸収器1aの外部に送られる。定常状態において、排出路5における吸収液の臭化リチウムの濃度は、約57重量%であり、排出路5における吸収液の温度は、例えば約36℃である。また、伝熱管3に流入する熱媒体の温度は、例えば約32℃であり、伝熱管3から流出する熱媒体の温度は、例えば約36℃である。伝熱管3から流出した熱媒体は、例えば、最終的にクーリングタワー等によって約32℃に冷却され、伝熱管3に再び導かれる。 The absorption liquid supplied through the first supply path 4 is stored in the dropper 8 and dripped toward the heat exchanger tube group 3g. The absorption liquid dropped onto the heat exchanger tube group 3g spreads on the outer surface of the heat exchanger tubes 3 of the heat exchanger tube group 3g and absorbs refrigerant vapor. The absorption liquid that has absorbed the refrigerant vapor is diluted, and at the same time as the dilution, the temperature of the refrigerant vapor increases due to the heat of absorption. However, the absorption liquid becomes a supercooled state by being cooled by the heat medium flowing inside the heat transfer tube 3g, and absorbs the refrigerant vapor again. In this way, the absorption liquid is diluted in the process of repeatedly absorbing refrigerant vapor, increasing the temperature, and cooling while flowing down in the direction of gravity while contacting the outer surface of the heat exchanger tubes 3 of the heat exchanger tube group 3g. The diluted absorption liquid is stored in the lower part of the shell 2. Thereafter, the absorption liquid stored inside the shell 2 passes through the discharge path 5 again and is sent to the outside of the absorber 1a such as a regenerator. In a steady state, the concentration of lithium bromide in the absorption liquid in the discharge passage 5 is about 57% by weight, and the temperature of the absorption liquid in the discharge passage 5 is, for example, about 36°C. Further, the temperature of the heat medium flowing into the heat exchanger tubes 3 is, for example, about 32°C, and the temperature of the heat medium flowing out from the heat exchanger tubes 3 is, for example, about 36°C. The heat medium flowing out from the heat exchanger tubes 3 is finally cooled down to about 32° C. by a cooling tower or the like, and then guided to the heat exchanger tubes 3 again.

図4は、吸収器1aを備えた冷凍機100を示す構成図である。冷凍機100は、例えば、蒸発器50、吸収器1a、再生器60、及び凝縮器70を備えている。冷凍機100は、吸収器1aを備えているので、小型で、高いCOPを発揮しやすい。 FIG. 4 is a configuration diagram showing a refrigerator 100 including an absorber 1a. The refrigerator 100 includes, for example, an evaporator 50, an absorber 1a, a regenerator 60, and a condenser 70. Since the refrigerator 100 includes the absorber 1a, it is small and easily exhibits a high COP.

冷凍機100は、例えば、一重効用サイクルの吸収式冷凍機である。冷凍機100は、二重効用サイクル又は三重効用サイクルの吸収式冷凍機に変更されてもよい。再生器60の熱源としてガスバーナーを使用したとき、冷凍機100は、ガス式チラーでありうる。 The refrigerator 100 is, for example, a single-effect cycle absorption refrigerator. The refrigerator 100 may be changed to a dual-effect cycle or triple-effect cycle absorption refrigerator. When a gas burner is used as the heat source of the regenerator 60, the refrigerator 100 may be a gas chiller.

吸収器1aは、様々な観点から変更可能である。例えば、吸収器1aは、図5に示す吸収器1b又は図6及び7に示す吸収器1cのように変更されてもよい。吸収器1b及び吸収器1cは、特に説明する部分を除き、吸収器1aと同様に構成されている。吸収器1aの構成要素と同一又は対応する吸収器1b及び吸収器1cの構成要素には、同一の符号を付し、詳細な説明を省略する。吸収器1aに関する説明は、技術的に矛盾しない限り、吸収器1b及び吸収器1cにも当てはまる。 The absorber 1a can be modified from various viewpoints. For example, absorber 1a may be modified as absorber 1b shown in FIG. 5 or absorber 1c shown in FIGS. 6 and 7. The absorber 1b and the absorber 1c are configured similarly to the absorber 1a except for the parts to be specifically explained. Components of the absorber 1b and the absorber 1c that are the same as or correspond to the components of the absorber 1a are given the same reference numerals, and detailed description thereof will be omitted. The description regarding absorber 1a also applies to absorber 1b and absorber 1c unless technically contradictory.

図5に示す通り、吸収器1bは、仕切り部品10をさらに備えている。仕切り部品10は、第一伝熱管群3aの各列における最上段の伝熱管3と、第二伝熱管群3bの各列における最下段の伝熱管との間に冷媒蒸気が流入することを阻害する。伝熱管3の長手方向(Y軸方向)及び重力方向(Z軸方向)に垂直な方向(X軸方向)に沿って仕切り部品10を見る。このとき、仕切り部品10の少なくとも一部は、重力方向において、伝熱管αと伝熱管βとの間に位置する。伝熱管αは、X軸方向における第一伝熱管群3aの最上段の仕切り部品10に近い端部に位置する伝熱管3である。伝熱管βは、その端部と同じ側の、第二伝熱管群3bの最下段の端部に位置する伝熱管3である。 As shown in FIG. 5, the absorber 1b further includes a partition component 10. The partition component 10 prevents refrigerant vapor from flowing between the uppermost heat transfer tube 3 in each row of the first heat transfer tube group 3a and the lowermost heat transfer tube 3 in each row of the second heat transfer tube group 3b. do. The partition component 10 is viewed along the direction (X-axis direction) perpendicular to the longitudinal direction (Y-axis direction) of the heat exchanger tubes 3 and the direction of gravity (Z-axis direction). At this time, at least a portion of the partition component 10 is located between the heat exchanger tubes α and β in the direction of gravity. The heat exchanger tube α is a heat exchanger tube 3 located at an end portion close to the uppermost partition component 10 of the first heat exchanger tube group 3a in the X-axis direction. The heat exchanger tube β is the heat exchanger tube 3 located at the lowermost end of the second heat exchanger tube group 3b on the same side as the end thereof.

伝熱管群の段方向のピッチを強度上問題にならない程度に小さくすることで伝熱管の配置の高密度化を図ることができる。例えば、第一伝熱管群3a及び第二伝熱管群3bにおける熱媒体の流路のヘッダが配置される。この場合、第一伝熱管群3aの各列における最上段の伝熱管3と第二伝熱管群3bの最下段の伝熱管3との間の距離が、その他の伝熱管3の重力方向の距離より広くなりやすい。このため、第一伝熱管群3aの各列における最上段の伝熱管3と第二伝熱管群3bの最下段の伝熱管3との間の冷媒蒸気の流動損失が相対的に小さい。例えば、その流動損失は、第一伝熱管群3a及び第二伝熱管群3bの伝熱管3の外の冷媒蒸気の流動損失に比べて小さく、伝熱管αと伝熱管βとの間に流れ込む冷媒蒸気の量が相対的に多くなりやすい。 By reducing the pitch in the step direction of the heat exchanger tube group to an extent that does not pose a problem in terms of strength, it is possible to increase the density of the arrangement of the heat exchanger tubes. For example, headers for heat medium flow paths in the first heat exchanger tube group 3a and the second heat exchanger tube group 3b are arranged. In this case, the distance between the uppermost heat exchanger tube 3 in each row of the first heat exchanger tube group 3a and the lowermost heat exchanger tube 3 of the second heat exchanger tube group 3b is the distance of the other heat exchanger tubes 3 in the direction of gravity. tends to be wider. Therefore, the flow loss of refrigerant vapor between the uppermost heat exchanger tube 3 in each row of the first heat exchanger tube group 3a and the lowermost heat exchanger tube 3 of the second heat exchanger tube group 3b is relatively small. For example, the flow loss is smaller than the flow loss of the refrigerant vapor outside the heat exchanger tubes 3 of the first heat exchanger tube group 3a and the second heat exchanger tube group 3b, and the refrigerant vapor flowing between the heat exchanger tubes α and β The amount of steam tends to be relatively large.

一方、吸収器1bによれば、仕切り部品10によって、伝熱管αと伝熱管βとの間における冷媒蒸気の流量及び流速が減少する。このため、第二伝熱管群3bの各列における最下段から第一伝熱管群3aの各列における最上段の伝熱管3に向かって落下する吸収液が冷媒蒸気の流れによりドラッグされにくい。その結果、第二伝熱管群3bの最上段の伝熱管3を吸収液によって適切に濡らすことができ、吸収器1bにおける熱通過率が高い。吸収器1bは、例えば、吸収すべき冷媒蒸気の流量が多く、大きな能力が求められる高負荷条件に適応しやすい。例えば、吸収器1bの熱通過率を格子配列の伝熱管群を有する従来の吸収器の熱通過率の約1.4倍に調整することも可能である。 On the other hand, according to the absorber 1b, the partition component 10 reduces the flow rate and flow velocity of refrigerant vapor between the heat exchanger tubes α and β. For this reason, the absorption liquid falling from the lowest stage in each row of the second heat exchanger tube group 3b toward the uppermost heat exchanger tube 3 in each row of the first heat exchanger tube group 3a is not easily dragged by the flow of refrigerant vapor. As a result, the uppermost heat exchanger tube 3 of the second heat exchanger tube group 3b can be appropriately wetted with the absorption liquid, and the heat transfer rate in the absorber 1b is high. For example, the absorber 1b has a large flow rate of refrigerant vapor to be absorbed, and is easily adapted to high-load conditions where a large capacity is required. For example, it is also possible to adjust the heat transfer rate of the absorber 1b to about 1.4 times the heat transfer rate of a conventional absorber having a group of heat exchanger tubes arranged in a lattice arrangement.

図6に示す通り、吸収器1cは、滴下器8aを備えている。滴下器8aは、特に説明する部分を除き、吸収器1aの滴下器8と同様に構成されている。 As shown in FIG. 6, the absorber 1c is equipped with a dropper 8a. The dropper 8a is constructed in the same manner as the dropper 8 of the absorber 1a, except for parts that are specifically explained.

図7に示す通り、伝熱管3の長手方向に沿って滴下器8aを見たとき、第二滴下口14bは、重力方向において第一滴下口14aを含む水平な平面から外れた位置に配置されている。これにより、右列3mの最上段に位置する伝熱管3と第二滴下口14bとの距離を、左列3hの最上段に位置する伝熱管3と第一滴下口14aとの距離と合わせやすい。これにより、左列3hの最上段の伝熱管3及び右列3mの最上段の伝熱管3と、滴下器8aとの間を通過する冷媒蒸気の流速を低く保ちやすい。このため、吸収液が冷媒蒸気の流れによりドラッグされにくい。その結果、吸収液によって伝熱管3を適切に濡らすことができ、吸収器1cにおける熱通過率が高い。吸収器1cは、例えば、吸収すべき冷媒蒸気の流量が多い、再生運転条件に適応しやすい。例えば、吸収器1cの熱通過率を格子配列の伝熱管群を有する従来の吸収器の熱通過率の約1.5倍に調整することも可能である。 As shown in FIG. 7, when the dripper 8a is viewed along the longitudinal direction of the heat transfer tube 3, the second dripping port 14b is located at a position deviating from the horizontal plane containing the first dripping port 14a in the direction of gravity. has been done. As a result, the distance between the heat transfer tube 3 located at the top of the right row 3m and the second dripping port 14b is adjusted to the distance between the heat transfer tube 3 located at the top of the left row 3h and the first dripping port 14a. Cheap. Thereby, it is easy to keep the flow rate of the refrigerant vapor passing between the top heat exchanger tube 3 in the left row 3h and the top heat transfer tube 3 in the right row 3m and the dropper 8a low. Therefore, the absorption liquid is less likely to be dragged by the flow of refrigerant vapor. As a result, the heat exchanger tubes 3 can be appropriately wetted with the absorption liquid, and the heat transfer rate in the absorber 1c is high. The absorber 1c is easily adapted to regeneration operating conditions, for example, where the flow rate of refrigerant vapor to be absorbed is high. For example, it is also possible to adjust the heat transfer rate of the absorber 1c to about 1.5 times the heat transfer rate of a conventional absorber having a group of heat exchanger tubes arranged in a lattice arrangement.

右列3mの最上段に位置する伝熱管3と第二滴下口14bとの距離は、左列3hの最上段に位置する伝熱管3と第一滴下口14aとの距離と等しくてもよい。 The distance between the heat transfer tube 3 located at the top of the right row 3m and the second dripping port 14b may be equal to the distance between the heat transfer tube 3 located at the top of the left row 3h and the first dripping port 14a. .

図8は、本開示の実施形態の別の一例に係るシェルアンドチューブ式吸収器1dの断面図である。吸収器1dは、特に説明する部分を除き、吸収器1bと同様に構成されている。吸収器1bの構成要素と同一又は対応する吸収器1dの構成要素には、同一の符号を付し、詳細な説明を省略する。吸収器1a~1cに関する説明は、技術的に矛盾しない限り、吸収器1dにも当てはまる。 FIG. 8 is a cross-sectional view of a shell-and-tube absorber 1d according to another example of the embodiment of the present disclosure. The absorber 1d is configured in the same manner as the absorber 1b except for the parts to be specifically explained. Components of the absorber 1d that are the same as or correspond to components of the absorber 1b are denoted by the same reference numerals, and detailed description thereof will be omitted. The description regarding absorbers 1a-1c also applies to absorber 1d, unless technically contradictory.

図8に示す通り、吸収器1dにおいて、伝熱管3の長手方向及び重力方向に垂直な方向に沿って仕切り部品10を見たとき、仕切り部品10の少なくとも一部は、重力方向において、下側伝熱管3sと上側伝熱管3uとの間に位置する。下側伝熱管3sは、第一伝熱管群3aにおいて仕切り部品10に最も近い最上段の伝熱管3である。上側伝熱管3uは、第二伝熱管群3bにおいて仕切り部品10に最も近い最下段の伝熱管3である。吸収器1dにおいて、下側伝熱管3sの中心軸と上側伝熱管3uの中心軸との距離L6は、距離L7より長い。距離L7は、下側伝熱管3sを含む第一伝熱管群3aの列と隣り合う列における最上段の伝熱管3と、上側伝熱管3uを含む第二伝熱管群3bの列と隣り合う列における最下段の伝熱管3との距離である。 As shown in FIG. 8, in the absorber 1d, when the partition component 10 is viewed along the longitudinal direction of the heat exchanger tubes 3 and the direction perpendicular to the direction of gravity, at least a part of the partition component 10 is located on the lower side in the direction of gravity. It is located between the heat exchanger tube 3s and the upper heat exchanger tube 3u. The lower heat exchanger tube 3s is the uppermost heat exchanger tube 3 closest to the partition component 10 in the first heat exchanger tube group 3a. The upper heat exchanger tube 3u is the lowest heat exchanger tube 3 closest to the partition component 10 in the second heat exchanger tube group 3b. In the absorber 1d, the distance L6 between the center axis of the lower heat exchanger tube 3s and the center axis of the upper heat exchanger tube 3u is longer than the distance L7. The distance L7 is the uppermost heat exchanger tube 3 in the row adjacent to the row of the first heat exchanger tube group 3a including the lower heat exchanger tube 3s, and the row adjacent to the row of the second heat exchanger tube group 3b including the upper heat exchanger tube 3u. This is the distance from the lowest heat exchanger tube 3 in .

仕切り部品10によって、下側伝熱管3sと上側伝熱管3uとの間に流れ込む冷媒蒸気の流量及び流速が減少しやすい。一方、距離L6が距離L7より長いので、上側伝熱管3uと下側伝熱管3sとの間に流入する冷媒蒸気の量及び冷媒蒸気の流速が所望の範囲に保たれやすく、冷媒蒸気が流入する方向と吸収液が滴下する方向とのなす角が小さくなりやすい。このため、上側伝熱管3uから滴下される吸収液は、伝熱管3の長手方向及び重力方向に垂直な方向にドラッグされにくい。これにより、第一伝熱管群3a及び第二伝熱管群3bに流れ込む冷媒蒸気の量が所望の範囲に保たれ、第二伝熱管群3bの最下段の伝熱管3から滴下された吸収液が第一伝熱管群3aの最上段の伝熱管に付着しやすい。その結果、例えば、一時的に吸収液における冷媒蒸気の吸収量が増加する、吸収液希釈運転等の運転においても、第一伝熱管群3aの伝熱管3を吸収液で適切に濡らすことができ、吸収器1dの熱通過率が向上しやすい。例えば、吸収器1dの熱通過率を格子配列の伝熱管群を有する従来の吸収器の熱通過率の約1.6倍に調整することも可能である。 The partition component 10 tends to reduce the flow rate and flow velocity of refrigerant vapor flowing between the lower heat exchanger tube 3s and the upper heat exchanger tube 3u. On the other hand, since the distance L6 is longer than the distance L7, the amount of refrigerant vapor flowing between the upper heat exchanger tube 3u and the lower heat exchanger tube 3s and the flow rate of the refrigerant vapor are easily maintained within a desired range, and the refrigerant vapor flows. The angle between the direction and the direction in which the absorbing liquid is dripped tends to become small. Therefore, the absorption liquid dripped from the upper heat exchanger tube 3u is difficult to be dragged in the direction perpendicular to the longitudinal direction of the heat exchanger tube 3 and the direction of gravity. As a result, the amount of refrigerant vapor flowing into the first heat exchanger tube group 3a and the second heat exchanger tube group 3b is maintained within a desired range, and the absorption liquid dripped from the lowest heat exchanger tube 3 of the second heat exchanger tube group 3b is It tends to adhere to the uppermost heat exchanger tube of the first heat exchanger tube group 3a. As a result, even in operations such as absorption liquid dilution operation in which the amount of refrigerant vapor absorbed by the absorption liquid temporarily increases, the heat transfer tubes 3 of the first heat transfer tube group 3a can be appropriately wetted with the absorption liquid. , the heat transfer rate of the absorber 1d tends to improve. For example, it is also possible to adjust the heat transfer rate of the absorber 1d to about 1.6 times the heat transfer rate of a conventional absorber having a group of heat exchanger tubes arranged in a lattice arrangement.

吸収器1dにおいて、例えば、熱媒体は、第一伝熱管群3aにおいて特定方向に流れ、かつ、第二伝熱管群3bにおいて特定方向と反対方向に流れる。このような構成によれば、吸収液への冷媒蒸気の吸収により発生した吸収熱を効果的に熱媒体に放熱できる。吸収器1dにおいて、例えば、熱媒体は、第一伝熱管群3a及び第二伝熱管群3bにおいて特定方向に流れてもよい。 In the absorber 1d, for example, the heat medium flows in a specific direction in the first heat exchanger tube group 3a, and flows in a direction opposite to the specific direction in the second heat exchanger tube group 3b. According to such a configuration, absorbed heat generated by absorption of refrigerant vapor into the absorption liquid can be effectively radiated to the heat medium. In the absorber 1d, for example, the heat medium may flow in a specific direction in the first heat exchanger tube group 3a and the second heat exchanger tube group 3b.

図8に示す通り、吸収器1dにおいて、例えば、仕切り部品10は、重力方向において、上側伝熱管3uの下方に位置する。換言すると、仕切り部品10の上端は、上側伝熱管3uの下端の下方に位置する。加えて、上側伝熱管3uの中心軸と仕切り部品10の上端との距離L8は、距離L9より長い。距離L9は、下側伝熱管3sの中心軸と仕切り部品10の下端との距離である。エリミネータ9は、例えば、第二供給路7において山なりに曲がった流路を有し、山なりに曲がった流路に沿って冷媒蒸気がエリミネータ9を通過する。このため、冷媒蒸気の流れは、斜め下方を向いた状態で仕切り部品10の周囲に到達しやすい。距離L8が距離L9より長いことは、冷媒蒸気の流れが斜め下方を向いた状態を保ったまま下側伝熱管3sと上側伝熱管3uとの間に流れ込ませるうえで有利である。その結果、下側伝熱管3sと上側伝熱管3uとの間に置いて、冷媒蒸気が流入する方向と吸収液が滴下する方向とのなす角が小さくなりやすい。 As shown in FIG. 8, in the absorber 1d, for example, the partition component 10 is located below the upper heat exchanger tube 3u in the direction of gravity. In other words, the upper end of the partition component 10 is located below the lower end of the upper heat exchanger tube 3u. In addition, the distance L8 between the central axis of the upper heat exchanger tube 3u and the upper end of the partition component 10 is longer than the distance L9. The distance L9 is the distance between the central axis of the lower heat exchanger tube 3s and the lower end of the partition component 10. The eliminator 9 has, for example, a channel curved in the shape of a mountain in the second supply path 7, and the refrigerant vapor passes through the eliminator 9 along the channel curved in the shape of a mountain. Therefore, the flow of refrigerant vapor tends to reach the periphery of the partition component 10 while facing diagonally downward. The fact that the distance L8 is longer than the distance L9 is advantageous in making the refrigerant vapor flow between the lower heat exchanger tube 3s and the upper heat exchanger tube 3u while keeping the flow of the refrigerant vapor directed diagonally downward. As a result, when placed between the lower heat exchanger tube 3s and the upper heat exchanger tube 3u, the angle between the direction in which the refrigerant vapor flows in and the direction in which the absorption liquid drips tends to become smaller.

吸収器1dは、様々な観点から変更可能である。例えば、重力方向において、上側伝熱管3uと仕切り部品10とは重なっていてもよい。この場合、仕切り部品10は、開口を有していてもよい。この開口の少なくとも一部は、例えば、重力方向において上側伝熱管3uより下方に位置し、かつ、この開口は、上側伝熱管3uの下端の近くに位置する。この場合、冷媒蒸気の流れは、その開口を通過して斜め下方を向いた状態で下側伝熱管3sと上側伝熱管3uとの間に流れ込みやすい。その結果、下側伝熱管3sと上側伝熱管3uとの間に置いて、冷媒蒸気が流入する方向と吸収液が滴下する方向とのなす角が小さくなりやすい。 The absorber 1d can be modified from various points of view. For example, in the direction of gravity, the upper heat exchanger tube 3u and the partition component 10 may overlap. In this case, the partition component 10 may have an opening. At least a portion of this opening is located, for example, below the upper heat exchanger tube 3u in the direction of gravity, and this opening is located near the lower end of the upper heat exchanger tube 3u. In this case, the flow of refrigerant vapor passes through the opening and tends to flow between the lower heat exchanger tube 3s and the upper heat exchanger tube 3u in a diagonally downward direction. As a result, when placed between the lower heat exchanger tube 3s and the upper heat exchanger tube 3u, the angle between the direction in which the refrigerant vapor flows in and the direction in which the absorption liquid drips tends to become smaller.

本開示のシェルアンドチューブ式吸収器は、吸収式冷凍機に備えられ、ビルのセントラル空調システム及びプロセス冷却用のチラー等の用途にも適用できる。 The shell-and-tube absorber of the present disclosure is included in an absorption chiller, and can also be applied to applications such as central air conditioning systems of buildings and chillers for process cooling.

1a、1b、1c、1d シェルアンドチューブ式吸収器
2 シェル
3 伝熱管
3a 第一伝熱管群
3b 第二伝熱管群
3g 伝熱管群
3h 左列
3m 右列
3s 下側伝熱管
3u 上側伝熱管
4 第一供給路
7 第二供給路
8 滴下器
10 仕切り部品
14a 第一滴下口
14b 第二滴下口
100 冷凍機
1a, 1b, 1c, 1d Shell and tube type absorber 2 Shell 3 Heat exchanger tube 3a First heat exchanger tube group 3b Second heat exchanger tube group 3g Heat exchanger tube group 3h Left row 3m Right row 3s Lower heat exchanger tube 3u Upper heat exchanger tube 4 First supply path 7 Second supply path 8 Dropper 10 Partition part 14a First drip port 14b Second drip port 100 Freezer

Claims (9)

吸収液を貯留するシェルと、
前記シェルの内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置された、熱媒体が流れる複数の伝熱管を有する伝熱管群と、
前記シェルに前記吸収液を供給する第一供給路と、
前記シェルに冷媒蒸気を供給する第二供給路と、
前記第一供給路によって供給された前記吸収液を前記伝熱管群に向かって滴下する滴下器と、
仕切り部品と、を備え、
前記伝熱管群は、隣り合う左列及び右列を含み、前記伝熱管の長手方向に沿って前記左列及び前記右列を見たときに、前記右列における前記伝熱管の中心軸を含む水平な平面が前記左列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置する、又は、前記左列における前記伝熱管の中心軸を含む水平な平面が前記右列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置し、
前記左列の任意の上段の前記伝熱管の中心軸と前記左列の前記上段の一段下の段である下段の前記伝熱管の中心軸との距離(L1)は、前記左列の前記上段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸と前記左列の前記下段の前記伝熱管に隣接している前記右列の前記伝熱管の中心軸との距離(L2)と等しく、
前記伝熱管群は、前記熱媒体が特定方向に流れる第一伝熱管群と、重力方向において第一伝熱管群の上方に配置され、前記特定方向と反対方向に前記熱媒体が流れる第二伝熱管群とを有し、
前記仕切り部品は、前記第一伝熱管群の各列における最上段の前記伝熱管と、前記第二伝熱管群の各列における最下段の前記伝熱管との間に前記冷媒蒸気が流入することを阻害し、
前記伝熱管の長手方向及び重力方向に垂直な方向に沿って前記仕切り部品を見たとき、前記仕切り部品の少なくとも一部は、重力方向において、前記伝熱管の長手方向及び重力方向に垂直な方向における前記最上段の前記仕切り部品に近い端部に位置する前記伝熱管と、前記端部と同じ側の前記最下段の端部に位置する前記伝熱管との間に位置する、
シェルアンドチューブ式吸収器。
a shell that stores the absorbent liquid;
A heat exchanger tube group having a plurality of heat exchanger tubes in which a heat medium flows, which are arranged in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity and arranged parallel to each other inside the shell;
a first supply path that supplies the absorption liquid to the shell;
a second supply path for supplying refrigerant vapor to the shell;
a dropper that drops the absorption liquid supplied by the first supply path toward the heat exchanger tube group;
Comprising a partition part,
The heat exchanger tube group includes an adjacent left row and a right row, and includes a central axis of the heat exchanger tubes in the right row when looking at the left row and the right row along the longitudinal direction of the heat exchanger tubes. A horizontal plane is located between a pair of horizontal planes including the central axes of two heat exchanger tubes adjacent in the direction of gravity in the left row, or a horizontal plane including the central axes of the heat exchanger tubes in the left row A plane is located between a pair of horizontal planes including central axes of the two heat exchanger tubes adjacent in the direction of gravity in the right row,
The distance (L1) between the central axis of the heat exchanger tube in the upper stage of the left row and the center axis of the lower heat exchanger tube, which is one stage below the upper stage in the left row, is The distance (L2 ) is equal to
The heat transfer tube group includes a first heat transfer tube group in which the heat medium flows in a specific direction, and a second heat transfer tube group that is arranged above the first heat transfer tube group in the direction of gravity and in which the heat transfer medium flows in a direction opposite to the specific direction. It has a heat tube group,
The partition component allows the refrigerant vapor to flow between the uppermost heat exchanger tube in each row of the first heat exchanger tube group and the lowermost heat exchanger tube in each row of the second heat exchanger tube group. inhibits
When the partition component is viewed along the direction perpendicular to the longitudinal direction of the heat exchanger tube and the direction of gravity, at least a portion of the partition component is in the direction perpendicular to the longitudinal direction of the heat exchanger tube and the direction of gravity in the direction of gravity. located between the heat exchanger tube located at the end of the uppermost stage near the partition component and the heat exchanger tube located at the end of the lowermost stage on the same side as the end;
Shell and tube absorber.
前記左列において隣り合う2つの前記伝熱管の中心軸同士の距離は、第一長さ(L3)と、前記第一長さ(L3)より長い第二長さ(L1)とを含む、請求項1に記載のシェルアンドチューブ式吸収器。 A distance between central axes of two adjacent heat exchanger tubes in the left row includes a first length (L3) and a second length (L1) longer than the first length (L3). The shell-and-tube absorber according to item 1. 前記熱媒体は、前記第一伝熱管群を通過した後に前記第二伝熱管群に導かれる、又は、前記第二伝熱管群を通過した後に前記第一伝熱管群に導かれる、請求項1又は2に記載のシェルアンドチューブ式吸収器。 The heat transfer medium is guided to the second heat exchanger tube group after passing through the first heat exchanger tube group, or is guided to the first heat exchanger tube group after passing through the second heat exchanger tube group. Or the shell-and-tube type absorber according to 2 . 前記左列の最上段の前記伝熱管の中心軸と前記左列の最下段の前記伝熱管の中心軸との距離は、前記右列の最上段の前記伝熱管の中心軸と前記右列の最下段の前記伝熱管の中心軸との距離と等しい、請求項1からのいずれか1項に記載のシェルアンドチューブ式吸収器。 The distance between the central axis of the uppermost heat exchanger tube in the left row and the central axis of the lowermost heat exchanger tube in the left row is the distance between the central axis of the uppermost heat exchanger tube in the right row and the The shell-and-tube type absorber according to any one of claims 1 to 3 , wherein the distance is equal to the distance from the central axis of the heat exchanger tube at the lowest stage. 前記滴下器は、前記左列の前記伝熱管に前記吸収液を滴下する第一滴下口と、前記右列の前記伝熱管に前記吸収液を滴下する第二滴下口とを有し、
前記伝熱管の長手方向に沿って前記滴下器を見たとき、前記第二滴下口は、重力方向において前記第一滴下口を含む水平な平面から外れた位置に配置されている、
請求項1からのいずれか1項に記載のシェルアンドチューブ式吸収器。
The dripper has a first dripping port that drips the absorption liquid onto the heat transfer tubes in the left row, and a second dripping port that drips the absorption liquid into the heat transfer tubes in the right row.
When looking at the dripper along the longitudinal direction of the heat exchanger tube, the second dripping port is located at a position deviated from a horizontal plane including the first dripping port in the direction of gravity.
A shell-and-tube absorber according to any one of claims 1 to 4 .
吸収液を貯留するシェルと、
前記シェルの内部において重力方向に複数段をなすとともに重力方向に垂直な方向に複数列をなし、互いに平行に配置された、熱媒体が流れる複数の伝熱管を有し、かつ、第一伝熱管群と、重力方向において前記第一伝熱管群の上方に配置された第二伝熱管群とを有する、伝熱管群と、
前記シェルに前記吸収液を供給する第一供給路と、
前記シェルに冷媒蒸気を供給する第二供給路と、
前記第一供給路によって供給された前記吸収液を前記伝熱管群に向かって滴下する滴下器と、
前記第一伝熱管群の各列における最上段の前記伝熱管と、前記第二伝熱管群の各列における最下段の前記伝熱管との間に前記冷媒蒸気が流入することを阻害する、仕切り部品と、を備え、
前記伝熱管群は、隣り合う左列及び右列を含み、前記伝熱管の長手方向に沿って前記左列及び前記右列を見たときに、前記右列における前記伝熱管の中心軸を含む水平な平面が前記左列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置する、又は、前記左列における前記伝熱管の中心軸を含む水平な平面が前記右列において重力方向に隣り合う2つの前記伝熱管の中心軸を含む一対の水平な平面の間に位置し、
前記伝熱管の長手方向及び重力方向に垂直な方向に沿って前記仕切り部品を見たとき、前記仕切り部品の少なくとも一部は、重力方向において、前記第一伝熱管群において前記仕切り部品に最も近い前記最上段の前記伝熱管である下側伝熱管と、前記第二伝熱管群において前記仕切り部品に最も近い前記最下段の前記伝熱管である上側伝熱管との間に位置し、
前記下側伝熱管の中心軸と前記上側伝熱管の中心軸との距離は、前記下側伝熱管を含む前記第一伝熱管群の列と隣り合う列における前記最上段の前記伝熱管と、前記上側伝熱管を含む前記第二伝熱管群の列と隣り合う列における前記最下段の前記伝熱管との距離より長い、
シェルアンドチューブ式吸収器。
A shell that stores the absorbent liquid;
The shell has a plurality of heat exchanger tubes arranged in multiple stages in the direction of gravity and in multiple rows in a direction perpendicular to the direction of gravity and arranged parallel to each other, through which a heat medium flows, and a first heat exchanger tube. a group of heat exchanger tubes, and a second group of heat exchanger tubes arranged above the first group of heat exchanger tubes in the direction of gravity;
a first supply path that supplies the absorption liquid to the shell;
a second supply path for supplying refrigerant vapor to the shell;
a dropper that drops the absorption liquid supplied by the first supply path toward the heat exchanger tube group;
a partition that prevents the refrigerant vapor from flowing between the uppermost heat transfer tube in each row of the first heat transfer tube group and the lowermost heat transfer tube in each row of the second heat transfer tube group; comprising parts and
The heat exchanger tube group includes an adjacent left row and a right row, and includes a central axis of the heat exchanger tubes in the right row when looking at the left row and the right row along the longitudinal direction of the heat exchanger tubes. A horizontal plane is located between a pair of horizontal planes including the central axes of two heat exchanger tubes adjacent in the direction of gravity in the left row, or a horizontal plane including the central axes of the heat exchanger tubes in the left row A plane is located between a pair of horizontal planes including central axes of the two heat exchanger tubes adjacent in the direction of gravity in the right row,
When the partition component is viewed along a direction perpendicular to the longitudinal direction of the heat exchanger tubes and the direction of gravity, at least a portion of the partition component is closest to the partition component in the first heat exchanger tube group in the direction of gravity. located between the lower heat exchanger tube, which is the heat exchanger tube at the uppermost stage, and the upper heat exchanger tube, which is the heat exchanger tube at the lowermost stage, which is closest to the partition component in the second heat exchanger tube group;
The distance between the center axis of the lower heat exchanger tube and the center axis of the upper heat exchanger tube is the same as the distance between the center axis of the lower heat exchanger tube and the uppermost heat exchanger tube in the row adjacent to the row of the first heat exchanger tube group including the lower heat exchanger tube, longer than the distance between the row of the second heat exchanger tube group including the upper heat exchanger tube and the lowermost heat exchanger tube in an adjacent row;
Shell and tube absorber.
前記熱媒体は、前記第一伝熱管群において特定方向に流れ、かつ、前記第二伝熱管群において前記特定方向と反対方向に流れる、請求項に記載のシェルアンドチューブ式吸収器。 The shell-and-tube type absorber according to claim 6 , wherein the heat medium flows in a specific direction in the first heat exchanger tube group and in a direction opposite to the specific direction in the second heat exchanger tube group. 前記仕切り部品は、重力方向において、前記上側伝熱管の下方に位置し、
重力方向において、前記上側伝熱管の中心軸と前記仕切り部品の上端との距離は、前記下側伝熱管の中心軸と前記仕切り部品の下端との距離より長い、請求項又はに記載のシェルアンドチューブ式吸収器。
The partition component is located below the upper heat exchanger tube in the direction of gravity,
According to claim 6 or 7 , in the direction of gravity, the distance between the central axis of the upper heat exchanger tube and the upper end of the partition component is longer than the distance between the central axis of the lower heat exchanger tube and the lower end of the partition component. shell and tube type absorber.
請求項1からのいずれか1項に記載のシェルアンドチューブ式吸収器を備えた、冷凍機。 A refrigerator comprising the shell-and-tube absorber according to any one of claims 1 to 8 .
JP2019144167A 2019-03-25 2019-08-06 Shell and tube absorber and refrigerator Active JP7386436B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057375 2019-03-25
JP2019057375 2019-03-25

Publications (2)

Publication Number Publication Date
JP2020159679A JP2020159679A (en) 2020-10-01
JP7386436B2 true JP7386436B2 (en) 2023-11-27

Family

ID=72642749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144167A Active JP7386436B2 (en) 2019-03-25 2019-08-06 Shell and tube absorber and refrigerator

Country Status (1)

Country Link
JP (1) JP7386436B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165530A (en) 1999-12-06 2001-06-22 Furukawa Electric Co Ltd:The Absorbing device
JP2004245443A (en) 2003-02-12 2004-09-02 Kawasaki Thermal Engineering Co Ltd Absorption chiller and heater
JP2005003296A (en) 2003-06-13 2005-01-06 Ebara Corp Liquid spraying device, and liquid membrane type heat exchanger and absorption refrigerating machine using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568769B2 (en) * 1991-09-12 1997-01-08 株式会社日立製作所 Absorption refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165530A (en) 1999-12-06 2001-06-22 Furukawa Electric Co Ltd:The Absorbing device
JP2004245443A (en) 2003-02-12 2004-09-02 Kawasaki Thermal Engineering Co Ltd Absorption chiller and heater
JP2005003296A (en) 2003-06-13 2005-01-06 Ebara Corp Liquid spraying device, and liquid membrane type heat exchanger and absorption refrigerating machine using the same

Also Published As

Publication number Publication date
JP2020159679A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
CN104303000A (en) Heat exchanger
JP7174927B2 (en) shell and tube heat exchanger
JP4701147B2 (en) 2-stage absorption refrigerator
JP2000227262A (en) Absorption refrigerating machine and manufacture of same
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
JP7386436B2 (en) Shell and tube absorber and refrigerator
WO2022224554A1 (en) Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JP6429550B2 (en) Absorption heat pump
JP4879125B2 (en) Absorption refrigerator
JP4881820B2 (en) Absorption refrigerator
WO2022138018A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
JP6805473B2 (en) Absorption chiller
CN108375238B (en) Absorption refrigerator
CN207214528U (en) Direct expansion type evaporator assembly of brand new fan unit
JP4986666B2 (en) Absorption refrigerator
JP2022521365A (en) Heat exchanger
WO2023042896A1 (en) Absorber unit, heat exchange unit, and absorption-type refrigerator
WO2023095589A1 (en) Absorber unit, heat exchange unit, and absorption refrigerator
JP5036360B2 (en) Absorption refrigerator
JP6779760B2 (en) Absorption chiller
WO2022168460A1 (en) Evaporator unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JP6013788B2 (en) Absorption refrigerator absorber
WO2022130986A1 (en) Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
JP2014173810A (en) Air-cooling absorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R151 Written notification of patent or utility model registration

Ref document number: 7386436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151