JP2568769B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP2568769B2
JP2568769B2 JP3233314A JP23331491A JP2568769B2 JP 2568769 B2 JP2568769 B2 JP 2568769B2 JP 3233314 A JP3233314 A JP 3233314A JP 23331491 A JP23331491 A JP 23331491A JP 2568769 B2 JP2568769 B2 JP 2568769B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tubes
evaporator
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3233314A
Other languages
Japanese (ja)
Other versions
JPH0571827A (en
Inventor
西野由高
俊雄 沢
船橋清美
高橋文夫
相沢道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3233314A priority Critical patent/JP2568769B2/en
Publication of JPH0571827A publication Critical patent/JPH0571827A/en
Application granted granted Critical
Publication of JP2568769B2 publication Critical patent/JP2568769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房等に用いられる
吸収冷凍機に関するもので、特に、吸収器及び蒸発器の
伝熱管配列及び伝熱管群中に設置する分散板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator used for cooling and heating, and more particularly to an arrangement of heat transfer tubes of an absorber and an evaporator and a dispersion plate installed in a heat transfer tube group.

【0002】[0002]

【従来の技術】一般に吸収冷凍機は、蒸発器、吸収器、
低温再生器、高温再生器、およびこれらを結ぶポンプ、
熱交換器からなっている。図9はその原理的な系統図で
ある。蒸発器内の管群の管内には水が通水されており、
管外には冷媒として水が散布され、その蒸発潜熱によっ
て管内の水を冷却し、冷水として冷房器等へ供給する。
蒸発器で蒸発した水蒸気は吸収器に流入し、吸収器内の
管群の管外面に散布された吸収液(リチウムブロマイド
溶液など)に吸収され、このとき発生する吸収熱は管内
を通る冷却水によって冷却される。吸収器で水蒸気を吸
収した吸収液は濃度が低下し、吸収力が弱くなる。そこ
でこれを熱交換器を通して予熱したのち、高温再生器及
び低温再生器に送り、加熱濃縮する。高温再生器の熱源
には、ガス、油などを燃焼させた熱を用いるのが一般的
である。低温再生器の熱源には、高温再生器で発生した
蒸気を用いる。低温再生器及び高温再生器で発生した蒸
気は、最終的に凝縮器で冷却水によって冷却され凝縮す
る。凝縮した水は蒸発媒体として、蒸発器に供給され
る。
2. Description of the Related Art In general, an absorption refrigerator has an evaporator, an absorber,
Low-temperature regenerator, high-temperature regenerator, and a pump connecting them,
It consists of a heat exchanger. FIG. 9 is a principle system diagram. Water is passed through the tubes of the tube group in the evaporator,
Water is sprayed outside the pipe as a refrigerant, and the water in the pipe is cooled by the latent heat of evaporation, and is supplied to a cooler or the like as cold water.
The water vapor evaporated by the evaporator flows into the absorber, and is absorbed by an absorbing solution (such as a lithium bromide solution) sprayed on the outer surface of the tube group in the absorber, and the absorbed heat generated at this time is cooling water passing through the tube. Cooled by. The concentration of the absorbing liquid that has absorbed the water vapor in the absorber decreases, and the absorbing power decreases. Then, after preheating this through a heat exchanger, it is sent to a high-temperature regenerator and a low-temperature regenerator and concentrated by heating. As a heat source of the high-temperature regenerator, heat obtained by burning gas, oil, or the like is generally used. Steam generated by the high-temperature regenerator is used as the heat source of the low-temperature regenerator. The steam generated in the low-temperature regenerator and the high-temperature regenerator is finally cooled and condensed by the cooling water in the condenser. The condensed water is supplied to an evaporator as an evaporation medium.

【0003】吸収冷凍機の構成要素のうち吸収冷凍機と
して性能を左右する点で特に重要なのは吸収器と蒸発器
である。
[0003] Among the components of the absorption refrigerator, particularly important in terms of the performance as an absorption refrigerator are an absorber and an evaporator.

【0004】蒸発器は前記の如く水などの蒸発媒体を蒸
発することによって、その潜熱で水などの冷房媒体を冷
却するものである。蒸発器は主に千鳥または格子配列の
伝熱管群とその表面に蒸発媒体を散布するための散布装
置とから構成される。一般的には伝熱管内に冷房媒体と
して水を流し、その伝熱管の外表面に散布された水が、
系内が低圧に保たれていることから、蒸発し、その潜熱
により伝熱管内を流れる水が冷却され冷房等に利用され
る。この蒸発器で発生した蒸気は前記の如く吸収器に導
かれる。吸収器は、蒸発器と同様に主に千鳥または格子
配列の伝熱管群とその表面に吸収液を散布するための散
布装置とから構成される。一般的には、吸収液は臭化リ
チウム溶液を用い、伝熱管の外表面に散布される。臭化
リチウムの蒸気圧は水に比べるとはるかに小さく、蒸発
器から吸収器に流入する蒸気はその蒸気圧差に基づいて
吸収液に吸収される。その際、吸収熱により吸収液の温
度が上昇するため、伝熱管内に水などの冷房媒体を流し
冷却する。
[0004] As described above, the evaporator evaporates an evaporating medium such as water to cool a cooling medium such as water by the latent heat. The evaporator mainly includes a heat transfer tube group in a staggered or lattice arrangement and a spraying device for spraying an evaporation medium on the surface thereof. Generally, water is flowed as a cooling medium into the heat transfer tube, and water sprayed on the outer surface of the heat transfer tube is
Since the inside of the system is kept at a low pressure, the water evaporates and its latent heat cools the water flowing in the heat transfer tube and is used for cooling or the like. The vapor generated in this evaporator is guided to the absorber as described above. The absorber, like the evaporator, is mainly composed of a group of heat transfer tubes arranged in a staggered or lattice arrangement and a spraying device for spraying the absorbing liquid on the surface thereof. In general, a lithium bromide solution is used as the absorbing liquid, and is sprayed on the outer surface of the heat transfer tube. The vapor pressure of lithium bromide is much lower than that of water, and the vapor flowing into the absorber from the evaporator is absorbed by the absorbent based on the difference in vapor pressure. At this time, since the temperature of the absorbing liquid increases due to the heat of absorption, a cooling medium such as water is flown in the heat transfer pipe to cool the pipe.

【0005】吸収冷凍機の性能を向上するためには、上
述の吸収サイクル作動原理から、蒸発器における蒸発媒
体の蒸気圧と吸収器における吸収液の蒸気圧との有効な
圧力差を大きくする必要がある。そのためには、まず第
一に吸収器及び蒸発器の管群内での蒸気の流動抵抗(圧
力損失)を小さくし、吸収器内での蒸発の吸収に利用で
きる圧力差を大きくすることである。第二には、吸収器
内の吸収伝熱特性を向上することである。そのために
は、主に三つの方策がある。一つの方策は、本発明とは
直接関係しないが、伝熱管単管の吸収伝熱特性を向上さ
せるために特開昭63−6363号記載のように伝熱管
の表面にフィンを形成し、伝熱面積を増大するとともに
吸収液の保持量を増加させることである。他の一つの方
策は、蒸気側の伝熱抵抗となる空気などの不凝縮性ガス
の溜りを防止することである。もう一つの方策は、吸収
液を吸収器内の各伝熱管に万遍なく供給散布し、吸収に
供されない無駄な伝熱管を無くすことである。
In order to improve the performance of the absorption refrigerator, it is necessary to increase the effective pressure difference between the vapor pressure of the evaporation medium in the evaporator and the vapor pressure of the absorption liquid in the absorber from the above-mentioned principle of the absorption cycle operation. There is. For this purpose, first, the flow resistance (pressure loss) of the steam in the tube group of the absorber and the evaporator is reduced, and the pressure difference available for absorbing the evaporation in the absorber is increased. . The second is to improve absorption heat transfer characteristics in the absorber. There are three main ways to do this. One measure, which is not directly related to the present invention, is to form fins on the surface of the heat transfer tube as described in JP-A-63-6363 in order to improve the absorption heat transfer characteristics of a single heat transfer tube. The purpose is to increase the holding area of the absorbing liquid while increasing the heat area. Another measure is to prevent accumulation of non-condensable gases, such as air, which provide heat transfer resistance on the steam side. Another measure is to supply and distribute the absorbing liquid evenly to each heat transfer tube in the absorber to eliminate useless heat transfer tubes that are not used for absorption.

【0006】これらの性能向上策の従来技術としては、
特許第1187335号記載のように、蒸発器において
は蒸気上流部をピッチの狭い格子配列の伝熱管配列にし
蒸気流量の多い下流部をピッチの広い千鳥配列にすると
ともに、吸収器においては蒸気流量の多い蒸気上流部で
ピッチの広い千鳥配列にし蒸気下流部ではピッチの狭い
格子配列の伝熱管群にすることによって、管群内での蒸
気の流動抵抗を均一化する方法がある。また、特開昭第
62−155482号記載のように、吸収器の伝熱管群
内に管列に平行な仕切り板を設けることで、不凝縮性ガ
スの溜りを防止し抽気する方法がある。
The prior art of these performance improvement measures includes:
As described in Japanese Patent No. 1187335, in the evaporator, the upstream portion of the steam is arranged in a heat transfer tube array having a narrow pitch lattice arrangement, and the downstream portion having a large steam flow is arranged in a staggered arrangement having a wide pitch. There is a method in which the flow resistance of steam in the tube bank is made uniform by forming a staggered array with a large pitch in the upstream portion of the steam and a group of heat transfer tubes in a grid array with a narrow pitch in the downstream portion of the steam. Further, as described in Japanese Patent Application Laid-Open No. Sho 62-155482, there is a method in which non-condensable gas is prevented from being accumulated and air is extracted by providing a partition plate parallel to a tube row in a heat transfer tube group of an absorber.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、吸
収器及び蒸発器の伝熱管群は一体構造であり、全ての蒸
気は一様に伝熱管群を通過しなければならない。蒸発器
では蒸気上流部で発生した蒸気は伝熱管群を横断して蒸
気出口部へ流れる。また、吸収器では蒸気入口部から一
様に蒸気下流部へ伝熱管群を横断して流れる。すなわ
ち、蒸気の伝熱管群の通過距離は蒸発器では蒸気流出方
向、吸収器では蒸気流入方向の伝熱管群の奥行きに等し
く、それに応じた蒸気の流動抵抗を生じてしまう。この
ことは伝熱管群での圧力損失を大きくし吸収冷凍機の性
能低下をもたらす問題となるうえに、伝熱管群の奥行き
を制限することにつながり、ひいては吸収冷凍機全体の
装置構成をも制限してしまう。さらに、吸収器において
は蒸気入口部付近の伝熱管が、蒸気供給量が多いことか
ら、単位伝熱面積当たりの吸収量及び伝熱量が多くな
り、伝熱管群の奥にいくに従って吸収量が少なくなると
いう不均衡を生じてしまう。このことは吸収器における
蒸気下流部の伝熱管を有効に利用していることにはなら
ず、吸収器の性能向上を妨げる。
In the above prior art, the heat transfer tube group of the absorber and the evaporator is of an integral structure, and all the vapor must pass through the heat transfer tube group uniformly. In the evaporator, the steam generated at the upstream of the steam flows across the heat transfer tube group to the steam outlet. In the absorber, the gas flows uniformly across the heat transfer tube group from the steam inlet to the steam downstream. That is, the passage distance of the steam through the heat transfer tube group is equal to the depth of the heat transfer tube group in the vapor outflow direction in the evaporator and in the steam inflow direction in the absorber, and the flow resistance of the steam is generated accordingly. This not only causes an increase in pressure loss in the heat transfer tube group and causes a decrease in the performance of the absorption refrigerator, but also limits the depth of the heat transfer tube group, and consequently limits the overall configuration of the absorption refrigerator. Resulting in. Furthermore, in the absorber, the heat transfer tubes near the steam inlet have a large amount of steam supply, so the amount of absorption and heat transfer per unit heat transfer area increases, and the amount of absorption decreases toward the back of the heat transfer tube group. Will cause an imbalance. This does not mean that the heat transfer tubes downstream of the steam in the absorber are effectively used, and hinders the performance improvement of the absorber.

【0008】また吸収器では、蒸気の流動抵抗のために
一体構造の伝熱管群内に低圧部が形成され、仕切り板を
設けてもそこに不凝縮性ガスが滞留してしまい、吸収伝
熱性能を著しく低下させる。一方、吸収器での吸収液の
供給は、伝熱管群の最上部からスプレーまたは滴下散布
し、伝熱管群を滴下しながら徐々に下部へ流下していく
が、その際、蒸気の流れ方向が水平方向になっている場
合などは、滴下する吸収液が蒸気にあおられ伝熱管群の
下部の一部の伝熱管では吸収液の供給量が著しく少なく
なり吸収伝熱性能が低下する。同様の問題が蒸発器の蒸
発媒体の散布に関してもある。
Further, in the absorber, a low-pressure portion is formed in the heat transfer tube group having an integral structure due to the flow resistance of steam, and even if a partition plate is provided, non-condensable gas stays there, and the absorption heat transfer Significantly degrade performance. On the other hand, the supply of the absorbing liquid in the absorber is performed by spraying or dripping from the top of the heat transfer tube group and gradually flowing downward while dripping the heat transfer tube group. In the case of horizontal orientation, for example, the dropping absorption liquid is flooded with steam, and the supply amount of the absorption liquid is significantly reduced in some of the heat transfer tubes below the heat transfer tube group, so that the absorption heat transfer performance is reduced. A similar problem relates to the application of the evaporation medium of the evaporator.

【0009】上記問題点はともに吸収器または蒸発器内
の伝熱管の配置、すなわち伝熱管群構造に密接に関係す
る。本発明は伝熱管群内での圧力損失(蒸気の流動抵
抗)の低減が全ての課題の解決につながるとの発想から
なされたもので、まず、伝熱管群内での蒸気の流動抵抗
を小さくし、吸収器内での蒸気の吸収に利用できる圧力
差を大きくし、それによって管群内での圧力分布を均一
化し、不凝縮性ガスの滞留を抑制し、さらには、不凝縮
性ガスを抽気するための抽気口近傍に低圧領域を形成し
て不凝縮性ガスの効率的な抽気を可能にすることを目的
とする。
Both of the above problems are closely related to the arrangement of the heat transfer tubes in the absorber or evaporator, that is, the structure of the heat transfer tube group. The present invention has been made based on the idea that reduction of pressure loss (flow resistance of steam) in the heat transfer tube group leads to solving all problems. First, the flow resistance of steam in the heat transfer tube group is reduced. And increase the pressure difference available for absorbing steam in the absorber, thereby making the pressure distribution in the tube group uniform, suppressing the accumulation of non-condensable gas, and further reducing non-condensable gas. It is an object of the present invention to form a low-pressure region near a bleeding port for bleeding to enable efficient bleeding of non-condensable gas.

【0010】[0010]

【課題を解決するための手段】吸収器内の伝熱管群内で
の蒸気の流動抵抗を低減するために、吸収器を従来の一
体構造の管群構造にするのではなく、吸収器を伝熱管長
手方向から見た断面において蒸気流路で分離された複数
の管群ブロックに分割すると共に、伝熱管長手方向から
見た断面での蒸気流路の幅が、伝熱管を密に配置した管
群ブロック内の隣接伝熱管の間隔の最大値よりも大きな
間隔であり、かつ複数の管群ブロックが蒸気流路で囲ま
れている管配列の吸収器にする。より具体的には、吸収
器を伝熱管長手方向から見た断面において複数の管群ブ
ロックがそのブロック内の隣接伝熱管の間隔の最大値よ
りも大きな間隔の蒸気流路で囲まれ、かつ当該吸収器へ
の蒸気流入面から見た断面において伝熱管を密に配置し
た管群ブロックがそのブロック内の隣接伝熱管の間隔の
最大値よりも大きな間隔の蒸気流路で分割されている管
群を有する吸収器にする。吸収器形状や蒸気流量によっ
ては、1つの管群ブロックに属する伝熱管の蒸気流入方
向に垂直な方向の列数が20列以下である様に配置す
る。
SUMMARY OF THE INVENTION In order to reduce the flow resistance of steam in a heat transfer tube group in an absorber, the absorber is transferred to the absorber instead of a conventional integrated tube group structure. A pipe in which a plurality of tube group blocks separated by a steam flow path in a cross section viewed from the longitudinal direction of the heat pipe are divided, and a width of the steam flow path in a cross section viewed from the longitudinal direction of the heat transfer pipe is such that the heat transfer pipes are densely arranged. An absorber having a tube arrangement in which the interval is larger than the maximum value of the interval between adjacent heat transfer tubes in the group block and a plurality of tube group blocks are surrounded by the steam flow path . The yo Ri Specifically, surrounded by the steam channel of the plurality of tube bundle block in the cross section viewed absorber from the heat transfer tube longitudinal direction maximum value greater spacing than the spacing between adjacent heat transfer tube in the block, and A tube group block in which heat transfer tubes are densely arranged in a cross section viewed from the surface of the steam flowing into the absorber, wherein the tube block is divided by a steam flow path having an interval larger than a maximum value of an interval between adjacent heat transfer tubes in the block. Make an absorber with groups. Depending on the shape of the absorber and the steam flow rate, the heat transfer tubes belonging to one tube group block are arranged so that the number of rows in the direction perpendicular to the steam inflow direction is 20 or less.

【0011】さらに吸収器においては、伝熱管群内での
不凝縮性ガスの滞留を抑制し該ガスの抽気を容易にする
ため、管群ブロックがそのブロック内の隣接伝熱管の間
隔の最大値よりも大きな間隔の蒸気流路で分割されてい
る管群を有する吸収器内で、吸収液排出口または不凝縮
性ガス抽気口に最も近い管群ブロックが他の管群ブロッ
クに比べて伝熱管数が多いかまたは伝熱管ピッチが狭い
様にする。
Further, in the absorber, in order to suppress the non-condensable gas from staying in the heat transfer tube group and to facilitate the bleeding of the gas, the tube group block has a maximum distance between adjacent heat transfer tubes in the block. In an absorber having a tube group divided by a steam path with a larger interval, the tube group block closest to the absorbent outlet or the non-condensable gas extraction port has a heat transfer tube as compared to the other tube group blocks. The number should be large or the heat transfer tube pitch should be narrow.

【0012】蒸発器内の伝熱管群内での蒸気の流動抵抗
を低減するために、蒸発器は、吸収器と同様に、従来の
一体構造の管群構造ではなくて、伝熱管長手方向から見
た断面において蒸気流路で分離された複数の管群ブロッ
クに分割するとともに、伝熱管長手方向から見た断面で
の蒸気流路の幅が、伝熱管を密に配置した管群ブロック
内の隣接伝熱管の間隔の最大値よりも大きな間隔であ
り、かつ複数の管群ブロックが蒸気流路で囲まれている
管配列の蒸発器にする。より具体的には、蒸発器を伝熱
管長手方向から見た断面において複数の管群ブロックが
そのブロック内の隣接伝熱管の間隔の最大値よりも大き
な間隔の蒸気流路で囲まれ、かつ当該蒸発器からの蒸気
流出面から見た断面において伝熱管を密に配置した管群
ブロックがそのブロック内の隣接伝熱管の間隔の最大値
よりも大きな間隔の蒸気流路で分割されている管群を有
する蒸発器にする。蒸発器形状や蒸気流量によっては、
1つの管群ブロックに属する伝熱管の蒸気流入方向に垂
直な方向の列数が20列以下に配置する。
[0012] In order to reduce the flow resistance of steam in the heat transfer tube group in the evaporator, the evaporator is not a conventional one-piece tube group structure like the absorber, but rather from the longitudinal direction of the heat transfer tube. thereby divided into a plurality of tube bundle blocks separated by steam flow path in the observed cross-section, the width of the steam path in a cross section as seen from the heat transfer tube longitudinal direction, of the tube bundle in blocks densely arranged heat transfer tube An evaporator having a tube arrangement in which the interval is larger than the maximum value of the interval between the adjacent heat transfer tubes and a plurality of tube group blocks are surrounded by the steam flow path . The yo Ri Specifically, surrounded by the steam channel of the plurality of tube bundle block in the cross section viewed evaporator from the heat transfer tube longitudinal direction maximum value greater spacing than the spacing between adjacent heat transfer tube in the block, and A pipe group block in which heat transfer tubes are densely arranged in a cross section as viewed from a steam outflow surface from the evaporator is divided by a steam flow path having an interval larger than a maximum value of an interval between adjacent heat transfer tubes in the block. Evaporator with group. Depending on the evaporator shape and steam flow rate,
The number of rows in the direction perpendicular to the steam inflow direction of the heat transfer tubes belonging to one pipe group block is arranged to be 20 rows or less.

【0013】吸収器での吸収液の散布及び/又は蒸発器
での蒸発媒体の散布を管群下部においても均一にするた
めには、伝熱管群の中に液体と気体を同時に通過させる
分散板を水平に配置する。この分散板は複数の管群ブロ
ックを有する吸収器または蒸発器において、その蒸気流
路に水平に設置すればさらに効果的である。
In order to make the dispersion of the absorbing liquid in the absorber and / or the dispersion of the evaporating medium in the evaporator uniform even in the lower part of the tube group, a dispersion plate for simultaneously passing the liquid and the gas through the heat transfer tube group. Is placed horizontally. This dispersion plate is more effective in an absorber or evaporator having a plurality of tube bank blocks if it is installed horizontally in the vapor flow path.

【0014】[0014]

【作用】本発明によると、吸収器または蒸発器内の蒸気
は主に蒸気流路を流れ、吸収器または蒸発器内全体に広
がる。蒸気流路での蒸気の流動抵抗は、伝熱管を密に配
置した管群ブロック内での流動抵抗に比べると、はるか
に小さく、無視できる。蒸発器の管群ブロック内で蒸発
した蒸気は、管群ブロック内の管群中の最短距離を通っ
て蒸気流路に流れる。同様に吸収器の管群ブロック内で
の蒸気は、蒸気流路から管群ブロック内の管群中の最短
距離を通って管群ブロック内部へ流れ吸収される。従来
の一体構造の管群では、蒸気の流入流出の際の管群中の
通過距離は蒸気流れ方向の管群の奥行きに相当する。し
たがって、本発明では管群中の蒸気の通過距離を短縮で
きることから、その際の蒸気の流動抵抗を大幅に低減で
きる。管群内での圧力損失を低減できることから、吸収
器または蒸発器内の圧力分布の均一化を図ることがで
き、また吸収器内での各伝熱管での蒸気吸収量も均一化
される。
According to the present invention, the steam in the absorber or evaporator mainly flows through the steam flow path and spreads throughout the absorber or evaporator. The flow resistance of the steam in the steam flow path is much smaller than the flow resistance in the tube group block in which the heat transfer tubes are densely arranged, and is negligible. The vapor evaporated in the tube group block of the evaporator flows into the steam flow path through the shortest distance in the tube group in the tube group block. Similarly, the steam in the tube group block of the absorber flows from the steam flow path through the shortest distance in the tube group in the tube group block and is absorbed into the tube group block. In a conventional tube bundle having an integral structure, the passage distance in the tube bundle when steam flows in and out corresponds to the depth of the tube bank in the steam flow direction. Therefore, in the present invention, since the passage distance of the steam in the tube bank can be shortened, the flow resistance of the steam at that time can be greatly reduced. Since the pressure loss in the tube group can be reduced, the pressure distribution in the absorber or the evaporator can be made uniform, and the amount of steam absorbed in each heat transfer tube in the absorber can also be made uniform.

【0015】この圧力分布の均一化は、管群ブロック中
での不凝縮性ガスの滞留を抑制することができ、さらに
は抽気口近傍、または不凝縮性ガスが吸収液に同伴して
排出される場合にはその排出口近傍の管群ブロックを他
の管群ブロックに比べて管数を多くするかまたは伝熱管
ピッチを狭くするなどで、容易に低圧領域を形成するこ
とができ、不凝縮性ガスがそこに吸い寄せられ高効率に
抽気することが可能になる。
This uniform pressure distribution can prevent the non-condensable gas from staying in the tube bank block. Further, the non-condensable gas is discharged near the bleed port or with the absorbing liquid. In this case, a low-pressure region can be easily formed by increasing the number of tubes or narrowing the pitch of the heat transfer tubes in the tube block near the discharge port compared to other tube blocks, and non-condensing. The volatile gas is sucked there, and it is possible to extract air with high efficiency.

【0016】伝熱管群の中に配置され液体と気体を同時
に通過させる分散板は、蒸気流動を阻害せずに吸収器ま
たは蒸発器に上部から流下してくる吸収液または蒸発媒
体を一旦受けて再分配する。それによって器内下部の伝
熱管へも均一に吸収液または蒸発媒体を供給することが
できる。この作用は、複数の管群ブロックを有する吸収
器または蒸発器においては蒸気流路で吸収液または蒸発
媒体があおられるため、上記分散板をその蒸気流路に水
平に配置することにより、この作用はさらに効果的であ
る。
The dispersion plate, which is disposed in the heat transfer tube group and allows liquid and gas to pass at the same time, receives the absorbing liquid or the evaporating medium flowing down from above into the absorber or evaporator without obstructing the vapor flow. Redistribute. Thus, the absorbing liquid or the evaporating medium can be uniformly supplied to the heat transfer tube in the lower part of the vessel. This effect is achieved by arranging the dispersion plate horizontally in the vapor flow path in the absorber or evaporator having a plurality of tube bank blocks because the absorbing liquid or the evaporating medium is flooded in the vapor flow path. Is even more effective.

【0017】[0017]

【実施例】図1(1),(2)は、本発明の吸収冷凍機
の吸収器の2つの実施例を夫々、伝熱管長手方向から見
た断面の模式図である。1は伝熱管、2は管群ブロッ
ク、3は蒸気流路、4は蒸発器から流入する蒸気(水蒸
気)の流入部、5は吸収液散布装置、6は吸収液、7は
吸収液排出口(これは本実施例では抽気口を兼ねてい
る)を示す。図1(1)は、蒸発器で発生した蒸気が蒸
気流入部4を通って、水平方向に流入してくる実施例で
ある。蒸気流入部4には吸収液の飛散を防止するために
エリミネータなどが設置されている場合もあるが、何も
設置されない開口部になっている場合もある。吸収器内
には伝熱管1が密に配置している管群ブロックが4つ形
成され、各々の管群ブロックは蒸気流路3に囲まれてい
る。蒸気流入部4を通って蒸発器から流入してくる蒸気
は、蒸気流路3を通って吸収器内全体に行きわたると同
時に、各伝熱管の外表面に散布された吸収液によって吸
収される。その際、吸収液は吸収熱により加熱される
が、伝熱管内を流れる冷却水により冷却される。吸収液
は上部の伝熱管から下部の伝熱管へ滴下し、吸収液排出
口7から吸収器外へ出る。吸収液排出口7には空気など
の不凝縮性ガスの抽気口が併設される場合もあるし、エ
ゼクターなどにより不凝縮性ガスと吸収液を同時に排出
する場合もある。図1(2)は蒸発器で発生した蒸気が
蒸気流入部4を通って、吸収器の上部から垂直方向に流
入してくるものである。同様に、蒸気が吸収器の下部か
ら上部へ垂直方向に流入してくる実施例もある。
1 (1) and (2) are schematic cross-sectional views of two embodiments of an absorber of an absorption refrigerator according to the present invention as viewed from the longitudinal direction of a heat transfer tube. 1 is a heat transfer tube, 2 is a tube group block, 3 is a steam flow path, 4 is an inflow portion of steam (steam) flowing from an evaporator, 5 is an absorbent dispersion device, 6 is an absorbent, and 7 is an absorbent outlet. (This also serves as a bleed port in this embodiment). FIG. 1A shows an embodiment in which the steam generated in the evaporator flows in the horizontal direction through the steam inflow section 4. The vapor inflow section 4 may be provided with an eliminator or the like in order to prevent the absorption liquid from scattering, but may have an opening where nothing is provided. Four tube group blocks in which the heat transfer tubes 1 are densely arranged are formed in the absorber, and each tube group block is surrounded by the steam flow path 3. The steam flowing from the evaporator through the steam inflow section 4 spreads throughout the absorber through the steam flow path 3 and is absorbed by the absorbing liquid dispersed on the outer surface of each heat transfer tube. . At this time, the absorbing liquid is heated by the absorption heat, but is cooled by the cooling water flowing in the heat transfer tube. The absorbing liquid drops from the upper heat transfer pipe to the lower heat transfer pipe, and flows out of the absorber through the absorbing liquid discharge port 7. The absorbent outlet 7 may be provided with a bleeding port for non-condensable gas such as air, or the ejector may discharge the non-condensable gas and the absorbent simultaneously. FIG. 1 (2) shows that the vapor generated in the evaporator passes through the vapor inflow section 4 and flows vertically from the upper part of the absorber. Similarly, in some embodiments, steam may flow vertically from the bottom to the top of the absorber.

【0018】次に、本発明の原理を、吸収器内での基本
的な管群配置の数値解析結果により説明する。この数値
解析では、流れに関して質量と運動量の保存則を解き、
伝熱管群における蒸気の吸収量を実験式に基づいて求め
ている。この解析モデルの詳細は、Proceeding of the
Second International Symposium on Condensers andco
ndensation (1990), p.235〜 p.244に示されている数値
解析手法に基づいている。図2は、数値解析を行った3
種の吸収器の伝熱管群の伝熱管長手方向から見た断面を
示すものである。3種の吸収器は全て同じ容積(高さ
0.75m、奥行き0.33m、伝熱管長手方向2.0
m)であり、配置された伝熱管数も336本と等しい。
蒸気は向かって左の側面から流入する。いずれも伝熱管
(直径15.88mm)の配列は千鳥配列である。
(a)の「矩形」配列は一体構造の従来の管群であり、
伝熱管配置領域8に水平方向の管ピッチ23.3mm、
鉛直方向の管ピッチ26.7mmで配置されている。
(b)の「くし歯型」配列は、蒸気流路で分割された管
群ブロックが吸収器の奥壁面に接している配列であり、
水平方向の管ピッチは17.0mm、鉛直方向の管ピッ
チは19.5mmである。(c)の「ブロック型」配列
は、管群ブロックが全て蒸気流路で囲まれた配列であ
り、水平方向の管ピッチは17.0mm、鉛直方向の管
ピッチは19.5mmである。図3は、これらの管群の
図2中に示した圧力プロット位置9での蒸気の圧力分布
の数値解析結果を示すものである。解析結果からは一体
構造の「矩形」配列に比べて、管群ブロックに分割した
配列の方が、明らかに圧力損失(蒸気入口での圧力と圧
力の最も低い部位での圧力との差)が少なく圧力分布が
均一化しており、このため、吸収器の蒸気入口部での圧
力が低くなり、同じ伝熱管数で蒸発器との圧力差を大き
くとれ高性能であることがわかる。この傾向は「ブロッ
ク型」配列の方が「くし歯型」配列に比べてさらに大き
い。
Next, the principle of the present invention will be described with reference to the results of a numerical analysis of the basic arrangement of tube banks in the absorber. In this numerical analysis, we solve the conservation laws of mass and momentum for the flow,
The amount of steam absorption in the heat transfer tube bank is calculated based on the empirical formula. The details of this analysis model can be found in the Proceeding of the
Second International Symposium on Condensers andco
ndensation (1990), pp.235-244. FIG. 2 shows the results of numerical analysis 3
It is a figure which shows the cross section seen from the longitudinal direction of the heat transfer tube of the heat transfer tube group of the kind of absorber. All three types of absorbers have the same volume (0.75 m in height, 0.33 m in depth, 2.0 in the heat transfer tube longitudinal direction).
m), and the number of arranged heat transfer tubes is also equal to 336.
The steam flows in from the left side. In each case, the arrangement of the heat transfer tubes (diameter 15.88 mm) is a staggered arrangement.
The "rectangular" arrangement of (a) is a conventional tube bank of integral construction,
The horizontal tube pitch is 23.3 mm in the heat transfer tube arrangement area 8,
The tubes are arranged at a vertical pipe pitch of 26.7 mm.
The “comb-type” arrangement of (b) is an arrangement in which the tube block divided by the steam flow path is in contact with the inner wall surface of the absorber,
The pipe pitch in the horizontal direction is 17.0 mm, and the pipe pitch in the vertical direction is 19.5 mm. The "block type" arrangement shown in (c) is an arrangement in which the tube group blocks are all surrounded by steam flow paths, and the horizontal pipe pitch is 17.0 mm and the vertical pipe pitch is 19.5 mm. FIG. 3 shows a numerical analysis result of the pressure distribution of steam at the pressure plotting position 9 shown in FIG. 2 for these tube groups. According to the analysis results, the pressure loss (difference between the pressure at the steam inlet and the pressure at the lowest pressure point) is clearly higher in the array divided into tube bundle blocks than in the “rectangular” array of the monolithic structure. It can be seen that the pressure distribution at the vapor inlet of the absorber is low, and the pressure difference between the evaporator and the evaporator is large with the same number of heat transfer tubes. This tendency is even greater for the "block-type" array than for the "comb-type" array.

【0019】図4(1),(2)は図1(1),(2)
と夫々ほぼ同様の吸収器の伝熱管長手方向から見た断面
の模式図を示す。図1と同様に蒸気流路3に囲まれてい
る管群ブロック2を有し、他方、吸収液排出口または抽
気口7に接する管群ブロック10は他の管群ブロックに
比べて伝熱管数が多くしてあり、従って、抽気口7付近
の圧力が低くなるようにしている。この様にすると吸収
器内の空気等の不凝縮性ガスを効率良く抽気でき、伝熱
特性が向上する。
FIGS. 4 (1) and 4 (2) show FIGS. 1 (1) and 1 (2).
FIG. 3 shows schematic diagrams of cross sections of the same absorber viewed from the longitudinal direction of the heat transfer tube. 1 has a tube group block 2 surrounded by a steam flow path 3, while a tube group block 10 in contact with an absorbent outlet or a bleed port 7 has a smaller number of heat transfer tubes than other tube group blocks. Therefore, the pressure near the bleed port 7 is reduced. In this way, non-condensable gas such as air in the absorber can be efficiently extracted, and the heat transfer characteristics are improved.

【0020】図5(1),(2)も図1(1),(2)
と夫々ほぼ同様の吸収器の伝熱管長手方向から見た断面
の模式図を示す。図1と同様に蒸気流路3に囲まれてい
る管群ブロック2を有し、蒸気流路中に蒸気と液を同時
に通す分散板11を設置し、吸収液を再分配する。これ
によって、全ての伝熱管に吸収液が分配され、効率良く
蒸気の吸収ができる。
FIGS. 5 (1) and 5 (2) also show FIGS. 1 (1) and 1 (2).
FIG. 3 shows schematic diagrams of cross sections of the same absorber viewed from the longitudinal direction of the heat transfer tube. As in FIG. 1, a dispersion plate 11 having a tube group block 2 surrounded by a steam flow path 3 and allowing the vapor and the liquid to pass at the same time is installed in the steam flow path, and the absorbing liquid is redistributed. As a result, the absorbing liquid is distributed to all the heat transfer tubes, so that the steam can be efficiently absorbed.

【0021】図6(1),(2)は、その様な分散板1
1の2つの例を夫々示す断面図である。同図(1)は多
孔板111に気体を通過させる短円筒112を貫設して
上に突出させたものであり、多孔板111上に溜った液
は多孔板111の孔から滴下する。同図(2)は径の比
較的大きい短円筒113を板114に貫設して上に突出
させたものであり、板114上に溜った液は円筒113
内にオーバーフローして円筒113内壁を濡れ状態で流
下し、気体は円筒113の中央部を流れる。
FIGS. 6A and 6B show such a dispersion plate 1.
FIG. 2 is a cross-sectional view showing each of two examples 1; FIG. 1A shows a short cylinder 112 through which a gas passes through the perforated plate 111 and is projected upward. The liquid accumulated on the perforated plate 111 is dropped from the holes of the perforated plate 111. FIG. 2B shows a short cylinder 113 having a relatively large diameter penetrating the plate 114 and projecting upward.
The gas overflows into the inside of the cylinder 113 and flows down in a wet state on the inner wall of the cylinder 113, and the gas flows through the center of the cylinder 113.

【0022】図7(1),(2)は本発明の吸収冷凍機
の蒸発器の2つの実施例を、夫々、伝熱管長手方向から
見た断面の模式図を示す。蒸発器内には伝熱管1が密に
配置している管群ブロック2が4つ形成され、各々の管
群ブロックは蒸気流路3に囲まれている。管群の上部か
らは蒸発媒体散布装置12から水などの蒸発媒体13が
伝熱管外面に散布され蒸発する。蒸発した蒸気は蒸気流
路3を通って蒸気流出部14から吸収器へと流出する。
蒸発しきれずに蒸発器の下部まで到達した蒸発媒体は蒸
発媒体排出口15から蒸発器外へ出る。
FIGS. 7 (1) and 7 (2) are schematic views showing two embodiments of the evaporator of the absorption refrigerator according to the present invention, as viewed from the longitudinal direction of the heat transfer tube. Four tube group blocks 2 in which heat transfer tubes 1 are densely arranged are formed in the evaporator, and each tube group block is surrounded by a steam flow path 3. From the upper part of the tube group, an evaporating medium 13 such as water is sprinkled from the evaporating medium sprinkling device 12 onto the outer surface of the heat transfer tube and evaporated. The evaporated vapor flows out from the vapor outflow section 14 through the vapor flow path 3 to the absorber.
The evaporating medium that has reached the lower portion of the evaporator without being completely evaporated exits the evaporator through the evaporating medium outlet 15.

【0023】図8(1),(2)は図7(1),(2)
と夫々ほぼ同様の蒸発器の伝熱管長手方向から見た断面
の模式図を示す。図7と同様に蒸気流路3に囲まれてい
る管群ブロック2を有すると共に、蒸気流路中に蒸気と
液を同時に通す分散板11(図6の(1)又は(2)と
同様のもの)を設置し、液を再分配する。これによっ
て、全ての伝熱管に蒸発媒体たる水が分配され、伝熱特
性が向上する。
FIGS. 8 (1) and 8 (2) show FIGS. 7 (1) and 7 (2).
And a schematic diagram of a cross section of the same evaporator as viewed from the longitudinal direction of the heat transfer tube. 7 and a dispersion plate 11 (similar to (1) or (2) in FIG. 6), which has a tube group block 2 surrounded by a steam flow path 3 and simultaneously passes steam and liquid through the steam flow path. ) And redistribute the liquid. Thereby, water as an evaporation medium is distributed to all the heat transfer tubes, and the heat transfer characteristics are improved.

【0024】[0024]

【発明の効果】本発明によれば、吸収冷凍機の吸収器又
は蒸発器内での蒸気の流動抵抗を低減でき、高性能な吸
収冷凍機を提供できる。また吸収器においては、ブロッ
ク管群を構成することで吸収器内全体の圧力分布を均一
化し得、また図4の様に抽気口付近のみを人為的に低圧
にする構成とすることで不凝縮性ガスを効率よく抽気で
き、吸収器内での吸収伝熱特性を向上できる。また吸収
器又は蒸発器の管群中に蒸気流動に影響を与えない液の
分散板を設置することで、管群下部の伝熱管へも吸収液
又は蒸発媒体液を均一に散布し、これらの液が供給され
ない様な無駄な管が生じることなくして、伝熱特性をよ
り向上させることができる。以上のように、本発明は高
性能な吸収冷凍機を提供でき、小型の装置で従来技術以
上の冷凍能力を発揮できる。
According to the present invention, the flow resistance of steam in the absorber or evaporator of the absorption refrigerator can be reduced, and a high-performance absorption refrigerator can be provided. Also, in the absorber, the pressure distribution in the entire absorber can be made uniform by forming a block tube group, and non-condensation can be achieved by artificially reducing the pressure only in the vicinity of the bleeding port as shown in FIG. Effluent gas can be efficiently extracted, and the absorption heat transfer characteristics in the absorber can be improved. In addition, by installing a dispersion plate of liquid that does not affect the vapor flow in the tube group of the absorber or evaporator, the absorbing liquid or the evaporating medium liquid is evenly sprayed on the heat transfer tube at the bottom of the tube group. The heat transfer characteristic can be further improved without generating a useless pipe such that the liquid is not supplied. As described above, the present invention can provide a high-performance absorption refrigerator, and can exhibit a refrigerating capacity higher than that of the conventional technology with a small device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による吸収冷凍機の吸収器の
伝熱管長手方向の断面模式図、
FIG. 1 is a schematic cross-sectional view in the longitudinal direction of a heat transfer tube of an absorber of an absorption refrigerator according to one embodiment of the present invention;

【図2】数値解析に用いる従来技術と本発明による吸収
器断面の模式図、
FIG. 2 is a schematic view of a cross section of an absorber according to the prior art used for numerical analysis and the present invention,

【図3】図2に示す管群の数値解析による圧力分布を示
す図、
FIG. 3 is a diagram showing a pressure distribution by numerical analysis of the tube group shown in FIG. 2;

【図4】本発明の他の実施例による吸収冷凍機の吸収器
の伝熱管長手方向の断面模式図、
FIG. 4 is a schematic cross-sectional view in the longitudinal direction of a heat transfer tube of an absorber of an absorption refrigerator according to another embodiment of the present invention;

【図5】本発明の吸収冷凍機の更に他の実施例による吸
収器の断面模式図、
FIG. 5 is a schematic cross-sectional view of an absorber according to still another embodiment of the absorption refrigerator of the present invention;

【図6】本発明に用いる分散板の模式断面部分図、FIG. 6 is a schematic sectional partial view of a dispersion plate used in the present invention,

【図7】本発明の一実施例による吸収冷凍機の蒸発器の
伝熱管長手方向の断面模式図、
FIG. 7 is a schematic cross-sectional view in the longitudinal direction of a heat transfer tube of an evaporator of an absorption refrigerator according to one embodiment of the present invention;

【図8】本発明の吸収冷凍機の他の実施例による蒸発器
の断面模式図、
FIG. 8 is a schematic sectional view of an evaporator according to another embodiment of the absorption refrigerator of the present invention,

【図9】吸収冷凍機の全体系統概念図。FIG. 9 is a conceptual diagram of the entire system of the absorption refrigerator.

【符号の説明】[Explanation of symbols]

1…伝熱管 2…管群ブロッ
ク 3…蒸気流路 4…蒸発器から
流入する蒸気の流入部 5…吸収液散布装置 6…吸収液 7…吸収液排出口または抽気口 8…伝熱管配置
領域 9…圧力プロット位置 10…吸収液排出口または抽気口7に隣接する管群ブロ
ック 11…蒸気と液を同時に通す分散板 12…蒸発媒体
散布装置 13…蒸発媒体 14…蒸気流出
部 15…蒸発媒体排出口
DESCRIPTION OF SYMBOLS 1 ... Heat transfer tube 2 ... Tube group block 3 ... Steam flow path 4 ... Inflow part of the steam which flows in from an evaporator 5 ... Absorbing liquid spraying device 6 ... Absorbing liquid 7 ... Absorbing liquid discharge port or bleeding port 8 ... Heat transfer tube arrangement area 9: Pressure plotting position 10: Tube group block adjacent to absorption liquid outlet or bleeding port 7: Dispersion plate for passing vapor and liquid simultaneously 12: Evaporation medium dispersing device 13: Evaporation medium 14: Vapor outlet 15: Evaporation medium Vent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋文夫 茨城県日立市森山町1168番地 株式会社 日立製作所エネルギー研究所内 (72)発明者 相沢道彦 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (56)参考文献 特開 平4−309764(JP,A) 実開 昭64−41056(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fumio Takahashi 1168 Moriyamacho, Hitachi City, Ibaraki Prefecture Inside Energy Laboratory, Hitachi, Ltd. (56) References JP-A-4-309764 (JP, A) Jpn.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器は伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
いることを特徴とする吸収冷凍機。
1. An absorption refrigerator having an evaporator for evaporating liquid on the surfaces of a plurality of heat transfer tubes to generate steam, and an absorber for absorbing steam flowing from the evaporator with the absorbent on the surfaces of the plurality of heat transfer tubes. in, absorber, in a cross section as viewed from the heat transfer tube longitudinal direction, a plurality of tube bundle territory was densely arranged heat transfer tube
Area and the maximum distance between adjacent heat transfer tubes in each tube bank area
Also has a large spacing steam flow path, and the heat transfer tubes are densely arranged
Each of the plurality of tube bank regions is surrounded by the steam flow path.
Absorption refrigerating machine, characterized in that there.
【請求項2】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
おり、かつ吸収器への蒸気流入面から見た断面におい
て、伝熱管を密に配置した前記複数の管群領域の各々が
その領域内の隣接伝熱管の間隔の最大値よりも大きな間
隔の蒸気流路で分割されていることを特徴とする吸収冷
凍機。
2. An absorption refrigerator having an evaporator for evaporating liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber for absorbing the steam flowing from the evaporator with the absorbent on the surfaces of the plurality of heat transfer tubes. In the absorber, in the cross section viewed from the longitudinal direction of the heat transfer tubes, the steam having a larger interval than the maximum value of the interval between the plurality of tube group regions in which the heat transfer tubes are densely arranged and the adjacent heat transfer tube in each tube group region. Having a flow path, each of the plurality of tube group areas where heat transfer tubes are densely arranged are surrounded by the steam flow path.
And the cross section seen from the vapor inflow side to the absorber
Thus, each of the plurality of tube bank regions where heat transfer tubes are densely arranged is
While the distance is greater than the maximum distance between adjacent heat transfer tubes in the area
An absorption refrigerator characterized by being divided by a separate steam flow path .
【請求項3】 1つの管群領域に属する伝熱管の蒸気流
入方向に垂直な方向の列数が20列以下である請求項2
記載の吸収冷凍機。
3. A steam flow of a heat transfer tube belonging to one tube bank region.
The number of columns in a direction perpendicular to the input direction is 20 or less.
The absorption refrigerator described .
【請求項4】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器が伝熱管長手方向から見
た断面において、伝熱管を密に配置した管群領域と各管
群領域内の隣接伝熱管の間隔の最大値よりも大きな間隔
の蒸気流路とを有し、伝熱管を密に配置した前記複数の
管群領域の各々が前記蒸気流路で分離されており、かつ
吸収器内の吸収液排出口または抽気口に最も近い管群領
域が他の管群領域に比べて伝熱管数が多いかまたは伝熱
管ピッチが狭いことを特徴とする吸収冷凍機。
4. A method of evaporating liquid on the surfaces of a plurality of heat transfer tubes to evaporate.
Vaporizing evaporator and the vapor flowing from the evaporator
It has an absorber to absorb with the absorption liquid on the surface of several heat transfer tubes
Absorption refrigerator, the absorber is viewed from the longitudinal direction of the heat transfer tube.
Tube section with densely arranged heat transfer tubes and each tube
Spacing greater than the maximum spacing between adjacent heat transfer tubes in the group area
And a plurality of the steam flow paths, wherein the heat transfer tubes are densely arranged.
Each of the tube bundle regions is separated by the steam flow path; and
The tube group closest to the absorbent outlet or bleed port in the absorber
The number of heat transfer tubes is larger or the heat transfer is larger
An absorption refrigerator characterized by a narrow pipe pitch .
【請求項5】 吸収器内の前記管群領域の中にもしくは
前記蒸気流路の中に液体と気体を同時に通過させる分散
板を配置した請求項1ないし4のいずれかに 記載の吸収
冷凍機。
5. In the tube bundle area in an absorber or
Dispersion that allows liquid and gas to pass simultaneously through the vapor flow path
The absorption refrigerator according to any one of claims 1 to 4, wherein a plate is arranged .
【請求項6】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、蒸発器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
いることを特徴とする吸収冷凍機。
6. A method for evaporating a liquid on the surface of a plurality of heat transfer tubes to evaporate.
Vaporizing evaporator and the vapor flowing from the evaporator
It has an absorber to absorb with the absorption liquid on the surface of several heat transfer tubes
In the absorption refrigerator, the evaporator is located in the longitudinal direction of the heat transfer tube.
In the cross section seen, multiple tube groups with densely arranged heat transfer tubes
Area and the maximum distance between adjacent heat transfer tubes in each tube bank area
Also has a large spacing steam flow path, and the heat transfer tubes are densely arranged
Each of the plurality of tube bank regions is surrounded by the steam flow path.
An absorption refrigerator.
【請求項7】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、蒸発器は伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
おり、かつ蒸発器からの蒸気流出面から見た断面におい
て、伝熱管を密に配置した前記複数の管群領域の各々が
その領域内の隣接伝熱管の間隔の最大値よりも大きな間
隔の蒸気流路で分割されていることを特徴とする吸収冷
凍機。
7. An absorption refrigerator having an evaporator for evaporating liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber for absorbing the steam flowing from the evaporator with the absorbent on the surfaces of the plurality of heat transfer tubes. in the evaporator, in the cross section seen from the heat transfer tube longitudinal direction, a plurality of tube bundle territory was densely arranged heat transfer tube
Area and the maximum distance between adjacent heat transfer tubes in each tube bank area
Also has a large spacing steam flow path, and the heat transfer tubes are densely arranged
Each of the plurality of tube bank regions is surrounded by the steam flow path.
And the cross section seen from the vapor outflow surface from the evaporator
Thus, each of the plurality of tube bank regions where heat transfer tubes are densely arranged is
While the distance is greater than the maximum distance between adjacent heat transfer tubes in the area
An absorption refrigerator characterized by being divided by a separate steam flow path .
【請求項8】 1つの管群領域に属する伝熱管の蒸気流
出方向に垂直な方向の列数が20列以下である請求項7
記載の吸収冷凍機。
8. A steam flow of a heat transfer tube belonging to one tube bank region.
8. The number of columns in a direction perpendicular to the exit direction is 20 or less.
The absorption refrigerator described .
【請求項9】 蒸発器内の前記管群領域の中にもしくは
前記蒸気流路の中に液体と気体を同時に通過させる分散
板を配置した請求項6ないし8のいずれかに記載の吸収
冷凍機。
9. In the tube bank area in an evaporator or
Dispersion that allows liquid and gas to pass simultaneously through the vapor flow path
The absorption refrigerator according to any one of claims 6 to 8, wherein a plate is arranged .
JP3233314A 1991-09-12 1991-09-12 Absorption refrigerator Expired - Fee Related JP2568769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233314A JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233314A JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0571827A JPH0571827A (en) 1993-03-23
JP2568769B2 true JP2568769B2 (en) 1997-01-08

Family

ID=16953190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233314A Expired - Fee Related JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2568769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015847A1 (en) * 1997-09-19 1999-04-01 Hitachi, Ltd. Heat exchanger and absorption water cooler/heater using the heat exchanger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463880A (en) * 1994-02-07 1995-11-07 Hitachi, Ltd. Absorption refrigerator
JP3572250B2 (en) * 2000-10-24 2004-09-29 三菱重工業株式会社 Condenser for refrigerator
KR100467248B1 (en) * 2001-07-23 2005-01-24 미츠비시 쥬고교 가부시키가이샤 Evaporator and refrigerator
JP5547560B2 (en) * 2010-06-18 2014-07-16 荏原冷熱システム株式会社 Absorption heat pump
EP3119342B1 (en) 2014-03-17 2021-05-12 Intuitive Surgical Operations, Inc. System for maintaining a tool pose

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131725A (en) * 1985-12-03 1987-06-15 株式会社東芝 Generating plant operating apparatus
JP2506228B2 (en) * 1990-08-29 1996-06-12 シャープ株式会社 Odor reduction device for upper and lower core oil combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015847A1 (en) * 1997-09-19 1999-04-01 Hitachi, Ltd. Heat exchanger and absorption water cooler/heater using the heat exchanger

Also Published As

Publication number Publication date
JPH0571827A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
KR950001258A (en) Combined direct and indirect closed loop evaporative heat exchange method and apparatus
US5205352A (en) Heat exchanger for condensing vapor into liquid phase, power generating plant using the heat exchanger and absorption refrigerator using the heat exchanger
JP2568769B2 (en) Absorption refrigerator
US3316727A (en) Absorption refrigeration systems
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
JP3935610B2 (en) Heat exchanger and absorption refrigerator
JP2016023925A (en) Evaporation air conditioning system
JP4881820B2 (en) Absorption refrigerator
KR880009254A (en) Dual-effect air-cooled freezer
CN108844260B (en) Evaporator and air-conditioner set
JP2973653B2 (en) Absorption refrigerator
JP6805473B2 (en) Absorption chiller
CN208720575U (en) Evaporator and air-conditioner set
CN108375238B (en) Absorption refrigerator
JP2974005B2 (en) Absorption refrigerator
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JPH06307735A (en) Absorption freezer
JPH08247574A (en) Absorber, absorption heat transfer tube and absorption refrigerating machine
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP5036360B2 (en) Absorption refrigerator
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
JPH062988A (en) Absorption refrigerator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP3879176B2 (en) Air-cooled absorption refrigeration system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees