JP5547560B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP5547560B2
JP5547560B2 JP2010139300A JP2010139300A JP5547560B2 JP 5547560 B2 JP5547560 B2 JP 5547560B2 JP 2010139300 A JP2010139300 A JP 2010139300A JP 2010139300 A JP2010139300 A JP 2010139300A JP 5547560 B2 JP5547560 B2 JP 5547560B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
divided
liquid
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139300A
Other languages
Japanese (ja)
Other versions
JP2012002454A (en
Inventor
修行 井上
幸大 福住
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2010139300A priority Critical patent/JP5547560B2/en
Priority to CN201110163937.7A priority patent/CN102287951B/en
Publication of JP2012002454A publication Critical patent/JP2012002454A/en
Application granted granted Critical
Publication of JP5547560B2 publication Critical patent/JP5547560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は蒸気を発生する吸収ヒートポンプに関し、特に伝熱管の本数が多い吸収器を備える吸収ヒートポンプに関する。   The present invention relates to an absorption heat pump that generates steam, and more particularly to an absorption heat pump including an absorber having a large number of heat transfer tubes.

蒸発器で発生させた冷媒蒸気を吸収器に導き、吸収器において冷媒蒸気を吸収溶液に吸収させる際に発生する吸収熱で水を加熱して水蒸気を得る吸収ヒートポンプがある(例えば、特許文献1参照)。近年このような吸収ヒートポンプで、大型化の要請が目立つようになってきた。   There is an absorption heat pump in which refrigerant vapor generated in an evaporator is guided to an absorber, and water is heated by absorption heat generated when the refrigerant vapor is absorbed by an absorbing solution in the absorber to obtain water vapor (for example, Patent Document 1). reference). In recent years, with such an absorption heat pump, a demand for an increase in size has been conspicuous.

特開2006−138614号公報JP 2006-138614 A

しかしながら、吸収ヒートポンプを大型化しようとすると、いきおい吸収器の伝熱管の本数が増大する。すると、伝熱管内の被加熱流体流量に大きな偏りが生じ、伝熱管の有効面積割合が減少する。特に、上下方向の管配置の段数が増えると顕著になる。特に水蒸気を得ようとする吸収ヒートポンプで、管群が管板部で流れ方向が反転する複数パス構造では、ターンして新たな管群に入るとき、下部管群に液が多く、上部管群は蒸気が多くなり、質量流量にすると下部に多くの流量が流れ、上部は蒸気が殆どの割合を占めて伝熱が悪くなるという問題があった。   However, when trying to increase the size of the absorption heat pump, the number of heat transfer tubes of the lively absorber increases. Then, a large deviation occurs in the flow rate of the fluid to be heated in the heat transfer tube, and the effective area ratio of the heat transfer tube decreases. In particular, it becomes prominent when the number of stages of pipe arrangement in the vertical direction increases. Especially in an absorption heat pump that tries to obtain water vapor, in a multi-pass structure in which the flow direction of the tube group is reversed at the tube plate part, when turning into a new tube group, there is a lot of liquid in the lower tube group, and the upper tube group There was a problem that the steam increased in volume, and when the mass flow rate was increased, a large flow rate flowed in the lower part, and the upper part of the steam accounted for most of the ratio, resulting in poor heat transfer.

本発明は上述の課題に鑑み、被加熱流体ガスを発生する吸収器の伝熱管内の被加熱流体流量に大きな偏りが生じず、伝熱管の有効面積割合の減少を抑制することのできる吸収ヒートポンプを提供することを目的とする。   In view of the above-described problems, the present invention is an absorption heat pump capable of suppressing a decrease in the effective area ratio of the heat transfer tube without causing a large deviation in the flow rate of the heated fluid in the heat transfer tube of the absorber that generates the heated fluid gas. The purpose is to provide.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプ100Aは、例えば図1に示すように、冷媒ガスを吸収して発生する吸収熱で被加熱流体液103を加熱して、被加熱流体ガスを発生する吸収器A1を備え;吸収器A1は、水平に配置された複数の伝熱管からなる伝熱管群12であって、外側に吸収液を散布し、内側に前記被加熱流体液を流す複数の伝熱管からなる伝熱管群12と;伝熱管群12の被加熱流体液供給側に、前記被加熱流体液を供給する被加熱流体室121とを有し;被加熱流体室121は、伝熱管群12を上下方向に均等な本数ずつの分割伝熱管群12a、12bに分割する仕切り122と;各分割伝熱管群12a、12bに均等に前記被加熱流体液を供給する供給口131a−1、131b−1を有する。   In order to achieve the above object, the absorption heat pump 100A according to the first aspect of the present invention heats the fluid fluid 103 to be heated with absorbed heat generated by absorbing refrigerant gas, for example, as shown in FIG. An absorber A1 for generating a heated fluid gas; the absorber A1 is a heat transfer tube group 12 composed of a plurality of heat transfer tubes arranged horizontally, and sprays an absorbing liquid on the outside, and A heat transfer tube group 12 composed of a plurality of heat transfer tubes through which the heated fluid liquid flows; and a heated fluid chamber 121 for supplying the heated fluid liquid on the heated fluid liquid supply side of the heat transfer tube group 12; The fluid chamber 121 includes a partition 122 that divides the heat transfer tube group 12 into an equal number of divided heat transfer tube groups 12a and 12b in the vertical direction; Supply ports 131a-1, 131b-1 To.

本態様のように構成すると、吸収器は伝熱管群を有し、伝熱管群の被加熱流体室は、伝熱管群を上下方向に均等な本数ずつの分割伝熱管群に分割する仕切りと、各分割伝熱管群に均等に前記被加熱流体液を供給する供給口を有するので、吸収器の伝熱管内の被加熱流体流量に大きな偏りが生じず、伝熱管の有効面積割合の減少を抑制することができる。   When configured as in this aspect, the absorber has a heat transfer tube group, and the heated fluid chamber of the heat transfer tube group is a partition that divides the heat transfer tube group into equal number of divided heat transfer tube groups in the vertical direction; Since each divided heat transfer tube group has a supply port that supplies the heated fluid liquid evenly, there is no large deviation in the flow rate of the heated fluid in the heat transfer tube of the absorber, and a reduction in the effective area ratio of the heat transfer tube is suppressed. can do.

本発明の第2の態様に係る吸収ヒートポンプは、第1の態様に係る吸収ヒートポンプにおいて、例えば、図1に示すように、供給口131a−1、131b−1は、分割管群12a、12bに前記被加熱流体液を均等に分配する分配機構132a、132bを有する。   The absorption heat pump according to the second aspect of the present invention is the absorption heat pump according to the first aspect. For example, as shown in FIG. 1, the supply ports 131 a-1 and 131 b-1 are connected to the divided tube groups 12 a and 12 b. Distributing mechanisms 132a and 132b that evenly distribute the fluid to be heated are provided.

本態様のように構成すると、供給口は、分割管群に前記被加熱流体液を均等に分配する分配機構を有するので、さらに確実に、伝熱管内の被加熱流体流量に大きな偏りが生じず、伝熱管の有効面積割合の減少を抑制することができる吸収ヒートポンプを提供することができる。   When configured as in this aspect, the supply port has a distribution mechanism that evenly distributes the heated fluid liquid to the divided tube group, so that a large deviation in the flow rate of the heated fluid in the heat transfer tube does not occur more reliably. The absorption heat pump which can suppress the reduction | decrease of the effective area ratio of a heat exchanger tube can be provided.

本発明の第3の態様に係る吸収ヒートポンプは、第1の態様又は第2の態様に係る吸収ヒートポンプ100A、100Bにおいて、例えば、図4、図5に示すように、各分割伝熱管群12a、12bはそれぞれ複数パスに構成される(図4、図5では3パス)。   The absorption heat pump according to the third aspect of the present invention is the absorption heat pump 100A, 100B according to the first aspect or the second aspect. For example, as shown in FIGS. 4 and 5, each divided heat transfer tube group 12a, Each of 12b is composed of a plurality of paths (three paths in FIGS. 4 and 5).

本態様のように構成すると、各分割伝熱管群はそれぞれ複数パスに構成されるので、吸収器の伝熱管内の被加熱流体流量に大きな偏りを生じさせず、伝熱管の有効面積割合の減少を抑制しつつ、伝熱管の長さを短く抑えることができる。言い換えれば、複数パスであるので、伝熱管の本数は増える。そして複数パスであるので、一つのパスが終わったときに流れ方向が反転し、下部と上部の伝熱管群で液とガスの配分が不均等になりがちであるが、分割伝熱管群に分割する仕切りと、各分割伝熱管群に均等に前記被加熱流体液を供給する供給口を有するので、吸収器の伝熱管内の被加熱流体流量に大きな偏りを生じさせずに、伝熱管の有効面積割合の減少を抑制することができる。   When configured in this manner, each divided heat transfer tube group is configured in a plurality of paths, so that the flow rate of the fluid to be heated in the heat transfer tube of the absorber is not greatly biased and the effective area ratio of the heat transfer tube is reduced. The length of the heat transfer tube can be shortened while suppressing the above. In other words, since there are multiple paths, the number of heat transfer tubes increases. And since there are multiple passes, the flow direction is reversed when one pass is over, and the distribution of liquid and gas tends to be uneven in the lower and upper heat transfer tube groups, but it is divided into divided heat transfer tube groups And a supply port that supplies the heated fluid liquid evenly to each divided heat transfer tube group, so that the heat transfer tube is effective without causing a large deviation in the flow rate of the heated fluid in the heat transfer tube of the absorber. A reduction in the area ratio can be suppressed.

本発明の第4の態様に係る吸収ヒートポンプは、第1の態様乃至第3の態様のいずれか1の態様に係る吸収ヒートポンプ100A、100Bにおいて、例えば、図4、図5に示すように、吸収器A1−1、A1−2で発生した被加熱流体ガスを導入して、前記被加熱流体ガスと前記被加熱流体ガスに同伴する被加熱流体液とを分離する気液分離器22を備え;分割伝熱管群12a、12bの全体が前記被加熱流体液に浸るように、分割管群12a、12bの出口側の吸収器A1−1、A1−2と気液分離器22の接続口22a、22b、又は分割管群12a、12bの被加熱流体出口側の被加熱流体室128を形成する。   The absorption heat pump according to the fourth aspect of the present invention is the absorption heat pump 100A, 100B according to any one of the first to third aspects, for example, as shown in FIGS. A gas-liquid separator 22 for introducing the heated fluid gas generated in the containers A1-1 and A1-2 and separating the heated fluid gas and the heated fluid liquid accompanying the heated fluid gas; Absorbers A1-1 and A1-2 on the outlet side of the divided tube groups 12a and 12b and the connection ports 22a of the gas-liquid separator 22 so that the entire divided heat transfer tube groups 12a and 12b are immersed in the fluid to be heated. 22b or the heated fluid chamber 128 on the heated fluid outlet side of the divided tube groups 12a and 12b is formed.

本態様のように構成すると、分割伝熱管群の全体が前記被加熱流体液に浸るように構成されるので、被加熱流体のガスの吹き抜けを抑制することができる。   If comprised like this aspect, since it comprises so that the whole division | segmentation heat exchanger tube group may be immersed in the said to-be-heated fluid liquid, the blow-by of the gas of to-be-heated fluid can be suppressed.

本発明によれば、被加熱流体ガスを発生する吸収器の伝熱管内の被加熱流体流量に大きな偏りが生じず、伝熱管の有効面積割合の減少を抑制することのできる吸収ヒートポンプを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the absorption heat pump which can suppress the reduction | decrease of the effective area ratio of a heat exchanger tube without producing big bias | deviation in the fluid flow rate to be heated in the heat exchanger tube of the absorber which generates a fluid fluid to be heated is provided. It becomes possible.

本発明の実施の形態である単段昇温の吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of the absorption heat pump of the single stage temperature rising which is embodiment of this invention. 本発明の実施の形態である二段昇温の吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of the absorption heat pump of the two-step temperature rising which is embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプの吸収器と気液分離器を抽出して示した模式的部分系統図である。It is the typical partial systematic diagram which extracted and showed the absorber and gas-liquid separator of the absorption heat pump which concern on embodiment of this invention. 本発明の第一の実施の形態の吸収器を説明する模式的断面図である。It is a typical sectional view explaining the absorber of a first embodiment of the present invention. 本発明の第二の実施の形態の吸収器を説明する模式的断面図である。It is typical sectional drawing explaining the absorber of 2nd embodiment of this invention. 本発明の第一の実施の形態の吸収器の変形例を説明する模式的断面図である。It is typical sectional drawing explaining the modification of the absorber of 1st embodiment of this invention. 気泡ポンプ機能を利用して被加熱流体を吸収器と気液分離器との間に循環させる場合を説明する模式的断面図である。It is typical sectional drawing explaining the case where a to-be-heated fluid is circulated between an absorber and a gas-liquid separator using a bubble pump function.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1の模式的系統図を参照して、本発明の第1の実施の形態に係る吸収ヒートポンプ100Aを説明する。図示のように、本吸収ヒートポンプは、吸収器A1、蒸発器E1、再生器G、凝縮器C、及び溶液熱交換器X1を主要構成機器として備える。本実施の形態では、典型的には吸収液(希溶液、濃溶液)としてリチウムブロマイド水溶液、冷媒として水を用いる。   First, an absorption heat pump 100A according to a first embodiment of the present invention will be described with reference to the schematic system diagram of FIG. As illustrated, the present absorption heat pump includes an absorber A1, an evaporator E1, a regenerator G, a condenser C, and a solution heat exchanger X1 as main components. In the present embodiment, typically, an aqueous solution of lithium bromide is used as an absorbing solution (dilute solution or concentrated solution), and water is used as a refrigerant.

前記主要構成機器の作用は以下の通りである。吸収器A1は、冷媒蒸気を溶液が吸収するときに発生する吸収熱で被加熱流体としての水を加熱して蒸発させる。蒸発器E1は、熱源としての温水102で冷媒液としての水を加熱して蒸発させ吸収器A1に冷媒蒸気としての水蒸気を送る。再生器Gは、吸収器A1で冷媒蒸気を吸収して濃度の低下した希溶液を加熱して冷媒蒸気を発生させ、溶液を再生する(濃溶液とする)。凝縮器Cは、再生器Gで発生した冷媒蒸気を冷却水101で冷却し凝縮する。溶液熱交換器X1は、吸収器A1からの希溶液と再生器Gからの濃溶液とを熱交換させる。   The operation of the main component equipment is as follows. The absorber A1 heats and evaporates the water as the fluid to be heated with the absorption heat generated when the solution absorbs the refrigerant vapor. The evaporator E1 heats and evaporates the water as the refrigerant liquid with the hot water 102 as the heat source, and sends the water vapor as the refrigerant vapor to the absorber A1. The regenerator G regenerates the solution by generating the refrigerant vapor by heating the dilute solution having a reduced concentration by absorbing the refrigerant vapor in the absorber A1 (making it a concentrated solution). The condenser C cools the refrigerant vapor generated in the regenerator G with the cooling water 101 and condenses it. The solution heat exchanger X1 exchanges heat between the diluted solution from the absorber A1 and the concentrated solution from the regenerator G.

吸収ヒートポンプ100Aは、さらに再生器Gからの濃溶液を溶液ポンプ1により吸収器A1に導く濃溶液管2と、吸収器A1からの希溶液を再生器Gに導く希溶液管4と、冷媒液を冷媒ポンプ5により凝縮器Cから蒸発器E1に導く冷媒管6と、蒸発器E1で蒸発しなかった冷媒液を冷媒ポンプ5の吸い込み側に戻す冷媒管6aを備え、これらが各機器を接続している。冷媒管6と冷媒管6aには、熱交換器X2が挿入配置されており、凝縮器Cから蒸発器E1に送られる冷媒液と蒸発器E1からポンプ5の吸い込み側に戻される冷媒液の間で熱交換させる。このようにして、冷媒液を凝縮器Cから蒸発器E1に送るポンプ5は蒸発器E1に冷媒液をスプレーするポンプを兼ねているのでポンプを1台省略することができる。なお冷媒管6aは凝縮器Cに直接接続してもよい。また、蒸発器E1と吸収器A1との間には、蒸発器E1で蒸発した冷媒蒸気を吸収器A1に導く流路7が設けられ、再生器Gと凝縮器Cとの間には、再生器Gにて発生した冷媒蒸気を凝縮器Cに導く流路8とが設けられている。   The absorption heat pump 100A further includes a concentrated solution tube 2 that guides the concentrated solution from the regenerator G to the absorber A1 by the solution pump 1, a diluted solution tube 4 that guides the diluted solution from the absorber A1 to the regenerator G, and a refrigerant liquid. The refrigerant pipe 6 is connected to the evaporator E1 from the condenser C by the refrigerant pump 5, and the refrigerant pipe 6a for returning the refrigerant liquid not evaporated by the evaporator E1 to the suction side of the refrigerant pump 5, which connects each device. doing. A heat exchanger X2 is inserted and disposed in the refrigerant pipe 6 and the refrigerant pipe 6a. Between the refrigerant liquid sent from the condenser C to the evaporator E1 and the refrigerant liquid returned from the evaporator E1 to the suction side of the pump 5. Heat exchange. In this way, the pump 5 for sending the refrigerant liquid from the condenser C to the evaporator E1 also serves as a pump for spraying the refrigerant liquid on the evaporator E1, so that one pump can be omitted. The refrigerant pipe 6a may be directly connected to the condenser C. Further, a flow path 7 is provided between the evaporator E1 and the absorber A1 to guide the refrigerant vapor evaporated in the evaporator E1 to the absorber A1, and between the regenerator G and the condenser C, the regeneration is performed. And a flow path 8 for guiding the refrigerant vapor generated in the condenser G to the condenser C.

凝縮器Cには冷却水101を導く冷却水管9、蒸発器E1と再生器Gとにはそれぞれ熱源温水102を導く温水管10、11、吸収器A1には所望の高温の蒸気を得るための伝熱管(伝熱管群)12が備えられている。   The condenser C has a cooling water pipe 9 that leads the cooling water 101, the evaporator E1 and the regenerator G have hot water pipes 10 and 11 that lead the heat source hot water 102, and the absorber A1 to obtain a desired high-temperature steam. A heat transfer tube (heat transfer tube group) 12 is provided.

一方、本実施の形態の吸収ヒートポンプ100Aは、吸収器A1で加熱された被加熱流体としての水を、液体である水と水蒸気に分離する気液分離器22を備える。気液分離器22には、補給水管3が接続されている。補給水管3には、補給水ポンプ16と補給水加熱器15が配置されている。補給水加熱器15には温水102が供給され被加熱流体液としての水103を加熱(予熱)する。   On the other hand, the absorption heat pump 100A of the present embodiment includes a gas-liquid separator 22 that separates water as a heated fluid heated by the absorber A1 into liquid water and water vapor. A makeup water pipe 3 is connected to the gas-liquid separator 22. A makeup water pump 16 and a makeup water heater 15 are arranged in the makeup water pipe 3. Hot water 102 is supplied to the makeup water heater 15 to heat (preheat) the water 103 as the fluid to be heated.

気液分離器22には液面計L3を設けられ、該液面計L3の検出出力で補給水ポンプ16を制御することにより、気液分離器22内の液面の液位を所定レベルに維持する。   The gas-liquid separator 22 is provided with a liquid level gauge L3, and the liquid level in the gas-liquid separator 22 is brought to a predetermined level by controlling the replenishment water pump 16 with the detection output of the liquid level gauge L3. maintain.

吸収器A1の伝熱管12の入口には、被加熱流体液としての水103を気液分離器22から補給する補給管3aが接続され、伝熱管12の出口側には、気液分離器22に吸収器A1で蒸発した水蒸気を戻す戻し管3b(3b−1、3b−2、3b−3)が接続されている。   A supply pipe 3a for supplying water 103 as a fluid to be heated from the gas-liquid separator 22 is connected to the inlet of the heat transfer pipe 12 of the absorber A1, and the gas-liquid separator 22 is connected to the outlet side of the heat transfer pipe 12. A return pipe 3b (3b-1, 3b-2, 3b-3) for returning the water vapor evaporated by the absorber A1 is connected to the main body.

気液分離器22からは、蒸発量の1〜3倍(より好ましくは1.5〜2倍)程度の水103が吸収器A1の伝熱管12に導入される。このようにして、被加熱流体である水側の伝熱係数を上げることができる。気液分離器22は、圧力検出器P1と制御器CONTを備える。圧力検出器P1で検出した、気液分離器22の内部圧力が所定の設定値に維持されるように、制御器CONTは制御弁41の開度を調節する。   From the gas-liquid separator 22, the water 103 of about 1 to 3 times (more preferably 1.5 to 2 times) the amount of evaporation is introduced into the heat transfer tube 12 of the absorber A1. In this manner, the heat transfer coefficient on the water side that is the fluid to be heated can be increased. The gas-liquid separator 22 includes a pressure detector P1 and a controller CONT. The controller CONT adjusts the opening degree of the control valve 41 so that the internal pressure of the gas-liquid separator 22 detected by the pressure detector P1 is maintained at a predetermined set value.

上記構成の吸収ヒートポンプにおいて、再生器Gの温水管11に熱源温水102を供給することにより、再生器Gの中の溶液は蒸発して濃溶液となる。該濃溶液は溶液ポンプ1により溶液熱交換器X1を通って加熱され、吸収器A1に送られ、伝熱管12の伝熱面上に散布される。一方冷媒ポンプ5により蒸発器E1に送られた冷媒は、温水管10を通る熱源温水102により加熱され蒸発する。該冷媒蒸気は流路7を経て吸収器A1に達し前記散布された濃溶液に吸収され、濃溶液は希溶液となる。この際の吸収熱により濃溶液は加熱され高温度になり、伝熱管12の伝熱面を加熱し、伝熱管12を通る水103を加熱し、蒸気104が発生し、伝熱管12から排出される。   In the absorption heat pump having the above configuration, when the heat source hot water 102 is supplied to the hot water pipe 11 of the regenerator G, the solution in the regenerator G evaporates to become a concentrated solution. The concentrated solution is heated by the solution pump 1 through the solution heat exchanger X 1, sent to the absorber A 1, and sprayed on the heat transfer surface of the heat transfer tube 12. On the other hand, the refrigerant sent to the evaporator E1 by the refrigerant pump 5 is heated and evaporated by the heat source hot water 102 passing through the hot water pipe 10. The refrigerant vapor reaches the absorber A1 through the flow path 7 and is absorbed by the sprayed concentrated solution, and the concentrated solution becomes a diluted solution. The concentrated solution is heated to a high temperature by the absorbed heat at this time, heats the heat transfer surface of the heat transfer tube 12, heats the water 103 passing through the heat transfer tube 12, generates steam 104, and is discharged from the heat transfer tube 12. The

吸収器A1の希溶液は希溶液管4を通り、溶液熱交換器X1で濃溶液管2を通る濃溶液を加熱し再生器Gに戻る。再生器Gで発生した蒸気は流路8を通って凝縮器Cに達し、冷却水管9を通る冷却水101により冷却され凝縮し、サイクルが繰り返される。   The dilute solution in the absorber A1 passes through the dilute solution tube 4, and the concentrated solution passing through the concentrated solution tube 2 is heated by the solution heat exchanger X1 and returned to the regenerator G. The steam generated in the regenerator G reaches the condenser C through the flow path 8, is cooled and condensed by the cooling water 101 passing through the cooling water pipe 9, and the cycle is repeated.

吸収器A1には、その底部に溜まった溶液の液面を検出する液面計L1が設けられている。底部には溶液の出口が設けられている。液面計L1の検出出力を溶液ポンプ1を駆動するインバータ18に送り、該溶液ポンプ1を制御する。これにより、再生器Gから吸収器A1に送る濃溶液の流量を制御して、吸収器A1の底部に溜まった溶液の液面の液位を指定レベルに維持する。   The absorber A1 is provided with a liquid level gauge L1 for detecting the liquid level of the solution accumulated at the bottom. A solution outlet is provided at the bottom. The detection output of the liquid level gauge L1 is sent to the inverter 18 that drives the solution pump 1, and the solution pump 1 is controlled. Thereby, the flow rate of the concentrated solution sent from the regenerator G to the absorber A1 is controlled, and the liquid level of the solution level accumulated at the bottom of the absorber A1 is maintained at a specified level.

また、蒸発器E1にも底部に溜まった冷媒液の液面を検出する液面計L2が設けられている。底部には冷媒液の出口が設けられている。液面計L2の検出出力を制御弁20に出力し、該制御弁20を制御して、凝縮器Cから供給される冷媒流量を制御して、蒸発器E1の冷媒液の液面を維持する。   The evaporator E1 is also provided with a liquid level gauge L2 for detecting the liquid level of the refrigerant liquid accumulated at the bottom. A refrigerant liquid outlet is provided at the bottom. The detection output of the level gauge L2 is output to the control valve 20, and the control valve 20 is controlled to control the flow rate of the refrigerant supplied from the condenser C to maintain the liquid level of the refrigerant liquid in the evaporator E1. .

吸収器A1の具体的な構造は、図3、図4、図5を参照して、後で詳しく説明する。   The specific structure of the absorber A1 will be described in detail later with reference to FIGS.

図2を参照して、本発明に係る吸収ヒートポンプの他の構成例を説明する。本吸収ヒートポンプは2段昇温の例である。本図に示すように、高温吸収器AHと気液分離器EHSが設けられている。ここで図1における吸収器A1に対応する吸収器A2は低温吸収器となり、蒸発器E1に対応する蒸発器E2は低温蒸発器となる。また、高温蒸発器EHは低温吸収器A2の被加熱側となる。   With reference to FIG. 2, the other structural example of the absorption heat pump which concerns on this invention is demonstrated. This absorption heat pump is an example of two-stage temperature rise. As shown in this figure, a high-temperature absorber AH and a gas-liquid separator EHS are provided. Here, the absorber A2 corresponding to the absorber A1 in FIG. 1 is a low-temperature absorber, and the evaporator E2 corresponding to the evaporator E1 is a low-temperature evaporator. Further, the high temperature evaporator EH is on the heated side of the low temperature absorber A2.

凝縮器Cから冷媒管6を通って送られる冷媒液は制御弁32及び冷媒分岐管30を通って気液分離器EHSに供給される。一方高温蒸発器EHからの冷媒蒸気は冷媒管34−1を通って気液分離器EHSに送られる。これにより気液分離器EHSで凝縮器Cからの冷媒液は加熱蒸発される。気液分離された冷媒液は冷媒管34−2を通って低温吸収器A2に戻る。気液分離器EHS内にはバッフル板33が設けられている。バッフル板33は、ここに気液を衝突させることにより、冷媒液を冷媒ガスから分離して、冷媒液が高温吸収器AHに流れないようにする。   The refrigerant liquid sent from the condenser C through the refrigerant pipe 6 is supplied to the gas-liquid separator EHS through the control valve 32 and the refrigerant branch pipe 30. On the other hand, the refrigerant vapor from the high-temperature evaporator EH is sent to the gas-liquid separator EHS through the refrigerant pipe 34-1. Thereby, the refrigerant liquid from the condenser C is heated and evaporated by the gas-liquid separator EHS. The refrigerant liquid separated from the gas and liquid returns to the low-temperature absorber A2 through the refrigerant pipe 34-2. A baffle plate 33 is provided in the gas-liquid separator EHS. The baffle plate 33 separates the refrigerant liquid from the refrigerant gas by causing the gas liquid to collide with the baffle plate 33 so that the refrigerant liquid does not flow to the high temperature absorber AH.

再生器Gからの濃溶液は溶液ポンプ1により、溶液熱交換器X1、及び熱交換器X3を通って加熱(予熱)され高温吸収器AHに送られる。ここで気液分離器EHSからの冷媒蒸気は濃溶液に吸収され、濃溶液は希溶液となる。この際の吸収熱により濃溶液は加熱され高温度になり、伝熱管35の伝熱面を加熱し、伝熱管35を通る水103は加熱され蒸気となる。該水蒸気は気液分離器22に導入され、気液分離され、水蒸気104が蒸気管13から排出される。   The concentrated solution from the regenerator G is heated (preheated) by the solution pump 1 through the solution heat exchanger X1 and the heat exchanger X3, and sent to the high-temperature absorber AH. Here, the refrigerant vapor from the gas-liquid separator EHS is absorbed by the concentrated solution, and the concentrated solution becomes a diluted solution. The concentrated solution is heated to a high temperature by the absorbed heat at this time, and the heat transfer surface of the heat transfer tube 35 is heated, and the water 103 passing through the heat transfer tube 35 is heated to become steam. The water vapor is introduced into the gas-liquid separator 22 to be gas-liquid separated, and the water vapor 104 is discharged from the vapor pipe 13.

高温吸収器AHの希溶液は希溶液管37を通って、熱交換器X3で高温吸収器AHに送られる濃溶液を加熱して、制御弁40を通って低温吸収器A2に流入する。低温吸収器A2の底部に溜まった溶液の液面を検出する液面計L1の出力で制御弁40を制御し、低温吸収器A2の底部の溶液の液面の液位を所定レベルに維持する。また、高温吸収器AHには底部の溶液の液面を検出する液面計L4が設けられている。該液面計L4の検出出力を溶液ポンプ1を駆動するインバータ18に送り、該溶液ポンプ1の回転速度を調節することにより、高温吸収器AHに送る濃溶液の流量を調節して、高温吸収器AHの底部の溶液の液面の液位を所定レベルに維持する。   The dilute solution in the high temperature absorber AH passes through the dilute solution tube 37, heats the concentrated solution sent to the high temperature absorber AH by the heat exchanger X3, and flows into the low temperature absorber A2 through the control valve 40. The control valve 40 is controlled by the output of the liquid level gauge L1 that detects the liquid level of the solution accumulated at the bottom of the low temperature absorber A2, and the liquid level of the solution level at the bottom of the low temperature absorber A2 is maintained at a predetermined level. . The high temperature absorber AH is provided with a liquid level gauge L4 for detecting the liquid level of the solution at the bottom. The detection output of the level gauge L4 is sent to the inverter 18 that drives the solution pump 1, and the rotational speed of the solution pump 1 is adjusted to adjust the flow rate of the concentrated solution sent to the high temperature absorber AH, thereby absorbing the high temperature. The liquid level of the solution at the bottom of the vessel AH is maintained at a predetermined level.

また、気液分離器EHSには底部に溜まった冷媒液の液面を検出する液面計L5が設けられており、該液面計L5の検出出力で制御弁32を調節して、気液分離器EHSの液面の液位を所定レベルに維持する。また、低温蒸発器E2の底部に溜まった冷媒液の液面位も液面計L2の検出出力で制御弁20を調節して凝縮器Cからの冷媒液供給量を調整して所定レベルに維持する。   The gas-liquid separator EHS is provided with a liquid level gauge L5 for detecting the liquid level of the refrigerant liquid accumulated at the bottom, and the control valve 32 is adjusted by the detection output of the liquid level gauge L5 to The liquid level of the separator EHS is maintained at a predetermined level. Further, the liquid level of the refrigerant liquid accumulated at the bottom of the low temperature evaporator E2 is also maintained at a predetermined level by adjusting the control valve 20 with the detection output of the liquid level gauge L2 to adjust the amount of refrigerant liquid supplied from the condenser C. To do.

なお、図1と図2に示す構成の吸収ヒートポンプ100A、100Bは、蒸発器E1、E2を熱源温水102を導く伝熱管上に凝縮器Cからの冷媒液を散布する散布式の蒸発器として説明したが、冷媒液中に熱源温水102を導く伝熱管を配設した構成としてもよい。前者は、比較的低い温度で作動する蒸発器に適しており、後者は比較的高い温度で作動する蒸発器に適している。本実施の形態のような昇温型の吸収ヒートポンプでは、吸収冷凍機と異なり、蒸発器は比較的高い温度で作動するので後者を使うことができる場合が多い。そのように構成すると、2段昇温の吸収ヒートポンプにおいて、高温吸収器AHだけでなく、低温吸収器A2も、被加熱流体ガスを発生する吸収器の伝熱管内の被加熱流体流量に大きな偏りが生じないため、両吸収器の伝熱管の有効面積割合の減少を抑制することのできる吸収ヒートポンプ、すなわち、吸収ヒートポンプ全体として、COPが高く、また高温の蒸気を得やすいものとすることができる。   The absorption heat pumps 100A and 100B having the configurations shown in FIGS. 1 and 2 are described as spray-type evaporators in which the evaporators E1 and E2 are sprayed with the refrigerant liquid from the condenser C on the heat transfer tubes that guide the heat source hot water 102. However, a configuration in which a heat transfer tube that guides the heat source hot water 102 into the refrigerant liquid may be provided. The former is suitable for an evaporator operating at a relatively low temperature, and the latter is suitable for an evaporator operating at a relatively high temperature. In the temperature rising type absorption heat pump as in the present embodiment, unlike the absorption refrigerator, the evaporator operates at a relatively high temperature, so the latter can often be used. With such a configuration, in the two-stage temperature rising absorption heat pump, not only the high temperature absorber AH but also the low temperature absorber A2 has a large deviation in the flow rate of the heated fluid in the heat transfer tube of the absorber that generates the heated fluid gas. Therefore, the absorption heat pump that can suppress the reduction in the effective area ratio of the heat transfer tubes of both absorbers, that is, the absorption heat pump as a whole, has a high COP and can easily obtain high-temperature steam. .

図3を参照して、本発明の実施の形態が備える吸収器A1の構成を説明する。図1、図2では、吸収器A1、AHの構成は吸収ヒートポンプ100A、100Bの全体構成の中でどのような作用を有するかを説明するに十分な程度に示しただけであるが、以下詳細に具体的な構造を説明する。図2の高温吸収器AHも、図1の吸収ヒートポンプ100Aの吸収器A1と全く同様な構造を有するが、以下吸収器A1として説明する。なお図2の低温吸収器A2も、伝熱管内で冷媒の蒸発が起こるので、同じ構成が適用し得る。   With reference to FIG. 3, the structure of absorber A1 with which embodiment of this invention is provided is demonstrated. In FIGS. 1 and 2, the configurations of the absorbers A1 and AH are only shown to a sufficient extent to explain what action the overall configuration of the absorption heat pumps 100A and 100B has. The specific structure will be described below. The high-temperature absorber AH of FIG. 2 has the same structure as the absorber A1 of the absorption heat pump 100A of FIG. 1, but will be described as the absorber A1 below. The low temperature absorber A2 in FIG. 2 can also be applied with the same configuration because the refrigerant evaporates in the heat transfer tube.

本発明の実施の形態に適した吸収器A1は、具体的には、水平に配置された複数の伝熱管からなる伝熱管群12を備える。伝熱管群12は、これを均等に分割して分割伝熱管群12a、12b、12cとする。本図では分割伝熱管群の数が3の場合を示す。しかしながら、分割伝熱管群の数は2であってもよく、4以上であってもよい。伝熱管群12(12a、12b、12c)には、その外側に吸収液を散布し、各伝熱管の内側に被加熱流体液としての水を流す。   Specifically, the absorber A1 suitable for the embodiment of the present invention includes a heat transfer tube group 12 including a plurality of heat transfer tubes arranged horizontally. The heat transfer tube group 12 is equally divided into divided heat transfer tube groups 12a, 12b, and 12c. This figure shows a case where the number of divided heat transfer tube groups is three. However, the number of divided heat transfer tube groups may be two or four or more. The heat transfer tube group 12 (12a, 12b, 12c) is sprayed with an absorbing liquid on the outside thereof, and water as a fluid to be heated is allowed to flow inside each heat transfer tube.

被加熱流体の流量の偏りは、特に上下方向に配置される伝熱管の本数が増えると顕著になる。したがって、伝熱管群12の分割は、上下方向で複数に分割する。   The deviation of the flow rate of the fluid to be heated becomes remarkable when the number of heat transfer tubes arranged in the vertical direction increases. Accordingly, the heat transfer tube group 12 is divided into a plurality of parts in the vertical direction.

図4を参照して、吸収器A1のさらに具体的な構造を説明する。ここでは、第一の実施の形態として、分割伝熱管群の数が2の場合の吸収器A1−1で説明する。伝熱管群12の被加熱流体液としての水を供給する側に、該水を供給する被加熱流体室としての第一の水室121を有する。第一の水室121は、伝熱管群12を上下方向に均等な本数ずつの分割伝熱管群12a、12bに分割する仕切り122を有する。ここで被加熱流体室を具体的に水室と呼ぶ。この水室には蒸気だけが集まる場合もあるが、便宜上その場合も水室と呼ぶ。   A more specific structure of the absorber A1 will be described with reference to FIG. Here, as a first embodiment, an explanation will be given of the absorber A1-1 when the number of divided heat transfer tube groups is two. A first water chamber 121 as a heated fluid chamber for supplying water is provided on the side of supplying water as the heated fluid liquid of the heat transfer tube group 12. The first water chamber 121 includes a partition 122 that divides the heat transfer tube group 12 into equal number of divided heat transfer tube groups 12a and 12b in the vertical direction. Here, the heated fluid chamber is specifically referred to as a water chamber. In some cases, only steam collects in this water chamber, but for convenience, it is also called a water chamber.

ここで均等な本数とは、典型的には同一本数であるが、ほぼ同数であればよい。すなわち、分割伝熱管群12a、12bの伝熱管の本数がそれぞれ過大でなく各伝熱管に流入する被加熱流体である水の流量に大きな偏りが生じない程度の均等本数であればよい。例えば、170本を越えると流量に偏りが生じてしまう場合であって(縦と横の配分、伝熱管の口径、吸収器で得ようとする水蒸気の温度等により偏りが生じるか生じないかの限界の本数あるいは縦方向段数は異なるが、ここでは本数で表現する)、要求される吸収器の管の本数が480本である場合を想定する。   Here, the equal number is typically the same number, but may be substantially the same number. In other words, the number of heat transfer tubes in the divided heat transfer tube groups 12a and 12b may be an equal number so that the flow rate of water, which is the fluid to be heated flowing into each heat transfer tube, is not excessive and does not cause a large deviation. For example, if the number of tubes exceeds 170, the flow rate will be uneven (whether the unevenness occurs due to vertical and horizontal distribution, the diameter of the heat transfer tube, the temperature of the water vapor to be obtained by the absorber, etc.) Although the limit number or the number of vertical stages are different, it is expressed here as a number), but it is assumed that the required number of absorber tubes is 480.

この場合、2の分割伝熱管群に分割すると、各分割伝熱管群の管の本数は240本となる。これは流量に偏りが生じない限界の本数の170本より多い。次に3の分割伝熱管群に分割すると、各分割伝熱管群の管の本数は160本となる。これは流量に偏りが生じない限界の本数の170本より少ない。したがって3分割すればよいことが分かる。この場合、均等な本数は典型的には160であるが、150本、160本、170本に3分割してもよい。これも均等な本数の概念に含まれる。流れに偏りが生じないという効果を奏する範囲の本数だからである。   In this case, when divided into two divided heat transfer tube groups, the number of tubes in each divided heat transfer tube group is 240. This is more than the limit number of 170 at which the flow rate is not biased. Next, when divided into three divided heat transfer tube groups, the number of tubes in each divided heat transfer tube group is 160. This is less than the limit number of 170 at which the flow rate is not biased. Therefore, it can be seen that the division into three is sufficient. In this case, the equivalent number is typically 160, but it may be divided into three parts of 150, 160, and 170. This is also included in the concept of an equal number. This is because the number is within a range that produces an effect that the flow is not biased.

ここでは、仕切り122により仕切られることにより、第一の水室121は2つの分割水室121a、121bに分割される場合で説明する。分割水室121a、121bは、それぞれ分割伝熱管群12a、12bをカバーする。   Here, the case where the first water chamber 121 is divided into two divided water chambers 121a and 121b by being partitioned by the partition 122 will be described. The divided water chambers 121a and 121b cover the divided heat transfer tube groups 12a and 12b, respectively.

2つの分割水室121a、121b、ひいては分割伝熱管群12a、12bは、典型的には、上下方向に並ぶように分割される(3以上の分割水室、分割伝熱管群の場合も同様に上下方向に並ぶように分割される)。このように分割すると、各分割伝熱管群が縦方向に長く配列されることを避けることができる。   The two divided water chambers 121a and 121b, and thus the divided heat transfer tube groups 12a and 12b, are typically divided so as to be lined up and down (the same applies to three or more divided water chambers and divided heat transfer tube groups). Divided so that they line up vertically). By dividing in this way, it is possible to avoid that each divided heat transfer tube group is arranged long in the vertical direction.

さらに、分割水室121a、121bに均等に水を供給する、ひいては分割伝熱管群12a、12bに均等に水を供給する供給口131a−1、131b−1が分割水室121a、121bにそれぞれ設けられている。この供給口131a−1、131b−1に、供給管131a、131bが、それぞれ接続されている。なお、供給管131a、131bは、供給管131から分岐される。言い換えれば、被加熱流体としての水は、供給管131から、供給管131aと131bを経由して、分割水室121a、121bに並列且つ均等に供給される。供給管131a、131bには、分割伝熱管群12a、12bに水を均等に分配する分配機構としてのオリフィス132a、132bが、供給口131a−1、131b−1の一部としてそれぞれ設けられている。   Furthermore, supply ports 131a-1 and 131b-1 for supplying water equally to the divided water chambers 121a and 121b and thus supplying water equally to the divided heat transfer tube groups 12a and 12b are provided in the divided water chambers 121a and 121b, respectively. It has been. Supply pipes 131a and 131b are connected to the supply ports 131a-1 and 131b-1, respectively. The supply pipes 131a and 131b are branched from the supply pipe 131. In other words, water as the fluid to be heated is supplied from the supply pipe 131 to the divided water chambers 121a and 121b in parallel and evenly via the supply pipes 131a and 131b. The supply pipes 131a and 131b are provided with orifices 132a and 132b as distribution mechanisms for evenly distributing water to the divided heat transfer tube groups 12a and 12b, respectively, as part of the supply ports 131a-1 and 131b-1. .

これらは、開口の大きさが圧力損失を分割管群12a、12bの位置ヘッド(及び配管の流れ損失)の差を相殺するように調整されたオリフィスである。したがって例えば、下方に配置されるオリフィス132bの開口は、上方に配置されるオリフィス132aの開口よりも小さい。下方の方が位置ヘッドが大きいので、相対的に小さい開口で済むからである。   These are orifices in which the size of the opening is adjusted so that the pressure loss cancels the difference in the position heads (and the flow loss of the pipes) of the divided tube groups 12a and 12b. Thus, for example, the opening of the orifice 132b disposed below is smaller than the opening of the orifice 132a disposed above. This is because the position head is larger in the lower part, so that a relatively small opening is sufficient.

両系統にオリフィスを入れる理由は、配管及び伝熱管群での損失が小さい場合、両系統の圧力損失のわずかな違い(例えば曲がり部の有無)で、流量配分が大きく変わることがあるので、ある程度の抵抗をオリフィスで付けておき、他の圧力損失の違いの影響を抑えるためである。その際、位置ヘッドの考慮が必要であれば、オリフィス毎の抵抗を変えることで調整する。   The reason for inserting orifices in both systems is that if the loss in the piping and heat transfer tube group is small, the flow distribution may vary greatly depending on the slight difference in pressure loss between the two systems (for example, the presence or absence of a bend). This is in order to suppress the influence of other pressure loss differences. At this time, if it is necessary to consider the position head, adjustment is made by changing the resistance for each orifice.

なお、水を均等に分配する分配機構として、オリフィスのような明確に目に見える形でこれを設けなくても、例えば配管のサイズや長さで同等な効果を与えるものを分配機構としてもよい。また、さきに150本、160本、170本に3分割して、これも均等な本数の概念に含まれる場合を説明したが、分割伝熱管群に均等に被加熱流体液を供給する供給口とは、前記のようにいわゆる均等に配分された伝熱管群のそれぞれに見合うように被加熱流体液を供給するようにすればよい。したがって、分割管群の位置ヘッドが問題とならない程度であれば、単に配管サイズを等しくする、あるいは多少の差がある伝熱管群の本数に見合う配管サイズとすればよい。   As a distribution mechanism that evenly distributes water, for example, a distribution mechanism that has the same effect in terms of the size and length of the piping may be used without providing it in a clearly visible form such as an orifice. . In addition, the case where it is divided into three parts of 150, 160, and 170 and this is also included in the concept of an equal number has been described, but the supply port for supplying the heated fluid liquid equally to the divided heat transfer tube group As described above, the fluid to be heated may be supplied so as to meet each of the so-called evenly distributed heat transfer tube groups. Therefore, as long as the position head of the divided tube group does not cause a problem, the pipe size may be simply made equal, or the pipe size may be commensurate with the number of heat transfer tube groups having a slight difference.

なお、被加熱水を循環するポンプを無くして、気泡ポンプ機能で循環させる場合(図7参照)は、オリフィスを設けず、各分割水室出口から気液分離器22への配管を別々に設け、出口から気液分離器入口までの高さ(ha、hb、hc)を調節することで、均等分配を行う。高さ調節が難しい場合は、気液分離室を別個に設けて均等分配を目指してもよい。この場合は、各分離器の蒸気側を連通し、液面は各分離器で調節する。なお、気泡ポンプ能力は、液の押し込みと気液二相部の高さで決まる。   In addition, when there is no pump for circulating the heated water and it is circulated by the bubble pump function (see FIG. 7), an orifice is not provided, and a piping from each divided water chamber outlet to the gas-liquid separator 22 is provided separately. By adjusting the height (ha, hb, hc) from the outlet to the gas-liquid separator inlet, uniform distribution is performed. When it is difficult to adjust the height, a gas-liquid separation chamber may be provided separately to aim at even distribution. In this case, the vapor side of each separator is communicated, and the liquid level is adjusted by each separator. Note that the bubble pump capacity is determined by the pushing-in of the liquid and the height of the gas-liquid two-phase part.

図4の第一の実施の形態の吸収器では、伝熱管群12は、上下方向に12本(水平方向(図中奥行き方向)の本数は示されていないが、例えば15本)が配置されている。これを、分割伝熱管群12aと分割伝熱管群12bに、縦方向(鉛直方向)に2分割している。第一の水室121は、仕切り122により、分割伝熱管群12aと分割伝熱管群12bをそれぞれカバーする分割水室121a、121bに分割されている。   In the absorber of the first embodiment shown in FIG. 4, 12 heat transfer tube groups 12 are arranged in the vertical direction (the number in the horizontal direction (the depth direction in the figure is not shown, for example, 15)). ing. This is divided into two in the longitudinal direction (vertical direction) into the divided heat transfer tube group 12a and the divided heat transfer tube group 12b. The first water chamber 121 is divided by a partition 122 into divided water chambers 121a and 121b that cover the divided heat transfer tube group 12a and the divided heat transfer tube group 12b, respectively.

伝熱管群12は、2枚の対向する管板125、126に両端がそれぞれ拡管されて、シェルアンドチューブ熱交換器を構成している。第一の水室121は、管板125に溶接・接続されて、水室を形成している。第一の水室121の反対側には、第二の水室123が、管板126に溶接・接続されており、水室を形成している。   Both ends of the heat transfer tube group 12 are expanded to two opposing tube plates 125 and 126 to constitute a shell and tube heat exchanger. The first water chamber 121 is welded and connected to the tube plate 125 to form a water chamber. On the opposite side of the first water chamber 121, a second water chamber 123 is welded and connected to the tube plate 126 to form a water chamber.

縦方向に12本が配列された伝熱管群12は、第一の水室121と第二の水室123で両端がそれぞれカバーされている。第二の水室123には、第一の水室の仕切り122に対応する仕切り124が設けられ、第二の水室は、分割伝熱管群12aと分割伝熱管群12bをそれぞれカバーする分割水室123a、123bに分割されている。よって、仕切り122、124により、伝熱管群12は分割伝熱管群12a、12bに分割されているということができる。2つに分割された分割伝熱管群12a、12bのそれぞれは、6本をさらに下方から、1本、2本、3本に分割されている。このようにして、本実施の形態の吸収器A1−1では、分割管群12a、12bがそれぞれ3パスに形成されている。   The heat transfer tube group 12 in which 12 tubes are arranged in the vertical direction is covered at both ends by a first water chamber 121 and a second water chamber 123. The second water chamber 123 is provided with a partition 124 corresponding to the partition 122 of the first water chamber, and the second water chamber is divided water that covers the divided heat transfer tube group 12a and the divided heat transfer tube group 12b, respectively. It is divided into chambers 123a and 123b. Therefore, it can be said that the heat transfer tube group 12 is divided into the divided heat transfer tube groups 12a and 12b by the partitions 122 and 124. Each of the divided heat transfer tube groups 12a and 12b divided into two is further divided into six, one, two, and three from below. Thus, in the absorber A1-1 of the present embodiment, the divided tube groups 12a and 12b are each formed in three passes.

1本、2本、3本の伝熱管群に分割された、分割伝熱管群12bに注目する。分割伝熱管群12bは、分割水室121b内の仕切り122−1bにより、下段の1本からなる伝熱管群と中段の2本からなる伝熱管群・上段の3本からなる伝熱管群とに分割され、分割水室123b内の仕切り124−1bにより下段の1本からなる伝熱管群・中段の2本からなる伝熱管群と上段の3本からなる伝熱管群とに分割されている。   Note the divided heat transfer tube group 12b divided into one, two, and three heat transfer tube groups. The divided heat transfer tube group 12b is divided into a lower one heat transfer tube group, a middle two heat transfer tube group, and an upper three heat transfer tube group by a partition 122-1b in the divided water chamber 121b. It is divided and divided by a partition 124-1b in the divided water chamber 123b into a heat transfer tube group consisting of one lower row, a heat transfer tube group consisting of two middle rows, and a heat transfer tube group consisting of three upper rows.

すなわち、第一の水室121b内では、下段の1本からなる伝熱管群は分割水室121b−1でカバーされ、中段の2本からなる伝熱管群と上段の3本からなる伝熱管群は分割水室121b−2でカバーされている。また第二の水室123b内では、下段の1本からなる伝熱管群と中段の2本からなる伝熱管群とは分割水室123b−1でカバーされ、上段の3本からなる伝熱管群は分割水室123b−2でカバーされている。   That is, in the first water chamber 121b, the lower one heat transfer tube group is covered by the divided water chamber 121b-1, and the middle two heat transfer tube group and the upper three heat transfer tube group. Is covered with a divided water chamber 121b-2. Further, in the second water chamber 123b, the lower one heat transfer tube group and the middle two heat transfer tube group are covered by the divided water chamber 123b-1, and the upper three heat transfer tube group. Is covered with a divided water chamber 123b-2.

言い換えれば、伝熱管群12bは、分割水室121b内の仕切り122−1bと分割水室123b内の仕切り124−1bにより、それぞれ下段の1本からなる伝熱管群、中段の2本からなる伝熱管群、上段の3本からなる伝熱管群とに分割されている。このようにして吸収器A1−1の分割伝熱管群12bは、3パスの熱交換器として構成されている。   In other words, the heat transfer tube group 12b is divided into a heat transfer tube group consisting of a single lower row and a middle heat transfer tube group by means of a partition 122-1b in the divided water chamber 121b and a partition 124-1b in the divided water chamber 123b. It is divided into a heat tube group and an upper three heat transfer tube group. Thus, the divided heat transfer tube group 12b of the absorber A1-1 is configured as a three-pass heat exchanger.

分割伝熱管群12bの上方の分割伝熱管群12aについても全く同様である。   The same applies to the divided heat transfer tube group 12a above the divided heat transfer tube group 12b.

第二の水室の分割水室123bの分割水室123b−2は、配管133bにより気液分離器22の接続口22bに接続されており、第二の水室の分割水室123aの分割水室123a−2は、配管133aにより気液分離器22の接続口22aに接続されている。接続口22bは分割水室123b−2の出口よりも鉛直方向上方、ひいては伝熱管群12bよりも鉛直方向上方に配置され、接続口22aは分割水室123a−2の出口よりも鉛直方向上方、ひいては伝熱管群12aよりも鉛直方向上方に配置されている。したがって、伝熱管群12a、12bの最上段分割伝熱管群の最上部に配列された伝熱管(蒸気が集まり勝ち)から、配管133a、133bを通して蒸気だけが吹き抜けることがない。   The divided water chamber 123b-2 of the divided water chamber 123b of the second water chamber is connected to the connection port 22b of the gas-liquid separator 22 by the pipe 133b, and the divided water of the divided water chamber 123a of the second water chamber is divided. The chamber 123a-2 is connected to the connection port 22a of the gas-liquid separator 22 by a pipe 133a. The connection port 22b is disposed vertically above the outlet of the divided water chamber 123b-2, and thus vertically above the heat transfer tube group 12b, and the connection port 22a is vertically above the outlet of the divided water chamber 123a-2. As a result, it arrange | positions rather than the heat exchanger tube group 12a at the perpendicular direction. Therefore, only the steam does not blow through the pipes 133a and 133b from the heat transfer pipes (steam gathers and wins) arranged at the top of the uppermost divided heat transfer pipe group of the heat transfer pipe groups 12a and 12b.

気液分離器22は、縦長に形成されており、上部の空間には縦方向に邪魔板22eが配設されている。接続口22a、22bは、邪魔板22eに対向するように設けられている。したがって、接続口22a、22bから気液分離器22内に吹き込まれる液体の水混じりの水蒸気は、邪魔板22eに衝突して、液体の水が分離される。邪魔板22eの下方には、気液分離器22の底部の水面との間に開放された通路がある。したがって、邪魔板22eに沿って下方に流れた水蒸気と水は、ここで水面に衝突しさらに気液が分離される。完全に液体の水から分離された水蒸気は、邪魔板22eに沿って上方に流れ、気液分離器22の最上部に接続された蒸気管13から導出される。蒸気から分離された水は、気液分離器22の底部に集まる。   The gas-liquid separator 22 is formed in a vertically long shape, and a baffle plate 22e is arranged in the vertical direction in the upper space. The connection ports 22a and 22b are provided to face the baffle plate 22e. Therefore, the water vapor mixed with liquid water blown into the gas-liquid separator 22 from the connection ports 22a and 22b collides with the baffle plate 22e, and the liquid water is separated. Below the baffle plate 22e is a passage opened between the bottom and the water surface of the gas-liquid separator 22. Accordingly, the water vapor and water that have flowed downward along the baffle plate 22e collide with the water surface and further separate the gas and liquid. The water vapor completely separated from the liquid water flows upward along the baffle plate 22 e and is led out from the vapor pipe 13 connected to the top of the gas-liquid separator 22. The water separated from the steam collects at the bottom of the gas-liquid separator 22.

図4を参照して、第一の実施の形態で用いる吸収器A1−1の作用を説明する。供給管131から供給される被加熱流体としての液体の水は、供給管131から分岐する供給管131aと供給管131bに分流する。供給管131aと供給管131bには、それぞれオリフィス132a、132bが挿入配設されているので、分流した水は供給管131aと供給管131bに均等に流れる。ここで均等とは、伝熱に著しい偏りが生じない程度に等しいことをいう。   With reference to FIG. 4, the operation of the absorber A1-1 used in the first embodiment will be described. Liquid water as the fluid to be heated supplied from the supply pipe 131 is divided into the supply pipe 131a and the supply pipe 131b branched from the supply pipe 131. Since the supply pipe 131a and the supply pipe 131b are respectively provided with the orifices 132a and 132b, the divided water flows equally to the supply pipe 131a and the supply pipe 131b. Here, “equal” means equal to the extent that there is no significant bias in heat transfer.

供給管131bに流入した水は、下段の縦方向に1本(水平方向には例えば15本)の管群に流入する。この管群では、伝熱管の外側の吸収液(溶液)から吸収熱が主として顕熱として与えられ被加熱流体としての水の温度が上昇する。ここで一部は蒸発する。   The water that has flowed into the supply pipe 131b flows into one pipe group in the vertical direction of the lower stage (for example, 15 pipes in the horizontal direction). In this tube group, the absorption heat is mainly given as sensible heat from the absorption liquid (solution) outside the heat transfer tube, and the temperature of water as the heated fluid rises. Part of it evaporates here.

下段の伝熱管群から分割水室123b−1に流入した液状の水と水蒸気は、分割水室123b−1で反転して、中段の縦方向2本の伝熱管群に流入する。この伝熱管群ではかなりの量の水が水蒸気になる。   The liquid water and water vapor that have flowed into the divided water chamber 123b-1 from the lower heat transfer tube group are reversed in the divided water chamber 123b-1, and flow into the middle two vertical heat transfer tube groups. In this heat transfer tube group, a considerable amount of water becomes steam.

中段の伝熱管群から分割水室121b−2に流入した液状の水と水蒸気は、分割水室121b−2で反転して、上段の縦方向3本の伝熱管群に流入する。この伝熱管群で、それまでに蒸発しなかった水が蒸発して水蒸気になる。本実施の形態では、供給管131から供給される水の量は、蒸発すべき水の量の1〜3倍(より好ましくは1.5〜2倍)である。すなわち、供給水の蒸発水に対する供給水比は1〜3倍乃至は1.5〜2倍である。供給水比が1倍のときは、供給された水のほぼ全てが、吸収器A1−1で蒸発するので、上段の伝熱管群からは水蒸気だけが気液分離器22に出てゆく。供給水比が2倍のときは、半分の量の水が、また3倍のときは、供給された水の7割近くの量の水が、気液分離器22に出てゆく。いずれにしても、体積では、圧倒的に水蒸気が多い状態である。   Liquid water and water vapor flowing from the middle heat transfer tube group into the divided water chamber 121b-2 are reversed in the divided water chamber 121b-2 and flow into the upper three heat transfer tube groups in the vertical direction. In this heat transfer tube group, the water that has not evaporated so far evaporates into water vapor. In the present embodiment, the amount of water supplied from the supply pipe 131 is 1 to 3 times (more preferably 1.5 to 2 times) the amount of water to be evaporated. That is, the ratio of the supply water to the evaporation water of the supply water is 1 to 3 times or 1.5 to 2 times. When the supply water ratio is 1, almost all of the supplied water evaporates in the absorber A1-1. Therefore, only water vapor is output to the gas-liquid separator 22 from the upper heat transfer tube group. When the supply water ratio is twice, half the amount of water, and when the supply water ratio is three times, nearly 70% of the supplied water comes out to the gas-liquid separator 22. In any case, the volume is overwhelmingly water vapor.

なお、伝熱管群の本数を下段1本、中段2本、上段3本と増やすのは、以上説明したように上段方向に行くにつれて蒸気の割合が増え、体積流量が増えるからである。   The reason why the number of heat transfer tube groups is increased to 1 in the lower stage, 2 in the middle stage, and 3 in the upper stage is that, as described above, the proportion of steam increases in the upward direction and the volume flow rate increases.

このように、本実施の形態によれば上段でも伝熱管群の縦方向の本数が3本であるので、流れる水混じりの水蒸気の流れの偏りを抑えることができる。同一構造の伝熱管群12aでも作用は同様である。   Thus, according to the present embodiment, since the number of heat transfer tube groups in the vertical direction is three even in the upper stage, it is possible to suppress an uneven flow of water vapor mixed with flowing water. The operation is the same in the heat transfer tube group 12a having the same structure.

本実施の形態に対応する従来技術、すなわち伝熱管群12a、12bと分割しない従来技術では、3パスの上段の伝熱管群の本数は6本となる。そして管板125側の水室のなかの、中段と上段をカバーする分割水室が縦方向に長いので、この中で気液が分離されてしまい、管群6本に流入する気液が偏る。悪くすると6本の管群の中でも最上段の1本はほとんど水蒸気だけが流れ勝ちになる。すなわち、吹き抜けが起こってしまう。その結果下方の管に流れる気液は、液の割合が多くなり、流れが悪くなる。したがって吸収器全体の伝熱効率が低くならざるを得ない。   In the conventional technique corresponding to the present embodiment, that is, the conventional technique that is not divided from the heat transfer tube groups 12a and 12b, the number of heat transfer tube groups in the upper stage of three passes is six. In the water chamber on the tube plate 125 side, the divided water chamber covering the middle and upper stages is long in the vertical direction, so that gas and liquid are separated in this, and the gas and liquid flowing into the six tube groups are biased. . To make it worse, only one of the uppermost tubes of the six tube groups is likely to flow with water vapor. That is, a blow-through occurs. As a result, the gas-liquid flowing in the lower pipe has a higher liquid ratio and a poor flow. Therefore, the heat transfer efficiency of the entire absorber must be lowered.

これに対して、本発明の実施の形態によれば、伝熱管群を分割するので、伝熱管内を流れる水混じりの水蒸気の流れの偏りを抑えることができ、吸収器A1−1全体の伝熱効率を高く維持することができ、ひいては吸収ヒートポンプのCOPを高く維持することができる。また生成できる蒸気の温度を高くすることができる。   On the other hand, according to the embodiment of the present invention, since the heat transfer tube group is divided, it is possible to suppress the uneven flow of water vapor mixed with water flowing in the heat transfer tube, and to transfer the entire absorber A1-1. Thermal efficiency can be kept high, and thus the COP of the absorption heat pump can be kept high. Further, the temperature of the steam that can be generated can be increased.

なお以上の実施の形態では、各分割水室出口から気液分離器22への配管を別々に設けたが、図6のように、各出口室(図4の第一の実施の形態の吸収器で言えば、分割水室123a−2と分割水室123b−2)を一体化して、出口から気液分離器入口まで共通の1本の配管133eとすることもできる。この場合、被加熱水を均等分配して供給するためには、オリフィスの抵抗を多めにしておくことが望ましい。   In the above embodiment, piping from each divided water chamber outlet to the gas-liquid separator 22 is provided separately. However, as shown in FIG. 6, each outlet chamber (absorption in the first embodiment in FIG. 4) is provided. In terms of a vessel, the divided water chamber 123a-2 and the divided water chamber 123b-2) can be integrated into a single pipe 133e from the outlet to the gas-liquid separator inlet. In this case, it is desirable to increase the resistance of the orifice in order to supply water to be heated evenly distributed.

次に、図5を参照して、第二の実施の形態に係る吸収ヒートポンプに使用する吸収器A1−2の構造と作用を説明する。本実施の形態の吸収器A1−2は、第二の水室128の構造を除き、第一の実施の形態の吸収器A1−1と同様である。ここでは、吸収器A1−1と異なる点を中心に説明する。   Next, with reference to FIG. 5, the structure and operation of the absorber A1-2 used in the absorption heat pump according to the second embodiment will be described. The absorber A1-2 of the present embodiment is the same as the absorber A1-1 of the first embodiment except for the structure of the second water chamber 128. Here, it demonstrates centering on a different point from absorber A1-1.

第二の水室128が管板126に溶接、接続されて設けられている。第二の水室128は、伝熱管群12a、12bの両方をカバーするように、一つの空間を形成している。第二の水室128の内部空間には、伝熱管群12aの下段の縦方向が1本の伝熱管群と中段の縦方向が2本の伝熱管群をカバーする内部水室128a−1が設けられている。その上部に隣接して、上段の縦方向が3本の伝熱管群をカバーする内部水室128a−2が設けられている。   A second water chamber 128 is provided by being welded and connected to the tube plate 126. The second water chamber 128 forms one space so as to cover both the heat transfer tube groups 12a and 12b. In the internal space of the second water chamber 128, there is an internal water chamber 128a-1 in which the lower vertical direction of the heat transfer tube group 12a covers one heat transfer tube group and the middle vertical direction covers two heat transfer tube groups. Is provided. Adjacent to the upper part, an internal water chamber 128a-2 is provided in which the upper vertical direction covers three heat transfer tube groups.

内部水室128a−2は、その上部が第二の水室128内で開放されている。内部水室128a−2は、ここに蒸発しなかった被加熱流体である水が溜まる液溜まりを形成している。開放された上部には縁128cが形成されている。開放された上部の縁128cは、溜まった水が、これを越えてオーバーフローするように形成されている。縁の高さは、溜まった水が縦方向3本の最上部の伝熱管群までを完全に覆うように決められている。   The upper part of the internal water chamber 128 a-2 is opened in the second water chamber 128. The internal water chamber 128a-2 forms a liquid pool in which water, which is a fluid to be heated that has not evaporated, accumulates. An edge 128c is formed on the opened top. The open upper edge 128c is formed such that the accumulated water overflows beyond it. The height of the edge is determined so that the accumulated water completely covers up to the three uppermost heat transfer tube groups in the vertical direction.

内部水室128a−2が、以上のように構成されているので、ここに溜まった水が上段の伝熱管群を覆い、上段の伝熱管群の中でも上方に位置する伝熱管を通して蒸気が吹き抜けるのを抑えることが可能となる。本実施の形態では、伝熱管群を分割伝熱管群に分割しているので、被加熱流体である水の流量に大きな偏りは生じないものの、内部水室128a−2を形成することにより、さらに確実に吹き抜けを抑えることが可能となる。   Since the internal water chamber 128a-2 is configured as described above, the water accumulated here covers the upper heat transfer tube group, and steam blows through the upper heat transfer tube group. Can be suppressed. In the present embodiment, since the heat transfer tube group is divided into divided heat transfer tube groups, the flow rate of water, which is the fluid to be heated, is not greatly biased, but by forming the internal water chamber 128a-2, It becomes possible to reliably suppress the blow-through.

同様に、第二の水室128の内部空間には、内部水室128a−1に対応する内部水室128b−1が設けられ、内部水室128a−2に対応する内部水室128b−2が設けられている。内部水室128b−2は、上部の縁128cに対応する上部の縁128dを有する。   Similarly, in the internal space of the second water chamber 128, an internal water chamber 128b-1 corresponding to the internal water chamber 128a-1 is provided, and an internal water chamber 128b-2 corresponding to the internal water chamber 128a-2 is provided. Is provided. The internal water chamber 128b-2 has an upper edge 128d corresponding to the upper edge 128c.

第二の水室128の上方には、気液分離器22に向けて蒸気を送る蒸気通路133cが設けられ、蒸気通路133cは供給口22cで気液分離器22に接続されている。さらに、第二の水室128の下方には、気液分離器22に向けて吸収器A1−2で蒸発しなかった液体の水を送る水通路133dが設けられ、水通路133dは供給口22dで気液分離器22に接続されている。   Above the second water chamber 128, a steam passage 133c for sending steam toward the gas-liquid separator 22 is provided, and the steam passage 133c is connected to the gas-liquid separator 22 through a supply port 22c. Further, below the second water chamber 128, a water passage 133d for sending liquid water that has not evaporated by the absorber A1-2 toward the gas-liquid separator 22 is provided, and the water passage 133d is connected to the supply port 22d. To the gas-liquid separator 22.

内部水室128a−2に溜まった水を泡状になって通過した水蒸気は、第二の水室128の空間内に出た後、蒸気通路133cを通って気液分離器22に導かれる。内部水室128a−2の縁128cをオーバーフローした高温水は、第二の水室128の空間内に出た後、その底部に溜まり、水通路133dを通って気液分離器22に導かれる。内部水室128b−2についても同様である。なお本実施の形態では、第二の水室128は気液分離器としての機能を備えるので、気液分離器22を省略するか、または簡易なものとすることもできる。   The water vapor that has passed through the water accumulated in the internal water chamber 128a-2 in the form of bubbles exits into the space of the second water chamber 128, and is then guided to the gas-liquid separator 22 through the vapor passage 133c. The high temperature water that overflows the edge 128c of the internal water chamber 128a-2 exits into the space of the second water chamber 128 and then accumulates at the bottom thereof, and is guided to the gas-liquid separator 22 through the water passage 133d. The same applies to the internal water chamber 128b-2. In the present embodiment, since the second water chamber 128 has a function as a gas-liquid separator, the gas-liquid separator 22 can be omitted or simplified.

このように構成するので、吸収器A1−2では、伝熱管群を分割伝熱管群に分割しているので、被加熱流体である水の流量に大きな偏りは生じず、蒸気の吹き抜けを抑えることができる。さらに、内部水室128a−2、128b−2に溜まった水がそれぞれ上段の伝熱管群を覆うので、上段の伝熱管群の中でも上方に位置する伝熱管を通して蒸気が吹き抜けるのを、さらに確実に抑えることが可能となる。   Since it comprises in this way, in absorber A1-2, since the heat exchanger tube group is divided | segmented into the division | segmentation heat exchanger tube group, the big deviation does not arise in the flow volume of the water which is a to-be-heated fluid, and suppresses the blow-by of a vapor | steam. Can do. Furthermore, since the water accumulated in the internal water chambers 128a-2 and 128b-2 covers the upper heat transfer tube group, it is further ensured that steam blows through the upper heat transfer tube group through the upper heat transfer tube group. It becomes possible to suppress.

以上の実施の形態では、分割伝熱管群を下段、中段、上段に分割する3パスの場合で説明したが、2パスでも同様である。その場合は吸収器A1−1で説明すれば、分割水室121b−2が気液分離器22に接続される。また4パス以上にも適用できる。   In the above embodiment, the divided heat transfer tube group has been described in the case of three passes in which the divided heat transfer tube group is divided into a lower stage, a middle stage, and an upper stage. In that case, if it demonstrates with absorber A1-1, the division | segmentation water chamber 121b-2 will be connected to the gas-liquid separator 22. FIG. It can also be applied to four or more passes.

以上説明したように、吸収ヒートポンプが大容量になり、蒸気を生成する吸収器の伝熱管本数が増大すると、伝熱管内の被加熱流体流量に大きな偏りが生じ、伝熱管の有効面積割合が減少する。特に、上下方向の管配置の段数が増えると顕著になる。特に、管群が管板部で流れ方向が反転する複数パス構造では、ターンして新たな管に入るとき、下部管に液が多く、上部は蒸気が多くなり、質量流量にすると下部に多くの流量が流れ、上部は蒸気が殆どの割合を占めて伝熱が悪くなる。しかしながら、本発明の実施の形態によれば、吸収器の伝熱管群を分割するので、吸収器の伝熱管本数が増大しても、伝熱管内の被加熱流体流量に大きな偏りが生じるのを抑制でき、伝熱管の有効面積割合の減少を防止できる。言い換えれば、蒸気が伝熱管群の上部を占めるのを抑制でき、伝熱を良好に維持することができる。   As described above, when the absorption heat pump has a large capacity and the number of heat transfer tubes of the absorber that generates steam increases, a large deviation occurs in the flow rate of the fluid to be heated in the heat transfer tubes, and the effective area ratio of the heat transfer tubes decreases. To do. In particular, it becomes prominent when the number of stages of pipe arrangement in the vertical direction increases. In particular, in a multi-pass structure in which the flow direction of the tube group is reversed at the tube plate part, when turning and entering a new pipe, there is a lot of liquid in the lower pipe, more steam in the upper part, and more in the lower part when making a mass flow rate. The upper part of the flow is steam, and the upper part of the steam makes up most of the ratio, resulting in poor heat transfer. However, according to the embodiment of the present invention, the heat transfer tube group of the absorber is divided, so that even if the number of heat transfer tubes in the absorber increases, a large deviation occurs in the flow rate of the heated fluid in the heat transfer tubes. It is possible to suppress the reduction of the effective area ratio of the heat transfer tube. In other words, it is possible to suppress the steam from occupying the upper part of the heat transfer tube group, and it is possible to maintain heat transfer well.

1 溶液ポンプ
2 濃溶液管
3 補給水管
3a 補給管
3b、3b−1、3b−b−3 戻し管
4 希溶液管
5 冷媒ポンプ
6 冷媒管
7、8 (冷媒蒸気)流路
9 冷却水管
10、11 温水管
12 伝熱管(伝熱管群)
12a、12b、12c 分割伝熱管群
13 蒸気管
15 補給水加熱器
16 補給水ポンプ
18 インバータ
20 制御弁
22 気液分離器
22a、22b、22c、22d 接続口
22e 邪魔板
30 冷媒分岐管
32 制御弁
33 バッフル板
34−1、34−2 冷媒管
35 伝熱管
40、41 制御弁
100A、100B 吸収ヒートポンプ
101 冷却水
102 熱源温水
103 被加熱流体(水)
104 蒸気(水蒸気)
121 第一の水室
121a、121b 分割水室
121a−1、121a−2、121b−1、121b−2 分割水室
122、122−1a、122−1b 仕切り
123 第二の水室
123a、123b 分割水室
123a−1、123a−2、123b−1、123b−2 分割水室
124、124−1a、124−1b 仕切り
125、126 管板
131、131a、131b 供給管
132a、132b オリフィス
133c 蒸気通路
133d、133e 水通路
A1、A2 吸収器
AH 高温吸収器
C 凝縮器
CONT 制御器
E1、E2 蒸発器
EH 高温蒸発器
EHS 気液分離器
G 再生器
L1、L2、L3、L4、L5 液面計
P1 圧力検出器
X1、X2、X3 熱交換器
DESCRIPTION OF SYMBOLS 1 Solution pump 2 Concentrated solution pipe 3 Supply water pipe 3a Supply pipe 3b, 3b-1, 3b-b-3 Return pipe 4 Dilute solution pipe 5 Refrigerant pump 6 Refrigerant pipe 7, 8 (refrigerant vapor) flow path 9 Cooling water pipe 10, 11 Hot water tube 12 Heat transfer tube (Heat transfer tube group)
12a, 12b, 12c Divided heat transfer tube group 13 Steam tube 15 Makeup water heater 16 Makeup water pump 18 Inverter 20 Control valve 22 Gas-liquid separators 22a, 22b, 22c, 22d Connection port 22e Baffle plate 30 Refrigerant branch pipe 32 Control valve 33 Baffle plates 34-1 and 34-2 Refrigerant tube 35 Heat transfer tubes 40 and 41 Control valves 100A and 100B Absorption heat pump 101 Cooling water 102 Heat source hot water 103 Heated fluid (water)
104 Steam (water vapor)
121 First water chamber 121a, 121b Divided water chamber 121a-1, 121a-2, 121b-1, 121b-2 Divided water chamber 122, 122-1a, 122-1b Partition 123 Second water chamber 123a, 123b Divided Water chamber 123a-1, 123a-2, 123b-1, 123b-2 Divided water chamber 124, 124-1a, 124-1b Partition 125, 126 Tube plates 131, 131a, 131b Supply pipe 132a, 132b Orifice 133c Steam passage 133d 133e Water passage A1, A2 Absorber AH High temperature absorber C Condenser CONT Controller E1, E2 Evaporator EH High temperature evaporator EHS Gas-liquid separator G Regenerator L1, L2, L3, L4, L5 Level gauge P1 Pressure Detector X1, X2, X3 Heat exchanger

Claims (4)

冷媒ガスを吸収して発生する吸収熱で被加熱流体液を加熱して、被加熱流体ガスを発生する吸収器を備え;
前記吸収器は、水平に配置された複数の伝熱管からなる伝熱管群であって、外側に吸収液を散布し、内側に前記被加熱流体液を流す複数の伝熱管からなる伝熱管群と;
前記伝熱管群の被加熱流体液供給側に、前記被加熱流体液を供給する被加熱流体室とを有し;
前記被加熱流体室は、前記伝熱管群を上下方向に均等な本数ずつの第一の分割伝熱管群と第二の分割伝熱管群に分割する仕切りと;
前記第一と第二の分割伝熱管群に並列に前記被加熱流体液を供給する供給口であって、前記第一と第二の分割伝熱管群の各分割伝熱管群に均等に前記被加熱流体液を供給する供給口を有し;
記各分割伝熱管群はそれぞれ複数パスに構成された;
吸収ヒートポンプ。
An absorber for generating a heated fluid gas by heating the heated fluid liquid with absorbed heat generated by absorbing the refrigerant gas;
The absorber is a heat transfer tube group consisting of a plurality of heat transfer tubes arranged horizontally, and a heat transfer tube group consisting of a plurality of heat transfer tubes that scatter the absorbing liquid on the outside and flow the heated fluid liquid on the inside. ;
A heated fluid chamber for supplying the heated fluid liquid on the heated fluid liquid supply side of the heat transfer tube group;
The heated fluid chamber includes a partition that divides the heat transfer tube group into a first divided heat transfer tube group and a second divided heat transfer tube group that are equal in number in the vertical direction;
A supply port for supplying the heated fluid liquid in parallel to the first and second divided heat transfer tube groups, wherein the divided heat transfer tube groups of the first and second divided heat transfer tube groups are evenly divided. have a supply port for supplying the heating fluid;
Before SL each divided heat transfer tube group are configured multiple paths, respectively;
Absorption heat pump.
前記複数パスに構成された各分割伝熱管群の各パスを構成する伝熱管の本数が下段から上段に向けて増えるように構成された;The number of heat transfer tubes constituting each path of each divided heat transfer tube group configured in the plurality of paths is configured to increase from the lower stage toward the upper stage;
請求項1に記載の吸収ヒートポンプ。The absorption heat pump according to claim 1.
前記供給口は、前記分割管群に前記被加熱流体液を均等に分配する分配機構を有する、請求項1又は請求項2に記載の、吸収ヒートポンプ。 The absorption heat pump according to claim 1 or 2 , wherein the supply port has a distribution mechanism that evenly distributes the fluid to be heated to the divided tube group. 前記吸収器で発生した被加熱流体ガスを導入して、前記被加熱流体ガスと前記被加熱流体ガスに同伴する被加熱流体液とを分離する気液分離器を備え;
前記分割伝熱管群の全体が前記被加熱流体液に浸るように液溜まりを形成し、前記分割伝熱管群の出口側の前記吸収器と前記気液分離器の接続口、又は前記分割伝熱管群の被加熱流体出口側の被加熱流体室を形成し、前記液溜りは溜まった液が縦方向の最上部の伝熱管群までを完全に覆うよう縁が形成された、請求項1乃至請求項3のいずれか1項に記載の、吸収ヒートポンプ。
A gas-liquid separator that introduces the heated fluid gas generated by the absorber and separates the heated fluid gas and the heated fluid liquid accompanying the heated fluid gas;
The divided heat transfer across the tube bank to form a liquid pool so immersed in the heated fluid, the divided heat transfer tube group of outlet-side the absorber and the gas-liquid separator of the connection port, or the divided Den A heated fluid chamber is formed on the heated fluid outlet side of the heat tube group, and the liquid reservoir is formed with an edge so as to completely cover the accumulated liquid up to the uppermost heat transfer tube group in the vertical direction. The absorption heat pump according to any one of claims 3 to 3.
JP2010139300A 2010-06-18 2010-06-18 Absorption heat pump Active JP5547560B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010139300A JP5547560B2 (en) 2010-06-18 2010-06-18 Absorption heat pump
CN201110163937.7A CN102287951B (en) 2010-06-18 2011-06-17 Absorbing heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139300A JP5547560B2 (en) 2010-06-18 2010-06-18 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2012002454A JP2012002454A (en) 2012-01-05
JP5547560B2 true JP5547560B2 (en) 2014-07-16

Family

ID=45334585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139300A Active JP5547560B2 (en) 2010-06-18 2010-06-18 Absorption heat pump

Country Status (2)

Country Link
JP (1) JP5547560B2 (en)
CN (1) CN102287951B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084485B2 (en) * 2012-04-06 2017-02-22 荏原冷熱システム株式会社 Absorption heat pump and operation method of absorption heat pump
JP6429550B2 (en) * 2014-09-19 2018-11-28 荏原冷熱システム株式会社 Absorption heat pump
CN104930768B (en) * 2015-07-03 2018-05-04 荏原冷热系统(中国)有限公司 Water replanishing device, second-kind absorption-type heat pump and the method for steam-water separator
CN104949379B (en) * 2015-07-09 2018-02-23 荏原冷热系统(中国)有限公司 A kind of second-kind absorption-type heat pump
CN107192173B (en) * 2016-03-15 2020-12-11 荏原冷热系统株式会社 Absorption heat pump
JP6643765B2 (en) * 2016-03-23 2020-02-12 荏原冷熱システム株式会社 Absorption heat pump
CN108180670B (en) * 2016-12-08 2021-02-12 荏原冷热系统株式会社 Absorption heat exchange system
CN107270591B (en) * 2017-07-24 2022-11-18 江苏必领能源科技有限公司 Two-phase distributor for falling film evaporator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS427109Y1 (en) * 1964-01-31 1967-04-03
JPS5015847U (en) * 1973-06-09 1975-02-19
JPS602540Y2 (en) * 1979-10-26 1985-01-24 三洋電機株式会社 absorption cold water machine
JPH073163Y2 (en) * 1989-10-31 1995-01-30 住友精密工業株式会社 Plate fin type evaporator
JP2568769B2 (en) * 1991-09-12 1997-01-08 株式会社日立製作所 Absorption refrigerator
JP3935610B2 (en) * 1998-06-08 2007-06-27 三菱重工業株式会社 Heat exchanger and absorption refrigerator
US7313926B2 (en) * 2005-01-18 2008-01-01 Rexorce Thermionics, Inc. High efficiency absorption heat pump and methods of use
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
CN101694331A (en) * 2009-08-27 2010-04-14 李华玉 Compound second type absorption heat pump based on single-stage

Also Published As

Publication number Publication date
CN102287951A (en) 2011-12-21
JP2012002454A (en) 2012-01-05
CN102287951B (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5547560B2 (en) Absorption heat pump
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
JP4701147B2 (en) 2-stage absorption refrigerator
JP2010164248A (en) Absorption heat pump
CA2708210C (en) Multistage pressure condenser
EP2386050B1 (en) Heat exchanger, heat pump system and air conditioning system
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
US10429106B2 (en) Asymmetric evaporator
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
US20140311182A1 (en) Evaporator
JP6429550B2 (en) Absorption heat pump
JP5676914B2 (en) Absorption heat pump
JP6805473B2 (en) Absorption chiller
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP4577908B2 (en) Absorption chiller / heater regenerator
JP5055071B2 (en) Absorption refrigerator
JP4903743B2 (en) Absorption refrigerator
JP2017172870A (en) Absorption heat pump
JP7080001B2 (en) Absorption chiller
KR20100082496A (en) Low-temperature regenerator for absorption type refrigerator
JP6337055B2 (en) Absorption heat pump
JP2002243309A (en) Absorptive freezer
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
KR20220158781A (en) evaporator
JP2015148395A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250