JP2017172870A - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP2017172870A
JP2017172870A JP2016059222A JP2016059222A JP2017172870A JP 2017172870 A JP2017172870 A JP 2017172870A JP 2016059222 A JP2016059222 A JP 2016059222A JP 2016059222 A JP2016059222 A JP 2016059222A JP 2017172870 A JP2017172870 A JP 2017172870A
Authority
JP
Japan
Prior art keywords
liquid
gas
heated medium
heat pump
absorption heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016059222A
Other languages
Japanese (ja)
Other versions
JP6643765B2 (en
Inventor
與四郎 竹村
Yoshiro Takemura
與四郎 竹村
宏幸 山田
Hiroyuki Yamada
宏幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2016059222A priority Critical patent/JP6643765B2/en
Priority to CN201710137084.7A priority patent/CN107228502B/en
Publication of JP2017172870A publication Critical patent/JP2017172870A/en
Application granted granted Critical
Publication of JP6643765B2 publication Critical patent/JP6643765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption heat pump suppressed in height.SOLUTION: An absorption heat pump includes an absorber producing a fluid mixture by heating a liquid in a heat transfer pipe by absorption heat generated when an absorbing liquid absorbs vapor of a refrigerant, and a gas-liquid separator 60. The gas-liquid separator 60 has a can body 61 long in a horizontal direction, a collision wall 63 with which the fluid mixture Wm mixed in the can body 61 from an inflow port 61a collides, and a bypass formation member 65 forming a bypass for increasing a distance to an outflow port 61b, of the fluid Wm after the collision with the collision wall 63. The inflow port 61a, the outflow port 61b and the collision wall 63 are formed at places higher than a maximum liquid level WLH. The bypass formation member 65 is disposed to change a flowing direction of the fluid Wm after the collision with the collision wall 63 through an end portion 65e in the horizontal direction of the bypass formation member 65, and a passing flow channel 68 through which the fluid Wm passes, is formed between the bypass formation member 65 and the can body 61 at the end portion 65e.SELECTED DRAWING: Figure 2

Description

本発明は吸収ヒートポンプに関し、特に高さを抑制した吸収ヒートポンプに関する。   The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump with a suppressed height.

駆動熱源温度より高い温度の被加熱媒体を取り出す熱源機械として、第2種吸収ヒートポンプがある。第2種吸収ヒートポンプは、冷媒液を蒸発させる蒸発器、冷媒蒸気を吸収液で吸収させる吸収器、吸収液から冷媒を離脱させる再生器、冷媒蒸気を凝縮させる凝縮器を主要構成として備えており、吸収器において吸収液が冷媒蒸気を吸収したときに発生した熱で被加熱媒体の液を加熱して蒸発させることができ、加熱した被加熱媒体を導入して被加熱媒体の蒸気と液とに分離する気液分離器をさらに備えている。このような吸収ヒートポンプとして、吸収器及び蒸発器が再生器及び凝縮器よりも高所に配設されると共に、気液分離に必要な容積を高さ方向に確保した縦長の気液分離器の気相部が主要構成機器の最上部よりも高所になるように配置されたものがある(例えば、特許文献1参照。)。   As a heat source machine for taking out a heated medium having a temperature higher than the driving heat source temperature, there is a second type absorption heat pump. The second type absorption heat pump mainly includes an evaporator for evaporating refrigerant liquid, an absorber for absorbing refrigerant vapor with the absorbing liquid, a regenerator for removing the refrigerant from the absorbing liquid, and a condenser for condensing the refrigerant vapor. The liquid in the heated medium can be heated and evaporated by the heat generated when the absorbing liquid absorbs the refrigerant vapor in the absorber, and the heated medium is introduced and the vapor and liquid in the heated medium are introduced. And a gas-liquid separator for separating the gas and liquid. As such an absorption heat pump, an absorber and an evaporator are disposed higher than the regenerator and the condenser, and a vertically long gas-liquid separator that secures a volume necessary for gas-liquid separation in the height direction. There is one in which the gas phase part is arranged so as to be higher than the uppermost part of the main component equipment (for example, see Patent Document 1).

特開2010−164248号公報(段落0026、図1等)JP 2010-164248 A (paragraph 0026, FIG. 1, etc.)

特許文献1に記載された吸収ヒートポンプは、縦長の気液分離器の気相部が主要構成最上部よりも高所になるように配置されるため、吸収ヒートポンプ全体の高さが高くなりすぎると共に、縦長の気液分離器は水平断面積が比較的小さくなるため、比較的大きく現れる液位変化に対応するべく上限液位のさらに上方に気液分離に必要な容積を確保することとなって、高さがさらに高くなってしまい、設置条件が制約されてしまうこととなる。   Since the absorption heat pump described in Patent Document 1 is arranged such that the gas phase part of the vertically long gas-liquid separator is higher than the uppermost part of the main configuration, the height of the entire absorption heat pump becomes too high. Since the vertical gas-liquid separator has a relatively small horizontal cross-sectional area, a volume necessary for gas-liquid separation is secured further above the upper limit liquid level to cope with a relatively large liquid level change. The height is further increased, and the installation conditions are restricted.

本発明は上述の課題に鑑み、高さを抑制した吸収ヒートポンプを提供することを目的とする。   An object of this invention is to provide the absorption heat pump which suppressed height in view of the above-mentioned subject.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1及び図2に示すように、吸収液Saが冷媒の蒸気Veを吸収した際に発生した吸収熱で伝熱管12内の液体Wqを加熱して気体と液体とが混合した混合流体Wmを生成する吸収器10と;混合流体Wmから気体Wvと液体Wqとを分離する気液分離器60とを備え;気液分離器60(図2参照)は、水平方向に長い缶胴61であって、混合流体Wmが流入する流入口61aと、混合流体Wmから分離された気体である分離後気体Wvが流出する流出口61bとが、混合流体Wmから分離された液体である分離後液体Wqが到達し得る最高液位WLHよりも高所に形成された缶胴61と、流入口61aから缶胴61内に流入した混合流体Wmを衝突させる衝突壁63であって、分離後液体Wqが到達し得る最高液位WLHよりも高所に設けられた衝突壁63と、衝突壁63に衝突後の流体Wmが流出口61bに到達するまでの道程を大きくする迂回路を形成する迂回路形成部材65とを有し、迂回路形成部材65は、衝突壁63に衝突後の流体Wmが迂回路形成部材65の水平方向の端部65eを巻いて流れ方向を変えるように配置され、迂回路形成部材65の水平方向の端部65eにおいて、迂回路形成部材65と缶胴61との間に、衝突壁63に衝突後の流体Wmが通過する通過流路68が形成されている。   In order to achieve the above object, the absorption heat pump according to the first aspect of the present invention uses the absorbed heat generated when the absorbing liquid Sa absorbs the refrigerant vapor Ve, as shown in FIGS. 1 and 2, for example. An absorber 10 that heats the liquid Wq in the heat transfer tube 12 to generate a mixed fluid Wm in which the gas and the liquid are mixed; and a gas-liquid separator 60 that separates the gas Wv and the liquid Wq from the mixed fluid Wm. The gas-liquid separator 60 (see FIG. 2) is a can body 61 that is long in the horizontal direction, and has an inlet 61a into which the mixed fluid Wm flows and a post-separation gas Wv that is a gas separated from the mixed fluid Wm. The outflow port 61b that flows out is a can body 61 that is formed at a position higher than the highest liquid level WLH that can be reached by the separated liquid Wq that is a liquid separated from the mixed fluid Wm, and the can body 61 from the inflow port 61a. Collide the mixed fluid Wm that has flowed into Collision wall 63 provided at a position higher than the highest liquid level WLH that can be reached by liquid Wq after separation, and projecting wall 63 until fluid Wm after colliding with collision wall 63 reaches outlet 61b. A detour forming member 65 that forms a detour that increases the path, and the detour forming member 65 winds the fluid Wm after the collision around the collision wall 63 around the horizontal end 65e of the detour forming member 65. The fluid Wm after the collision passes through the collision wall 63 between the detour forming member 65 and the can body 61 at the horizontal end portion 65e of the detour forming member 65. A passage channel 68 is formed.

このように構成すると、気液分離器の缶胴が水平方向に長く形成されているので、気液分離器の缶胴の高さを抑制しつつ混合流体の気液分離性能を確保することができ、高さを抑制した吸収ヒートポンプとすることができる。   If comprised in this way, since the can body of a gas-liquid separator is formed long horizontally, it can secure the gas-liquid separation performance of mixed fluid, suppressing the height of the can body of a gas-liquid separator. It is possible to provide an absorption heat pump that suppresses the height.

また、本発明の第2の態様に係る吸収ヒートポンプは、例えば図1及び図2に示すように、上記本発明の第1の態様に係る吸収ヒートポンプ1において、缶胴61の水平方向の長さが伝熱管12の水平方向の長さ以下に構成され;缶胴61が伝熱管12の最上部の上方に配置されている。   Moreover, the absorption heat pump which concerns on the 2nd aspect of this invention is the length of the horizontal direction of the can body 61 in the absorption heat pump 1 which concerns on the said 1st aspect of this invention, for example, as shown in FIG.1 and FIG.2. Is configured to be equal to or shorter than the horizontal length of the heat transfer tube 12; the can body 61 is disposed above the uppermost portion of the heat transfer tube 12.

このように構成すると、収まりのよい吸収ヒートポンプとなる。   If comprised in this way, it will become an absorption heat pump with sufficient accommodation.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図2に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプにおいて、衝突壁63に衝突後の流体Wmを下方に案内する案内部材66を備える。   Moreover, the absorption heat pump according to the third aspect of the present invention is, for example, as shown in FIG. 2, in the absorption heat pump according to the first aspect or the second aspect of the present invention, the fluid after collision with the collision wall 63. A guide member 66 for guiding Wm downward is provided.

このように構成すると、衝突壁に衝突後の流体の流れ方向を複数回変えることができ、気液分離性能を向上させることができる。   If comprised in this way, the flow direction of the fluid after a collision to a collision wall can be changed in multiple times, and gas-liquid separation performance can be improved.

また、本発明の第4の態様に係る吸収ヒートポンプは、例えば図2に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、流入口61a及び流出口61bが缶胴61の水平方向における中央部に形成され;通過流路68が、迂回路形成部材65の水平方向の両端部65eに形成されている。   Moreover, the absorption heat pump which concerns on the 4th aspect of this invention is an inflow port in the absorption heat pump which concerns on any one aspect of the said 1st aspect thru | or 3rd aspect of this invention, as shown, for example in FIG. 61a and the outlet 61b are formed in the center part in the horizontal direction of the can body 61; the passage channel 68 is formed in the both ends 65e in the horizontal direction of the detour forming member 65.

このように構成すると、缶胴の水平方向の長さを短くすることが可能となる。   If comprised in this way, it will become possible to shorten the length of the horizontal direction of a can body.

また、本発明の第5の態様に係る吸収ヒートポンプは、例えば図3及び図4に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、流入口61a、161a及び流出口61b、161bが缶胴61、161の水平方向における一端部に寄せて形成され;通過流路68、168が、迂回路形成部材65、165の水平方向の、流入口61a、161aとは反対側の端部65e、165eに形成されている。   Moreover, the absorption heat pump according to the fifth aspect of the present invention is the absorption heat pump according to any one of the first to third aspects of the present invention, as shown in FIGS. 3 and 4, for example. The inlets 61a, 161a and the outlets 61b, 161b are formed close to one end in the horizontal direction of the can bodies 61, 161; the passages 68, 168 are formed in the horizontal direction of the detour forming members 65, 165, It is formed in the edge parts 65e and 165e on the opposite side to the inflow ports 61a and 161a.

このように構成すると、分離空間を比較的長く取ることができ、気液分離性能を向上させることができる。   If comprised in this way, separation space can be taken comparatively long and gas-liquid separation performance can be improved.

本発明によれば、気液分離器の缶胴が水平方向に長く形成されているので、気液分離器の缶胴の高さを抑制しつつ混合流体の気液分離性能を確保することができ、高さを抑制した吸収ヒートポンプとすることができる。   According to the present invention, since the can body of the gas-liquid separator is formed long in the horizontal direction, it is possible to ensure the gas-liquid separation performance of the mixed fluid while suppressing the height of the can body of the gas-liquid separator. It is possible to provide an absorption heat pump that suppresses the height.

本発明の実施の形態に係る吸収ヒートポンプの模式的系統図である。1 is a schematic system diagram of an absorption heat pump according to an embodiment of the present invention. (A)は本発明の実施の形態に係る吸収ヒートポンプが備える気液分離器の正面縦断面図、(B)は(A)におけるIIB−IIB矢視断面図である。(A) is a front longitudinal cross-sectional view of the gas-liquid separator with which the absorption heat pump which concerns on embodiment of this invention is equipped, (B) is IIB-IIB arrow directional cross-sectional view in (A). 本発明の実施の形態に係る吸収ヒートポンプが備える第1の変形例に係る気液分離器の正面縦断面図である。It is a front longitudinal cross-sectional view of the gas-liquid separator which concerns on the 1st modification with which the absorption heat pump which concerns on embodiment of this invention is provided. (A)は本発明の実施の形態に係る吸収ヒートポンプが備える第2の変形例に係る気液分離器の正面縦断面図、(B)は(A)におけるIVB−IVB矢視断面図である。(A) is a front longitudinal cross-sectional view of the gas-liquid separator which concerns on the 2nd modification with which the absorption heat pump which concerns on embodiment of this invention is equipped, (B) is IVB-IVB arrow directional cross-sectional view in (A). . 本発明の実施の形態の変形例に係る二段昇温型吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of the two-stage temperature rising type absorption heat pump which concerns on the modification of embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1は、吸収ヒートポンプ1の模式的系統図である。吸収ヒートポンプ1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備え、さらに、気液分離器60を備えている。   First, an absorption heat pump 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat pump 1. The absorption heat pump 1 includes an absorber 10, an evaporator 20, a regenerator 30, and a condenser that constitute a main device in which an absorption heat pump cycle of the absorption liquid S (Sa, Sw) and the refrigerant V (Ve, Vg, Vf) is performed. A gas-liquid separator 60 is further provided.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、被加熱媒体Wは、吸収器10に供給される液体の被加熱媒体Wである被加熱媒体液Wq、気体の被加熱媒体Wである被加熱媒体蒸気Wv、液体と気体とが混合した状態の被加熱媒体Wである混合被加熱媒体Wm、吸収ヒートポンプ1外から補充された被加熱媒体Wである補給液体としての補給水Wsの総称である。本実施の形態では、被加熱媒体Wとして水(HO)が用いられている。 In the present specification, the absorption liquid is referred to as “dilute solution Sw”, “concentrated solution Sa” or the like in accordance with the property or the position on the heat pump cycle in order to facilitate distinction on the heat pump cycle. In general, the term “absorbing liquid S” is used. Similarly, regarding the refrigerant, in order to easily distinguish on the heat pump cycle, “evaporator refrigerant vapor Ve”, “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf”, etc., depending on the properties and the position on the heat pump cycle. However, when the properties and the like are not asked, they are collectively referred to as “refrigerant V”. In the present embodiment, an LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbent and the refrigerant V), and water (H 2 O) is used as the refrigerant V. The heated medium W includes a heated medium liquid Wq, which is a liquid heated medium W supplied to the absorber 10, a heated medium vapor Wv, which is a gaseous heated medium W, and a liquid and a gas. This is a generic term for the mixed heated medium Wm, which is the heated medium W in a state, and the replenishing water Ws as the replenishing liquid, which is the heated medium W supplemented from outside the absorption heat pump 1. In the present embodiment, water (H 2 O) is used as the heating medium W.

吸収器10は、被加熱媒体Wの流路を構成する伝熱管12と、濃溶液Saを散布する濃溶液散布ノズル13とを内部に有している。吸収器10は、濃溶液散布ノズル13から濃溶液Saが散布され、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。   The absorber 10 includes therein a heat transfer tube 12 that forms a flow path of the heated medium W and a concentrated solution spray nozzle 13 that sprays the concentrated solution Sa. The absorber 10 generates heat of absorption when the concentrated solution Sa is sprayed from the concentrated solution spray nozzle 13 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The heated medium W flowing through the heat transfer tube 12 receives this absorbed heat so that the heated medium W is heated.

蒸発器20は、熱源流体としての熱源温水hの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。吸収ヒートポンプでは、吸収冷凍機よりも蒸発器内の圧力が高いので、熱源管が冷媒液に浸かる構成でも所望の冷媒蒸気を得ることが可能となる。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる熱源温水hの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21の下部には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。   The evaporator 20 has a heat source pipe 22 constituting a flow path of the heat source hot water h as a heat source fluid in the evaporator can body 21. The evaporator 20 does not have a nozzle for spraying the refrigerant liquid Vf inside the evaporator can body 21. For this reason, the heat source pipe 22 is disposed so as to be immersed in the refrigerant liquid Vf stored in the evaporator can body 21 (full liquid evaporator). In the absorption heat pump, since the pressure in the evaporator is higher than that of the absorption refrigerator, it is possible to obtain a desired refrigerant vapor even in a configuration in which the heat source tube is immersed in the refrigerant liquid. The evaporator 20 is configured so that the refrigerant liquid Vf around the heat source pipe 22 is evaporated by the heat of the heat source hot water h flowing in the heat source pipe 22 to generate the evaporator refrigerant vapor Ve. A refrigerant liquid pipe 45 that supplies the refrigerant liquid Vf into the evaporator can body 21 is connected to the lower portion of the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。   The absorber 10 and the evaporator 20 are in communication with each other. By connecting the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する熱源流体としての熱源温水hを内部に流す熱源管32と、希溶液Swを散布する希溶液散布ノズル33とを有している。熱源管32内を流れる熱源温水hは、本実施の形態では熱源管22内を流れる熱源温水hと同じ流体となっているが、異なる流体であってもよい。再生器30は、希溶液散布ノズル33から散布された希溶液Swが熱源温水hに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。   The regenerator 30 has a heat source pipe 32 for flowing heat source hot water h as a heat source fluid for heating the dilute solution Sw, and a dilute solution spray nozzle 33 for spraying the dilute solution Sw. The heat source hot water h flowing in the heat source pipe 32 is the same fluid as the heat source hot water h flowing in the heat source pipe 22 in the present embodiment, but may be a different fluid. The regenerator 30 heats the dilute solution Sw sprayed from the dilute solution spray nozzle 33 to the heat source hot water h, so that the concentrated solution Sa having an increased concentration is generated from the dilute solution Sw by evaporating the refrigerant V. It is configured. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as a regenerator refrigerant vapor Vg.

凝縮器40は、冷却媒体としての冷却水cが流れる冷却水管42を凝縮器缶胴41の内部に有している。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。   The condenser 40 has a cooling water pipe 42 through which the cooling water c as a cooling medium flows inside the condenser can body 41. The condenser 40 is configured to introduce the regenerator refrigerant vapor Vg generated in the regenerator 30, cool it with the cooling water c, and condense it. The can body of the regenerator 30 and the condenser can body 41 are integrally formed so that the regenerator 30 and the condenser 40 communicate with each other. By connecting the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液散布ノズル13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液散布ノズル33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21の下部(典型的には底部)とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。   The portion where the concentrated solution Sa of the regenerator 30 is stored and the concentrated solution spray nozzle 13 of the absorber 10 are connected by a concentrated solution pipe 35 through which the concentrated solution Sa flows. The concentrated solution pipe 35 is provided with a solution pump 35p that pumps the concentrated solution Sa. The portion of the absorber 10 where the dilute solution Sw is stored and the dilute solution spray nozzle 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. The concentrated solution tube 35 and the diluted solution tube 36 are provided with a solution heat exchanger 38 that performs heat exchange between the concentrated solution Sa and the diluted solution Sw. The portion of the condenser 40 where the refrigerant liquid Vf is stored and the lower portion (typically the bottom portion) of the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 that pumps the refrigerant liquid Vf.

蒸発器20の熱源管22の一端には、熱源温水hを熱源管22に導入する熱源温水導入管51が接続されている。熱源管22の他端と再生器30の熱源管32の一端とは、熱源温水連絡管52で接続されている。熱源管32の他端には、熱源温水hを吸収ヒートポンプ1の外に導く熱源温水流出管53が接続されている。熱源温水流出管53には、内部を流れる熱源温水hの流量を調節可能な熱源温水切替弁53vが配設されている。熱源温水切替弁53vよりも下流側の熱源温水流出管53と熱源温水導入管51との間には、熱源温水バイパス管55が設けられている。熱源温水バイパス管55には、流路を開閉可能なバイパス弁55vが配設されている。   A heat source hot water introduction pipe 51 for introducing the heat source hot water h into the heat source pipe 22 is connected to one end of the heat source pipe 22 of the evaporator 20. The other end of the heat source pipe 22 and one end of the heat source pipe 32 of the regenerator 30 are connected by a heat source hot water communication pipe 52. The other end of the heat source pipe 32 is connected to a heat source hot water outflow pipe 53 that guides the heat source hot water h to the outside of the absorption heat pump 1. The heat source hot water outlet pipe 53 is provided with a heat source hot water switching valve 53v capable of adjusting the flow rate of the heat source hot water h flowing inside. A heat source warm water bypass pipe 55 is provided between the heat source warm water outlet pipe 53 and the heat source warm water introduction pipe 51 on the downstream side of the heat source warm water switching valve 53v. The heat source hot water bypass pipe 55 is provided with a bypass valve 55v that can open and close the flow path.

気液分離器60は、吸収器10の伝熱管12を流れて加熱された混合流体としての混合被加熱媒体Wmを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器60には、分離された被加熱媒体液Wqを気液分離器60から流出する分離液管81が下部(典型的には底部)に接続されている。分離液管81の他端には、被加熱媒体液Wqを伝熱管12に導く被加熱媒体液管82が接続されている。伝熱管12の他端と気液分離器60の気相部とは、混合被加熱媒体Wmを気液分離器60に導く加熱後被加熱媒体管84で接続されている。また、気液分離器60には、分離された被加熱媒体蒸気Wvを需要先に向けて吸収ヒートポンプ1の外に導く供給蒸気管としての被加熱媒体蒸気管89が上部(典型的には頂部)に接続されている。また、主に蒸気として吸収ヒートポンプ1の外に供給された分の被加熱媒体Wを補うための補給水Wsを吸収ヒートポンプ1の外から導入する補給水管85が設けられている。補給水管85は、本実施の形態では、分離液管81と被加熱媒体液管82との接続部に接続されており、分離液管81を流れてきた被加熱媒体液Wqに補給水Wsを合流させるように構成されている。補給水管85には、吸収器10に向けて補給水Wsを圧送する補給水ポンプ86が配設されている。   The gas-liquid separator 60 is a device that introduces the mixed heated medium Wm as a mixed fluid heated by flowing through the heat transfer tube 12 of the absorber 10 and separates the heated medium vapor Wv and the heated medium liquid Wq. is there. The gas-liquid separator 60 is connected to a lower part (typically the bottom part) of a separation liquid pipe 81 through which the separated heated medium liquid Wq flows out from the gas-liquid separator 60. The other end of the separation liquid pipe 81 is connected to a heated medium liquid pipe 82 that guides the heated medium liquid Wq to the heat transfer pipe 12. The other end of the heat transfer tube 12 and the gas phase portion of the gas-liquid separator 60 are connected by a heated medium tube 84 after heating that guides the mixed heated medium Wm to the gas-liquid separator 60. Further, the gas-liquid separator 60 has a heated medium vapor pipe 89 as a supply vapor pipe that guides the separated heated medium vapor Wv to the outside of the absorption heat pump 1 toward a demand destination (typically, a top portion). )It is connected to the. Further, a replenishment water pipe 85 is provided for introducing replenishment water Ws for supplementing the medium W to be heated, which is mainly supplied as vapor outside the absorption heat pump 1, from outside the absorption heat pump 1. In the present embodiment, the makeup water pipe 85 is connected to a connection portion between the separation liquid pipe 81 and the heated medium liquid pipe 82, and supplies the makeup water Ws to the heated medium liquid Wq flowing through the separation liquid pipe 81. It is comprised so that it may merge. The makeup water pipe 85 is provided with a makeup water pump 86 that pumps the makeup water Ws toward the absorber 10.

ここで図2を参照して、気液分離器60の構造を説明する。図2(A)は気液分離器60の正面縦断面図、図2(B)は図2(A)におけるIIB−IIB矢視断面図であって気液分離器60の側面縦断面図を示している。気液分離器60は、缶胴61と、缶胴61の内部に設けられた対向板63、仕切板65、区画板66とを備えている。缶胴61は、水平方向に長い円筒状に形成されている。したがって、円筒状の両端面に対応する缶胴61の鏡板61eは、円形に形成されている。水平方向に長い円筒状とは、円筒の軸線61xが水平の状態である。また、水平方向に長いとは、横長のことであり、横長とは、最大水平断面積が、水平の軸線61xに直交する断面である垂直断面における最大面積よりも大きいことを意味している。缶胴61は、本実施の形態では、水平方向の長さが、吸収器10内の伝熱管12の水平方向の長さ以下に形成されている。また、本実施の形態では、吸収器10は、伝熱管12が吸収器10の内部に水平に配置され、伝熱管12の内部を流れる被加熱媒体Wが全体として下方から上方へ流れるように構成されている。そして、気液分離器60の缶胴61は、水平の軸線61xが伝熱管12と平行になるように配置されている。   Here, the structure of the gas-liquid separator 60 will be described with reference to FIG. 2A is a front longitudinal sectional view of the gas-liquid separator 60, and FIG. 2B is a sectional view taken along the arrow IIB-IIB in FIG. Show. The gas-liquid separator 60 includes a can body 61, a counter plate 63, a partition plate 65, and a partition plate 66 provided inside the can body 61. The can body 61 is formed in a cylindrical shape that is long in the horizontal direction. Therefore, the end plate 61e of the can body 61 corresponding to both cylindrical end faces is formed in a circular shape. The cylindrical shape that is long in the horizontal direction is a state in which the axis 61x of the cylinder is horizontal. Further, being long in the horizontal direction means being horizontally long, which means that the maximum horizontal cross-sectional area is larger than the maximum area in a vertical cross-section that is a cross section perpendicular to the horizontal axis 61x. In the present embodiment, the can body 61 is formed such that the horizontal length is equal to or less than the horizontal length of the heat transfer tube 12 in the absorber 10. Moreover, in this Embodiment, the absorber 10 is comprised so that the to-be-heated medium W which the heat exchanger tube 12 may be horizontally arrange | positioned inside the absorber 10 and flows through the inside of the heat exchanger tube 12 may flow upwards from the downward | lower direction. Has been. The can body 61 of the gas-liquid separator 60 is arranged so that the horizontal axis 61 x is parallel to the heat transfer tube 12.

缶胴61には、混合被加熱媒体Wmが流入する流入口61aと、分離後気体に相当する被加熱媒体蒸気Wvが流出する流出口としての蒸気流出口61bと、分離後液体に相当する被加熱媒体液Wqが流出する液出口61cとが形成されている。流入口61a、蒸気流出口61b、液出口61cは、典型的には缶胴61の水平方向に延びる面(鏡板61e以外の面)に形成されており、本実施の形態では、缶胴61の水平方向における中央部に形成されている。また、流入口61a及び蒸気流出口61bは、缶胴61内において被加熱媒体液Wqが到達し得る最高液位WLHよりも上方に形成されており、本実施の形態では、流入口61aが軸線61xの高さよりもやや高い缶胴61の側面に形成されており(流入口61aの下端が概ね軸線61xの高さ)、蒸気流出口61bが缶胴61の頂部に形成されている。液出口61cは、缶胴61の下部に貯留された被加熱媒体液Wqを円滑に流出させる観点から、最高液位WLHより下方に形成されていることが好ましく、液出口61cの最上部が最高液位WLHより下方に形成されていることがより好ましく、本実施の形態では缶胴61の底部に形成されている。流入口61aには加熱後被加熱媒体管84が水平に接続されており、蒸気流出口61bには被加熱媒体蒸気管89が鉛直に接続されており、液出口61cには分離液管81が鉛直に接続されている。   The can body 61 has an inlet 61a into which the mixed heated medium Wm flows, a vapor outlet 61b as an outlet from which the heated medium vapor Wv corresponding to the separated gas flows out, and a covered corresponding to the separated liquid. A liquid outlet 61c through which the heating medium liquid Wq flows is formed. The inlet 61a, the steam outlet 61b, and the liquid outlet 61c are typically formed on a surface (a surface other than the end plate 61e) that extends in the horizontal direction of the can body 61. In the present embodiment, It is formed at the center in the horizontal direction. In addition, the inlet 61a and the steam outlet 61b are formed above the highest liquid level WLH that the heated medium liquid Wq can reach in the can body 61. In this embodiment, the inlet 61a is an axis. It is formed on the side surface of the can body 61 that is slightly higher than the height of 61x (the lower end of the inflow port 61a is generally at the height of the axis 61x), and the steam outflow port 61b is formed at the top of the can body 61. The liquid outlet 61c is preferably formed below the highest liquid level WLH from the viewpoint of smoothly flowing out the heated medium liquid Wq stored in the lower portion of the can body 61, and the uppermost part of the liquid outlet 61c is the highest. More preferably, it is formed below the liquid level WLH, and is formed at the bottom of the can body 61 in the present embodiment. A heated medium pipe 84 is connected horizontally to the inlet 61a, a heated medium vapor pipe 89 is connected vertically to the vapor outlet 61b, and a separation liquid pipe 81 is connected to the liquid outlet 61c. Connected vertically.

対向板63は、流入口61aから流入した混合被加熱媒体Wmを衝突させる矩形平板状の部材であり、衝突壁に相当する。対向板63は、本実施の形態では、流入口61aに対して水平方向に離れて対向する位置に、法線が水平になるように(面が鉛直に延びるように)缶胴61の内部に配設されている。対向板63は、本実施の形態では、その上辺が、蒸気流出口61bよりも下方で缶胴61の内壁に接触しているが、内壁に接触しなくてもよい。対向板63は、最高液位WLHよりも高所に設けられている。対向板63が最高液位WLHよりも高所に設けられるとは、対向板63の最下部が最高液位WLHよりも上方になるように設けられていることを意味する。このように対向板63が設けられていることにより、対向板63の下方に流体の流路が確保されることとなる。対向板63の幅(水平方向の長さ)は、流入口61aの幅(水平方向の長さ)の概ね1.5〜3倍、典型的には2倍に形成されている。   The counter plate 63 is a rectangular flat plate member that collides the mixed heated medium Wm flowing from the inflow port 61a, and corresponds to a collision wall. In the present embodiment, the opposing plate 63 is located inside the can body 61 so that the normal line is horizontal (so that the surface extends vertically) at a position facing away from the inflow port 61a in the horizontal direction. It is arranged. In the present embodiment, the upper side of the counter plate 63 is in contact with the inner wall of the can body 61 below the steam outlet 61b, but may not be in contact with the inner wall. The counter plate 63 is provided at a higher position than the highest liquid level WLH. The counter plate 63 being provided higher than the highest liquid level WLH means that the lowermost part of the counter plate 63 is provided above the highest liquid level WLH. By providing the counter plate 63 in this way, a fluid flow path is secured below the counter plate 63. The width (length in the horizontal direction) of the counter plate 63 is approximately 1.5 to 3 times, typically 2 times, the width (length in the horizontal direction) of the inflow port 61a.

仕切板65は、流入口61aから流入した混合被加熱媒体Wmが直ちに蒸気流出口61bから流出しないように缶胴61内で迂回させる平板状の部材であり、迂回路形成部材に相当する。仕切板65は、缶胴61内の、流入口61aに通ずる空間と、蒸気流出口61bに通ずる空間とを仕切る位置に配設されている。仕切板65は、軸線61xに直交する断面(図2(B)参照)においては、対向板63の上端(上辺)に一端が接続され、面が水平に延びて、他端が流入口61aの上方の缶胴61の内壁に接触している。また、仕切板65は、軸線61xに平行な縦断面(図2(A)参照)においては、面が水平に延びて、両端が缶胴61の鏡板61eには到達しない鏡板61eの近傍に位置している。これにより、両側の仕切板末端65eと鏡板61eとの間には、流体が通過可能な通過流路68が形成されている。通過流路68の幅(隙間)は、通過する流体の流量を勘案して、抵抗が増大しすぎないように決定するとよい。   The partition plate 65 is a plate-like member that makes a detour in the can body 61 so that the mixed heated medium Wm that flows in from the inlet 61a does not immediately flow out of the steam outlet 61b, and corresponds to a detour forming member. The partition plate 65 is disposed at a position in the can body 61 that partitions a space communicating with the inflow port 61a and a space communicating with the steam outflow port 61b. In the cross section perpendicular to the axis 61x (see FIG. 2B), the partition plate 65 has one end connected to the upper end (upper side) of the counter plate 63, the surface extending horizontally, and the other end connected to the inlet 61a. It is in contact with the inner wall of the upper can body 61. Further, in the longitudinal section parallel to the axis 61x (see FIG. 2A), the partition plate 65 is positioned in the vicinity of the end plate 61e where the surfaces extend horizontally and both ends do not reach the end plate 61e of the can body 61. doing. As a result, a passage channel 68 through which fluid can pass is formed between the partition plate ends 65e and the end plate 61e on both sides. The width (gap) of the passage channel 68 may be determined so that the resistance does not increase excessively in consideration of the flow rate of the fluid passing therethrough.

区画板66は、流入口61aから流入して対向板63に衝突した混合被加熱媒体Wmを下方に案内する平板状の部材であり、案内部材に相当する。区画板66は、仕切板65の下方において、流入口61aに通ずる空間と、その水平方向隣の空間とを区画する位置に配設されている。区画板66は、軸線61xに平行な縦断面(図2(A)参照)において、対向板63の左右の辺(鉛直に延びる辺)にそれぞれ1つずつ、合計2つが、法線が軸線61xと平行になるように設けられている。各区画板66は、軸線61xに直交する断面(図2(B)参照)においては、直線状の上辺が仕切板65に接触しており、下辺は最高液位WLHよりも上方で直線状に延びており、対向板63に接する辺とは反対側の辺は流入口61aの隣で缶胴61の内壁に接している。各区画板66は、本実施の形態では、その下辺が、対向板63の下辺と同じ高さとなっているが、対向板63の下辺と異なる高さであってもよい。   The partition plate 66 is a flat plate-like member that guides the mixed heated medium Wm that flows in from the inlet 61a and collides with the counter plate 63 downward, and corresponds to a guide member. The partition plate 66 is disposed below the partition plate 65 at a position that partitions a space communicating with the inflow port 61a and a space adjacent to the horizontal direction. In the longitudinal section parallel to the axis 61x (see FIG. 2A), the partition plate 66 has one each on the left and right sides (vertically extending sides) of the opposing plate 63, and two in total, and the normal is the axis 61x. It is provided so that it may become parallel. Each partition plate 66 has a straight upper side in contact with the partition plate 65 in a cross section perpendicular to the axis 61x (see FIG. 2B), and the lower side extends linearly above the highest liquid level WLH. The side opposite to the side in contact with the counter plate 63 is in contact with the inner wall of the can body 61 next to the inflow port 61a. In the present embodiment, each partition plate 66 has a lower side that is the same height as the lower side of the opposing plate 63, but may be a height that is different from the lower side of the opposing plate 63.

図1に示すように、上述のように構成された気液分離器60は、缶胴61が、伝熱管12の最上部の上方であり、濃溶液散布ノズル13の上方に配置されている。気液分離器60の缶胴61は、水平方向の長さが、吸収器10内の伝熱管12の水平方向の長さ以下に形成されているので、吸収器10の缶胴の幅に収まることとなる。   As shown in FIG. 1, the gas-liquid separator 60 configured as described above has a can body 61 disposed above the uppermost portion of the heat transfer tube 12 and above the concentrated solution spray nozzle 13. The can body 61 of the gas-liquid separator 60 has a horizontal length that is less than or equal to the horizontal length of the heat transfer tube 12 in the absorber 10, and therefore fits within the width of the can body of the absorber 10. It will be.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。吸収ヒートポンプ1の定常運転時は、熱源温水切替弁53vが開、バイパス弁55vが閉となっている。まず、冷媒側のサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、冷却水管42を流れる冷却水cで冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる熱源温水hによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。   With continued reference to FIG. 1, the operation of the absorption heat pump 1 will be described. During the steady operation of the absorption heat pump 1, the heat source hot water switching valve 53v is open and the bypass valve 55v is closed. First, the refrigerant side cycle will be described. In the condenser 40, the regenerator refrigerant vapor Vg evaporated in the regenerator 30 is received, cooled and condensed with the cooling water c flowing through the cooling water pipe 42, and the refrigerant liquid Vf is obtained. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the heat source hot water h flowing in the heat source pipe 22 and evaporated to become the evaporator refrigerant vapor Ve. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 that communicates with the evaporator 20.

次に溶液側のサイクルを説明する。吸収器10では、濃溶液Saが濃溶液散布ノズル13から散布され、この散布された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる被加熱媒体Wが加熱される。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。   Next, the solution side cycle will be described. In the absorber 10, the concentrated solution Sa is sprayed from the concentrated solution spray nozzle 13, and the sprayed concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve is reduced in concentration to become a diluted solution Sw. In the absorber 10, heat of absorption is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The heated medium W flowing through the heat transfer tube 12 is heated by the absorbed heat. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve by the absorber 10 is reduced in concentration to become the diluted solution Sw, and is stored in the lower part of the absorber 10. The stored diluted solution Sw flows through the diluted solution tube 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and heat-exchanges with the concentrated solution Sa in the solution heat exchanger 38, so that the temperature is Decreases and reaches the regenerator 30.

再生器30に送られた希溶液Swは、希溶液散布ノズル33から散布され、熱源管32を流れる熱源温水h(本実施の形態では約80℃前後)によって加熱され、散布された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液散布ノズル13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液散布ノズル13から散布される。濃溶液Saは、溶液ポンプ35pで昇圧されて吸収器10に入り、吸収器10内で蒸発器冷媒蒸気Veを吸収することに伴い温度が上昇する。吸収器10に戻った濃溶液Saは蒸発器冷媒蒸気Veを吸収し、以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 30 is sprayed from the dilute solution spray nozzle 33, heated by the heat source hot water h (about about 80 ° C. in the present embodiment) flowing through the heat source pipe 32, and sprayed dilute solution Sw. The refrigerant inside evaporates into a concentrated solution Sa and is stored in the lower part of the regenerator 30. On the other hand, the refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as a regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pumped to the concentrated solution spray nozzle 13 of the absorber 10 through the concentrated solution tube 35 by the solution pump 35p. The concentrated solution Sa flowing through the concentrated solution pipe 35 is heat-exchanged with the diluted solution Sw by the solution heat exchanger 38 and rises in temperature, and then flows into the absorber 10 and is sprayed from the concentrated solution spray nozzle 13. The concentrated solution Sa is pressurized by the solution pump 35 p and enters the absorber 10, and the temperature rises as the evaporator refrigerant vapor Ve is absorbed in the absorber 10. The concentrated solution Sa returned to the absorber 10 absorbs the evaporator refrigerant vapor Ve and thereafter repeats the same cycle.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程で、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生する吸収熱で被加熱媒体液Wqが加熱されて湿り蒸気(混合被加熱媒体Wm)となり、加熱後被加熱媒体管84を介して気液分離器60に導かれる。気液分離器60に流入した混合被加熱媒体Wmは、以下の要領で被加熱媒体蒸気Wvと被加熱媒体液Wqとに分離される。   In the process in which the absorption liquid S and the refrigerant V perform the absorption heat pump cycle as described above, the heated medium liquid Wq is heated by the absorption heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10. Thus, it becomes wet steam (mixed heated medium Wm), and after heating, is led to the gas-liquid separator 60 via the heated medium pipe 84. The mixed heated medium Wm flowing into the gas-liquid separator 60 is separated into the heated medium vapor Wv and the heated medium liquid Wq in the following manner.

ここで図2を参照して、気液分離器60内の作用を説明する。加熱後被加熱媒体管84を流れてきて流入口61aから缶胴61内に水平に流入した混合被加熱媒体Wmは、対向板63に衝突する。対向板63に衝突した混合被加熱媒体Wmは、上方には仕切板65が存在し、両側には区画板66が存在するため、下方向に流れの向きを変える。このとき、混合被加熱媒体Wmは、対向板63への衝突と、衝突前後に流れ方向を水平方向から下方向へと変えたこととにより、第1段階の気体(被加熱媒体蒸気Wv)と液体(被加熱媒体液Wq)との分離が行われる。典型的には、混合被加熱媒体Wm中に含まれていた一部の被加熱媒体液Wqが分離されて滴下し、缶胴61の下部に溜まる。   Here, the operation in the gas-liquid separator 60 will be described with reference to FIG. After heating, the mixed heated medium Wm flowing through the heated medium pipe 84 and flowing horizontally into the can body 61 from the inlet 61 a collides with the counter plate 63. The mixed heated medium Wm that has collided with the opposing plate 63 changes its flow direction downward because the partition plate 65 exists above and the partition plate 66 exists on both sides. At this time, the mixed heated medium Wm becomes a first-stage gas (heated medium vapor Wv) by collision with the counter plate 63 and by changing the flow direction from the horizontal direction to the lower direction before and after the collision. Separation from the liquid (heated medium liquid Wq) is performed. Typically, a part of the heated medium liquid Wq contained in the mixed heated medium Wm is separated and dropped and collected at the bottom of the can body 61.

対向板63及び区画板66に囲まれた空間内を下向きに流れる混合被加熱媒体Wmは、区画板66の下端を反転して、流れの向きを下方向から水平方向に変える。この、下方向から水平方向に流れの向きを変えたことにより、第2段階の気体と液体との分離(混合被加熱媒体Wm中に含まれていた一部の被加熱媒体液Wqの分離滴下)が行われる。本実施の形態では、流入口61aが缶胴61の水平方向における中央部に形成されているので、区画板66の下端を反転して下方向から水平方向に向きを変える流れは、左右2つの流れに分かれる。左右2つに分かれた混合被加熱媒体Wmは、それぞれ、缶胴61の両端の鏡板61eに向けて概ね水平に流れる。仕切板65の下方を概ね水平に流れる混合被加熱媒体Wmの流路は、缶胴61の軸線61xに直交な断面に近い断面積を持つこととなる。そして、対向板63の位置から両側に形成された2つの水平の流路のうちの一方の流路を流れる混合被加熱媒体Wmの流量は、流入口61aから流入した混合被加熱媒体Wmの流量の約半分となるので、この流路を流れる流体の流速は低くなり、気液分離の効果を高めることができる。この、混合被加熱媒体Wmが仕切板65の下方を概ね水平に流れることにより、第3段階の気体と液体との分離(混合被加熱媒体Wm中に含まれていた一部の被加熱媒体液Wqの分離滴下)が行われる。   The mixed heated medium Wm that flows downward in the space surrounded by the counter plate 63 and the partition plate 66 reverses the lower end of the partition plate 66 and changes the flow direction from the downward direction to the horizontal direction. By changing the direction of the flow from the downward direction to the horizontal direction, the separation of the gas and the liquid in the second stage (separation and dropping of a part of the heated medium liquid Wq contained in the mixed heated medium Wm) ) Is performed. In this embodiment, since the inflow port 61a is formed at the central portion in the horizontal direction of the can body 61, the flow that reverses the lower end of the partition plate 66 and changes the direction from the lower direction to the horizontal direction is divided into two left and right. Divided into flows. The mixed heated medium Wm divided into the left and right parts flows substantially horizontally toward the end plates 61e at both ends of the can body 61, respectively. The flow path of the mixed heated medium Wm that flows substantially horizontally below the partition plate 65 has a cross-sectional area close to a cross section orthogonal to the axis 61 x of the can body 61. The flow rate of the mixed heated medium Wm flowing through one of the two horizontal flow paths formed on both sides from the position of the counter plate 63 is the flow rate of the mixed heated medium Wm flowing from the inflow port 61a. Therefore, the flow velocity of the fluid flowing through this flow path is reduced, and the effect of gas-liquid separation can be enhanced. The mixed heated medium Wm flows substantially horizontally below the partition plate 65, thereby separating the third stage gas and liquid (part of the heated medium liquid contained in the mixed heated medium Wm). Wq separation and dropping) is performed.

缶胴61の鏡板61eに向けて仕切板65の下方を概ね水平に流れる混合被加熱媒体Wmは、鏡板61eの近傍に到達すると鏡板61eの面に沿って上方に向かうように流れの向きを変える。この、概ね水平方向から上方向に流れの向きを変えたことにより、第4段階の気体(被加熱媒体蒸気Wv)と液体(被加熱媒体液Wq)との分離が行われる。鏡板61eの面に沿って上方向に流れる分離された被加熱媒体蒸気Wvは、通過流路68を通過し、仕切板65の上方に形成された缶胴61の上壁と仕切板65との間の流路を流れ、蒸気流出口61bを介して缶胴61の外に流出する。このように、流入口61aから流入した流体は、蒸気流出口61bから流出するまでに仕切板65を巻くように流れることとなり、仕切板65の周囲に形成される流路が迂回路に相当する。他方、分離された被加熱媒体液Wqは、落下して缶胴61の下部に溜まる。流入口61aから流入した混合被加熱媒体Wmから、蒸気流出口61bから流出する被加熱媒体蒸気Wvが生成される過程で分離されて、缶胴61の下部に溜まっている被加熱媒体液Wqは、液出口61cを介して缶胴61の外に流出する。   When the mixed heated medium Wm that flows substantially horizontally below the partition plate 65 toward the end plate 61e of the can body 61 reaches the vicinity of the end plate 61e, the flow direction of the mixed heated medium Wm is changed to go upward along the surface of the end plate 61e. . By changing the direction of the flow from the substantially horizontal direction to the upward direction, the separation of the fourth stage gas (heated medium vapor Wv) and liquid (heated medium liquid Wq) is performed. The separated heated medium vapor Wv that flows upward along the surface of the end plate 61 e passes through the passage passage 68 and is formed between the upper wall of the can body 61 formed above the partition plate 65 and the partition plate 65. It flows through the flow path between them and flows out of the can body 61 through the steam outlet 61b. Thus, the fluid flowing in from the inflow port 61a flows so as to wind around the partition plate 65 until it flows out from the steam outlet 61b, and the flow path formed around the partition plate 65 corresponds to a detour. . On the other hand, the separated heated medium liquid Wq falls and accumulates in the lower portion of the can body 61. The heated medium liquid Wq separated from the mixed heated medium Wm flowing in from the inlet 61a in the process of generating the heated medium vapor Wv flowing out from the vapor outlet 61b and accumulated in the lower portion of the can body 61 is Then, it flows out of the can body 61 through the liquid outlet 61c.

上述のように、本実施の形態に係る吸収ヒートポンプ1が備える気液分離器60では、少なくとも4段階の気液分離機構を有しているので、混合被加熱媒体Wmから分離されて蒸気流出口61bから流出する被加熱媒体蒸気Wvに液滴が随伴することを抑制することができ、良質な蒸気を供給することができる。特に、混合被加熱媒体Wmが仕切板65の下方を概ね水平に流れる第3段階の気液分離では、缶胴61の水平方向に延びる軸線61x方向の長さの全長を利用しているので、缶胴61の全長を延ばすことにより、缶胴61の高さを抑制しつつ(高くすることなく)気液分離効果を高めることができる。   As described above, the gas-liquid separator 60 included in the absorption heat pump 1 according to the present embodiment has at least four stages of gas-liquid separation mechanisms, and therefore is separated from the mixed heated medium Wm and is discharged from the vapor outlet. It can suppress that a droplet accompanies the to-be-heated medium vapor | steam Wv which flows out from 61b, and can supply a high quality vapor | steam. In particular, in the third stage gas-liquid separation in which the mixed heated medium Wm flows substantially horizontally below the partition plate 65, the entire length of the can 61 is extended in the direction of the axis 61x in the horizontal direction. By extending the overall length of the can body 61, the gas-liquid separation effect can be enhanced while suppressing the height of the can body 61 (without increasing it).

また、外部から吸収ヒートポンプ1に供給される熱源量の変化等により、気液分離器60に対して流入する混合被加熱媒体Wmの流量と流出する被加熱媒体液Wqの流量とに不均衡があると、気液分離器60内に貯留されている被加熱媒体液Wqの量が変化することに伴って被加熱媒体液Wqの液位が変化する。水平方向に長い本実施の形態における気液分離器60の水平断面積は、従来の縦型の気液分離器の水平断面積より数倍大きい。すると、気液分離器60内に貯留されている被加熱媒体液Wqの量の変化に対する液位の変化については、水平方向に長い本実施の形態における気液分離器60は、従来の縦型の気液分離器よりも、水平断面積の比の逆数である数分の一以下と小さくなる。液位の変化が小さい本実施の形態の気液分離器60は、液位が安定するので、良好な気液分離を行うことができる。   Further, due to a change in the amount of heat source supplied to the absorption heat pump 1 from the outside, there is an imbalance between the flow rate of the mixed heated medium Wm flowing into the gas-liquid separator 60 and the flow rate of the heated heated medium liquid Wq. If it exists, the liquid level of the to-be-heated medium liquid Wq will change with the quantity of the to-be-heated medium liquid Wq stored in the gas-liquid separator 60 changing. The horizontal cross-sectional area of the gas-liquid separator 60 in the present embodiment that is long in the horizontal direction is several times larger than the horizontal cross-sectional area of the conventional vertical gas-liquid separator. Then, regarding the change in the liquid level with respect to the change in the amount of the heated medium liquid Wq stored in the gas-liquid separator 60, the gas-liquid separator 60 in the present embodiment that is long in the horizontal direction is the conventional vertical type. The gas-liquid separator is smaller than a fraction of the reciprocal of the ratio of the horizontal cross-sectional area. Since the liquid level of the gas-liquid separator 60 of the present embodiment with a small change in liquid level is stable, good gas-liquid separation can be performed.

再び図1に戻って、吸収ヒートポンプ1の作用の説明を続ける。気液分離器60で分離された被加熱媒体蒸気Wvは、被加熱媒体蒸気管89に流出し、吸収ヒートポンプ1の外部の蒸気利用場所(需要先)に供給される。つまり、吸収ヒートポンプから被加熱媒体蒸気Wvが取り出される。このように、吸収ヒートポンプ1は、駆動熱源の温度以上の被加熱媒体Wを取り出すことができる第2種の吸収ヒートポンプとして構成されている。外部に供給された分の被加熱媒体Wは、補給水Wsとして吸収ヒートポンプ1の外部から供給される。他方、気液分離器60で分離された被加熱媒体液Wqは、分離液管81に流出し、補給水管85を流れてきた補給水Wsと合流して、被加熱媒体液Wqとして被加熱媒体液管82を流れ、伝熱管12内に供給される。なお、上述した吸収ヒートポンプ1を構成する各機器は、制御装置(不図示)で制御される。   Returning to FIG. 1 again, the description of the operation of the absorption heat pump 1 will be continued. The heated medium vapor Wv separated by the gas-liquid separator 60 flows out to the heated medium vapor pipe 89 and is supplied to a steam utilization place (a customer) outside the absorption heat pump 1. That is, the heated medium vapor Wv is taken out from the absorption heat pump. Thus, the absorption heat pump 1 is configured as a second type absorption heat pump that can take out the heated medium W that is equal to or higher than the temperature of the drive heat source. The heated medium W supplied to the outside is supplied from the outside of the absorption heat pump 1 as makeup water Ws. On the other hand, the heated medium liquid Wq separated by the gas-liquid separator 60 flows out into the separation liquid pipe 81 and merges with the replenishing water Ws flowing through the replenishing water pipe 85 to be heated as the heated medium liquid Wq. It flows through the liquid pipe 82 and is supplied into the heat transfer pipe 12. In addition, each apparatus which comprises the absorption heat pump 1 mentioned above is controlled by a control apparatus (not shown).

以上で説明したように、本実施の形態に係る吸収ヒートポンプ1によれば、気液分離器60の缶胴61の高さを抑制しつつ、気液分離器60における混合被加熱媒体Wmの気液分離性能を確保することができ、吸収ヒートポンプ1の高さを抑制することができる。また、気液分離器60の缶胴61の水平方向の長さが伝熱管12の水平方向の長さ以下に構成され、缶胴61が伝熱管12の最上部の上方に配置されているので、収まりのよい吸収ヒートポンプ1とすることができる。また、気液分離器60の缶胴61を吸収器10の伝熱管12の最上部の上方に配置することで、気液分離器60と吸収器10の伝熱管12との間で被加熱媒体Wを循環させるためのポンプを設けなくても気泡ポンプ効果により被加熱媒体Wを循環させることができる。   As described above, according to the absorption heat pump 1 according to the present embodiment, the gas of the mixed heated medium Wm in the gas-liquid separator 60 is suppressed while suppressing the height of the can body 61 of the gas-liquid separator 60. Liquid separation performance can be secured and the height of the absorption heat pump 1 can be suppressed. Further, the horizontal length of the can body 61 of the gas-liquid separator 60 is configured to be equal to or less than the horizontal length of the heat transfer tube 12, and the can body 61 is disposed above the uppermost portion of the heat transfer tube 12. Therefore, the absorption heat pump 1 can be obtained. Further, by arranging the can body 61 of the gas-liquid separator 60 above the uppermost portion of the heat transfer tube 12 of the absorber 10, the medium to be heated is interposed between the gas-liquid separator 60 and the heat transfer tube 12 of the absorber 10. The heating medium W can be circulated by the bubble pump effect without providing a pump for circulating W.

以上の説明では、流入口61a及び蒸気流出口61bが缶胴61の水平方向における中央部に形成されているとしたが、中央部は、厳密に中央でなくてよく、典型的には対向板63に衝突後の流体の流速が仕切板65の両端である仕切板末端65eにおいて許容範囲内で等しくなる程度の範囲で中央に形成されていればよい。あるいは、流入口61aの水平方向における位置を、缶胴61の中央部よりも一方の鏡板61eの側(典型的には中央部と鏡板61eとの概ね中間)に移動させて形成することとしてもよい。この場合、区画板66の下端を反転して2つに流れが分かれた流体の各流量が均一とはならないが、区画板66から通過流路68までの流路が長い方の側に形成された通過流路68の幅を他方の通過流路68の幅よりも広くすると、区画板66から通過流路68までの流路が長い方に多くの流量が流れ、長い流路で十分に気液分離することができる。他方、短い流路に流れる流量は少なくなるので、流路が短くても十分な気液分離を行うことができる。また、蒸気流出口61bの水平方向における位置は、缶胴61の中央部でなくてもよく、仕切板65が配置されている範囲内のいずれの位置に形成されていてもよい。しかしながら、蒸気流出口61bは、両側の通過流路68から等距離に形成することが好ましい。   In the above description, the inlet 61a and the steam outlet 61b are formed in the central portion in the horizontal direction of the can body 61. However, the central portion does not have to be exactly the center, and is typically a counter plate. It is only necessary that the flow velocity of the fluid after colliding with 63 is formed in the center in a range that is equal within a permissible range at the partition plate end 65e that is both ends of the partition plate 65. Alternatively, the position of the inflow port 61a in the horizontal direction may be formed by moving from the central portion of the can body 61 to the one end plate 61e side (typically approximately in the middle between the center portion and the end plate 61e). Good. In this case, the flow rate of the fluid divided into two by reversing the lower end of the partition plate 66 is not uniform, but the flow path from the partition plate 66 to the passage flow path 68 is formed on the longer side. If the width of the passage passage 68 is wider than the width of the other passage passage 68, a larger flow rate flows from the partition plate 66 to the passage passage 68 in the longer direction, and the long passage sufficiently absorbs air. Liquid separation can be performed. On the other hand, since the flow rate flowing in the short flow path is reduced, sufficient gas-liquid separation can be performed even if the flow path is short. Further, the position of the steam outlet 61b in the horizontal direction is not limited to the central portion of the can body 61, and may be formed at any position within the range where the partition plate 65 is disposed. However, the steam outlet 61b is preferably formed at an equal distance from the passage channels 68 on both sides.

また、図3に示すように、流入口61a及び蒸気流出口61bを一方の鏡板61enの近傍に寄せて配置してもよい。図3は、第1の変形例に係る気液分離器60Aの正面縦断面図である。気液分離器60Aの、気液分離器60(図2参照)と異なる点は、上述の流入口61a及び蒸気流出口61bの水平方向における位置のほか、以下の事項が挙げられる。気液分離器60Aは、仕切板65が、流入口61a及び蒸気流出口61bを寄せた側の鏡板61enに接触するまで延長されている。この構成により、仕切板65が接触した側の鏡板61enの隣には通過流路68が形成されず、反対側の鏡板61efと仕切板末端65eとの間に通過流路68が形成されている。この場合、気液分離器60(図2参照)では2つ設けられていた区画板66のうち、鏡板61en側には区画板66を設けずに、鏡板61enから遠い側の区画板66と鏡板61enと対向板63(図2(B)参照)とに囲まれた空間が形成されることとしてもよい。このように構成された気液分離器60Aでは、流入口61aから缶胴61内に水平に流入した混合被加熱媒体Wmは、対向板63に衝突した後、区画板66及び鏡板61enに囲まれた空間内で下向きに流れの向きを変える。区画板66の下端を反転して下方向から水平方向に向きを変えた流れは、缶胴61の長手方向の長さと概ね同等の比較的長い水平流路に入る。この水平流路を全量の被加熱媒体Wが一方向に流れるので、その際の流速は気液分離器60(図2(A)参照)の場合の略2倍になるが、流路長が気液分離器60の略2倍に形成されているので、気液分離の効果を高めることができる。   Further, as shown in FIG. 3, the inlet 61a and the steam outlet 61b may be arranged close to one end plate 61en. FIG. 3 is a front longitudinal sectional view of a gas-liquid separator 60A according to the first modification. The difference between the gas-liquid separator 60A and the gas-liquid separator 60 (see FIG. 2) includes the following matters in addition to the horizontal positions of the inlet 61a and the steam outlet 61b described above. The gas-liquid separator 60A is extended until the partition plate 65 contacts the end plate 61en on the side where the inlet 61a and the steam outlet 61b are brought closer. With this configuration, the passage channel 68 is not formed next to the end plate 61en on the side in contact with the partition plate 65, and the passage channel 68 is formed between the end plate 61ef on the opposite side and the partition plate end 65e. . In this case, of the two partition plates 66 provided in the gas-liquid separator 60 (see FIG. 2), the partition plate 66 is not provided on the end plate 61en side, and the partition plate 66 and the end plate on the side far from the end plate 61en are provided. A space surrounded by 61en and the counter plate 63 (see FIG. 2B) may be formed. In the gas-liquid separator 60A configured in this way, the mixed heated medium Wm that has flown horizontally into the can body 61 from the inlet 61a collides with the opposing plate 63, and is then surrounded by the partition plate 66 and the end plate 61en. Change the direction of the flow downward in the space. The flow obtained by reversing the lower end of the partition plate 66 and changing the direction from the lower direction to the horizontal direction enters a relatively long horizontal flow path substantially equal to the length of the can body 61 in the longitudinal direction. Since the entire amount of the medium to be heated W flows in one direction through the horizontal flow path, the flow velocity at that time is approximately twice that of the gas-liquid separator 60 (see FIG. 2A), but the flow path length is Since it is formed approximately twice as large as the gas-liquid separator 60, the effect of gas-liquid separation can be enhanced.

以上の説明では、液出口61cが缶胴61の水平方向における中央部に形成されているとしたが、液出口61cは中央部にこだわらず、軸線61xが延びる方向のいずれに形成されていてもよい。液出口61cは、水平方向のいずれの位置に形成されていても、高さ方向の位置は缶胴61の底部に形成されていることが好ましい。   In the above description, the liquid outlet 61c is formed at the central portion in the horizontal direction of the can body 61. However, the liquid outlet 61c is not limited to the central portion, and may be formed in any direction in which the axis 61x extends. Good. Even if the liquid outlet 61 c is formed at any position in the horizontal direction, the position in the height direction is preferably formed at the bottom of the can body 61.

以上の説明では、衝突壁として対向板63を設けることとしたが、対向板63を設けずに、流入口61aから流入した混合被加熱媒体Wmを缶胴61の内壁に衝突させることとしてもよい。この場合、流入口61aから流入した混合被加熱媒体Wmが衝突する缶胴61の内壁の部分が衝突壁に相当する。しかしながら、混合被加熱媒体Wmが衝突する缶胴61の内壁の部分が湾曲していると混合被加熱媒体Wmが衝突する際のエネルギーが緩和されるため、混合被加熱媒体Wmが衝突壁に衝突する際のエネルギーを大きくしてより多く気液分離させる観点から、対向板63を設けることが好ましい。   In the above description, the counter plate 63 is provided as the collision wall. However, the mixed heated medium Wm flowing from the inflow port 61a may collide with the inner wall of the can body 61 without providing the counter plate 63. . In this case, the portion of the inner wall of the can body 61 where the mixed heated medium Wm flowing in from the inlet 61a collides corresponds to the collision wall. However, if the portion of the inner wall of the can body 61 where the mixed heated medium Wm collides is curved, the energy when the mixed heated medium Wm collides is reduced, so the mixed heated medium Wm collides with the collision wall. It is preferable to provide the counter plate 63 from the viewpoint of increasing the energy at the time of performing the gas separation and further separating the gas and liquid.

次に図4を参照して、第2の変形例に係る吸収ヒートポンプが備える気液分離器60Bを説明する。図4(A)は気液分離器60Bの正面縦断面図、図4(B)は図4(A)におけるIVB−IVB矢視断面図であって気液分離器60Bの側面縦断面図を示している。気液分離器60Bを備える吸収ヒートポンプの、気液分離器60B以外の主要構成機器等の構成は、吸収ヒートポンプ1(図1参照)と同様である。換言すれば、気液分離器60Bを備える吸収ヒートポンプは、吸収ヒートポンプ1(図1参照)と比較して、気液分離器60(図1参照)を気液分離器60Bに置換したものである。   Next, with reference to FIG. 4, the gas-liquid separator 60B with which the absorption heat pump which concerns on a 2nd modification is provided is demonstrated. 4A is a front longitudinal sectional view of the gas-liquid separator 60B, and FIG. 4B is a sectional view taken along the arrow IVB-IVB in FIG. 4A, showing a side longitudinal sectional view of the gas-liquid separator 60B. Show. The configuration of the main components other than the gas-liquid separator 60B of the absorption heat pump including the gas-liquid separator 60B is the same as that of the absorption heat pump 1 (see FIG. 1). In other words, the absorption heat pump including the gas-liquid separator 60B is obtained by replacing the gas-liquid separator 60 (see FIG. 1) with the gas-liquid separator 60B as compared with the absorption heat pump 1 (see FIG. 1). .

気液分離器60Bは、缶胴161と、缶胴161の内部に設けられた仕切板165とを備えている。缶胴161の形状及び大きさは、缶胴61(図2参照)と同様である。したがって、本変形例における缶胴161の鏡板161eは円形に形成されている。また、缶胴161は、水平方向に長く配設されている点も、缶胴61(図2参照)と同様である。缶胴161には、流入口161aと、蒸気流出口161bと、液出口161cとが形成されている。流入口161a、蒸気流出口161b、液出口161cは、それぞれ、缶胴61(図2参照)に形成された流入口61a、蒸気流出口61b、液出口61cに対応する。缶胴161に対して流入口161a、蒸気流出口161b、液出口161cが形成される位置は、本変形例では、缶胴61(図2参照)に形成された流入口61a、蒸気流出口61b、液出口61cと比較して、高さ方向に関しては同様であるが、水平方向に関しては以下のように異なっている。流入口161a、蒸気流出口161b、液出口161cは、本変形例では、缶胴161の水平方向における一端部に寄せて形成されている。   The gas-liquid separator 60 </ b> B includes a can body 161 and a partition plate 165 provided inside the can body 161. The shape and size of the can body 161 are the same as those of the can body 61 (see FIG. 2). Therefore, the end plate 161e of the can body 161 in this modification is formed in a circular shape. Further, the can body 161 is the same as the can body 61 (see FIG. 2) in that the can body 161 is long in the horizontal direction. The can body 161 is formed with an inlet 161a, a steam outlet 161b, and a liquid outlet 161c. The inlet 161a, the steam outlet 161b, and the liquid outlet 161c correspond to the inlet 61a, the steam outlet 61b, and the liquid outlet 61c formed in the can body 61 (see FIG. 2), respectively. In the present modification, the positions where the inlet 161a, the steam outlet 161b, and the liquid outlet 161c are formed with respect to the can body 161 are the inlet 61a and the steam outlet 61b formed in the can body 61 (see FIG. 2). Compared with the liquid outlet 61c, the height direction is the same, but the horizontal direction is different as follows. In the present modification, the inlet 161a, the steam outlet 161b, and the liquid outlet 161c are formed close to one end in the horizontal direction of the can body 161.

仕切板165は、流入口161aから流入した混合被加熱媒体Wmが直ちに蒸気流出口161bから流出しないように缶胴161内で迂回させる部材であり、迂回路形成部材に相当する。仕切板165は、缶胴161内の、流入口161aに通ずる空間と、蒸気流出口161bに通ずる空間とを仕切る位置に配設されている。仕切板165は、平板状の部材が直角に折り曲げられて、軸線161xに直交する断面(図4(B)参照)で見てL字状の外観を呈している。仕切板165に関し、説明の便宜上、軸線161xに直交する断面(図4(B)参照)において、鉛直に延びる部分を縦仕切板165aといい、水平に延びる部分を横仕切板165bということとする。縦仕切板165aは、その上端が、流入口161aと蒸気流出口161bとの間の蒸気流出口161bの近傍の缶胴161の内壁に接触している。縦仕切板165aの下端は横仕切板165bの一端に接続されている。   The partition plate 165 is a member that makes a detour in the can body 161 so that the mixed heated medium Wm flowing in from the inflow port 161a does not immediately flow out of the steam outflow port 161b, and corresponds to a detour forming member. The partition plate 165 is disposed at a position in the can body 161 that partitions a space communicating with the inflow port 161a and a space communicating with the steam outflow port 161b. The partition plate 165 has an L-shaped appearance when a flat plate member is bent at a right angle and viewed in a cross section perpendicular to the axis 161x (see FIG. 4B). Regarding the partition plate 165, for convenience of explanation, in the cross section orthogonal to the axis 161x (see FIG. 4B), a vertically extending portion is referred to as a vertical partition plate 165a, and a horizontally extending portion is referred to as a horizontal partition plate 165b. . The upper end of the vertical partition 165a is in contact with the inner wall of the can body 161 near the steam outlet 161b between the inlet 161a and the steam outlet 161b. The lower end of the vertical partition plate 165a is connected to one end of the horizontal partition plate 165b.

縦仕切板165aは、軸線161xに平行な縦断面(図4(A)参照)に示すように、流入口161aが形成されている側の鏡板161eに一方の側辺が接触し、他方の側辺165eは反対側の鏡板161eに向かって延びているが当該鏡板161eには接触していない。これにより、流入口161aが形成されている側とは反対側の鏡板161eと他方の側辺165eとの間に、流体が通過可能な通過流路168が形成されている。通過流路168の幅(隙間)は、通過する流体の流量を勘案して、抵抗が増大しすぎないように決定するとよい。縦仕切板165aは、軸線161xに平行な縦断面(図4(A)参照)において、流入口161aを覆う大きさに形成されており、本変形例では、軸線161x方向の長さが、缶胴161の長さの概ね0.6〜0.8倍に形成されている。横仕切板165bは、軸線161x方向の長さが縦仕切板165aの長さと同じに形成されている。横仕切板165bは、軸線161xに直交する断面(図4(B)参照)において、一端が縦仕切板165aの下端に接続されており、他端は流入口161aよりも下方で缶胴161の内壁に接触している。縦仕切板165a及び横仕切板165bからなる仕切板165は、最高液位WLHよりも高所に設けられている。このような構成により、缶胴161内の下部に貯留された被加熱媒体液Wqに仕切板165が浸ることを回避することができ、仕切板165への腐食の発生を抑制することができる。   As shown in a longitudinal section parallel to the axis 161x (see FIG. 4A), the vertical partition plate 165a is in contact with the end plate 161e on the side where the inflow port 161a is formed, and the other side. The side 165e extends toward the opposite end plate 161e but does not contact the end plate 161e. Thus, a passage passage 168 through which a fluid can pass is formed between the end plate 161e opposite to the side on which the inflow port 161a is formed and the other side 165e. The width (gap) of the passage channel 168 may be determined so that the resistance does not increase excessively in consideration of the flow rate of the fluid passing therethrough. The vertical partition plate 165a is formed in a size that covers the inflow port 161a in a longitudinal section parallel to the axis 161x (see FIG. 4A). In this modification, the length in the direction of the axis 161x is The length of the body 161 is approximately 0.6 to 0.8 times. The horizontal partition plate 165b is formed so that the length in the direction of the axis 161x is the same as the length of the vertical partition plate 165a. The horizontal partition plate 165b has one end connected to the lower end of the vertical partition plate 165a in the cross section orthogonal to the axis 161x (see FIG. 4B), and the other end below the inflow port 161a. It is in contact with the inner wall. The partition plate 165 including the vertical partition plate 165a and the horizontal partition plate 165b is provided at a higher position than the highest liquid level WLH. With such a configuration, it is possible to avoid the partition plate 165 from being immersed in the heated medium liquid Wq stored in the lower part of the can body 161, and the occurrence of corrosion on the partition plate 165 can be suppressed.

上述のように構成された気液分離器60Bでは、加熱後被加熱媒体管84を流れてきて流入口161aから缶胴161内に水平に流入した混合被加熱媒体Wmは、仕切板165の縦仕切板165aに衝突する。このように、縦仕切板165aは、衝突壁に相当する。縦仕切板165aを含む仕切板165は、本変形例では、衝突壁と迂回路形成部材とを兼ねることとなる。縦仕切板165aに衝突した混合被加熱媒体Wmは、下方には横仕切板165bが存在し、片側には鏡板161eが存在するため、遠い方の鏡板161eに向かう水平方向に流れの向きを略直角に変える。このとき、混合被加熱媒体Wmは、縦仕切板165aへの衝突と、衝突前後に流れ方向を略直角に変えたこととにより、第1段階の気体(被加熱媒体蒸気Wv)と液体(被加熱媒体液Wq)との分離が行われる。   In the gas-liquid separator 60B configured as described above, the mixed heated medium Wm flowing through the heated medium pipe 84 after heating and flowing horizontally into the can body 161 from the inflow port 161a is disposed in the vertical direction of the partition plate 165. It collides with the partition plate 165a. Thus, the vertical partition plate 165a corresponds to a collision wall. The partition plate 165 including the vertical partition plate 165a serves as both a collision wall and a detour forming member in this modification. The mixed heated medium Wm that has collided with the vertical partition plate 165a has a horizontal partition plate 165b on the lower side and an end plate 161e on one side. Therefore, the direction of flow in the horizontal direction toward the far end end plate 161e is almost the same. Change to a right angle. At this time, the mixed heated medium Wm has a first stage gas (heated medium vapor Wv) and liquid (heated medium) by collision with the vertical partition plate 165a and by changing the flow direction to substantially right and left before and after the collision. Separation from the heating medium liquid Wq) is performed.

縦仕切板165aに衝突した後に水平方向に(軸線161xが延びる方向に)流れる混合被加熱媒体Wmは、流入口161aから遠い側の鏡板161eに衝突する。鏡板161eに衝突した混合被加熱媒体Wmは、当該鏡板161eと、縦仕切板165aの側辺165eとの間の通過流路168を経由して、蒸気流出口161b側の鏡板161eの方向に流れの向きを変える。この、混合被加熱媒体Wmの、縦仕切板165aの側辺165eを巻く流れの反転作用により、第2段階の気体と液体との分離(混合被加熱媒体Wm中に含まれていた一部の被加熱媒体液Wqの分離滴下)が行われる。通過流路168を経由して反転した混合被加熱媒体Wmは、缶胴161の長手方向に、蒸気流出口161bが形成されている側に向けて、概ね水平に流れる。蒸気流出口161bの側に向けて概ね水平に流れる混合被加熱媒体Wmの流路は、缶胴161の軸線161xに直交な断面積の半分以上の断面積を持つこととなるので(図4(B)参照)、この流路を流れる流体の流速は低くなり、かつ、この流路の長さは缶胴161の長手方向の長さと略同等で比較的長いことから、気液分離の効果を高めることができる。この、混合被加熱媒体Wmが蒸気流出口161bに向けて概ね水平に流れることにより、第3段階の気体と液体との分離(混合被加熱媒体Wm中に含まれていた一部の被加熱媒体液Wqの分離滴下)が行われる。   The mixed heated medium Wm flowing in the horizontal direction (in the direction in which the axis 161x extends) after colliding with the vertical partition plate 165a collides with the end plate 161e far from the inflow port 161a. The mixed heated medium Wm that has collided with the end plate 161e flows in the direction of the end plate 161e on the steam outlet 161b side via a passage 168 between the end plate 161e and the side 165e of the vertical partition plate 165a. Change the direction. Due to the reversal of the flow of the mixed heated medium Wm around the side 165e of the vertical partition plate 165a, the separation of the second stage gas and liquid (part of the mixed heated medium Wm contained in the mixed heated medium Wm). Separation and dropping of the heated medium liquid Wq) is performed. The mixed heated medium Wm inverted through the passage passage 168 flows substantially horizontally in the longitudinal direction of the can body 161 toward the side where the steam outlet 161b is formed. The flow path of the mixed heated medium Wm that flows substantially horizontally toward the steam outlet 161b side has a cross-sectional area that is more than half of the cross-sectional area orthogonal to the axis 161x of the can body 161 (FIG. 4 ( B)), the flow velocity of the fluid flowing through this flow path is low, and the length of this flow path is substantially the same as the length of the can body 161 in the longitudinal direction. Can be increased. The mixed heated medium Wm flows substantially horizontally toward the steam outlet 161b, thereby separating the third stage gas and liquid (part of the heated medium contained in the mixed heated medium Wm). Liquid Wq is separated and dropped).

そして、混合被加熱媒体Wmは、蒸気流出口161bの近傍の鏡板161eの付近まで来ると、略水平方向から上方に向かうように流れの向きを変える。この、概ね水平方向から上方向に流れの向きを変えたことにより、第4段階の気体(被加熱媒体蒸気Wv)と液体(被加熱媒体液Wq)との分離が行われる。上方向に流れる分離された被加熱媒体蒸気Wvは、蒸気流出口161bを介して缶胴161の外に流出する。このように、流入口161aから流入した流体は、蒸気流出口161bから流出するまでに仕切板165を巻くように流れることとなり、仕切板165の周囲に形成される流路が迂回路に相当する。他方、分離された被加熱媒体液Wqは、落下して缶胴161の下部に溜まる。流入口161aから流入した混合被加熱媒体Wmから、蒸気流出口161bから流出する被加熱媒体蒸気Wvが生成される過程で分離されて、缶胴161の下部に溜まっている被加熱媒体液Wqは、液出口161cを介して缶胴161の外に流出する。   When the mixed heated medium Wm reaches the vicinity of the end plate 161e in the vicinity of the vapor outlet 161b, the flow direction of the mixed medium Wm is changed so as to be directed upward from the substantially horizontal direction. By changing the direction of the flow from the substantially horizontal direction to the upward direction, the separation of the fourth stage gas (heated medium vapor Wv) and liquid (heated medium liquid Wq) is performed. The separated heated medium vapor Wv flowing upward flows out of the can body 161 through the vapor outlet 161b. Thus, the fluid flowing in from the inlet 161a flows so as to wind around the partition plate 165 before flowing out from the steam outlet 161b, and the flow path formed around the partition plate 165 corresponds to a bypass. . On the other hand, the separated heated medium liquid Wq falls and accumulates at the bottom of the can body 161. The heated medium liquid Wq separated from the mixed heated medium Wm flowing in from the inlet 161a in the process of generating the heated medium vapor Wv flowing out from the vapor outlet 161b and accumulated in the lower portion of the can body 161 is Then, it flows out of the can body 161 through the liquid outlet 161c.

上述のように、気液分離器60Bでは、少なくとも4段階の気液分離機構を有しているので、混合被加熱媒体Wmから分離されて蒸気流出口161bから流出する被加熱媒体蒸気Wvに液滴が随伴することを抑制することができ、良質な蒸気を供給することができる。特に、混合被加熱媒体Wmが蒸気流出口161bの側に向けて概ね水平に流れる第3段階の気液分離では、水平方向に長い缶胴161の軸線161x方向の長さの全長を利用しているので、缶胴161の全長を延ばすことにより、缶胴161の高さを抑制しつつ(高くすることなく)気液分離効果を高めることができる。また、本変形例における気液分離器60Bは、液位の変化が小さく液位が安定するので良好な気液分離を行うことができる点は、気液分離器60(図2参照)と同様である。また、気液分離器60Bの缶胴161を、気液分離器60(図2参照)と同様に、吸収器10(図1参照)の伝熱管12の最上部の上方に配置することで、気液分離器60Bと吸収器10の伝熱管12との間で被加熱媒体Wを循環させるためのポンプを設けなくても気泡ポンプ効果により被加熱媒体Wを循環させることができる。   As described above, since the gas-liquid separator 60B has at least four stages of gas-liquid separation mechanisms, the liquid to be heated to the heated medium vapor Wv that is separated from the mixed heated medium Wm and flows out from the vapor outlet 161b. It is possible to suppress the entrainment of droplets and supply high-quality steam. In particular, in the third stage gas-liquid separation in which the mixed heated medium Wm flows substantially horizontally toward the steam outlet 161b, the entire length of the axially long axis 161x of the can body 161 is utilized. Therefore, by extending the overall length of the can body 161, the gas-liquid separation effect can be enhanced while suppressing the height of the can body 161 (without increasing it). Further, the gas-liquid separator 60B in the present modification example is similar to the gas-liquid separator 60 (see FIG. 2) in that it can perform good gas-liquid separation because the liquid level is small and the liquid level is stable. It is. Further, by disposing the can body 161 of the gas-liquid separator 60B above the uppermost portion of the heat transfer tube 12 of the absorber 10 (see FIG. 1), similarly to the gas-liquid separator 60 (see FIG. 2), The heated medium W can be circulated by the bubble pump effect without providing a pump for circulating the heated medium W between the gas-liquid separator 60B and the heat transfer tube 12 of the absorber 10.

以上の変形例に係る気液分離器60Bの説明では、流入口161a及び蒸気流出口161bの水平方向における位置が、缶胴161の水平方向における一端部に寄せて形成されていることとしたが、図2(A)に示す気液分離器60に倣って缶胴161の中央部に形成すると共に、仕切板165と鏡板161eとの間の通過流路168が水平方向両側に形成されることとしてもよい。この場合、流入口161aから缶胴161内に水平に流入した混合被加熱媒体Wmは、縦仕切板165aに衝突後、左右2つに分かれて水平に流れ、両側の通過流路168をそれぞれ反転した後、缶胴161の長手方向に沿って、蒸気流出口161bが形成されている中央部に向けて概ね水平方向に流れて蒸気流出口161bに向かい、気液分離を行うことができる。   In the description of the gas-liquid separator 60B according to the above modification, the horizontal position of the inflow port 161a and the vapor outflow port 161b is formed close to one end portion of the can body 161 in the horizontal direction. 2A is formed at the center of the can body 161 following the gas-liquid separator 60 shown in FIG. 2A, and the passage 168 between the partition plate 165 and the end plate 161e is formed on both sides in the horizontal direction. It is good. In this case, the mixed heated medium Wm that has flown horizontally into the can body 161 from the inflow port 161a collides with the vertical partition plate 165a, then flows horizontally into two left and right sides, and the passage channels 168 on both sides are reversed. After that, along the longitudinal direction of the can body 161, it can flow in a substantially horizontal direction toward the central portion where the steam outlet 161b is formed, toward the steam outlet 161b, and gas-liquid separation can be performed.

以上の変形例に係る気液分離器60Bの説明では、液出口161cの水平方向における位置が、流入口161a及び蒸気流出口161bと共に缶胴161の水平方向における一端部に寄せて形成されていることとしたが、この位置に限らず、軸線161xが延びる方向のいずれに形成されていてもよい。液出口161cは、水平方向のいずれの位置に形成されていても、高さ方向の位置は缶胴161の底部に形成されていることが好ましい。   In the description of the gas-liquid separator 60B according to the above modification, the position of the liquid outlet 161c in the horizontal direction is formed close to one end in the horizontal direction of the can body 161 together with the inlet 161a and the steam outlet 161b. However, it is not limited to this position, and may be formed in any direction in which the axis 161x extends. The liquid outlet 161 c is preferably formed at the bottom of the can body 161 regardless of the position in the horizontal direction.

以上の説明では、缶胴61、161が水平方向に長い円筒状に形成されているとしたが、軸線61x、161xに直交する断面の形状(鏡板61e、161eの形状)が、楕円型、面取りされた多角形(四角形含む)等、円形以外の形状であってもよい。   In the above description, the can bodies 61 and 161 are formed in a cylindrical shape that is long in the horizontal direction. However, the cross-sectional shape (the shape of the end plates 61e and 161e) orthogonal to the axis lines 61x and 161x is elliptical, chamfered. It may be a shape other than a circle such as a polygon (including a rectangle).

以上の説明では、蒸気流出口61b、161bが缶胴61、161の頂部に形成されているとしたが、最高液位WLHよりも上方であれば頂部以外に形成されていてもよい。しかしながら、被加熱媒体蒸気Wvを缶胴61、161から液滴を含めずに円滑に流出する観点から、蒸気流出口61b、161bは、缶胴61、161の上部に形成されていることが好ましく、頂部に形成されていることがより好ましい。また、図2(B)及び図4(B)において、加熱後被加熱媒体管84を、水平ではなく、缶胴61、161の斜め上方から缶胴61、161に向けて斜めに下るように配置して、混合被加熱媒体Wmが缶胴61、161の斜め上方から缶胴61、161内に斜めに流入するように構成されていてもよい。この構成に伴い、対向板63及び/又は縦仕切板165aを、この斜めの流れに対して直角になるように傾けて配置してもよく、鉛直のままとしてもよい。   In the above description, the steam outlets 61b and 161b are formed at the tops of the can bodies 61 and 161. However, they may be formed at portions other than the tops as long as they are above the highest liquid level WLH. However, from the viewpoint of smoothly flowing out the heated medium vapor Wv from the can bodies 61 and 161 without including droplets, the steam outlets 61b and 161b are preferably formed on the upper portions of the can bodies 61 and 161. More preferably, it is formed at the top. Further, in FIG. 2B and FIG. 4B, the heated medium tube 84 after heating is not horizontal, but obliquely descends from the upper side of the can body 61, 161 toward the can body 61, 161. The mixed heated medium Wm may be arranged to flow into the can bodies 61 and 161 obliquely from above the can bodies 61 and 161. With this configuration, the counter plate 63 and / or the vertical partition plate 165a may be disposed so as to be perpendicular to the oblique flow, or may remain vertical.

以上の説明では、蒸発器20が満液式であるとしたが、散布式であってもよい。蒸発器を散布式とする場合は、蒸発器缶胴の上部に冷媒液Vfを散布する冷媒液散布ノズルを設け、満液式の場合に蒸発器缶胴21の下部に接続することとしていた冷媒液管45の端部を、冷媒液散布ノズルに接続すればよい。また、蒸発器缶胴の下部の冷媒液Vfを冷媒液散布ノズルに供給する配管及びポンプを設けてもよい。   In the above description, the evaporator 20 is a full liquid type, but may be a spray type. When the evaporator is a spraying type, a refrigerant liquid spraying nozzle for spraying the refrigerant liquid Vf is provided at the upper part of the evaporator can body, and in the case of the full liquid type, the refrigerant that is to be connected to the lower part of the evaporator can body 21 What is necessary is just to connect the edge part of the liquid pipe 45 to a refrigerant | coolant spray nozzle. Moreover, you may provide the piping and pump which supply the refrigerant | coolant liquid Vf of the lower part of an evaporator can body to a refrigerant | coolant spray nozzle.

以上の説明では、吸収ヒートポンプ1が単段であるとして説明したが、多段でもよい。
図5に、二段昇温型の吸収ヒートポンプ1Aの構成を例示する。吸収ヒートポンプ1Aは、図1に示されている吸収ヒートポンプ1における吸収器10及び蒸発器20が、高温側の高温吸収器10H及び高温蒸発器20Hと、低温側の低温吸収器10L及び低温蒸発器20Lとに分かれている。高温吸収器10Hは低温吸収器10Lよりも内圧が高く、高温蒸発器20Hは低温蒸発器20Lよりも内圧が高い。高温吸収器10Hと高温蒸発器20Hとは、高温蒸発器20Hの冷媒Vの蒸気を高温吸収器10Hに移動させることができるように上部で連通している。低温吸収器10Lと低温蒸発器20Lとは、低温蒸発器20Lの冷媒Vの蒸気を低温吸収器10Lに移動させることができるように上部で連通している。被加熱媒体液Wqは、高温吸収器10Hで加熱される。熱源温水hは、低温蒸発器20Lに導入される。低温吸収器10Lは低温蒸発器20Lから移動してきた冷媒Vの蒸気を吸収液Sが吸収する際の吸収熱で高温蒸発器20H内の冷媒液Vfを加熱して高温蒸発器20H内に冷媒Vの蒸気を発生させ、発生した高温蒸発器20H内の冷媒Vの蒸気は高温吸収器10Hに移動して高温吸収器10H内の吸収液Sに吸収される際の吸収熱で被加熱媒体液Wqを加熱するように構成されている。吸収ヒートポンプ1Aでは、図示は省略するが、低温吸収器10L内の伝熱管を流れて加熱された冷媒Vを気体(冷媒蒸気)と液体(冷媒液)とに分離する気液分離器を設けることができ、その気液分離器として上述の気液分離器60又は気液分離器60Aあるいは気液分離器60Bを適用することができる。
In the above description, the absorption heat pump 1 is described as a single stage, but it may be multistage.
FIG. 5 illustrates the configuration of a two-stage temperature rising type absorption heat pump 1A. In the absorption heat pump 1A, the absorber 10 and the evaporator 20 in the absorption heat pump 1 shown in FIG. 1 are a high temperature side high temperature absorber 10H and a high temperature evaporator 20H, and a low temperature side low temperature absorber 10L and a low temperature evaporator. It is divided into 20L. The high temperature absorber 10H has a higher internal pressure than the low temperature absorber 10L, and the high temperature evaporator 20H has a higher internal pressure than the low temperature evaporator 20L. The high-temperature absorber 10H and the high-temperature evaporator 20H communicate with each other at the top so that the vapor of the refrigerant V of the high-temperature evaporator 20H can be moved to the high-temperature absorber 10H. The low-temperature absorber 10L and the low-temperature evaporator 20L communicate with each other at the top so that the vapor of the refrigerant V in the low-temperature evaporator 20L can be moved to the low-temperature absorber 10L. The heated medium liquid Wq is heated by the high temperature absorber 10H. The heat source hot water h is introduced into the low temperature evaporator 20L. The low-temperature absorber 10L heats the refrigerant liquid Vf in the high-temperature evaporator 20H by absorption heat when the absorbing liquid S absorbs the vapor of the refrigerant V that has moved from the low-temperature evaporator 20L, and the refrigerant V enters the high-temperature evaporator 20H. The generated vapor V of the refrigerant V in the high-temperature evaporator 20H moves to the high-temperature absorber 10H and is absorbed by the absorption liquid S in the high-temperature absorber 10H with the absorbed heat. It is comprised so that it may heat. In the absorption heat pump 1A, although not shown, a gas-liquid separator that separates the refrigerant V heated through the heat transfer tube in the low temperature absorber 10L into gas (refrigerant vapor) and liquid (refrigerant liquid) is provided. The gas-liquid separator 60 or the gas-liquid separator 60A or the gas-liquid separator 60B can be applied as the gas-liquid separator.

1 吸収ヒートポンプ
10 吸収器
12 伝熱管
60、60A、60B 気液分離器
61 缶胴
61a 流入口
61b 蒸気流出口
63 対向板
65 仕切板
65e 端部
66 区画板
68 通過流路
161 缶胴
161a 流入口
161b 蒸気流出口
165 仕切板
165e 端部
168 通過流路
Sa 濃溶液
Ve 蒸発器冷媒蒸気
Wq 被加熱媒体液
Wm 混合被加熱媒体
Wv 被加熱媒体蒸気
WLH 最高液位
1 Absorption Heat Pump 10 Absorber 12 Heat Transfer Tube 60, 60A, 60B Gas-Liquid Separator 61 Can Body 61a Inlet 61b Steam Outlet 63 Opposing Plate 65 Partition Plate 65e End 66 Partition Plate 68 Passing Channel 161 Can Body 161a Inlet 161b Vapor outlet 165 Partition plate 165e End 168 Passage channel Sa Concentrated solution Ve Evaporator refrigerant vapor Wq Heated medium liquid Wm Mixed heated medium Wv Heated medium vapor WLH Maximum liquid level

Claims (5)

吸収液が冷媒の蒸気を吸収した際に発生した吸収熱で伝熱管内の液体を加熱して気体と液体とが混合した混合流体を生成する吸収器と;
前記混合流体から気体と液体とを分離する気液分離器とを備え;
前記気液分離器は、
水平方向に長い缶胴であって、前記混合流体が流入する流入口と、前記混合流体から分離された気体である分離後気体が流出する流出口とが、前記混合流体から分離された液体である分離後液体が到達し得る最高液位よりも高所に形成された缶胴と、
前記流入口から前記缶胴内に流入した前記混合流体を衝突させる衝突壁であって、前記分離後液体が到達し得る最高液位よりも高所に設けられた衝突壁と、
前記衝突壁に衝突後の流体が前記流出口に到達するまでの道程を大きくする迂回路を形成する迂回路形成部材とを有し、
前記迂回路形成部材は、前記衝突壁に衝突後の流体が前記迂回路形成部材の水平方向の端部を巻いて流れ方向を変えるように配置され、
前記迂回路形成部材の水平方向の端部において、前記迂回路形成部材と前記缶胴との間に、前記衝突壁に衝突後の流体が通過する通過流路が形成された;
吸収ヒートポンプ。
An absorber that heats the liquid in the heat transfer tube with the absorption heat generated when the absorption liquid absorbs the vapor of the refrigerant to generate a mixed fluid in which the gas and the liquid are mixed;
A gas-liquid separator for separating gas and liquid from the mixed fluid;
The gas-liquid separator is
A can body that is long in the horizontal direction, and an inflow port into which the mixed fluid flows and an outflow port from which a separated gas that is a gas separated from the mixed fluid flows out are liquids separated from the mixed fluid. A can body formed higher than the highest liquid level that can be reached after separation;
A collision wall that collides the mixed fluid that has flowed into the can body from the inflow port, the collision wall provided at a higher position than the highest liquid level that the liquid after the separation can reach;
A detour forming member that forms a detour to increase the path until the fluid after the collision reaches the outflow port on the collision wall;
The detour forming member is arranged such that the fluid after the collision with the collision wall changes the flow direction by winding the horizontal end of the detour forming member,
At the horizontal end of the detour forming member, a passage channel through which the fluid after the collision passes is formed in the collision wall between the detour forming member and the can body;
Absorption heat pump.
前記缶胴の水平方向の長さが前記伝熱管の水平方向の長さ以下に構成され;
前記缶胴が前記伝熱管の最上部の上方に配置された;
請求項1に記載の吸収ヒートポンプ。
A horizontal length of the can body is configured to be equal to or less than a horizontal length of the heat transfer tube;
The can body is disposed above the top of the heat transfer tube;
The absorption heat pump according to claim 1.
前記衝突壁に衝突後の流体を下方に案内する案内部材を備える;
請求項1又は請求項2に記載の吸収ヒートポンプ。
A guide member for guiding the fluid after the collision downward to the collision wall;
The absorption heat pump according to claim 1 or 2.
前記流入口及び前記流出口が前記缶胴の水平方向における中央部に形成され;
前記通過流路が、前記迂回路形成部材の水平方向の両端部に形成された;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
The inflow port and the outflow port are formed in a central portion of the can body in a horizontal direction;
The passage channel is formed at both ends in the horizontal direction of the bypass forming member;
The absorption heat pump according to any one of claims 1 to 3.
前記流入口及び前記流出口が前記缶胴の水平方向における一端部に寄せて形成され;
前記通過流路が、前記迂回路形成部材の水平方向の、前記流入口とは反対側の端部に形成された;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
The inlet and the outlet are formed close to one end of the can body in the horizontal direction;
The passage is formed at an end of the bypass forming member in the horizontal direction opposite to the inlet;
The absorption heat pump according to any one of claims 1 to 3.
JP2016059222A 2016-03-23 2016-03-23 Absorption heat pump Active JP6643765B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016059222A JP6643765B2 (en) 2016-03-23 2016-03-23 Absorption heat pump
CN201710137084.7A CN107228502B (en) 2016-03-23 2017-03-09 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059222A JP6643765B2 (en) 2016-03-23 2016-03-23 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2017172870A true JP2017172870A (en) 2017-09-28
JP6643765B2 JP6643765B2 (en) 2020-02-12

Family

ID=59933029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059222A Active JP6643765B2 (en) 2016-03-23 2016-03-23 Absorption heat pump

Country Status (2)

Country Link
JP (1) JP6643765B2 (en)
CN (1) CN107228502B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479418B (en) * 2022-08-04 2024-05-10 宁波拓普集团股份有限公司 Gas-liquid separator for automobile air conditioner thermal management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261603A (en) * 1995-03-28 1996-10-11 Matsushita Electric Ind Co Ltd Gas-liquid separator
JPH0968371A (en) * 1995-08-31 1997-03-11 Nippon Soken Inc Gas/liquid separator
JP2010043819A (en) * 2007-08-22 2010-02-25 Ebara Refrigeration Equipment & Systems Co Ltd Gas-liquid separator, high temperature regenerator, absorption type refrigerator, and absorption type heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2015034637A (en) * 2011-11-22 2015-02-19 パナソニック株式会社 Gas-liquid separator and refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021824A (en) * 1956-11-22 1962-02-20 Sulzer Ag Forced flow steam generating plant
JPH01281375A (en) * 1988-05-09 1989-11-13 Sanyo Electric Co Ltd Absorption heat pump
JP5547560B2 (en) * 2010-06-18 2014-07-16 荏原冷熱システム株式会社 Absorption heat pump
JP6081844B2 (en) * 2013-03-29 2017-02-15 荏原冷熱システム株式会社 Absorption heat source equipment
CN104930768B (en) * 2015-07-03 2018-05-04 荏原冷热系统(中国)有限公司 Water replanishing device, second-kind absorption-type heat pump and the method for steam-water separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261603A (en) * 1995-03-28 1996-10-11 Matsushita Electric Ind Co Ltd Gas-liquid separator
JPH0968371A (en) * 1995-08-31 1997-03-11 Nippon Soken Inc Gas/liquid separator
JP2010043819A (en) * 2007-08-22 2010-02-25 Ebara Refrigeration Equipment & Systems Co Ltd Gas-liquid separator, high temperature regenerator, absorption type refrigerator, and absorption type heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2015034637A (en) * 2011-11-22 2015-02-19 パナソニック株式会社 Gas-liquid separator and refrigeration cycle device

Also Published As

Publication number Publication date
CN107228502B (en) 2020-10-23
CN107228502A (en) 2017-10-03
JP6643765B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
EP1809966B1 (en) Falling film evaporator
US20080148767A1 (en) Falling film evaporator
CN101907375A (en) Heat exchanger
JP2010164248A (en) Absorption heat pump
JP5547560B2 (en) Absorption heat pump
EP2386050B1 (en) Heat exchanger, heat pump system and air conditioning system
US9903659B2 (en) Low pressure chiller
JP4701147B2 (en) 2-stage absorption refrigerator
CN102759225A (en) Riser spiral-flow type falling-film evaporator for refrigerating air conditioner
JP7174927B2 (en) shell and tube heat exchanger
CN104019585A (en) Flooded evaporator and flooded air conditioning unit
CN102607211A (en) Self-adapting multi-stage absorption heat pump
JP6616213B2 (en) Heat exchange system
JP2017172870A (en) Absorption heat pump
JP6429550B2 (en) Absorption heat pump
JP2018080907A (en) Absorber and absorption heat pump
CN108375238B (en) Absorption refrigerator
JP2018124049A (en) Absorption refrigerating machine
JP5338950B2 (en) Heat exchanger
CN101641558A (en) Falling film evaporator
CN108072205B (en) Absorber and absorption heat pump
WO2023042896A1 (en) Absorber unit, heat exchange unit, and absorption-type refrigerator
JP2009052771A (en) Heat exchanger
JP6337055B2 (en) Absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6643765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250