JPH0571827A - Absorption freezer - Google Patents

Absorption freezer

Info

Publication number
JPH0571827A
JPH0571827A JP23331491A JP23331491A JPH0571827A JP H0571827 A JPH0571827 A JP H0571827A JP 23331491 A JP23331491 A JP 23331491A JP 23331491 A JP23331491 A JP 23331491A JP H0571827 A JPH0571827 A JP H0571827A
Authority
JP
Japan
Prior art keywords
heat transfer
steam
transfer tubes
tube group
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23331491A
Other languages
Japanese (ja)
Other versions
JP2568769B2 (en
Inventor
Yoshitaka Nishino
西野由高
Toshio Sawa
俊雄 沢
Kiyomi Funabashi
船橋清美
Fumio Takahashi
高橋文夫
Michihiko Aizawa
相沢道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3233314A priority Critical patent/JP2568769B2/en
Publication of JPH0571827A publication Critical patent/JPH0571827A/en
Application granted granted Critical
Publication of JP2568769B2 publication Critical patent/JP2568769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce fluid resistance of steam in the absorber or the vaporizer of an absorption freezer and to facilitate discharge of non-condensable gas at the absorber. CONSTITUTION:Heat transfer pipe arrangement of an absorber or a vaporizer is divided, as seen from the longitudinal direction of a heat transfer pipe, into a plurality of pipe group blocks divided by means of a steam flow passage. The fluid distance of steam in the pipe group is shortened and incurring of a pressure loss is reduced. Steam from the vaporizer flows in after the flow of it through a steal inflow part 4. Simultaneously with spread of the steam over the whole of the interior of the absorber after the flow of it through a steam flow passage 3, the steam is absorbed by means of absorption liquid 6 sprayed over the outer surface of each heat transfer pipe through a spraying device 5. A plurality of pipe group blocks where the heat transfer pipes 1 are densely arranged are surrounded with the steam flow passage 3 and fluid resistance of the steam can be reduced. A pipe group block 10 adjoining to an absorption liquid discharge port or an extraction port 7 is formed such that the number of heat transfer pipes is higher than that of other pipe group block or has a pipe pitch narrower than that of other pipe group block. A pressure therein is reduced and discharge of non-condensable gas is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房等に用いられる
吸収冷凍機に関するもので、特に、吸収器及び蒸発器の
伝熱管配列及び伝熱管群中に設置する分散板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator used for cooling and heating, and more particularly to a heat transfer tube array of an absorber and an evaporator and a dispersion plate installed in a heat transfer tube group.

【0002】[0002]

【従来の技術】一般に吸収冷凍機は、蒸発器、吸収器、
低温再生器、高温再生器、およびこれらを結ぶポンプ、
熱交換器からなっている。図9はその原理的な系統図で
ある。蒸発器内の管群の管内には水が通水されており、
管外には冷媒として水が散布され、その蒸発潜熱によっ
て管内の水を冷却し、冷水として冷房器等へ供給する。
蒸発器で蒸発した水蒸気は吸収器に流入し、吸収器内の
管群の管外面に散布された吸収液(リチウムブロマイド
溶液など)に吸収され、このとき発生する吸収熱は管内
を通る冷却水によって冷却される。吸収器で水蒸気を吸
収した吸収液は濃度が低下し、吸収力が弱くなる。そこ
でこれを熱交換器を通して予熱したのち、高温再生器及
び低温再生器に送り、加熱濃縮する。高温再生器の熱源
には、ガス、油などを燃焼させた熱を用いるのが一般的
である。低温再生器の熱源には、高温再生器で発生した
蒸気を用いる。低温再生器及び高温再生器で発生した蒸
気は、最終的に凝縮器で冷却水によって冷却され凝縮す
る。凝縮した水は蒸発媒体として、蒸発器に供給され
る。
2. Description of the Related Art Generally, an absorption refrigerator has an evaporator, an absorber,
Low-temperature regenerator, high-temperature regenerator, and pumps that connect them,
It consists of a heat exchanger. FIG. 9 is a systematic diagram of the principle. Water is passed through the pipes of the pipe group in the evaporator,
Water is sprayed as a refrigerant to the outside of the tube, and the latent heat of vaporization cools the water in the tube to supply it as cold water to a cooler or the like.
The water vapor evaporated in the evaporator flows into the absorber and is absorbed by the absorbing liquid (lithium bromide solution, etc.) scattered on the outer surface of the tube group in the absorber, and the absorption heat generated at this time is the cooling water passing through the inside of the pipe. Cooled by. The concentration of the absorbing liquid that has absorbed the water vapor in the absorber decreases, and the absorbing power becomes weak. Therefore, after preheating this through a heat exchanger, it is sent to a high-temperature regenerator and a low-temperature regenerator to be heated and concentrated. As a heat source of the high temperature regenerator, it is general to use heat generated by burning gas, oil or the like. The steam generated in the high temperature regenerator is used as the heat source of the low temperature regenerator. The steam generated in the low temperature regenerator and the high temperature regenerator is finally cooled by the cooling water in the condenser and condensed. The condensed water is supplied to the evaporator as an evaporation medium.

【0003】吸収冷凍機の構成要素のうち吸収冷凍機と
して性能を左右する点で特に重要なのは吸収器と蒸発器
である。
Of the constituent elements of the absorption refrigerator, the absorber and the evaporator are particularly important in that they affect the performance of the absorption refrigerator.

【0004】蒸発器は前記の如く水などの蒸発媒体を蒸
発することによって、その潜熱で水などの冷房媒体を冷
却するものである。蒸発器は主に千鳥または格子配列の
伝熱管群とその表面に蒸発媒体を散布するための散布装
置とから構成される。一般的には伝熱管内に冷房媒体と
して水を流し、その伝熱管の外表面に散布された水が、
系内が低圧に保たれていることから、蒸発し、その潜熱
により伝熱管内を流れる水が冷却され冷房等に利用され
る。この蒸発器で発生した蒸気は前記の如く吸収器に導
かれる。吸収器は、蒸発器と同様に主に千鳥または格子
配列の伝熱管群とその表面に吸収液を散布するための散
布装置とから構成される。一般的には、吸収液は臭化リ
チウム溶液を用い、伝熱管の外表面に散布される。臭化
リチウムの蒸気圧は水に比べるとはるかに小さく、蒸発
器から吸収器に流入する蒸気はその蒸気圧差に基づいて
吸収液に吸収される。その際、吸収熱により吸収液の温
度が上昇するため、伝熱管内に水などの冷房媒体を流し
冷却する。
The evaporator cools the cooling medium such as water with the latent heat of the evaporation medium such as water as described above. The evaporator is mainly composed of a zigzag or grid array of heat transfer tubes and a spraying device for spraying the evaporation medium on the surface thereof. Generally, water is passed as a cooling medium in the heat transfer tube, and the water scattered on the outer surface of the heat transfer tube is
Since the inside of the system is kept at a low pressure, it evaporates, and the latent heat thereof cools the water flowing in the heat transfer tube and is used for cooling or the like. The vapor generated in this evaporator is guided to the absorber as described above. Like the evaporator, the absorber mainly includes a zigzag or lattice arrangement of heat transfer tubes and a spraying device for spraying the absorbing liquid on the surface thereof. Generally, a lithium bromide solution is used as the absorbing liquid, and the absorbing liquid is sprayed on the outer surface of the heat transfer tube. The vapor pressure of lithium bromide is much smaller than that of water, and the vapor flowing from the evaporator to the absorber is absorbed by the absorbing liquid based on the vapor pressure difference. At that time, since the temperature of the absorbing liquid rises due to the absorbed heat, a cooling medium such as water is made to flow in the heat transfer tube for cooling.

【0005】吸収冷凍機の性能を向上するためには、上
述の吸収サイクル作動原理から、蒸発器における蒸発媒
体の蒸気圧と吸収器における吸収液の蒸気圧との有効な
圧力差を大きくする必要がある。そのためには、まず第
一に吸収器及び蒸発器の管群内での蒸気の流動抵抗(圧
力損失)を小さくし、吸収器内での蒸発の吸収に利用で
きる圧力差を大きくすることである。第二には、吸収器
内の吸収伝熱特性を向上することである。そのために
は、主に三つの方策がある。一つの方策は、本発明とは
直接関係しないが、伝熱管単管の吸収伝熱特性を向上さ
せるために特開昭63−6363号記載のように伝熱管
の表面にフィンを形成し、伝熱面積を増大するとともに
吸収液の保持量を増加させることである。他の一つの方
策は、蒸気側の伝熱抵抗となる空気などの不凝縮性ガス
の溜りを防止することである。もう一つの方策は、吸収
液を吸収器内の各伝熱管に万遍なく供給散布し、吸収に
供されない無駄な伝熱管を無くすことである。
In order to improve the performance of the absorption refrigerator, it is necessary to increase the effective pressure difference between the vapor pressure of the vaporizing medium in the evaporator and the vapor pressure of the absorbing liquid in the absorber, based on the above-mentioned operation principle of the absorption cycle. There is. For that purpose, firstly, the flow resistance (pressure loss) of the vapor in the tube group of the absorber and the evaporator is made small, and the pressure difference available for absorbing the vaporization in the absorber is made large. .. The second is to improve the absorption heat transfer characteristics in the absorber. To that end, there are three main measures. One measure is not directly related to the present invention, but in order to improve absorption heat transfer characteristics of a single heat transfer tube, fins are formed on the surface of the heat transfer tube as described in JP-A-63-6363, and The purpose is to increase the holding area of the absorbing liquid while increasing the heat area. Another measure is to prevent the accumulation of non-condensable gas such as air, which becomes a heat transfer resistance on the steam side. Another measure is to evenly supply and disperse the absorbing liquid to each heat transfer tube in the absorber to eliminate useless heat transfer tubes that are not used for absorption.

【0006】これらの性能向上策の従来技術としては、
特許第1187335号記載のように、蒸発器において
は蒸気上流部をピッチの狭い格子配列の伝熱管配列にし
蒸気流量の多い下流部をピッチの広い千鳥配列にすると
ともに、吸収器においては蒸気流量の多い蒸気上流部で
ピッチの広い千鳥配列にし蒸気下流部ではピッチの狭い
格子配列の伝熱管群にすることによって、管群内での蒸
気の流動抵抗を均一化する方法がある。また、特開昭第
62−155482号記載のように、吸収器の伝熱管群
内に管列に平行な仕切り板を設けることで、不凝縮性ガ
スの溜りを防止し抽気する方法がある。
The conventional techniques for improving these performances are as follows:
As described in Japanese Patent No. 1187335, in the evaporator, the upstream portion of the steam is arranged in a heat transfer tube of a lattice arrangement with a narrow pitch, and the downstream portion with a large amount of steam flow is arranged in a staggered arrangement with a wide pitch, and in the absorber, There is a method of making the flow resistance of the steam uniform in the tube group by forming a zigzag arrangement with a wide pitch in the upstream part of the steam and a heat transfer tube group with a lattice arrangement with a narrow pitch in the downstream part of the steam. Further, as described in JP-A No. 62-155482, there is a method of preventing the noncondensable gas from accumulating and bleeding by providing a partition plate in the heat transfer tube group of the absorber in parallel with the tube row.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、吸
収器及び蒸発器の伝熱管群は一体構造であり、全ての蒸
気は一様に伝熱管群を通過しなければならない。蒸発器
では蒸気上流部で発生した蒸気は伝熱管群を横断して蒸
気出口部へ流れる。また、吸収器では蒸気入口部から一
様に蒸気下流部へ伝熱管群を横断して流れる。すなわ
ち、蒸気の伝熱管群の通過距離は蒸発器では蒸気流出方
向、吸収器では蒸気流入方向の伝熱管群の奥行きに等し
く、それに応じた蒸気の流動抵抗を生じてしまう。この
ことは伝熱管群での圧力損失を大きくし吸収冷凍機の性
能低下をもたらす問題となるうえに、伝熱管群の奥行き
を制限することにつながり、ひいては吸収冷凍機全体の
装置構成をも制限してしまう。さらに、吸収器において
は蒸気入口部付近の伝熱管が、蒸気供給量が多いことか
ら、単位伝熱面積当たりの吸収量及び伝熱量が多くな
り、伝熱管群の奥にいくに従って吸収量が少なくなると
いう不均衡を生じてしまう。このことは吸収器における
蒸気下流部の伝熱管を有効に利用していることにはなら
ず、吸収器の性能向上を妨げる。
In the above prior art, the heat transfer tube groups of the absorber and the evaporator have an integral structure, and all vapors must pass through the heat transfer tube group uniformly. In the evaporator, the steam generated in the upstream part of the steam flows across the heat transfer tube group to the steam outlet part. Further, in the absorber, the steam uniformly flows from the steam inlet portion to the steam downstream portion across the heat transfer tube group. That is, the passage distance of the steam heat transfer tube group is equal to the depth of the heat transfer tube group in the steam outflow direction in the evaporator and in the steam inflow direction in the absorber, and the flow resistance of the steam is generated accordingly. This increases the pressure loss in the heat transfer tube group and lowers the performance of the absorption chiller, and also limits the depth of the heat transfer tube group, which in turn limits the overall device configuration of the absorption chiller. Resulting in. Furthermore, in the absorber, the heat transfer tube near the steam inlet has a large amount of steam supply, so the absorption amount and heat transfer amount per unit heat transfer area increase, and the absorption amount decreases as going further into the heat transfer tube group. Will result in an imbalance. This does not make effective use of the heat transfer tube in the downstream portion of the steam in the absorber, and hinders the performance improvement of the absorber.

【0008】また吸収器では、蒸気の流動抵抗のために
一体構造の伝熱管群内に低圧部が形成され、仕切り板を
設けてもそこに不凝縮性ガスが滞留してしまい、吸収伝
熱性能を著しく低下させる。一方、吸収器での吸収液の
供給は、伝熱管群の最上部からスプレーまたは滴下散布
し、伝熱管群を滴下しながら徐々に下部へ流下していく
が、その際、蒸気の流れ方向が水平方向になっている場
合などは、滴下する吸収液が蒸気にあおられ伝熱管群の
下部の一部の伝熱管では吸収液の供給量が著しく少なく
なり吸収伝熱性能が低下する。同様の問題が蒸発器の蒸
発媒体の散布に関してもある。
Further, in the absorber, a low-pressure portion is formed in the heat transfer tube group having an integral structure due to the flow resistance of vapor, and even if a partition plate is provided, the non-condensable gas stays in the low pressure portion, and absorption heat transfer occurs. Significantly reduces performance. On the other hand, the absorption liquid is supplied from the absorber by spraying or dripping from the uppermost part of the heat transfer tube group and gradually flowing down to the lower part while dripping the heat transfer tube group. In the case where the heat transfer tube is horizontal, the dripping absorption liquid is covered with steam, and the supply amount of the absorption liquid is remarkably reduced in a part of the heat transfer tubes in the lower part of the heat transfer tube group, so that the absorption heat transfer performance is deteriorated. A similar problem exists with the distribution of the evaporation medium of the evaporator.

【0009】上記問題点はともに吸収器または蒸発器内
の伝熱管の配置、すなわち伝熱管群構造に密接に関係す
る。本発明は伝熱管群内での圧力損失(蒸気の流動抵
抗)の低減が全ての課題の解決につながるとの発想から
なされたもので、まず、伝熱管群内での蒸気の流動抵抗
を小さくし、吸収器内での蒸気の吸収に利用できる圧力
差を大きくし、それによって管群内での圧力分布を均一
化し、不凝縮性ガスの滞留を抑制し、さらには、不凝縮
性ガスを抽気するための抽気口近傍に低圧領域を形成し
て不凝縮性ガスの効率的な抽気を可能にすることを目的
とする。
Both of the above problems are closely related to the arrangement of the heat transfer tubes in the absorber or the evaporator, that is, the structure of the heat transfer tube group. The present invention is based on the idea that reduction of pressure loss (flow resistance of steam) in the heat transfer tube group leads to solution of all problems. First, the flow resistance of steam in the heat transfer tube group is reduced. However, by increasing the pressure difference that can be used for absorbing vapor in the absorber, the pressure distribution in the tube group is made uniform, the retention of noncondensable gas is suppressed, and It is an object of the present invention to form a low-pressure region in the vicinity of a bleeding port for bleeding to enable efficient bleeding of non-condensable gas.

【0010】[0010]

【課題を解決するための手段】吸収器内の伝熱管群内で
の蒸気の流動抵抗を低減するために、吸収器を従来の一
体構造の管群構造にするのではなく、吸収器を伝熱管長
手方向から見た断面において蒸気流路で分離された複数
の管群ブロックに分割した構成とする。より具体的に
は、伝熱管長手方向から見た断面での蒸気流路の幅が、
伝熱管を密に配置した管群ブロック内の隣接伝熱管の間
隔の最大値よりも大きな間隔であり、かつ複数の管群ブ
ロックが蒸気流路で囲まれている管配列の吸収器にす
る。更に、より具体的には、吸収器を伝熱管長手方向か
ら見た断面において複数の管群ブロックがそのブロック
内の隣接伝熱管の間隔の最大値よりも大きな間隔の蒸気
流路で囲まれ、かつ当該吸収器への蒸気流入面から見た
断面において伝熱管を密に配置した管群ブロックがその
ブロック内の隣接伝熱管の間隔の最大値よりも大きな間
隔の蒸気流路で分割されている管群を有する吸収器にす
る。吸収器形状や蒸気流量によっては、1つの管群ブロ
ックに属する伝熱管の蒸気流入方向に垂直な方向の列数
が20列以下である様に配置する。
SUMMARY OF THE INVENTION In order to reduce the flow resistance of steam in a heat transfer tube group in an absorber, the absorber is not transferred to a conventional integrated tube group structure but is transferred to the absorber. The cross section viewed from the longitudinal direction of the heat tube is divided into a plurality of tube group blocks separated by a steam flow path. More specifically, the width of the steam flow passage in the cross section viewed from the longitudinal direction of the heat transfer tube is
An absorber having a tube arrangement in which the interval is larger than the maximum value of the interval between the adjacent heat transfer tubes in the tube group block in which the heat transfer tubes are densely arranged, and the plurality of tube group blocks are surrounded by the steam flow paths. Furthermore, more specifically, in a cross section of the absorber viewed from the longitudinal direction of the heat transfer tube, a plurality of tube group blocks are surrounded by a steam flow path having an interval larger than the maximum value of the interval between adjacent heat transfer tubes in the block, In addition, the tube group block in which the heat transfer tubes are densely arranged in the cross section viewed from the steam inflow surface to the absorber is divided by the steam flow path with a distance larger than the maximum value of the distance between the adjacent heat transfer tubes in the block. An absorber having a tube group. Depending on the shape of the absorber and the steam flow rate, the heat transfer tubes belonging to one tube group block are arranged so that the number of rows in the direction perpendicular to the steam inflow direction is 20 or less.

【0011】さらに吸収器においては、伝熱管群内での
不凝縮性ガスの滞留を抑制し該ガスの抽気を容易にする
ため、管群ブロックがそのブロック内の隣接伝熱管の間
隔の最大値よりも大きな間隔の蒸気流路で分割されてい
る管群を有する吸収器内で、吸収液排出口または不凝縮
性ガス抽気口に最も近い管群ブロックが他の管群ブロッ
クに比べて伝熱管数が多いかまたは伝熱管ピッチが狭い
様にする。
Further, in the absorber, in order to suppress the retention of the non-condensable gas in the heat transfer tube group and facilitate the extraction of the gas, the tube group block has the maximum value of the interval between the adjacent heat transfer tubes in the block. In an absorber having a tube group that is divided by steam passages with a larger spacing, the tube group block closest to the absorbing liquid discharge port or the noncondensable gas extraction port is a heat transfer tube compared to other tube group blocks. Use a large number or narrow heat transfer tube pitch.

【0012】蒸発器内の伝熱管群内での蒸気の流動抵抗
を低減するために、蒸発器は、吸収器と同様に、従来の
一体構造の管群構造ではなくて、伝熱管長手方向から見
た断面において蒸気流路で分離された複数の管群ブロッ
クに分割した構成にする。より具体的には、伝熱管長手
方向から見た断面での蒸気流路の幅が、伝熱管を密に配
置した管群ブロック内の隣接伝熱管の間隔の最大値より
も大きな間隔であり、かつ複数の管群ブロックが蒸気流
路で囲まれている管配列の蒸発器にする。更により具体
的には、蒸発器を伝熱管長手方向から見た断面において
複数の管群ブロックがそのブロック内の隣接伝熱管の間
隔の最大値よりも大きな間隔の蒸気流路で囲まれ、かつ
当該蒸発器からの蒸気流出面から見た断面において伝熱
管を密に配置した管群ブロックがそのブロック内の隣接
伝熱管の間隔の最大値よりも大きな間隔の蒸気流路で分
割されている管群を有する蒸発器にする。蒸発器形状や
蒸気流量によっては、1つの管群ブロックに属する伝熱
管の蒸気流入方向に垂直な方向の列数が20列以下に配
置する。
[0012] In order to reduce the flow resistance of vapor in the heat transfer tube group in the evaporator, the evaporator is not the tube group structure of the conventional integral structure, but the longitudinal direction of the heat transfer tube, like the absorber. In the cross section as seen, the structure is divided into a plurality of tube group blocks separated by a steam flow path. More specifically, the width of the steam flow path in the cross section viewed from the longitudinal direction of the heat transfer tube is an interval larger than the maximum value of the interval between the adjacent heat transfer tubes in the tube group block in which the heat transfer tubes are densely arranged, In addition, the evaporator has a tube arrangement in which a plurality of tube group blocks are surrounded by a vapor flow path. Even more specifically, in a cross section of the evaporator seen from the longitudinal direction of the heat transfer tube, a plurality of tube group blocks are surrounded by steam flow paths having a spacing larger than the maximum value of the spacing between adjacent heat transfer tubes in the block, and Tubes in which a tube group block in which heat transfer tubes are densely arranged in a cross section viewed from the steam outflow surface from the evaporator is divided by steam flow paths with an interval larger than the maximum value of the interval between adjacent heat transfer tubes in the block Make an evaporator with groups. Depending on the shape of the evaporator and the steam flow rate, the number of rows of the heat transfer tubes belonging to one tube group block may be 20 or less in the direction perpendicular to the steam inflow direction.

【0013】吸収器での吸収液の散布及び/又は蒸発器
での蒸発媒体の散布を管群下部においても均一にするた
めには、伝熱管群の中に液体と気体を同時に通過させる
分散板を水平に配置する。この分散板は複数の管群ブロ
ックを有する吸収器または蒸発器において、その蒸気流
路に水平に設置すればさらに効果的である。
In order to make the dispersion of the absorbing liquid in the absorber and / or the dispersion of the evaporation medium in the evaporator even in the lower part of the tube group, a dispersion plate that allows liquid and gas to simultaneously pass through the heat transfer tube group. Are placed horizontally. It is more effective if this dispersion plate is installed horizontally in the vapor flow path in an absorber or evaporator having a plurality of tube group blocks.

【0014】[0014]

【作用】本発明によると、吸収器または蒸発器内の蒸気
は主に蒸気流路を流れ、吸収器または蒸発器内全体に広
がる。蒸気流路での蒸気の流動抵抗は、伝熱管を密に配
置した管群ブロック内での流動抵抗に比べると、はるか
に小さく、無視できる。蒸発器の管群ブロック内で蒸発
した蒸気は、管群ブロック内の管群中の最短距離を通っ
て蒸気流路に流れる。同様に吸収器の管群ブロック内で
の蒸気は、蒸気流路から管群ブロック内の管群中の最短
距離を通って管群ブロック内部へ流れ吸収される。従来
の一体構造の管群では、蒸気の流入流出の際の管群中の
通過距離は蒸気流れ方向の管群の奥行きに相当する。し
たがって、本発明では管群中の蒸気の通過距離を短縮で
きることから、その際の蒸気の流動抵抗を大幅に低減で
きる。管群内での圧力損失を低減できることから、吸収
器または蒸発器内の圧力分布の均一化を図ることがで
き、また吸収器内での各伝熱管での蒸気吸収量も均一化
される。
According to the present invention, the vapor in the absorber or evaporator flows mainly through the vapor flow path and spreads throughout the absorber or evaporator. The flow resistance of the steam in the steam flow path is much smaller than the flow resistance in the tube group block in which the heat transfer tubes are densely arranged, and can be ignored. The vapor evaporated in the tube group block of the evaporator flows into the vapor flow path through the shortest distance in the tube group in the tube group block. Similarly, steam in the tube group block of the absorber flows into the tube group block from the steam flow path through the shortest distance in the tube group in the tube group block and is absorbed. In the conventional integrated tube group, the passage distance in the tube group when the steam flows in and out corresponds to the depth of the tube group in the steam flow direction. Therefore, in the present invention, since the passage distance of the steam in the tube group can be shortened, the flow resistance of the steam at that time can be greatly reduced. Since the pressure loss in the tube group can be reduced, the pressure distribution in the absorber or the evaporator can be made uniform, and the amount of vapor absorbed in each heat transfer tube in the absorber can be made uniform.

【0015】この圧力分布の均一化は、管群ブロック中
での不凝縮性ガスの滞留を抑制することができ、さらに
は抽気口近傍、または不凝縮性ガスが吸収液に同伴して
排出される場合にはその排出口近傍の管群ブロックを他
の管群ブロックに比べて管数を多くするかまたは伝熱管
ピッチを狭くするなどで、容易に低圧領域を形成するこ
とができ、不凝縮性ガスがそこに吸い寄せられ高効率に
抽気することが可能になる。
The uniform pressure distribution can suppress the retention of the non-condensable gas in the tube group block, and further, the vicinity of the extraction port or the non-condensable gas is discharged together with the absorbing liquid. In this case, the low-pressure region can be easily formed by increasing the number of tubes in the vicinity of the exhaust port as compared with other tube groups or by narrowing the heat transfer tube pitch, and non-condensing The sexual gas is attracted there and can be extracted efficiently.

【0016】伝熱管群の中に配置され液体と気体を同時
に通過させる分散板は、蒸気流動を阻害せずに吸収器ま
たは蒸発器に上部から流下してくる吸収液または蒸発媒
体を一旦受けて再分配する。それによって器内下部の伝
熱管へも均一に吸収液または蒸発媒体を供給することが
できる。この作用は、複数の管群ブロックを有する吸収
器または蒸発器においては蒸気流路で吸収液または蒸発
媒体があおられるため、上記分散板をその蒸気流路に水
平に配置することにより、この作用はさらに効果的であ
る。
The dispersion plate, which is arranged in the heat transfer tube group and allows the liquid and the gas to pass therethrough at the same time, once receives the absorbing liquid or the evaporation medium flowing down from the upper portion to the absorber or the evaporator without inhibiting the vapor flow. Redistribute. As a result, the absorbing liquid or the evaporating medium can be evenly supplied to the heat transfer tubes in the lower part of the vessel. This action is achieved by arranging the dispersion plate horizontally in the vapor passage in the absorber or evaporator having a plurality of tube group blocks because the absorbing liquid or the evaporating medium is covered in the vapor passage. Is even more effective.

【0017】[0017]

【実施例】図1(1),(2)は、本発明の吸収冷凍機
の吸収器の2つの実施例を夫々、伝熱管長手方向から見
た断面の模式図である。1は伝熱管、2は管群ブロッ
ク、3は蒸気流路、4は蒸発器から流入する蒸気(水蒸
気)の流入部、5は吸収液散布装置、6は吸収液、7は
吸収液排出口(これは本実施例では抽気口を兼ねてい
る)を示す。図1(1)は、蒸発器で発生した蒸気が蒸
気流入部4を通って、水平方向に流入してくる実施例で
ある。蒸気流入部4には吸収液の飛散を防止するために
エリミネータなどが設置されている場合もあるが、何も
設置されない開口部になっている場合もある。吸収器内
には伝熱管1が密に配置している管群ブロックが4つ形
成され、各々の管群ブロックは蒸気流路3に囲まれてい
る。蒸気流入部4を通って蒸発器から流入してくる蒸気
は、蒸気流路3を通って吸収器内全体に行きわたると同
時に、各伝熱管の外表面に散布された吸収液によって吸
収される。その際、吸収液は吸収熱により加熱される
が、伝熱管内を流れる冷却水により冷却される。吸収液
は上部の伝熱管から下部の伝熱管へ滴下し、吸収液排出
口7から吸収器外へ出る。吸収液排出口7には空気など
の不凝縮性ガスの抽気口が併設される場合もあるし、エ
ゼクターなどにより不凝縮性ガスと吸収液を同時に排出
する場合もある。図1(2)は蒸発器で発生した蒸気が
蒸気流入部4を通って、吸収器の上部から垂直方向に流
入してくるものである。同様に、蒸気が吸収器の下部か
ら上部へ垂直方向に流入してくる実施例もある。
1 (1) and 1 (2) are schematic views of cross sections of two embodiments of an absorber of an absorption refrigerator according to the present invention as seen from the longitudinal direction of a heat transfer tube. DESCRIPTION OF SYMBOLS 1 is a heat transfer tube, 2 is a tube group block, 3 is a vapor flow path, 4 is an inflow part of vapor (steam) flowing from an evaporator, 5 is an absorbing liquid spraying device, 6 is an absorbing liquid, and 7 is an absorbing liquid discharge port. (This also serves as an extraction port in this embodiment). FIG. 1 (1) is an embodiment in which the steam generated in the evaporator flows horizontally through the steam inflow portion 4. The vapor inflow part 4 may be provided with an eliminator or the like in order to prevent the absorption liquid from scattering, but may be an opening in which nothing is provided. Four tube group blocks in which the heat transfer tubes 1 are densely arranged are formed in the absorber, and each tube group block is surrounded by the vapor flow path 3. The vapor flowing from the evaporator through the vapor inflow portion 4 reaches the entire inside of the absorber through the vapor flow path 3, and at the same time, is absorbed by the absorbing liquid scattered on the outer surface of each heat transfer tube. .. At that time, the absorption liquid is heated by the absorption heat, but is cooled by the cooling water flowing in the heat transfer tube. The absorbing liquid drips from the upper heat transfer pipe to the lower heat transfer pipe, and flows out of the absorber through the absorbing liquid discharge port 7. The absorbing liquid discharge port 7 may be provided with an extraction port for noncondensable gas such as air, or the ejector may discharge the noncondensing gas and absorbing liquid at the same time. In FIG. 1 (2), the vapor generated in the evaporator passes through the vapor inflow part 4 and flows in vertically from the upper part of the absorber. Similarly, in some embodiments, vapor may flow vertically from the bottom of the absorber to the top.

【0018】次に、本発明の原理を、吸収器内での基本
的な管群配置の数値解析結果により説明する。この数値
解析では、流れに関して質量と運動量の保存則を解き、
伝熱管群における蒸気の吸収量を実験式に基づいて求め
ている。この解析モデルの詳細は、Proceeding of the
Second International Symposium on Condensers andco
ndensation (1990), p.235〜 p.244に示されている数値
解析手法に基づいている。図2は、数値解析を行った3
種の吸収器の伝熱管群の伝熱管長手方向から見た断面を
示すものである。3種の吸収器は全て同じ容積(高さ
0.75m、奥行き0.33m、伝熱管長手方向2.0
m)であり、配置された伝熱管数も336本と等しい。
蒸気は向かって左の側面から流入する。いずれも伝熱管
(直径15.88mm)の配列は千鳥配列である。
(a)の「矩形」配列は一体構造の従来の管群であり、
伝熱管配置領域8に水平方向の管ピッチ23.3mm、
鉛直方向の管ピッチ26.7mmで配置されている。
(b)の「くし歯型」配列は、蒸気流路で分割された管
群ブロックが吸収器の奥壁面に接している配列であり、
水平方向の管ピッチは17.0mm、鉛直方向の管ピッ
チは19.5mmである。(c)の「ブロック型」配列
は、管群ブロックが全て蒸気流路で囲まれた配列であ
り、水平方向の管ピッチは17.0mm、鉛直方向の管
ピッチは19.5mmである。図3は、これらの管群の
図2中に示した圧力プロット位置9での蒸気の圧力分布
の数値解析結果を示すものである。解析結果からは一体
構造の「矩形」配列に比べて、管群ブロックに分割した
配列の方が、明らかに圧力損失(蒸気入口での圧力と圧
力の最も低い部位での圧力との差)が少なく圧力分布が
均一化しており、このため、吸収器の蒸気入口部での圧
力が低くなり、同じ伝熱管数で蒸発器との圧力差を大き
くとれ高性能であることがわかる。この傾向は「ブロッ
ク型」配列の方が「くし歯型」配列に比べてさらに大き
い。
Next, the principle of the present invention will be described with reference to the results of numerical analysis of the basic tube group arrangement in the absorber. In this numerical analysis, the conservation law of mass and momentum is solved for the flow,
The amount of steam absorbed in the heat transfer tube group is calculated based on an empirical formula. For more information on this analytical model, see Proceeding of the
Second International Symposium on Condensers andco
It is based on the numerical analysis method shown in ndensation (1990), p.235-p.244. Figure 2 shows the numerical analysis
FIG. 3 is a cross-sectional view of a heat transfer tube group of a kind of absorber viewed from the longitudinal direction of the heat transfer tube. All three absorbers have the same volume (height 0.75 m, depth 0.33 m, heat transfer tube longitudinal direction 2.0).
m), and the number of heat transfer tubes arranged is equal to 336.
Steam flows in from the left side. In both cases, the arrangement of the heat transfer tubes (diameter 15.88 mm) is a staggered arrangement.
The "rectangular" array in (a) is a conventional tube bundle with an integral structure,
Horizontal tube pitch 23.3 mm in the heat transfer tube arrangement area 8,
The tubes are arranged at a vertical pipe pitch of 26.7 mm.
The “comb-shaped” arrangement of (b) is an arrangement in which the tube group blocks divided by the steam flow path are in contact with the inner wall surface of the absorber,
The horizontal pipe pitch is 17.0 mm and the vertical pipe pitch is 19.5 mm. The “block type” array of (c) is an array in which all the tube group blocks are surrounded by the steam flow paths, the horizontal tube pitch is 17.0 mm, and the vertical tube pitch is 19.5 mm. FIG. 3 shows the results of numerical analysis of the pressure distribution of steam at the pressure plot position 9 shown in FIG. 2 of these tube groups. From the analysis results, the pressure loss (difference between the pressure at the steam inlet and the pressure at the lowest pressure part) is obviously higher in the array divided into the tube group blocks than in the "rectangular" array of the integrated structure. It can be seen that the pressure distribution is small and the pressure distribution is uniform, so that the pressure at the steam inlet of the absorber is low, and the pressure difference with the evaporator can be made large with the same number of heat transfer tubes, which is high performance. This tendency is even greater in the "block type" arrangement than in the "comb type" arrangement.

【0019】図4(1),(2)は図1(1),(2)
と夫々ほぼ同様の吸収器の伝熱管長手方向から見た断面
の模式図を示す。図1と同様に蒸気流路3に囲まれてい
る管群ブロック2を有し、他方、吸収液排出口または抽
気口7に接する管群ブロック10は他の管群ブロックに
比べて伝熱管数が多くしてあり、従って、抽気口7付近
の圧力が低くなるようにしている。この様にすると吸収
器内の空気等の不凝縮性ガスを効率良く抽気でき、伝熱
特性が向上する。
FIGS. 4A and 4B show FIGS. 1A and 1B.
2 and 3 are schematic diagrams of cross sections as seen from the longitudinal direction of the heat transfer tube of the absorber, respectively, which are almost the same as the above. Similar to FIG. 1, the tube group block 10 surrounded by the vapor flow path 3 has the tube group block 10 in contact with the absorbent discharge port or the extraction port 7, and the number of heat transfer tubes is greater than that of other tube group blocks. Therefore, the pressure near the extraction port 7 is reduced. By doing so, the non-condensable gas such as air in the absorber can be efficiently extracted and the heat transfer characteristics are improved.

【0020】図5(1),(2)も図1(1),(2)
と夫々ほぼ同様の吸収器の伝熱管長手方向から見た断面
の模式図を示す。図1と同様に蒸気流路3に囲まれてい
る管群ブロック2を有し、蒸気流路中に蒸気と液を同時
に通す分散板11を設置し、吸収液を再分配する。これ
によって、全ての伝熱管に吸収液が分配され、効率良く
蒸気の吸収ができる。
FIGS. 5A and 5B also show FIGS. 1A and 1B.
2 and 3 are schematic diagrams of cross sections as seen from the longitudinal direction of the heat transfer tube of the absorber, respectively, which are almost the same as the above. As in the case of FIG. 1, the tube group block 2 surrounded by the vapor flow path 3 is provided, and the dispersion plate 11 that simultaneously allows the vapor and the liquid to pass through is installed in the vapor flow path to redistribute the absorbing liquid. As a result, the absorbing liquid is distributed to all the heat transfer tubes, and the vapor can be absorbed efficiently.

【0021】図6(1),(2)は、その様な分散板1
1の2つの例を夫々示す断面図である。同図(1)は多
孔板111に気体を通過させる短円筒112を貫設して
上に突出させたものであり、多孔板111上に溜った液
は多孔板111の孔から滴下する。同図(2)は径の比
較的大きい短円筒113を板114に貫設して上に突出
させたものであり、板114上に溜った液は円筒113
内にオーバーフローして円筒113内壁を濡れ状態で流
下し、気体は円筒113の中央部を流れる。
FIGS. 6A and 6B show such a dispersion plate 1
It is sectional drawing which respectively shows two examples of No. 1. In FIG. 1 (1), a short cylinder 112 that allows gas to pass through the perforated plate 111 is provided so as to protrude upward, and the liquid accumulated on the perforated plate 111 is dropped from the holes of the perforated plate 111. In FIG. 2B, a short cylinder 113 having a relatively large diameter is provided so as to penetrate the plate 114 and protrude upward, and the liquid accumulated on the plate 114 is contained in the cylinder 113.
It overflows inward and flows down the inner wall of the cylinder 113 in a wet state, and the gas flows in the central portion of the cylinder 113.

【0022】図7(1),(2)は本発明の吸収冷凍機
の蒸発器の2つの実施例を、夫々、伝熱管長手方向から
見た断面の模式図を示す。蒸発器内には伝熱管1が密に
配置している管群ブロック2が4つ形成され、各々の管
群ブロックは蒸気流路3に囲まれている。管群の上部か
らは蒸発媒体散布装置12から水などの蒸発媒体13が
伝熱管外面に散布され蒸発する。蒸発した蒸気は蒸気流
路3を通って蒸気流出部14から吸収器へと流出する。
蒸発しきれずに蒸発器の下部まで到達した蒸発媒体は蒸
発媒体排出口15から蒸発器外へ出る。
FIGS. 7 (1) and 7 (2) are schematic views of two embodiments of the evaporator of the absorption refrigerator according to the present invention, as viewed in the longitudinal direction of the heat transfer tube. Four tube group blocks 2 in which the heat transfer tubes 1 are densely arranged are formed in the evaporator, and each tube group block is surrounded by the vapor flow path 3. From the upper part of the tube group, an evaporation medium 13 such as water is sprayed from the evaporation medium spraying device 12 to the outer surface of the heat transfer tubes and evaporated. The vaporized vapor flows out from the vapor outflow portion 14 to the absorber through the vapor flow path 3.
The evaporation medium which has reached the lower portion of the evaporator without being completely evaporated flows out of the evaporator through the evaporation medium outlet 15.

【0023】図8(1),(2)は図7(1),(2)
と夫々ほぼ同様の蒸発器の伝熱管長手方向から見た断面
の模式図を示す。図7と同様に蒸気流路3に囲まれてい
る管群ブロック2を有すると共に、蒸気流路中に蒸気と
液を同時に通す分散板11(図6の(1)又は(2)と
同様のもの)を設置し、液を再分配する。これによっ
て、全ての伝熱管に蒸発媒体たる水が分配され、伝熱特
性が向上する。
8 (1) and 8 (2) are shown in FIGS. 7 (1) and 7 (2).
2 and 3 are schematic diagrams of cross-sections as seen from the longitudinal direction of the heat transfer tube of the evaporator, which are almost the same as the above. As in the case of FIG. 7, the dispersion plate 11 having the tube group block 2 surrounded by the vapor flow path 3 and simultaneously allowing the vapor and the liquid to pass through the vapor flow path (similar to (1) or (2) in FIG. 6). Stuff) and redistribute the liquid. As a result, water as an evaporation medium is distributed to all the heat transfer tubes, and heat transfer characteristics are improved.

【0024】[0024]

【発明の効果】本発明によれば、吸収冷凍機の吸収器又
は蒸発器内での蒸気の流動抵抗を低減でき、高性能な吸
収冷凍機を提供できる。また吸収器においては、ブロッ
ク管群を構成することで吸収器内全体の圧力分布を均一
化し得、また図4の様に抽気口付近のみを人為的に低圧
にする構成とすることで不凝縮性ガスを効率よく抽気で
き、吸収器内での吸収伝熱特性を向上できる。また吸収
器又は蒸発器の管群中に蒸気流動に影響を与えない液の
分散板を設置することで、管群下部の伝熱管へも吸収液
又は蒸発媒体液を均一に散布し、これらの液が供給され
ない様な無駄な管が生じることなくして、伝熱特性をよ
り向上させることができる。以上のように、本発明は高
性能な吸収冷凍機を提供でき、小型の装置で従来技術以
上の冷凍能力を発揮できる。
According to the present invention, it is possible to reduce the flow resistance of vapor in the absorber or the evaporator of the absorption refrigerator and to provide a high-performance absorption refrigerator. Further, in the absorber, the pressure distribution in the whole absorber can be made uniform by constructing a block tube group, and the non-condensation can be achieved by artificially reducing the pressure near the extraction port as shown in FIG. The characteristic gas can be efficiently extracted and the absorption heat transfer characteristic in the absorber can be improved. In addition, by installing a dispersion plate for the liquid that does not affect the vapor flow in the tube group of the absorber or evaporator, the absorbing liquid or the evaporating medium liquid is evenly distributed to the heat transfer tubes below the tube group. It is possible to further improve the heat transfer characteristics without generating a wasteful tube such that the liquid is not supplied. INDUSTRIAL APPLICABILITY As described above, the present invention can provide a high-performance absorption refrigerating machine, and can exert a refrigerating capacity higher than that of the prior art with a small device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による吸収冷凍機の吸収器の
伝熱管長手方向の断面模式図、
FIG. 1 is a schematic cross-sectional view in a longitudinal direction of a heat transfer tube of an absorber of an absorption refrigerator according to an embodiment of the present invention,

【図2】数値解析に用いる従来技術と本発明による吸収
器断面の模式図、
FIG. 2 is a schematic view of a cross section of an absorber according to a conventional technique and the present invention used for numerical analysis,

【図3】図2に示す管群の数値解析による圧力分布を示
す図、
FIG. 3 is a diagram showing a pressure distribution by numerical analysis of the pipe group shown in FIG.

【図4】本発明の他の実施例による吸収冷凍機の吸収器
の伝熱管長手方向の断面模式図、
FIG. 4 is a schematic cross-sectional view in the longitudinal direction of the heat transfer tube of the absorber of the absorption refrigerator according to another embodiment of the present invention,

【図5】本発明の吸収冷凍機の更に他の実施例による吸
収器の断面模式図、
FIG. 5 is a schematic sectional view of an absorber according to still another embodiment of the absorption refrigerator of the present invention,

【図6】本発明に用いる分散板の模式断面部分図、FIG. 6 is a schematic sectional partial view of a dispersion plate used in the present invention,

【図7】本発明の一実施例による吸収冷凍機の蒸発器の
伝熱管長手方向の断面模式図、
FIG. 7 is a schematic cross-sectional view in the longitudinal direction of the heat transfer tube of the evaporator of the absorption refrigerator according to the embodiment of the present invention,

【図8】本発明の吸収冷凍機の他の実施例による蒸発器
の断面模式図、
FIG. 8 is a schematic sectional view of an evaporator according to another embodiment of the absorption refrigerator of the present invention,

【図9】吸収冷凍機の全体系統概念図。FIG. 9 is a conceptual diagram of the entire system of an absorption refrigerator.

【符号の説明】[Explanation of symbols]

1…伝熱管 2…管群ブロッ
ク 3…蒸気流路 4…蒸発器から
流入する蒸気の流入部 5…吸収液散布装置 6…吸収液 7…吸収液排出口または抽気口 8…伝熱管配置
領域 9…圧力プロット位置 10…吸収液排出口または抽気口7に隣接する管群ブロ
ック 11…蒸気と液を同時に通す分散板 12…蒸発媒体
散布装置 13…蒸発媒体 14…蒸気流出
部 15…蒸発媒体排出口
DESCRIPTION OF SYMBOLS 1 ... Heat transfer tube 2 ... Tube group block 3 ... Steam flow path 4 ... Inflow part of vapor | steam which flows in from an evaporator 5 ... Absorbing liquid spraying device 6 ... Absorbing liquid 7 ... Absorbing liquid discharge port or bleeding port 8 ... Heat transfer pipe arrangement area 9 ... Pressure plotting position 10 ... Tube block block adjacent to the absorbing liquid discharge port or bleeding port 7 ... Dispersing plate for simultaneously passing vapor and liquid 12 ... Evaporating medium spraying device 13 ... Evaporating medium 14 ... Vapor outflow portion 15 ... Evaporating medium Vent

フロントページの続き (72)発明者 高橋文夫 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 相沢道彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内Front Page Continuation (72) Fumio Takahashi 1168 Moriyama-cho, Hitachi City, Ibaraki Pref., Energy Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器は伝熱管長手方向から見
た断面において蒸気流路で分離された複数の管群領域を
有することを特徴とする吸収冷凍機。
1. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the absorption refrigerator, the absorber has a plurality of tube group regions separated by a steam flow path in a cross section viewed from the longitudinal direction of the heat transfer tube.
【請求項2】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
いることを特徴とする吸収冷凍機。
2. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the case of the absorber, in the cross section viewed from the longitudinal direction of the heat transfer tube, a plurality of tube group areas in which the heat transfer tubes are densely arranged and steam having an interval larger than the maximum value of the interval between the adjacent heat transfer tubes in each tube group area. An absorption refrigerator having a flow path and each of the plurality of tube group regions in which heat transfer tubes are densely arranged is surrounded by the steam flow path.
【請求項3】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
おり、かつ吸収器への蒸気流入面から見た断面におい
て、伝熱管を密に配置した前記複数の管群領域の各々が
その領域内の隣接伝熱管の間隔の最大値よりも大きな間
隔の蒸気流路で分割されていることを特徴とする吸収冷
凍機。
3. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the case of the absorber, in the cross section viewed from the longitudinal direction of the heat transfer tube, a plurality of tube group areas in which the heat transfer tubes are densely arranged and steam having an interval larger than the maximum value of the interval between the adjacent heat transfer tubes in each tube group area. Each of the plurality of tube group regions having a flow path and densely arranged heat transfer tubes is surrounded by the steam flow path, and in a cross section viewed from the steam inflow surface to the absorber, An absorption refrigerator in which each of the plurality of densely arranged tube group regions is divided by a vapor flow path having an interval larger than a maximum value of an interval between adjacent heat transfer tubes in the region.
【請求項4】 1つの管群領域に属する伝熱管の蒸気流
入方向に垂直な方向の列数が20列以下である請求項3
記載の吸収冷凍機。
4. The number of rows of the heat transfer tubes belonging to one tube group region in a direction perpendicular to the steam inflow direction is 20 or less.
Absorption refrigerator described.
【請求項5】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、吸収器が伝熱管長手方向から見
た断面において、伝熱管を密に配置した管群領域と各管
群領域内の隣接伝熱管の間隔の最大値よりも大きな間隔
の蒸気流路とを有し、伝熱管を密に配置した前記複数の
管群領域の各々が前記蒸気流路で分離されており、かつ
吸収器内の吸収液排出口または抽気口に最も近い管群領
域が他の管群領域に比べて伝熱管数が多いかまたは伝熱
管ピッチが狭いことを特徴とする吸収冷凍機。
5. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the cross section when the absorber is viewed from the longitudinal direction of the heat transfer tube, a tube group area in which the heat transfer tubes are densely arranged and a steam flow path having an interval larger than the maximum value of the interval between the adjacent heat transfer tubes in each tube group area are provided. Each of the plurality of tube group regions in which the heat transfer tubes are densely arranged are separated by the vapor flow path, and the tube group region closest to the absorbing liquid discharge port or the bleed port in the absorber is another. An absorption refrigerator having a larger number of heat transfer tubes or a narrower heat transfer tube pitch than the tube group region.
【請求項6】 吸収器内の前記管群領域の中にもしくは
前記蒸気流路の中に液体と気体を同時に通過させる分散
板を配置した請求項1ないし5のいずれかに記載の吸収
冷凍機。
6. The absorption refrigerator according to claim 1, wherein a dispersion plate that allows liquid and gas to pass through at the same time is arranged in the tube group region in the absorber or in the vapor flow path. ..
【請求項7】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、蒸発器は伝熱管長手方向から見
た断面において蒸気流路で分離された複数の管群領域を
有することを特徴とする吸収冷凍機。
7. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the absorption refrigerator, the evaporator has a plurality of tube group regions separated by a steam flow path in a cross section viewed from the longitudinal direction of the heat transfer tube.
【請求項8】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、蒸発器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
いることを特徴とする吸収冷凍機。
8. An absorption refrigerator having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs the steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the evaporator, the vaporizer is a steam with a distance larger than the maximum value of the distance between the plurality of tube group areas in which the heat transfer tubes are densely arranged and the adjacent heat transfer tubes in each tube group area in the cross section viewed from the longitudinal direction of the heat transfer tube. An absorption refrigerator having a flow path and each of the plurality of tube group regions in which heat transfer tubes are densely arranged is surrounded by the steam flow path.
【請求項9】 複数の伝熱管の表面の液を蒸発させて蒸
気を発生する蒸発器および蒸発器から流入する蒸気を複
数の伝熱管の表面の吸収液で吸収せしめる吸収器を有す
る吸収冷凍機において、蒸発器は、伝熱管長手方向から
見た断面において、伝熱管を密に配置した複数の管群領
域とその各管群領域内の隣接伝熱管の間隔の最大値より
も大きな間隔の蒸気流路とを有し、伝熱管を密に配置し
た前記複数の管群領域の各々が前記蒸気流路に囲まれて
おり、かつ蒸発器からの蒸気流出面から見た断面におい
て、伝熱管を密に配置した前記複数の管群領域の各々が
その領域内の隣接伝熱管の間隔の最大値よりも大きな間
隔の蒸気流路で分割されていることを特徴とする吸収冷
凍機。
9. An absorption chiller having an evaporator that evaporates liquid on the surfaces of a plurality of heat transfer tubes to generate steam and an absorber that absorbs steam flowing from the evaporator with an absorbing liquid on the surfaces of the plurality of heat transfer tubes. In the evaporator, the vaporizer is a steam with a distance larger than the maximum value of the distance between the plurality of tube group areas in which the heat transfer tubes are densely arranged and the adjacent heat transfer tubes in each tube group area in the cross section viewed from the longitudinal direction of the heat transfer tube. Each of the plurality of tube group regions having a flow path and densely arranged heat transfer tubes is surrounded by the steam flow path, and in a cross section viewed from the steam outflow surface from the evaporator, An absorption refrigerator in which each of the plurality of densely arranged tube group regions is divided by a vapor flow path having an interval larger than a maximum value of an interval between adjacent heat transfer tubes in the region.
【請求項10】 1つの管群領域に属する伝熱管の蒸気
流出方向に垂直な方向の列数が20列以下である請求項
9記載の吸収冷凍機。
10. The absorption refrigerator according to claim 9, wherein the number of rows of the heat transfer tubes belonging to one tube group region is 20 or less in a direction perpendicular to the steam outflow direction.
【請求項11】 蒸発器内の前記管群領域の中にもしく
は前記蒸気流路の中に液体と気体を同時に通過させる分
散板を配置した請求項7ないし10のいずれかに記載の
吸収冷凍機。
11. The absorption refrigerator according to claim 7, wherein a dispersion plate that allows liquid and gas to pass through at the same time is arranged in the tube group region in the evaporator or in the vapor flow path. ..
JP3233314A 1991-09-12 1991-09-12 Absorption refrigerator Expired - Fee Related JP2568769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233314A JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233314A JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0571827A true JPH0571827A (en) 1993-03-23
JP2568769B2 JP2568769B2 (en) 1997-01-08

Family

ID=16953190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233314A Expired - Fee Related JP2568769B2 (en) 1991-09-12 1991-09-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2568769B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463880A (en) * 1994-02-07 1995-11-07 Hitachi, Ltd. Absorption refrigerator
KR100467248B1 (en) * 2001-07-23 2005-01-24 미츠비시 쥬고교 가부시키가이샤 Evaporator and refrigerator
KR100498211B1 (en) * 2000-10-24 2005-07-01 미츠비시 쥬고교 가부시키가이샤 Condenser for refrigerating machine
JP2012002454A (en) * 2010-06-18 2012-01-05 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR20210151244A (en) 2014-03-17 2021-12-13 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 System and method for aligning with a reference target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015847A1 (en) * 1997-09-19 1999-04-01 Hitachi, Ltd. Heat exchanger and absorption water cooler/heater using the heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131725A (en) * 1985-12-03 1987-06-15 株式会社東芝 Generating plant operating apparatus
JPH03102107A (en) * 1990-08-29 1991-04-26 Sharp Corp Odor reducing device for wick height adjusting type oil firing heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131725A (en) * 1985-12-03 1987-06-15 株式会社東芝 Generating plant operating apparatus
JPH03102107A (en) * 1990-08-29 1991-04-26 Sharp Corp Odor reducing device for wick height adjusting type oil firing heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463880A (en) * 1994-02-07 1995-11-07 Hitachi, Ltd. Absorption refrigerator
KR100498211B1 (en) * 2000-10-24 2005-07-01 미츠비시 쥬고교 가부시키가이샤 Condenser for refrigerating machine
US7028762B2 (en) 2000-10-24 2006-04-18 Mitsubishi Heavy Industries, Ltd. Condenser for refrigerating machine
KR100467248B1 (en) * 2001-07-23 2005-01-24 미츠비시 쥬고교 가부시키가이샤 Evaporator and refrigerator
JP2012002454A (en) * 2010-06-18 2012-01-05 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR20210151244A (en) 2014-03-17 2021-12-13 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 System and method for aligning with a reference target

Also Published As

Publication number Publication date
JP2568769B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
EP1365199B1 (en) Evaporator with mist eliminator
US5205352A (en) Heat exchanger for condensing vapor into liquid phase, power generating plant using the heat exchanger and absorption refrigerator using the heat exchanger
US3316727A (en) Absorption refrigeration systems
US5463880A (en) Absorption refrigerator
JP2568769B2 (en) Absorption refrigerator
JP3935610B2 (en) Heat exchanger and absorption refrigerator
KR880009254A (en) Dual-effect air-cooled freezer
JP4881820B2 (en) Absorption refrigerator
CN210921674U (en) Shell and tube condenser and water chilling unit
CN108844260B (en) Evaporator and air-conditioner set
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
CN108375238B (en) Absorption refrigerator
JP6805473B2 (en) Absorption chiller
JP2973653B2 (en) Absorption refrigerator
KR100213780B1 (en) Water supply system of absortion type cooler
JP2974005B2 (en) Absorption refrigerator
JPH08247574A (en) Absorber, absorption heat transfer tube and absorption refrigerating machine
RU2489665C1 (en) Noiseless heat-pipe cooling system
EP0082018B1 (en) Absorption refrigeration system
JP5036360B2 (en) Absorption refrigerator
JPH06307735A (en) Absorption freezer
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
KR20100082496A (en) Low-temperature regenerator for absorption type refrigerator
RU2016368C1 (en) Submerged evaporator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees