WO2023188009A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023188009A1
WO2023188009A1 PCT/JP2022/015571 JP2022015571W WO2023188009A1 WO 2023188009 A1 WO2023188009 A1 WO 2023188009A1 JP 2022015571 W JP2022015571 W JP 2022015571W WO 2023188009 A1 WO2023188009 A1 WO 2023188009A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
nozzles
heat exchanger
amount
Prior art date
Application number
PCT/JP2022/015571
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 平野
祐二 垂水
純一 宮井
隆宏 秋月
善生 山野
拓也 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/015571 priority Critical patent/WO2023188009A1/en
Publication of WO2023188009A1 publication Critical patent/WO2023188009A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Definitions

  • the present disclosure relates to a refrigeration cycle device that sprinkles water on a condenser.
  • Patent Document 1 discloses an auxiliary cooling device for an air-cooled condenser that includes a spray nozzle section for sprinkling water onto the condenser and a control section controlling the amount of water sprayed by the spray nozzle section.
  • the auxiliary cooling device described in Patent Document 1 is configured to spray fine water particles or mist almost uniformly on the radiation fins of the condenser.
  • the temperature distribution of the refrigerant flowing through the condenser becomes uneven, the cooling effect of the condenser due to water spraying becomes uneven, and the efficiency of COP improvement becomes worse.
  • the present disclosure solves the above-mentioned problems and provides a refrigeration cycle device that can improve COP through water sprinkling.
  • the refrigeration cycle device includes a condenser and a water sprinkling device that sprinkles water on the condenser, and the amount of water sprinkled per unit area of the water sprinkling device varies depending on the temperature distribution of the condenser.
  • the refrigeration cycle device of the present disclosure by making the amount of water sprinkled per unit area of the water sprinkler device different depending on the temperature distribution of the condenser, it is possible to improve COP by sprinkling water.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of an outdoor heat exchanger according to Embodiment 1.
  • FIG. 3 is a diagram showing the temperature distribution of the outdoor heat exchanger in the case where the outdoor heat exchanger according to the first embodiment functions as a condenser.
  • 1 is a schematic configuration diagram of a water sprinkler device of a refrigeration cycle device according to Embodiment 1.
  • FIG. It is a schematic block diagram of the water sprinkler device of the refrigeration cycle apparatus based on Embodiment 2.
  • Embodiment 3 It is a schematic block diagram of the water sprinkler device of the refrigeration cycle apparatus based on Embodiment 3.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle device 100 of the first embodiment is a heat pump chiller that performs air conditioning using cold and hot water.
  • the refrigeration cycle device 100 includes a heat source unit 1, an indoor unit 2, and a control device 3.
  • the heat source unit 1 of this embodiment has four refrigerant circuits.
  • the two refrigerant circuits form a group and share one water heat exchanger 60.
  • the heat source unit 1 of this embodiment has two groups of two refrigerant circuits.
  • the two water heat exchangers 60 are connected by piping in series, and cool or heat water, which is a heat medium, in two stages.
  • the refrigerant circuits of each system of the heat source unit 1 of this embodiment include a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, a water heat exchanger 60, and an accumulator 15. Connect the pipes to form a refrigerant circuit.
  • a refrigerant for example, a single refrigerant such as R-22 or R-134a, a pseudo-azeotropic mixed refrigerant such as R-410A or R-404A, or a non-azeotropic mixed refrigerant such as R-407C can be used. .
  • the compressor 11 compresses and discharges the sucked refrigerant.
  • the compressor 11 is driven via a compressor inverter drive device (not shown) or the like.
  • the compressor 11 can change the capacity of the compressor 11, which is the amount of refrigerant delivered per unit time, by arbitrarily changing the driving frequency based on instructions from the control device 3.
  • the four-way valve 12 serving as a flow path switching device switches the flow of the refrigerant depending on the operation to be performed based on instructions from the control device 3. For example, during cooling operation, the four-way valve 12 allows the high-temperature, high-pressure refrigerant discharged by the compressor 11 to flow into the outdoor heat exchanger 13. Further, during heating operation or the like, the high temperature and high pressure refrigerant discharged from the compressor 11 is made to flow into the water heat exchanger 60.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant and external air.
  • the outdoor heat exchanger 13 functions as an evaporator during a heating operation to heat water (heating operation), and exchanges heat between the low-pressure refrigerant flowing from the expansion valve 14 side and air, and evaporates the refrigerant.
  • a cooling operation in which water is cooled, it functions as a condenser, exchanges heat between the high-pressure refrigerant flowing from the compressor 11 side and air, and condenses and liquefies the refrigerant.
  • a water sprinkler device 5 is attached to the outdoor heat exchanger 13.
  • the water sprinkler 5 sprinkles water on the outdoor heat exchanger 13 when the outdoor heat exchanger 13 functions as a condenser.
  • the outdoor heat exchanger 13 and the water sprinkler 5 will be described in detail later.
  • the outdoor fan 16 sends air to the outdoor heat exchanger 13 to promote heat exchange between the refrigerant and the air.
  • the outdoor fan 16 is driven via a fan inverter drive device (not shown) or the like.
  • the outdoor fan 16 can change the air volume by arbitrarily changing the driving frequency based on instructions from the control device 3.
  • the outdoor heat exchanger 13 and the outdoor fan 16 are shown in one-to-one correspondence, but this is not particularly limited.
  • the water heat exchanger 60 which serves as a heat medium heat exchanger, exchanges heat between water, which serves as a heat medium, and a refrigerant.
  • the water heat exchanger 60 serves as a flow path for two refrigerant circuits and a flow path for a heat medium circulation circuit. Therefore, they constitute a device that constitutes a refrigerant circuit and a device that constitutes a heat medium circulation circuit.
  • the water heat exchanger 60 functions as a condenser during heating operation, for example, and exchanges heat between the refrigerant flowing from the compressor 11 side and water, condensing the refrigerant and liquefying it or converting it into two-phase gas-liquid. , heat the water.
  • it functions as an evaporator, exchanges heat between the refrigerant flowing from the expansion valve 14 side and water, evaporates the refrigerant, and cools the water.
  • the expansion valve 14 which serves as a throttle device, adjusts the pressure of the refrigerant passing through the water heat exchanger 60, for example, by changing its opening degree.
  • the expansion valve 14 of this embodiment is an electronic expansion valve whose opening degree is changed based on instructions from the control device 3. However, it is not limited to this. For example, it may be a temperature-sensitive expansion valve that changes the degree of opening based on the temperature of the refrigerant.
  • the accumulators 15 are each provided on the suction side of the compressor 11, and store surplus refrigerant in the refrigerant circuit.
  • the pump 80 is one of the devices that constitute the heat medium circulation circuit. In the heat medium circulation circuit, the pump 80 sucks water, applies pressure, sends it out, and circulates it. Further, the pump inverter drive device (not shown) can change the capacity of the pump 80 by arbitrarily changing the drive frequency based on instructions from the control device 3.
  • the indoor unit 2 is a unit that sends conditioned air to the indoor space that is the object of air conditioning.
  • each indoor unit 2 of this embodiment includes an indoor heat exchanger 21, an indoor flow rate adjustment device 22, and an indoor fan 23.
  • the indoor heat exchanger 21 and the indoor flow rate adjustment device 22 are devices that constitute a heat medium circulation circuit.
  • FIG. 1 shows a refrigeration cycle apparatus 100 having two indoor units 2, the number of indoor units 2 may be one or three or more.
  • the indoor flow rate adjustment device 22 is composed of, for example, a two-way valve that can control the opening degree (opening area) of the valve.
  • the indoor flow rate adjustment device 22 controls the flow rate of water flowing into and out of the indoor heat exchanger 21 by adjusting the degree of opening. Then, the indoor flow rate adjustment device 22 adjusts the amount of water to be passed through the indoor heat exchanger 21 based on the temperature of the water flowing into the indoor unit 2 and the temperature of the water flowing out, so that the indoor heat exchanger 21 To enable heat exchange using the amount of heat according to the indoor heat load.
  • the indoor flow rate adjustment device 22 when the indoor heat exchanger 21 does not need to exchange heat with the heat load, such as when the indoor heat exchanger 21 is stopped or the thermostat is turned off, the indoor flow rate adjustment device 22 fully closes the valve and The supply can be stopped so that water does not flow into or out of the exchanger 21.
  • the indoor flow rate adjustment device 22 is installed in the pipe on the water outflow side of the indoor heat exchanger 21, but the invention is not limited thereto.
  • the indoor flow rate adjustment device 22 may be installed on the water inflow side of the indoor heat exchanger 21.
  • the indoor heat exchanger 21 is a fin-tube heat exchanger that exchanges heat between indoor air in the indoor space supplied from the indoor fan 23 and water.
  • water which is colder than air, passes through the heat transfer tubes of the indoor heat exchanger 21 to cool the indoor space.
  • water that is warmer than air passes through the heat transfer tubes of the indoor heat exchanger 21, heating the indoor space.
  • the indoor fan 23 generates a flow of air that passes through the indoor heat exchanger 21 and returns to the indoor space.
  • the control device 3 controls the operation of the entire refrigeration cycle device 100.
  • the control device 3 is composed of a computer including a memory that stores data and programs necessary for control, and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the control device 3 controls each part of the refrigeration cycle device 100 based on information detected by a temperature sensor or a pressure sensor included in the refrigeration cycle device 100 and instructions from a remote controller (not shown). Specifically, the control device 3 controls the driving frequency of the compressor 11, the rotational speed of the outdoor fan 16 and the indoor fan 23, the switching of the four-way valve 12, the opening degree of the expansion valve 14, the driving frequency of the pump 80, and the indoor flow rate adjustment.
  • the opening degree of the device 22, the water sprinkling of the water sprinkler device 5, etc. are controlled.
  • control device 3 is provided separately from the heat source unit 1 and the indoor unit 2 in FIG. 1, it may be mounted on the heat source unit 1 or the indoor unit 2.
  • the heat source unit 1 and the indoor unit 2 may each be provided with the control device 3 and may be connected to each other in a wireless or wired communicable manner to transmit and receive various data and the like.
  • FIG. 2 is a schematic configuration diagram of the outdoor heat exchanger 13 according to the first embodiment.
  • the outdoor heat exchanger 13 of this embodiment is a parallel flow heat exchanger (PFC heat exchanger).
  • the outdoor heat exchanger 13 includes a heat exchange section 130 including a plurality of heat transfer tubes 131 and a plurality of fins 132, first headers 133a, 133b, and 133c, second headers 134a and 134b, and connection pipes 135a and 135b. It is equipped with In FIG. 2, in order to simplify the drawing, only a part of the heat exchanger tubes 131 and fins 132 are shown, and illustration of the whole is omitted.
  • the heat exchanger tube 131 is a flat tube with a plurality of flow paths formed inside. Each heat exchanger tube 131 is arranged to extend between first headers 133a, 133b, and 133c and second headers 134a and 134b. Moreover, each heat exchanger tube 131 is arranged at intervals from each other in a direction orthogonal to the stretching direction.
  • the extending direction of each heat exchanger tube 131 may be referred to as a first direction or a horizontal direction
  • the direction orthogonal to the extending direction of each heat exchanger tube 131 may be referred to as a second direction or a vertical direction.
  • a direction perpendicular to the horizontal direction and the vertical direction is sometimes referred to as the depth direction.
  • the fins 132 are corrugated fins bent into a wave shape. Each fin 132 is arranged to extend between first headers 133a, 133b, and 133c and second headers 134a and 134b. Further, each fin 132 is arranged between two adjacent heat exchanger tubes 131 of the plurality of heat exchanger tubes 131, and the two adjacent heat exchanger tubes 131 are connected by the fins 132.
  • the first headers 133a, 133b, and 133c are connected to one end of the plurality of heat exchanger tubes 131 in the extending direction, and the second headers 134a and 134b are connected to the other end of the plurality of heat exchanger tubes 131 in the extending direction.
  • the first headers 133a, 133b, and 133c and the second headers 134a and 134b have the function of distributing the refrigerant flowing into the outdoor heat exchanger 13 to the plurality of heat transfer tubes 131, and combining the refrigerant that has flowed through the plurality of heat transfer tubes 131. It has the function of
  • One end of the connecting pipe 135a is connected to the first header 133a, and the other end is connected to the four-way valve 12.
  • One end of the connecting pipe 135b is connected to the first header 133c, and the other end is connected to the expansion valve 14.
  • FIG. 2 shows four flow paths P1 to P4 of the heat exchange section 130 when the outdoor heat exchanger 13 functions as a condenser.
  • the refrigerant discharged from the compressor 11 passes through the four-way valve 12 and flows into the first header 133a from the connection pipe 135a.
  • the refrigerant that has flowed into the first header 133a flows into the second header 134a through the flow path P1 formed by the plurality of heat transfer tubes 131 connected to the first header 133a.
  • the refrigerant that has flowed into the second header 134a flows into the first header 133b through a flow path P2 formed by a plurality of heat transfer tubes 131 connected between the second header 134a and the first header 133b.
  • the refrigerant that has flowed into the first header 133b flows into the second header 134b through a flow path P3 formed by a plurality of heat transfer tubes 131 connected between the first header 133b and the second header 134b.
  • the refrigerant that has flowed into the second header 134b flows into the first header 133c through a flow path P4 formed by a plurality of heat transfer tubes 131 connected between the second header 134b and the first header 133c.
  • the refrigerant that has flowed into the first header 133c flows out to the expansion valve 14 through the connection pipe 135b.
  • FIG. 3 is a diagram showing the temperature distribution of the outdoor heat exchanger 13 in the case where the outdoor heat exchanger 13 according to the first embodiment functions as a condenser.
  • the temperature is higher in the part of the heat exchanger 130 that is closer to the connection pipe 135a, which is the inlet of the refrigerant; It can be seen that the closer the area is, the lower the temperature is. That is, in the flow direction of the refrigerant in the heat exchange section 130, the temperature decreases from upstream to downstream. For example, as shown in FIG.
  • channel P1 has a high temperature (e.g., 80°C to 100°C)
  • channel P2 has a medium temperature (e.g., 40°C to 50°C)
  • channels P3 and P4 have a low temperature (e.g., 30°C to 40°C). °C).
  • the temperature distribution in the heat exchange part 130 of the outdoor heat exchanger 13 is non-uniform, so if water is uniformly sprinkled on the heat exchange part 130 by the water sprinkler 5, the effect of improving the condensing capacity and the water spraying can be improved. Efficiency will decrease. Specifically, if sufficient water is not sprinkled on the high temperature portion of the heat exchange section 130, the refrigerant will not be sufficiently cooled and the effect of improving the condensing capacity will be reduced. Furthermore, if water is sprinkled on a low-temperature area at the same amount as that on a high-temperature area, the effect of water sprinkling on improving the condensation ability is low, the water used is wasted, and the watering efficiency is reduced.
  • the water sprinkler 5 of the present embodiment has a configuration in which the amount of water sprinkled per unit area (unit: L/(min ⁇ m 2 )) is varied depending on the temperature distribution of the heat exchange part 130 of the outdoor heat exchanger 13. It becomes. Specifically, in the water sprinkler 5 of the present embodiment, the amount of water sprayed per unit area for a portion where the temperature of the outdoor heat exchanger 13 is relatively high is greater than that for a portion where the temperature of the outdoor heat exchanger 13 is relatively low. The amount of water sprinkled per unit area is greater than the amount of water per unit area.
  • the amount of water sprayed per unit area for the part near the refrigerant inlet is the same as that for the part near the refrigerant outlet. It is configured so that the amount of water is greater than the amount of water sprinkled.
  • the amount of water sprinkled per unit area of the water sprinkler 5 may be changed gradually depending on the temperature of the outdoor heat exchanger 13, or may be changed in steps.
  • FIG. 4 is a schematic configuration diagram of the water sprinkler device 5 of the refrigeration cycle device 100 according to the first embodiment.
  • the outdoor heat exchanger 13 is also shown for explanation.
  • the water sprinkler device 5 is attached to a casing or the like that holds the outdoor heat exchanger 13.
  • the water sprinkler device 5 and the outdoor heat exchanger 13 are arranged at intervals in the depth direction.
  • the water sprinkler 5 includes a first pipe 50a, a second pipe 50b, a third pipe 50c, and a connecting pipe 52.
  • the first pipe 50a and the second pipe 50b are arranged opposite to each other below the third pipe 50c.
  • the third pipe 50c has one end connected to the first pipe 50a and the other end connected to the second pipe 50b.
  • the second pipe 50b and the third pipe 50c are connected to a connecting pipe 52.
  • the connection pipe 52 is connected to a water pipe or the like, and water flowing from the connection pipe 52 is supplied to the second pipe 50b, the third pipe 50c, and the first pipe 50a.
  • the connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
  • the first pipe 50a is arranged to extend in the vertical direction outside one horizontal end of the heat exchange section 130.
  • the second pipe 50b is disposed to extend in the vertical direction outside the other end of the heat exchange section 130 in the horizontal direction.
  • one horizontal end side of the heat exchange section 130 will be referred to as a "first header side”
  • the other horizontal end side of the heat exchange section 130 will be referred to as a "second header side”.
  • a plurality of first nozzles 51a are provided in the first pipe 50a.
  • the first pipe 50a is provided with three first nozzles 51a.
  • Each first nozzle 51a is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example.
  • the first nozzles 51a are vertically spaced apart from each other.
  • Each first nozzle 51a sprays water onto the flow paths P2 to P4 of the heat exchanger 130 from the first header side toward the second header side.
  • each first nozzle 51a sprays water from one end of the outdoor heat exchanger 13 in the horizontal direction toward the center of the outdoor heat exchanger 13.
  • the amount of water sprayed from each first nozzle 51a is 0.24 L/min, and the droplet diameter is 110 ⁇ m.
  • a plurality of second nozzles 51b are provided in the second pipe 50b.
  • the second pipe 50b is provided with three second nozzles 51b.
  • Each second nozzle 51b is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example.
  • the second nozzles 51b are vertically spaced apart from each other.
  • Each second nozzle 51b is arranged to face each first nozzle 51a, and the vertical position of each second nozzle 51b is the same as the vertical position of each first nozzle 51a.
  • Each second nozzle 51b sprays water onto the flow paths P2 to P4 of the heat exchanger 130 from the second header side toward the first header side.
  • each second nozzle 51b sprays water from the other end of the outdoor heat exchanger 13 in the horizontal direction toward the center of the outdoor heat exchanger 13. Further, as an example, the amount of water sprayed from each second nozzle 51b is 0.24 L/min, and the droplet diameter is 110 ⁇ m.
  • the third pipe 50c is arranged to extend horizontally along the lower end of the flow path P1 of the heat exchange section 130.
  • a plurality of third nozzles 51c are provided in the third pipe 50c.
  • the third pipe 50c is provided with four third nozzles 51c.
  • Each third nozzle 51c is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example.
  • the third nozzles 51c are arranged at intervals from each other in the horizontal direction.
  • Each of the third nozzles 51c sprays water upward, and sprays water onto the flow path P1 of the heat exchanger 130 from below to above. That is, the four third nozzles 51c of the third pipe 50c spray water on the flow path P1 in the heat exchange section 130.
  • the amount of water sprayed from each third nozzle 51c is 0.13 L/min, and the droplet diameter is 110 ⁇ m.
  • the number of nozzles in the third pipe 50c that sprays water on the flow path P1, which is relatively high in temperature in the heat exchange section 130, is greater than that in the first pipe 50a.
  • the number of nozzles is greater than the number of nozzles, and the number of nozzles of the second pipe 50b is greater. This makes it possible to make the amount of water sprayed per unit area for the flow path P1, which is relatively high temperature, in the heat exchange section 130 larger than the amount of water sprayed per unit area for the flow paths P2 to P4, which are relatively low temperature. can.
  • the condensing capacity is improved, and the COP of the entire refrigeration cycle device 100 is improved. do.
  • waste of water can be reduced and water sprinkling efficiency can also be improved.
  • the total amount of water sprinkled by the water sprinkler 5 of the first embodiment is 1.96 L/min, which is a lower amount of water than the conventional technology. can be reduced.
  • the amount of water sprinkled per unit area of the water sprinkler 5 is 1.09 L/(min ⁇ m 2 ).
  • the heat exchanger tubes 131 and fins 132 are composed of flat tubes and corrugated fins as in the outdoor heat exchanger 13 of the present embodiment
  • water adhering to the outdoor heat exchanger 13 may enter the corrugated valleys of the corrugated fins. Water accumulates and is likely to be retained in the outdoor heat exchanger 13.
  • the amount of water sprinkled increases, creating air resistance, which may deteriorate the performance of the outdoor heat exchanger 13.
  • the diameter of the water droplets sprayed from each nozzle of the water sprinkler 5 to 110 ⁇ m, the increase in the amount of water retained in the outdoor heat exchanger 13 is suppressed.
  • deterioration in the performance of the outdoor heat exchanger 13 can be suppressed.
  • the droplet diameter (not shown) is not limited to 110 ⁇ m, but may be 160 ⁇ m or less.
  • FIG. 5 is a schematic configuration diagram of a water sprinkler device 5A of the refrigeration cycle device 100 according to the second embodiment. As shown in FIG. 5, the water sprinkler 5A of the second embodiment is different from the first embodiment in the configuration of the third pipe 50c. The other configurations of refrigeration cycle device 100 are the same as in the first embodiment.
  • the outdoor heat exchanger 13 is also shown for explanation.
  • the water sprinkler 5A is attached to a casing or the like that holds the outdoor heat exchanger 13, as in the first embodiment.
  • the water sprinkler 5A includes a first pipe 50a, a second pipe 50b, a third pipe 50c, and a connecting pipe 52.
  • the first pipe 50a and the second pipe 50b are arranged opposite to each other below the third pipe 50c.
  • the third pipe 50c has one end connected to the first pipe 50a and the other end connected to the second pipe 50b.
  • the second pipe 50b and the third pipe 50c are connected to a connecting pipe 52.
  • the connection pipe 52 is connected to a water pipe or the like, and water flowing from the connection pipe 52 is supplied to the second pipe 50b, the third pipe 50c, and the first pipe 50a.
  • the connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
  • first pipe 50a and first nozzle 51a are the same as in the first embodiment.
  • the third pipe 50c is disposed outside the upper end of the heat exchanger 130 and above the upper end of the heat exchanger 130, extending in the horizontal direction.
  • the third pipe 50c is provided with four third nozzles 51c.
  • Each third nozzle 51c is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example.
  • the third nozzles 51c are arranged at intervals from each other in the horizontal direction.
  • Each third nozzle 51c sprays water downward, and sprays water from above to below onto the flow path P1 of the heat exchange section 130. That is, the four third nozzles 51c of the third pipe 50c spray water onto the flow path P1 in the heat exchange section 130.
  • the amount of water sprayed from each third nozzle 51c is 0.13 L/min, and the droplet diameter is 110 ⁇ m.
  • the number of nozzles in the third pipe 50c that sprays water on the relatively high temperature flow path P1 in the heat exchange section 130 is greater than the number of nozzles in the first pipe 50a.
  • Embodiment 1 the same effects as in Embodiment 1 can be obtained in this embodiment as well. Further, by arranging the third pipe 50c outside the heat exchange section 130, it is possible to prevent the air from flowing into the heat exchange section 130 from being obstructed, and to suppress a decrease in the performance of the outdoor heat exchanger 13.
  • FIG. 6 is a schematic configuration diagram of the water sprinkler device 5B of the refrigeration cycle device 100 according to the third embodiment. As shown in FIG. 6, the third embodiment differs from the first embodiment in that the water sprinkler 5B does not include the third pipe 50c. The other configurations of refrigeration cycle device 100 are the same as in the first embodiment.
  • the outdoor heat exchanger 13 is also shown for explanation.
  • the water sprinkling device 5B is attached to a casing or the like that holds the outdoor heat exchanger 13, as in the first embodiment.
  • the water sprinkler 5B includes a first pipe 50a, a second pipe 50b, and connection pipes 52 connected to the first pipe 50a and the second pipe 50b, respectively.
  • the first pipe 50a and the second pipe 50b are independent from each other, and one end of the first pipe 50a and the second pipe 50b is connected to a connecting pipe 52, respectively.
  • the connecting pipe 52 is connected to a water pipe or the like, and water flowing from the connecting pipe 52 is supplied to the first pipe 50a and the second pipe 50b, respectively.
  • the connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
  • the first pipe 50a is arranged to extend in the vertical direction outside one horizontal end of the heat exchange section 130.
  • the second pipe 50b is disposed to extend in the vertical direction outside the other end of the heat exchange section 130 in the horizontal direction.
  • the first pipe 50a is provided with five first nozzles 51a1, 51a2, 51a3, 51a4, and 51a5.
  • Each of the first nozzles 51a1 to 51a5 is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example.
  • the first nozzles 51a1 to 51a5 are arranged at regular intervals (for example, about 0.2 m) in the vertical direction, and are arranged from the first header side to the second header side with respect to the flow paths P1 to P4 of the heat exchange section 130. Sprinkle water.
  • the amount of water sprayed by each of the first nozzles 51a1 to 51a5 is set to be different depending on the temperature distribution of the outdoor heat exchanger 13. Specifically, the amount of water sprayed by a nozzle placed in a portion of the outdoor heat exchanger 13 where the temperature is relatively high is set to be greater than the amount of water sprinkled by a nozzle placed in a portion where the temperature is relatively low. . In the configuration of FIG. 6, the amount of water sprayed by the first nozzles 51a1 and 51a2 arranged above is greater than the amount of water sprayed by the first nozzles 51a3 to 51a5 arranged below.
  • the amount of water sprayed by the first nozzle 51a1 and the first nozzle 51a2 is 0.27 L/min.
  • the amount of water sprayed from the first nozzle 51a3 is 0.21 L/min.
  • the amount of water sprayed from the first nozzle 51a4 is 0.17 L/min.
  • the amount of water sprayed from the first nozzle 51a5 is 0.09 L/min.
  • the diameter of water droplets sprayed from each of the first nozzles 51a1 to 51a5 is 160 ⁇ m or less, and is set according to the amount of water sprayed.
  • the second pipe 50b is provided with five second nozzles 51b1, 51b2, 51b3, 51b4, and 51b5.
  • Each of the second nozzles 51b1 to 51b5 is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example.
  • the second nozzles 51b1 to 51b5 are arranged at equal intervals (for example, about 0.2 m) in the vertical direction, and are arranged from the second header side toward the first header side with respect to the flow paths P1 to P4 of the heat exchange section 130. Sprinkle water.
  • the second nozzles 51b1 to 51b5 are arranged to face the first nozzles 51a1 to 51a5, and the vertical position of each second nozzle 51b1 to 51b5 is the same as the vertical position of each first nozzle 51a1 to 51a5. It's the same.
  • the amount of water sprayed by the second nozzles 51b1 to 51b5 of the second pipe 50b is set to vary depending on the temperature distribution of the outdoor heat exchanger 13, similarly to the first nozzles 51a1 to 51a5 of the first pipe 50a. Specifically, the amount of water sprayed by a nozzle placed in a portion of the outdoor heat exchanger 13 where the temperature is relatively high is set to be greater than the amount of water sprinkled by a nozzle placed in a portion where the temperature is relatively low. . In the configuration of FIG. 6, the amount of water sprayed by the second nozzles 51b1 and 51b2 arranged above is greater than the amount of water sprayed by the second nozzles 51b3 to 51b5 arranged below.
  • the amount of water sprayed by the second nozzle 51b1 and the second nozzle 51b2 is 0.27 L/min.
  • the amount of water sprayed from the second nozzle 51b3 is 0.21 L/min.
  • the amount of water sprayed from the second nozzle 51b4 is 0.17 L/min.
  • the amount of water sprayed from the second nozzle 51b5 is 0.09 L/min.
  • the diameter of water droplets sprayed from each of the second nozzles 51b1 to 51b5 is 160 ⁇ m or less, and is set according to the amount of water sprayed.
  • the number of nozzles in the first pipe 50a and the second pipe 50b are the same, and the arrangement is also uniform.
  • the amount of water sprayed by the nozzle that sprays water on the channel P1, which is relatively high temperature in the heat exchange section 130 is the same as that of the nozzle that sprays water on the channels P2 to P4, which are relatively low temperature in the heat exchange section 130.
  • the amount is higher than the amount of water sprayed by the nozzle. This makes it possible to make the amount of water sprayed per unit area for the flow path P1, which is relatively high temperature, in the heat exchange section 130 larger than the amount of water sprayed per unit area for the flow paths P2 to P4, which are relatively low temperature. can.
  • Embodiment 1 the same effects as in Embodiment 1 can be obtained in this embodiment as well. Furthermore, by omitting the third pipe 50c extending in the horizontal direction, the configuration of the water sprinkler 5 can be simplified and the number of parts can be reduced.
  • the refrigeration cycle device 100 is a heat pump chiller, but the refrigeration cycle device 100 may be a cooling-only machine without a cooling/heating switch, a refrigerator for cooling a refrigerated warehouse, or a direct expansion It may also be a type air conditioner.
  • the refrigeration cycle device 100 is a cooling-only machine or a refrigerator, the four-way valve 12 is omitted, the outdoor heat exchanger 13 becomes a condenser, and the indoor heat exchanger 21 becomes an evaporator.
  • the temperature distribution of the outdoor heat exchanger 13 is not limited to the example shown in FIG. 3, but varies depending on the configuration of the outdoor heat exchanger 13 or the type of refrigerant used. Therefore, if the amount of water sprinkled per unit area in the high temperature part of the outdoor heat exchanger 13 can be made larger than the amount of water sprinkled per unit area in the low temperature part, the orientation, number or arrangement of the nozzles of the water sprinkler 5, or the nozzle The amount of water sprayed or the droplet size can be changed arbitrarily.
  • the vertical position of the third pipe 50c is not limited to the first embodiment or the second embodiment.
  • the third pipe 50c is arranged above or below the lower end of the flow path P1 of the heat exchange section 130, as long as the third nozzle 51c is in a position where the temperature of the portion of the heat exchange section 130 is relatively high can be sprayed with water. Good too.
  • the adjustment of the amount of water sprinkled per unit area of the water sprinkler 5 when the temperature decreases from the top to the bottom of the outdoor heat exchanger 13 has been described, but the invention is not limited to this. do not have.
  • the amount of water sprayed in the horizontal direction of the outdoor heat exchanger 13 may also be varied depending on the temperature distribution.
  • the amount of water sprayed from the third nozzle 51c provided in the third pipe 50c may be varied depending on the temperature distribution of the outdoor heat exchanger 13.
  • the amount of water sprayed by the third nozzle 51c at the left end closest to the refrigerant inlet of the outdoor heat exchanger 13 is made larger than the amount of water sprayed by the third nozzle 51c at the right end furthest from the refrigerant inlet of the outdoor heat exchanger 13.
  • the heat source unit 1 has a configuration having four refrigerant circuits, but is not limited to this, and may have three or less refrigerant circuits, or five or more refrigerant circuits.
  • the outdoor heat exchanger 13 has four channels P1 to P4 has been described, but the number of channels in the outdoor heat exchanger 13 may be three or less, or five or more. But that's fine.
  • the outdoor heat exchanger 13 is not limited to a PFC heat exchanger having corrugated fins, but may be a fin tube type heat exchanger having plate fins.
  • 1 Heat source unit 2 Indoor unit, 3 Control device, 5, 5A, 5B Water sprinkler, 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Expansion valve, 15 Accumulator, 16 Outdoor fan, 21 Indoor heat exchanger , 22 Indoor flow rate adjustment device, 23 Indoor fan, 50a First piping, 50b Second piping, 50c Third piping, 51a, 51a1, 51a2, 51a3, 51a4, 51a5 First nozzle, 51b, 51b1, 51b2, 51b3, 51b4 , 51b5 second nozzle, 51c third nozzle, 52 connection piping, 60 water heat exchanger, 80 pump, 100 refrigeration cycle device, 130 heat exchange section, 131 heat transfer tube, 132 fin, 133a, 133b, 133c first header, 134a, 134b second header, 135a, 135b connection piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This refrigeration cycle device comprises a condenser and a water sprinkling device that sprinkles water on the condenser, wherein the water sprinkling amount per unit surface area of the water sprinkling device varies in accordance with the temperature distribution of the condenser.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、凝縮器に散水を行う冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigeration cycle device that sprinkles water on a condenser.
 冷凍サイクル装置において、外気温度が高い場合に、室外機が備える凝縮器に散水を行い、水の気化熱によって凝縮器を冷却することにより、冷媒の凝縮能力を向上させ、COPの向上を図ることが知られている。例えば、特許文献1では、凝縮器へ散水するためのスプレーノズル部と、スプレーノズル部による散水量を制御する制御部と、を備える空冷凝縮器の補助冷却装置が開示されている。 In a refrigeration cycle device, when the outside air temperature is high, water is sprinkled on the condenser provided in the outdoor unit, and the condenser is cooled by the heat of vaporization of the water, thereby improving the condensing ability of the refrigerant and improving the COP. It has been known. For example, Patent Document 1 discloses an auxiliary cooling device for an air-cooled condenser that includes a spray nozzle section for sprinkling water onto the condenser and a control section controlling the amount of water sprayed by the spray nozzle section.
特開平10-213361号公報Japanese Patent Application Publication No. 10-213361
 特許文献1に記載の補助冷却装置では、凝縮器の放熱フィンに細かい粒又は霧状の水をほぼ均一に散布する構成となっている。しかしながら、凝縮器に均一に散水する構成の場合、凝縮器を流れる冷媒の温度分布が不均一になると、散水による凝縮器の冷却効果が不均一となり、COP向上の効率が悪くなってしまう。 The auxiliary cooling device described in Patent Document 1 is configured to spray fine water particles or mist almost uniformly on the radiation fins of the condenser. However, in the case of a configuration in which water is uniformly sprinkled on the condenser, if the temperature distribution of the refrigerant flowing through the condenser becomes uneven, the cooling effect of the condenser due to water spraying becomes uneven, and the efficiency of COP improvement becomes worse.
 本開示は、上記のような課題を解決するものであり、散水によるCOPの向上を実現可能な冷凍サイクル装置を提供するものである。 The present disclosure solves the above-mentioned problems and provides a refrigeration cycle device that can improve COP through water sprinkling.
 本開示に係る冷凍サイクル装置は、凝縮器と、凝縮器に散水する散水装置と、を備え、散水装置の単位面積当たりの散水量は、凝縮器の温度分布に応じて異なるものである。 The refrigeration cycle device according to the present disclosure includes a condenser and a water sprinkling device that sprinkles water on the condenser, and the amount of water sprinkled per unit area of the water sprinkling device varies depending on the temperature distribution of the condenser.
 本開示の冷凍サイクル装置によれば、散水装置の単位面積当たりの散水量を凝縮器の温度分布に応じて異なるものとすることで、散水によるCOPの向上を実現することができる。 According to the refrigeration cycle device of the present disclosure, by making the amount of water sprinkled per unit area of the water sprinkler device different depending on the temperature distribution of the condenser, it is possible to improve COP by sprinkling water.
実施の形態1に係る冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器の概略構成図である。1 is a schematic configuration diagram of an outdoor heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器が凝縮器として機能する場合における室外熱交換器の温度分布を示す図である。FIG. 3 is a diagram showing the temperature distribution of the outdoor heat exchanger in the case where the outdoor heat exchanger according to the first embodiment functions as a condenser. 実施の形態1に係る冷凍サイクル装置の散水装置の概略構成図である。1 is a schematic configuration diagram of a water sprinkler device of a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の散水装置の概略構成図である。It is a schematic block diagram of the water sprinkler device of the refrigeration cycle apparatus based on Embodiment 2. 実施の形態3に係る冷凍サイクル装置の散水装置の概略構成図である。It is a schematic block diagram of the water sprinkler device of the refrigeration cycle apparatus based on Embodiment 3.
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments will be described based on the drawings. In each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Moreover, the forms of the constituent elements shown in the entire specification are merely examples, and the present invention is not limited to these descriptions. Furthermore, in the following drawings, the size relationship of each component may differ from the actual one.
 実施の形態1.
(冷凍サイクル装置の構成)
 図1は、実施の形態1に係る冷凍サイクル装置100の概略構成図である。本実施の形態1の冷凍サイクル装置100は、冷温水を用いて空調を行うヒートポンプチラーである。図1に示すように、冷凍サイクル装置100は、熱源ユニット1と、室内ユニット2と、制御装置3とを備える。本実施の形態の熱源ユニット1は、4系統の冷媒回路を有する。そして、2系統の冷媒回路がグループとなって、1台の水熱交換器60を共有する。本実施の形態の熱源ユニット1は、2系統の冷媒回路を2グループ有する。そして、2台の水熱交換器60は直列に配管接続され、熱媒体である水を2段階で冷却又は加熱する。
Embodiment 1.
(Configuration of refrigeration cycle device)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment. The refrigeration cycle device 100 of the first embodiment is a heat pump chiller that performs air conditioning using cold and hot water. As shown in FIG. 1, the refrigeration cycle device 100 includes a heat source unit 1, an indoor unit 2, and a control device 3. The heat source unit 1 of this embodiment has four refrigerant circuits. The two refrigerant circuits form a group and share one water heat exchanger 60. The heat source unit 1 of this embodiment has two groups of two refrigerant circuits. The two water heat exchangers 60 are connected by piping in series, and cool or heat water, which is a heat medium, in two stages.
 図1に示すように、本実施の形態の熱源ユニット1の各系統の冷媒回路は、それぞれ圧縮機11、四方弁12、室外熱交換器13、膨張弁14、水熱交換器60及びアキュムレータ15を配管接続し、冷媒回路を構成する。冷媒としては、例えば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、又はR-407Cなどの非共沸混合冷媒を用いることができる。また、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さいとされている冷媒又はその混合物、もしくはCO又はプロパンなどの自然冷媒などを用いることができる。 As shown in FIG. 1, the refrigerant circuits of each system of the heat source unit 1 of this embodiment include a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, a water heat exchanger 60, and an accumulator 15. Connect the pipes to form a refrigerant circuit. As the refrigerant, for example, a single refrigerant such as R-22 or R-134a, a pseudo-azeotropic mixed refrigerant such as R-410A or R-404A, or a non-azeotropic mixed refrigerant such as R-407C can be used. . In addition, it is possible to use a refrigerant that contains a double bond in the chemical formula and is said to have a relatively low global warming potential, such as CF 3 CF=CH 2 , or a mixture thereof, or a natural refrigerant such as CO 2 or propane. can.
 圧縮機11は、吸入した冷媒を圧縮して吐出する。圧縮機11は、圧縮機インバータ駆動装置(図示せず)などを介して駆動される。圧縮機11は、制御装置3からの指示に基づいて、駆動周波数を任意に変化させることにより、単位時間あたりの冷媒を送り出す量となる圧縮機11の容量を変化させることができる。 The compressor 11 compresses and discharges the sucked refrigerant. The compressor 11 is driven via a compressor inverter drive device (not shown) or the like. The compressor 11 can change the capacity of the compressor 11, which is the amount of refrigerant delivered per unit time, by arbitrarily changing the driving frequency based on instructions from the control device 3.
 また、流路切替装置となる四方弁12は、制御装置3からの指示に基づいて、実行する運転によって冷媒の流れを切り替える。例えば、冷房運転などのときには、四方弁12は、圧縮機11が吐出した高温高圧の冷媒が室外熱交換器13に流入するようにする。また、暖房運転などのときには、圧縮機11の吐出した高温高圧の冷媒が水熱交換器60に流入するようにする。 Furthermore, the four-way valve 12 serving as a flow path switching device switches the flow of the refrigerant depending on the operation to be performed based on instructions from the control device 3. For example, during cooling operation, the four-way valve 12 allows the high-temperature, high-pressure refrigerant discharged by the compressor 11 to flow into the outdoor heat exchanger 13. Further, during heating operation or the like, the high temperature and high pressure refrigerant discharged from the compressor 11 is made to flow into the water heat exchanger 60.
 室外熱交換器13は、冷媒と外部の空気との熱交換を行う。室外熱交換器13は、水を加熱する加熱運転(暖房運転)において、蒸発器として機能し、膨張弁14側から流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させて気化させる。また、水を冷却する冷却運転(冷房運転)においては、凝縮器として機能し、圧縮機11側から流入した高圧の冷媒と空気との熱交換を行い、冷媒を凝縮させて液化させる。 The outdoor heat exchanger 13 exchanges heat between the refrigerant and external air. The outdoor heat exchanger 13 functions as an evaporator during a heating operation to heat water (heating operation), and exchanges heat between the low-pressure refrigerant flowing from the expansion valve 14 side and air, and evaporates the refrigerant. let In addition, in a cooling operation (cooling operation) in which water is cooled, it functions as a condenser, exchanges heat between the high-pressure refrigerant flowing from the compressor 11 side and air, and condenses and liquefies the refrigerant.
 室外熱交換器13には、散水装置5が取り付けられている。散水装置5は、室外熱交換器13が凝縮器として機能する場合に、室外熱交換器13に水を散布する。室外熱交換器13及び散水装置5については、後ほど詳述する。 A water sprinkler device 5 is attached to the outdoor heat exchanger 13. The water sprinkler 5 sprinkles water on the outdoor heat exchanger 13 when the outdoor heat exchanger 13 functions as a condenser. The outdoor heat exchanger 13 and the water sprinkler 5 will be described in detail later.
 また、室外ファン16は、室外熱交換器13に空気を送り込み、冷媒と空気との熱交換を促す。ここで、室外ファン16は、ファンインバータ駆動装置(図示せず)などを介して駆動される。室外ファン16は、制御装置3からの指示に基づいて、駆動周波数を任意に変化させることにより、風量を変化させることができる。図1では、室外熱交換器13と室外ファン16とを1対1で対応させているが、特に限定するものではない。 Additionally, the outdoor fan 16 sends air to the outdoor heat exchanger 13 to promote heat exchange between the refrigerant and the air. Here, the outdoor fan 16 is driven via a fan inverter drive device (not shown) or the like. The outdoor fan 16 can change the air volume by arbitrarily changing the driving frequency based on instructions from the control device 3. In FIG. 1, the outdoor heat exchanger 13 and the outdoor fan 16 are shown in one-to-one correspondence, but this is not particularly limited.
 熱媒体熱交換器となる水熱交換器60は、熱媒体となる水と冷媒との熱交換を行う。水熱交換器60は、2系統の冷媒回路の流路及び熱媒体循環回路の流路となる。したがって、冷媒回路を構成する機器及び熱媒体循環回路を構成する機器となる。水熱交換器60は、例えば、暖房運転時においては凝縮器として機能し、圧縮機11側から流入した冷媒と水との熱交換を行い、冷媒を凝縮させて液化又は気液二相化させ、水を加熱する。一方、冷房運転時においては蒸発器として機能し、膨張弁14側から流入した冷媒と水との熱交換を行い、冷媒を蒸発させて気化させ、水を冷却する。 The water heat exchanger 60, which serves as a heat medium heat exchanger, exchanges heat between water, which serves as a heat medium, and a refrigerant. The water heat exchanger 60 serves as a flow path for two refrigerant circuits and a flow path for a heat medium circulation circuit. Therefore, they constitute a device that constitutes a refrigerant circuit and a device that constitutes a heat medium circulation circuit. The water heat exchanger 60 functions as a condenser during heating operation, for example, and exchanges heat between the refrigerant flowing from the compressor 11 side and water, condensing the refrigerant and liquefying it or converting it into two-phase gas-liquid. , heat the water. On the other hand, during cooling operation, it functions as an evaporator, exchanges heat between the refrigerant flowing from the expansion valve 14 side and water, evaporates the refrigerant, and cools the water.
 絞り装置となる膨張弁14は、例えば、開度を変化させることで、水熱交換器60を通過する冷媒の圧力などを調整する。本実施の形態の膨張弁14は、制御装置3からの指示に基づいて開度を変化させる電子式膨張弁で構成する。ただし、これに限定するものではない。例えば、冷媒の温度に基づいて開度を変化する感温式膨張弁などであってもよい。 The expansion valve 14, which serves as a throttle device, adjusts the pressure of the refrigerant passing through the water heat exchanger 60, for example, by changing its opening degree. The expansion valve 14 of this embodiment is an electronic expansion valve whose opening degree is changed based on instructions from the control device 3. However, it is not limited to this. For example, it may be a temperature-sensitive expansion valve that changes the degree of opening based on the temperature of the refrigerant.
 アキュムレータ15は、それぞれ圧縮機11の吸入側に設けられており、冷媒回路において余剰となる冷媒を貯留する。 The accumulators 15 are each provided on the suction side of the compressor 11, and store surplus refrigerant in the refrigerant circuit.
 ポンプ80は、熱媒体循環回路を構成する機器の1つである。ポンプ80は、熱媒体循環回路において、水を吸引し、圧力を加えて送り出して循環させる。また、ポンプインバータ駆動装置(図示せず)は、制御装置3からの指示に基づいて、駆動周波数を任意に変化させることにより、ポンプ80の容量を変化させることができる。 The pump 80 is one of the devices that constitute the heat medium circulation circuit. In the heat medium circulation circuit, the pump 80 sucks water, applies pressure, sends it out, and circulates it. Further, the pump inverter drive device (not shown) can change the capacity of the pump 80 by arbitrarily changing the drive frequency based on instructions from the control device 3.
 室内ユニット2は、空気調和対象である室内空間に調和した空気を送るユニットである。図1に示すように、本実施の形態の各室内ユニット2は、室内熱交換器21、室内流量調整装置22及び室内ファン23を有する。室内熱交換器21及び室内流量調整装置22は、熱媒体循環回路を構成する機器となる。図1は、2台の室内ユニット2を有する冷凍サイクル装置100を示しているが、室内ユニット2の台数は、1台であってもよいし、3台以上であってもよい。 The indoor unit 2 is a unit that sends conditioned air to the indoor space that is the object of air conditioning. As shown in FIG. 1, each indoor unit 2 of this embodiment includes an indoor heat exchanger 21, an indoor flow rate adjustment device 22, and an indoor fan 23. The indoor heat exchanger 21 and the indoor flow rate adjustment device 22 are devices that constitute a heat medium circulation circuit. Although FIG. 1 shows a refrigeration cycle apparatus 100 having two indoor units 2, the number of indoor units 2 may be one or three or more.
 室内流量調整装置22は、例えば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。室内流量調整装置22は、開度を調整することで、室内熱交換器21を流入出する水の流量を制御する。そして、室内流量調整装置22は、室内ユニット2へ流入する水の温度及び流出する水の温度に基づいて、室内熱交換器21を通過させる水の量を調整し、室内熱交換器21が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。ここで、室内流量調整装置22は、停止又はサーモOFFなどのときのように、室内熱交換器21が熱負荷との熱交換をする必要がないときは、弁を全閉にして、室内熱交換器21に水が流入出しないように供給を止めることができる。図1において、室内流量調整装置22は、室内熱交換器21の水流出側の配管に設置されているが、これに限定するものではない。例えば、室内流量調整装置22が、室内熱交換器21の水流入側に設置されてもよい。 The indoor flow rate adjustment device 22 is composed of, for example, a two-way valve that can control the opening degree (opening area) of the valve. The indoor flow rate adjustment device 22 controls the flow rate of water flowing into and out of the indoor heat exchanger 21 by adjusting the degree of opening. Then, the indoor flow rate adjustment device 22 adjusts the amount of water to be passed through the indoor heat exchanger 21 based on the temperature of the water flowing into the indoor unit 2 and the temperature of the water flowing out, so that the indoor heat exchanger 21 To enable heat exchange using the amount of heat according to the indoor heat load. Here, when the indoor heat exchanger 21 does not need to exchange heat with the heat load, such as when the indoor heat exchanger 21 is stopped or the thermostat is turned off, the indoor flow rate adjustment device 22 fully closes the valve and The supply can be stopped so that water does not flow into or out of the exchanger 21. In FIG. 1, the indoor flow rate adjustment device 22 is installed in the pipe on the water outflow side of the indoor heat exchanger 21, but the invention is not limited thereto. For example, the indoor flow rate adjustment device 22 may be installed on the water inflow side of the indoor heat exchanger 21.
 また、室内熱交換器21は、室内ファン23から供給される室内空間における室内空気と水との間で熱交換を行うフィンチューブ式熱交換器である。冷房運転時においては、室内熱交換器21の伝熱管に空気よりも冷たい水が通過し、室内空間が冷房される。一方、暖房運転時においては、室内熱交換器21の伝熱管に空気よりも暖かい水が通過し、室内空間が暖房される。室内ファン23は、室内空間の空気を室内熱交換器21に通過させ、室内空間に戻す空気の流れを生成する。 Furthermore, the indoor heat exchanger 21 is a fin-tube heat exchanger that exchanges heat between indoor air in the indoor space supplied from the indoor fan 23 and water. During cooling operation, water, which is colder than air, passes through the heat transfer tubes of the indoor heat exchanger 21 to cool the indoor space. On the other hand, during heating operation, water that is warmer than air passes through the heat transfer tubes of the indoor heat exchanger 21, heating the indoor space. The indoor fan 23 generates a flow of air that passes through the indoor heat exchanger 21 and returns to the indoor space.
 制御装置3は、冷凍サイクル装置100全体の動作を制御するものである。制御装置3は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUと、を備えるコンピュータ、ASIC又はFPGAなどの専用のハードウェア、もしくはその両方で構成される。制御装置3は、冷凍サイクル装置100が備える温度センサ又は圧力センサなどの検出情報、及びリモコン(図示せず)からの指示に基づいて、冷凍サイクル装置100各部を制御する。具体的には、制御装置3は、圧縮機11の駆動周波数、室外ファン16及び室内ファン23の回転数、四方弁12の切り替え、膨張弁14の開度、ポンプ80の駆動周波数、室内流量調整装置22の開度及び散水装置5の散水等を制御する。 The control device 3 controls the operation of the entire refrigeration cycle device 100. The control device 3 is composed of a computer including a memory that stores data and programs necessary for control, and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both. The control device 3 controls each part of the refrigeration cycle device 100 based on information detected by a temperature sensor or a pressure sensor included in the refrigeration cycle device 100 and instructions from a remote controller (not shown). Specifically, the control device 3 controls the driving frequency of the compressor 11, the rotational speed of the outdoor fan 16 and the indoor fan 23, the switching of the four-way valve 12, the opening degree of the expansion valve 14, the driving frequency of the pump 80, and the indoor flow rate adjustment. The opening degree of the device 22, the water sprinkling of the water sprinkler device 5, etc. are controlled.
 なお、図1では制御装置3は、熱源ユニット1及び室内ユニット2とは別に設けられているが、熱源ユニット1又は室内ユニット2に搭載されてもよい。もしくは、熱源ユニット1と室内ユニット2とが、それぞれ制御装置3を備え、互いに無線又は有線によって通信可能に接続され、各種データ等を送受信してもよい。 Although the control device 3 is provided separately from the heat source unit 1 and the indoor unit 2 in FIG. 1, it may be mounted on the heat source unit 1 or the indoor unit 2. Alternatively, the heat source unit 1 and the indoor unit 2 may each be provided with the control device 3 and may be connected to each other in a wireless or wired communicable manner to transmit and receive various data and the like.
(室外熱交換器の構成)
 続いて、本実施の形態の室外熱交換器13の構成について説明する。図2は、実施の形態1に係る室外熱交換器13の概略構成図である。本実施の形態の室外熱交換器13は、パラレルフロー型熱交換器(PFC熱交換器)である。室外熱交換器13は、複数の伝熱管131及び複数のフィン132からなる熱交換部130と、第1ヘッダ133a、133b及び133cと、第2ヘッダ134a及び134bと、接続配管135a及び135bと、を備えている。図2においては、図面の簡略化のため、伝熱管131とフィン132については一部のみを示し、全体の図示は省略している。
(Configuration of outdoor heat exchanger)
Next, the configuration of the outdoor heat exchanger 13 of this embodiment will be explained. FIG. 2 is a schematic configuration diagram of the outdoor heat exchanger 13 according to the first embodiment. The outdoor heat exchanger 13 of this embodiment is a parallel flow heat exchanger (PFC heat exchanger). The outdoor heat exchanger 13 includes a heat exchange section 130 including a plurality of heat transfer tubes 131 and a plurality of fins 132, first headers 133a, 133b, and 133c, second headers 134a and 134b, and connection pipes 135a and 135b. It is equipped with In FIG. 2, in order to simplify the drawing, only a part of the heat exchanger tubes 131 and fins 132 are shown, and illustration of the whole is omitted.
 伝熱管131は、内部に複数の流路が形成された扁平管である。各伝熱管131は、第1ヘッダ133a、133b及び133cと、第2ヘッダ134a及び134bとの間に延伸して配置されている。また、各伝熱管131は、延伸方向と直交する方向に互いに間隔をあけて配置されている。なお、以降の説明において、各伝熱管131の延伸方向を第1方向又は水平方向といい、各伝熱管131の延伸方向に直交する方向を第2方向又は垂直方向ということがある。また、水平方向及び垂直方向に直交する方向を奥行方向ということがある。 The heat exchanger tube 131 is a flat tube with a plurality of flow paths formed inside. Each heat exchanger tube 131 is arranged to extend between first headers 133a, 133b, and 133c and second headers 134a and 134b. Moreover, each heat exchanger tube 131 is arranged at intervals from each other in a direction orthogonal to the stretching direction. In addition, in the following description, the extending direction of each heat exchanger tube 131 may be referred to as a first direction or a horizontal direction, and the direction orthogonal to the extending direction of each heat exchanger tube 131 may be referred to as a second direction or a vertical direction. Further, a direction perpendicular to the horizontal direction and the vertical direction is sometimes referred to as the depth direction.
 フィン132は、波形に折り曲げられたコルゲートフィンである。各フィン132は、第1ヘッダ133a、133b及び133cと、第2ヘッダ134a及び134bとの間に延伸して配置されている。また、各フィン132は、複数の伝熱管131の隣り合う2つの伝熱管131の間に配置され、隣り合う2つの伝熱管131はフィン132によって接続されている。 The fins 132 are corrugated fins bent into a wave shape. Each fin 132 is arranged to extend between first headers 133a, 133b, and 133c and second headers 134a and 134b. Further, each fin 132 is arranged between two adjacent heat exchanger tubes 131 of the plurality of heat exchanger tubes 131, and the two adjacent heat exchanger tubes 131 are connected by the fins 132.
 第1ヘッダ133a、133b及び133cは、複数の伝熱管131の延伸方向の一端に接続され、第2ヘッダ134a及び134bは、複数の伝熱管131の延伸方向の他端に接続されている。第1ヘッダ133a、133b及び133c、並びに第2ヘッダ134a及び134bは、室外熱交換器13に流入する冷媒を複数の伝熱管131に分配する機能と、複数の伝熱管131を流れた冷媒を合流させる機能とを有している。 The first headers 133a, 133b, and 133c are connected to one end of the plurality of heat exchanger tubes 131 in the extending direction, and the second headers 134a and 134b are connected to the other end of the plurality of heat exchanger tubes 131 in the extending direction. The first headers 133a, 133b, and 133c and the second headers 134a and 134b have the function of distributing the refrigerant flowing into the outdoor heat exchanger 13 to the plurality of heat transfer tubes 131, and combining the refrigerant that has flowed through the plurality of heat transfer tubes 131. It has the function of
 接続配管135aは、一端が第1ヘッダ133aに接続され、他端が四方弁12に接続されている。接続配管135bは、一端が第1ヘッダ133cに接続され、他端が膨張弁14に接続されている。 One end of the connecting pipe 135a is connected to the first header 133a, and the other end is connected to the four-way valve 12. One end of the connecting pipe 135b is connected to the first header 133c, and the other end is connected to the expansion valve 14.
 本実施の形態の室外熱交換器13では、上記の構成により熱交換部130に複数の流路P1、P2、P3及びP4が形成される。図2では、室外熱交換器13が凝縮器として機能する場合の熱交換部130の4つの流路P1~P4を示している。図2に示すように、室外熱交換器13が凝縮器として機能する場合、圧縮機11から吐出された冷媒が、四方弁12を通って、接続配管135aから第1ヘッダ133aに流入する。そして、第1ヘッダ133aに流入した冷媒は、第1ヘッダ133aに接続された複数の伝熱管131によって形成される流路P1を通って第2ヘッダ134aに流入する。 In the outdoor heat exchanger 13 of this embodiment, a plurality of channels P1, P2, P3, and P4 are formed in the heat exchange section 130 with the above configuration. FIG. 2 shows four flow paths P1 to P4 of the heat exchange section 130 when the outdoor heat exchanger 13 functions as a condenser. As shown in FIG. 2, when the outdoor heat exchanger 13 functions as a condenser, the refrigerant discharged from the compressor 11 passes through the four-way valve 12 and flows into the first header 133a from the connection pipe 135a. The refrigerant that has flowed into the first header 133a flows into the second header 134a through the flow path P1 formed by the plurality of heat transfer tubes 131 connected to the first header 133a.
 第2ヘッダ134aに流入した冷媒は、第2ヘッダ134aと第1ヘッダ133bとの間に接続された複数の伝熱管131によって形成される流路P2を通って第1ヘッダ133bに流入する。第1ヘッダ133bに流入した冷媒は、第1ヘッダ133bと第2ヘッダ134bとの間に接続された複数の伝熱管131によって形成される流路P3を通って第2ヘッダ134bに流入する。第2ヘッダ134bに流入した冷媒は、第2ヘッダ134bと第1ヘッダ133cとの間に接続された複数の伝熱管131によって形成される流路P4を通って第1ヘッダ133cに流入する。第1ヘッダ133cに流入した冷媒は、接続配管135bを通って膨張弁14へ流出される。 The refrigerant that has flowed into the second header 134a flows into the first header 133b through a flow path P2 formed by a plurality of heat transfer tubes 131 connected between the second header 134a and the first header 133b. The refrigerant that has flowed into the first header 133b flows into the second header 134b through a flow path P3 formed by a plurality of heat transfer tubes 131 connected between the first header 133b and the second header 134b. The refrigerant that has flowed into the second header 134b flows into the first header 133c through a flow path P4 formed by a plurality of heat transfer tubes 131 connected between the second header 134b and the first header 133c. The refrigerant that has flowed into the first header 133c flows out to the expansion valve 14 through the connection pipe 135b.
 図3は、実施の形態1に係る室外熱交換器13が凝縮器として機能する場合における室外熱交換器13の温度分布を示す図である。図3に示すように、室外熱交換器13が凝縮器として機能する場合、熱交換部130の冷媒の入口である接続配管135aに近い部分ほど温度が高く、冷媒の出口である接続配管135bに近い部分ほど温度が低くなることがわかる。すなわち、熱交換部130における冷媒の流れ方向において、上流から下流にかけて温度が低下している。例えば、図3に示すように、流路P1は高温(例えば80℃~100℃)、流路P2は中温(例えば40℃~50℃)、流路P3及びP4は低温(例えば30℃~40℃)となる。 FIG. 3 is a diagram showing the temperature distribution of the outdoor heat exchanger 13 in the case where the outdoor heat exchanger 13 according to the first embodiment functions as a condenser. As shown in FIG. 3, when the outdoor heat exchanger 13 functions as a condenser, the temperature is higher in the part of the heat exchanger 130 that is closer to the connection pipe 135a, which is the inlet of the refrigerant; It can be seen that the closer the area is, the lower the temperature is. That is, in the flow direction of the refrigerant in the heat exchange section 130, the temperature decreases from upstream to downstream. For example, as shown in FIG. 3, channel P1 has a high temperature (e.g., 80°C to 100°C), channel P2 has a medium temperature (e.g., 40°C to 50°C), and channels P3 and P4 have a low temperature (e.g., 30°C to 40°C). ℃).
(散水装置の構成)
 図3に示すように、室外熱交換器13の熱交換部130の温度分布は不均一であるため、散水装置5によって熱交換部130に均一に散水すると、凝縮能力の向上の効果、及び散水効率が低下してしまう。具体的には、熱交換部130の高温部分に十分な散水がなされない場合、冷媒が十分に冷却されず凝縮能力の向上の効果が低下する。また、低温部分に高温部分と同様の散水量で散水を行った場合、散水による凝縮能力の向上の効果は低く、使用する水が無駄になり、散水効率が低下する。
(Configuration of watering device)
As shown in FIG. 3, the temperature distribution in the heat exchange part 130 of the outdoor heat exchanger 13 is non-uniform, so if water is uniformly sprinkled on the heat exchange part 130 by the water sprinkler 5, the effect of improving the condensing capacity and the water spraying can be improved. Efficiency will decrease. Specifically, if sufficient water is not sprinkled on the high temperature portion of the heat exchange section 130, the refrigerant will not be sufficiently cooled and the effect of improving the condensing capacity will be reduced. Furthermore, if water is sprinkled on a low-temperature area at the same amount as that on a high-temperature area, the effect of water sprinkling on improving the condensation ability is low, the water used is wasted, and the watering efficiency is reduced.
 そこで、本実施の形態の散水装置5は、室外熱交換器13の熱交換部130の温度分布に応じて単位面積当たりの散水量(単位:L/(min・m))を異ならせる構成となっている。具体的には、本実施の形態の散水装置5は、室外熱交換器13の温度が相対的に高い部分に対する単位面積当たりの散水量が、室外熱交換器13の温度が相対的に低い部分に対する単位面積当たりの散水量よりも多くなるよう構成される。言い換えると、本実施の形態の散水装置5は、室外熱交換器13が凝縮器として機能する場合の冷媒入口に近い部分に対する単位面積当たりの散水量が、冷媒出口に近い部分に対する単位面積当たりの散水量よりも多くなるよう構成される。散水装置5の単位面積当たりの散水量は、室外熱交換器13の温度に応じてなだらかに変化させてもよいし、段階的に変化させてもよい。 Therefore, the water sprinkler 5 of the present embodiment has a configuration in which the amount of water sprinkled per unit area (unit: L/(min·m 2 )) is varied depending on the temperature distribution of the heat exchange part 130 of the outdoor heat exchanger 13. It becomes. Specifically, in the water sprinkler 5 of the present embodiment, the amount of water sprayed per unit area for a portion where the temperature of the outdoor heat exchanger 13 is relatively high is greater than that for a portion where the temperature of the outdoor heat exchanger 13 is relatively low. The amount of water sprinkled per unit area is greater than the amount of water per unit area. In other words, in the water sprinkling device 5 of the present embodiment, when the outdoor heat exchanger 13 functions as a condenser, the amount of water sprayed per unit area for the part near the refrigerant inlet is the same as that for the part near the refrigerant outlet. It is configured so that the amount of water is greater than the amount of water sprinkled. The amount of water sprinkled per unit area of the water sprinkler 5 may be changed gradually depending on the temperature of the outdoor heat exchanger 13, or may be changed in steps.
 図4は、実施の形態1に係る冷凍サイクル装置100の散水装置5の概略構成図である。図4では、説明のため、室外熱交換器13も示している。散水装置5は、室外熱交換器13を保持する筐体等に取り付けられている。室外熱交換器13の熱交換効率の低下を抑制するため、散水装置5と室外熱交換器13とは、奥行方向に間隔を空けて配置される。図4に示すように、散水装置5は、第1配管50aと、第2配管50bと、第3配管50cと、接続配管52と、を備えている。第1配管50aと第2配管50bは、第3配管50cの下方において、互いに対向して配置されている。第3配管50cは、一端が第1配管50aに接続され、他端が第2配管50bに接続されている。 FIG. 4 is a schematic configuration diagram of the water sprinkler device 5 of the refrigeration cycle device 100 according to the first embodiment. In FIG. 4, the outdoor heat exchanger 13 is also shown for explanation. The water sprinkler device 5 is attached to a casing or the like that holds the outdoor heat exchanger 13. In order to suppress a decrease in the heat exchange efficiency of the outdoor heat exchanger 13, the water sprinkler device 5 and the outdoor heat exchanger 13 are arranged at intervals in the depth direction. As shown in FIG. 4, the water sprinkler 5 includes a first pipe 50a, a second pipe 50b, a third pipe 50c, and a connecting pipe 52. The first pipe 50a and the second pipe 50b are arranged opposite to each other below the third pipe 50c. The third pipe 50c has one end connected to the first pipe 50a and the other end connected to the second pipe 50b.
 第2配管50bと第3配管50cは、接続配管52に接続されている。接続配管52は、水道管などに接続され、接続配管52から流入した水が、第2配管50b、第3配管50c、及び第1配管50aに供給される。接続配管52には、水の流量を調整する弁が設けられ、制御装置3によって弁が制御されることで散水装置5による散水の開始及び停止、及び散水量が制御される。 The second pipe 50b and the third pipe 50c are connected to a connecting pipe 52. The connection pipe 52 is connected to a water pipe or the like, and water flowing from the connection pipe 52 is supplied to the second pipe 50b, the third pipe 50c, and the first pipe 50a. The connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
 第1配管50aは、熱交換部130の水平方向の一端よりも外側において、垂直方向に延伸して配置されている。第2配管50bは、熱交換部130の水平方向の他端よりも外側において、垂直方向に延伸して配置されている。なお、以降の説明において、熱交換部130の水平方向の一端側を「第1ヘッダ側」といい、熱交換部130の水平方向の他端側を「第2ヘッダ側」という。 The first pipe 50a is arranged to extend in the vertical direction outside one horizontal end of the heat exchange section 130. The second pipe 50b is disposed to extend in the vertical direction outside the other end of the heat exchange section 130 in the horizontal direction. In the following description, one horizontal end side of the heat exchange section 130 will be referred to as a "first header side", and the other horizontal end side of the heat exchange section 130 will be referred to as a "second header side".
 第1配管50aには、複数の第1ノズル51aが設けられている。図4の例では、第1配管50aには、3つの第1ノズル51aが設けられている。各第1ノズル51aは、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第1ノズル51aは、垂直方向に互いに間隔を空けて配置されている。各第1ノズル51aは、熱交換部130の流路P2~P4に対し、第1ヘッダ側から第2ヘッダ側に向けて水を散布する。言い換えると、各第1ノズル51aは、室外熱交換器13の水平方向の一端側から室外熱交換器13の中央に向かって散水する。また、一例として、各第1ノズル51aの散水量は0.24L/minであり、液滴径は110μmである。 A plurality of first nozzles 51a are provided in the first pipe 50a. In the example of FIG. 4, the first pipe 50a is provided with three first nozzles 51a. Each first nozzle 51a is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example. The first nozzles 51a are vertically spaced apart from each other. Each first nozzle 51a sprays water onto the flow paths P2 to P4 of the heat exchanger 130 from the first header side toward the second header side. In other words, each first nozzle 51a sprays water from one end of the outdoor heat exchanger 13 in the horizontal direction toward the center of the outdoor heat exchanger 13. Further, as an example, the amount of water sprayed from each first nozzle 51a is 0.24 L/min, and the droplet diameter is 110 μm.
 第2配管50bには、複数の第2ノズル51bが設けられている。図4の例では、第2配管50bには、3つの第2ノズル51bが設けられている。各第2ノズル51bは、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第2ノズル51bは、垂直方向に互いに間隔を空けて配置されている。各第2ノズル51bは、各第1ノズル51aと対向して配置されており、各第2ノズル51bの垂直方向の位置は、各第1ノズル51aの垂直方向の位置と同じである。各第2ノズル51bは、熱交換部130の流路P2~P4に対し、第2ヘッダ側から第1ヘッダ側に向けて水を散布する。言い換えると、各第2ノズル51bは、室外熱交換器13の水平方向の他端側から室外熱交換器13の中央に向かって散水する。また、一例として、各第2ノズル51bの散水量は0.24L/minであり、液滴径は110μmである。 A plurality of second nozzles 51b are provided in the second pipe 50b. In the example of FIG. 4, the second pipe 50b is provided with three second nozzles 51b. Each second nozzle 51b is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example. The second nozzles 51b are vertically spaced apart from each other. Each second nozzle 51b is arranged to face each first nozzle 51a, and the vertical position of each second nozzle 51b is the same as the vertical position of each first nozzle 51a. Each second nozzle 51b sprays water onto the flow paths P2 to P4 of the heat exchanger 130 from the second header side toward the first header side. In other words, each second nozzle 51b sprays water from the other end of the outdoor heat exchanger 13 in the horizontal direction toward the center of the outdoor heat exchanger 13. Further, as an example, the amount of water sprayed from each second nozzle 51b is 0.24 L/min, and the droplet diameter is 110 μm.
 第3配管50cは、熱交換部130の流路P1の下端に沿って水平方向に延伸して配置されている。第3配管50cには、複数の第3ノズル51cが設けられている。図4の例では、第3配管50cには、4つの第3ノズル51cが設けられている。各第3ノズル51cは、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第3ノズル51cは、水平方向に互いに間隔を空けて配置されている。各第3ノズル51cは、上向きに散水するものであり、熱交換部130の流路P1に対し、下方から上方に向けて水を散布する。すなわち、第3配管50cの4つの第3ノズル51cによって、熱交換部130のうち、流路P1に対する散水が行われる。また、一例として、各第3ノズル51cの散水量は0.13L/minであり、液滴径は110μmである。 The third pipe 50c is arranged to extend horizontally along the lower end of the flow path P1 of the heat exchange section 130. A plurality of third nozzles 51c are provided in the third pipe 50c. In the example of FIG. 4, the third pipe 50c is provided with four third nozzles 51c. Each third nozzle 51c is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example. The third nozzles 51c are arranged at intervals from each other in the horizontal direction. Each of the third nozzles 51c sprays water upward, and sprays water onto the flow path P1 of the heat exchanger 130 from below to above. That is, the four third nozzles 51c of the third pipe 50c spray water on the flow path P1 in the heat exchange section 130. Further, as an example, the amount of water sprayed from each third nozzle 51c is 0.13 L/min, and the droplet diameter is 110 μm.
 上記のように、本実施の形態の散水装置5では、熱交換部130において相対的に高温となる流路P1に対して散水を行う第3配管50cのノズルの数が、第1配管50aのノズルの数よりも多く、第2配管50bのノズルの数よりも多い。これにより、熱交換部130において相対的に高温となる流路P1に対する単位面積当たりの散水量を、相対的に低温となる流路P2~P4に対する単位面積当たりの散水量よりも多くすることができる。 As described above, in the water sprinkling device 5 of the present embodiment, the number of nozzles in the third pipe 50c that sprays water on the flow path P1, which is relatively high in temperature in the heat exchange section 130, is greater than that in the first pipe 50a. The number of nozzles is greater than the number of nozzles, and the number of nozzles of the second pipe 50b is greater. This makes it possible to make the amount of water sprayed per unit area for the flow path P1, which is relatively high temperature, in the heat exchange section 130 larger than the amount of water sprayed per unit area for the flow paths P2 to P4, which are relatively low temperature. can.
 以上のように、本実施の形態では、凝縮器として機能する室外熱交換器13の高温部分の単位面積当たりの散水量を増やすことで凝縮能力が向上し、冷凍サイクル装置100全体のCOPが向上する。また、室外熱交換器13の低温部分の散水量を減らすことで、使用する水の無駄を減らすことができ、散水効率も向上する。熱交換部130の高さが1.22m、幅が1.47mである場合、実施の形態1の散水装置5の合計の散水量は、1.96L/minとなり、従来技術に比べて散水量を削減できる。また、この場合、散水装置5の単位面積当たりの散水量は1.09L/(min・m)となる。 As described above, in this embodiment, by increasing the amount of water sprinkled per unit area of the high temperature portion of the outdoor heat exchanger 13 that functions as a condenser, the condensing capacity is improved, and the COP of the entire refrigeration cycle device 100 is improved. do. Furthermore, by reducing the amount of water sprinkled on the low temperature portion of the outdoor heat exchanger 13, waste of water can be reduced and water sprinkling efficiency can also be improved. When the height of the heat exchange section 130 is 1.22 m and the width is 1.47 m, the total amount of water sprinkled by the water sprinkler 5 of the first embodiment is 1.96 L/min, which is a lower amount of water than the conventional technology. can be reduced. Moreover, in this case, the amount of water sprinkled per unit area of the water sprinkler 5 is 1.09 L/(min·m 2 ).
 また、本実施の形態の室外熱交換器13のように、伝熱管131とフィン132が扁平管とコルゲートフィンからなる場合、室外熱交換器13に付着した水がコルゲートフィンの波形状の谷間に溜まり、室外熱交換器13に水が保持されやすくなる。その結果、散水量を増やした場合に水保持量が多くなり、空気抵抗となって室外熱交換器13の性能が悪化する恐れがある。これに対し、上記一例で記載したように、散水装置5の各ノズルから散水される水の液滴径を110μmとすることで、室外熱交換器13に保持される水の量の増加を抑制し、室外熱交換器13の性能の低下を抑制することができる。なお、無図の液滴径は、110μmに限定されるものではなく、160μm以下であればよい。 Furthermore, when the heat exchanger tubes 131 and fins 132 are composed of flat tubes and corrugated fins as in the outdoor heat exchanger 13 of the present embodiment, water adhering to the outdoor heat exchanger 13 may enter the corrugated valleys of the corrugated fins. Water accumulates and is likely to be retained in the outdoor heat exchanger 13. As a result, when the amount of water sprinkled is increased, the amount of water retained increases, creating air resistance, which may deteriorate the performance of the outdoor heat exchanger 13. On the other hand, as described in the above example, by setting the diameter of the water droplets sprayed from each nozzle of the water sprinkler 5 to 110 μm, the increase in the amount of water retained in the outdoor heat exchanger 13 is suppressed. However, deterioration in the performance of the outdoor heat exchanger 13 can be suppressed. Note that the droplet diameter (not shown) is not limited to 110 μm, but may be 160 μm or less.
 実施の形態2.
 図5は、実施の形態2に係る冷凍サイクル装置100の散水装置5Aの概略構成図である。図5に示すように、実施の形態2の散水装置5Aは、第3配管50cの構成が実施の形態1と相違する。冷凍サイクル装置100のその他の構成は実施の形態1と同じである。
Embodiment 2.
FIG. 5 is a schematic configuration diagram of a water sprinkler device 5A of the refrigeration cycle device 100 according to the second embodiment. As shown in FIG. 5, the water sprinkler 5A of the second embodiment is different from the first embodiment in the configuration of the third pipe 50c. The other configurations of refrigeration cycle device 100 are the same as in the first embodiment.
 図5では、説明のため、室外熱交換器13も示している。散水装置5Aは、実施の形態1と同様に室外熱交換器13を保持する筐体等に取り付けられている。図5に示すように、散水装置5Aは、第1配管50aと、第2配管50bと、第3配管50cと、接続配管52と、を備えている。第1配管50aと第2配管50bは、第3配管50cの下方において、互いに対向して配置されている。第3配管50cは、一端が第1配管50aに接続され、他端が第2配管50bに接続されている。 In FIG. 5, the outdoor heat exchanger 13 is also shown for explanation. The water sprinkler 5A is attached to a casing or the like that holds the outdoor heat exchanger 13, as in the first embodiment. As shown in FIG. 5, the water sprinkler 5A includes a first pipe 50a, a second pipe 50b, a third pipe 50c, and a connecting pipe 52. The first pipe 50a and the second pipe 50b are arranged opposite to each other below the third pipe 50c. The third pipe 50c has one end connected to the first pipe 50a and the other end connected to the second pipe 50b.
 第2配管50bと第3配管50cは、接続配管52に接続されている。接続配管52は、水道管などに接続され、接続配管52から流入した水が、第2配管50b、第3配管50c、及び第1配管50aに供給される。接続配管52には、水の流量を調整する弁が設けられ、制御装置3によって弁が制御されることで散水装置5による散水の開始及び停止、及び散水量が制御される。 The second pipe 50b and the third pipe 50c are connected to a connecting pipe 52. The connection pipe 52 is connected to a water pipe or the like, and water flowing from the connection pipe 52 is supplied to the second pipe 50b, the third pipe 50c, and the first pipe 50a. The connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
 本実施の形態の第1配管50a及び第1ノズル51a、並びに第2配管50b及び第2ノズル51bの構成は、実施の形態1と同じである。 The configurations of the first pipe 50a and first nozzle 51a, as well as the second pipe 50b and second nozzle 51b in this embodiment are the same as in the first embodiment.
 第3配管50cは、熱交換部130の上端の外側であって、熱交換部130の上端よりも上方に、水平方向に延伸して配置されている。第3配管50cには、4つの第3ノズル51cが設けられている。各第3ノズル51cは、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第3ノズル51cは、水平方向に互いに間隔を空けて配置されている。各第3ノズル51cは、下向きに散水するものであり、熱交換部130の流路P1に対し、上方から下方に向けて水を散布する。すなわち、第3配管50cの4つの第3ノズル51cによって、熱交換部130のうち、流路P1への散水が行われる。また、一例として、各第3ノズル51cの散水量は0.13L/minであり、液滴径は110μmである。 The third pipe 50c is disposed outside the upper end of the heat exchanger 130 and above the upper end of the heat exchanger 130, extending in the horizontal direction. The third pipe 50c is provided with four third nozzles 51c. Each third nozzle 51c is a hollow conical nozzle that sprays atomized water at a spray angle of 60 degrees, for example. The third nozzles 51c are arranged at intervals from each other in the horizontal direction. Each third nozzle 51c sprays water downward, and sprays water from above to below onto the flow path P1 of the heat exchange section 130. That is, the four third nozzles 51c of the third pipe 50c spray water onto the flow path P1 in the heat exchange section 130. Further, as an example, the amount of water sprayed from each third nozzle 51c is 0.13 L/min, and the droplet diameter is 110 μm.
 本実施の形態の散水装置5Aにおいても、熱交換部130において相対的に高温となる流路P1に対して散水を行う第3配管50cのノズルの数が、第1配管50aのノズルの数よりも多く、第2配管50bのノズルの数よりも多い。これにより、熱交換部130において相対的に高温となる流路P1に対する単位面積当たりの散水量を、相対的に低温となる流路P2~P4に対する単位面積当たりの散水量よりも多くすることができる。 Also in the water sprinkling device 5A of the present embodiment, the number of nozzles in the third pipe 50c that sprays water on the relatively high temperature flow path P1 in the heat exchange section 130 is greater than the number of nozzles in the first pipe 50a. There are also many nozzles, which are greater than the number of nozzles in the second pipe 50b. This makes it possible to make the amount of water sprayed per unit area for the flow path P1, which is relatively high temperature, in the heat exchange section 130 larger than the amount of water sprayed per unit area for the flow paths P2 to P4, which are relatively low temperature. can.
 以上のように、本実施の形態においても、実施の形態1と同様の効果を得ることができる。また、第3配管50cを熱交換部130の外側に配置することで、熱交換部130への空気の流入の阻害を防ぎ、室外熱交換器13の性能の低下を抑制することができる。 As described above, the same effects as in Embodiment 1 can be obtained in this embodiment as well. Further, by arranging the third pipe 50c outside the heat exchange section 130, it is possible to prevent the air from flowing into the heat exchange section 130 from being obstructed, and to suppress a decrease in the performance of the outdoor heat exchanger 13.
 実施の形態3.
 図6は、実施の形態3に係る冷凍サイクル装置100の散水装置5Bの概略構成図である。図6に示すように、実施の形態3は、散水装置5Bが第3配管50cを備えない点において実施の形態1と相違する。冷凍サイクル装置100のその他の構成は実施の形態1と同じである。
Embodiment 3.
FIG. 6 is a schematic configuration diagram of the water sprinkler device 5B of the refrigeration cycle device 100 according to the third embodiment. As shown in FIG. 6, the third embodiment differs from the first embodiment in that the water sprinkler 5B does not include the third pipe 50c. The other configurations of refrigeration cycle device 100 are the same as in the first embodiment.
 図6では、説明のため、室外熱交換器13も示している。散水装置5Bは、実施の形態1と同様に室外熱交換器13を保持する筐体等に取り付けられている。図6に示すように、散水装置5Bは、第1配管50aと、第2配管50bと、第1配管50a及び第2配管50bにそれぞれ接続される接続配管52と、を備える。第1配管50aと第2配管50bとは、互いに独立しており、第1配管50a及び第2配管50bの一端は、それぞれ接続配管52に接続されている。接続配管52は、水道管などに接続され、接続配管52から流入した水が、第1配管50a及び第2配管50bにそれぞれ供給される。接続配管52には、水の流量を調整する弁が設けられ、制御装置3によって弁が制御されることで散水装置5による散水の開始及び停止、及び散水量が制御される。 In FIG. 6, the outdoor heat exchanger 13 is also shown for explanation. The water sprinkling device 5B is attached to a casing or the like that holds the outdoor heat exchanger 13, as in the first embodiment. As shown in FIG. 6, the water sprinkler 5B includes a first pipe 50a, a second pipe 50b, and connection pipes 52 connected to the first pipe 50a and the second pipe 50b, respectively. The first pipe 50a and the second pipe 50b are independent from each other, and one end of the first pipe 50a and the second pipe 50b is connected to a connecting pipe 52, respectively. The connecting pipe 52 is connected to a water pipe or the like, and water flowing from the connecting pipe 52 is supplied to the first pipe 50a and the second pipe 50b, respectively. The connection pipe 52 is provided with a valve that adjusts the flow rate of water, and by controlling the valve by the control device 3, the start and stop of watering by the watering device 5 and the amount of watering are controlled.
 第1配管50aは、熱交換部130の水平方向の一端よりも外側において、垂直方向に延伸して配置されている。第2配管50bは、熱交換部130の水平方向の他端よりも外側において、垂直方向に延伸して配置されている。 The first pipe 50a is arranged to extend in the vertical direction outside one horizontal end of the heat exchange section 130. The second pipe 50b is disposed to extend in the vertical direction outside the other end of the heat exchange section 130 in the horizontal direction.
 第1配管50aには、5つの第1ノズル51a1、51a2、51a3、51a4及び51a5が設けられている。各第1ノズル51a1~51a5は、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第1ノズル51a1~51a5は、垂直方向に等間隔(例えば約0.2m)で配置され、熱交換部130の流路P1~P4に対し、第1ヘッダ側から第2ヘッダ側に向けて水を散布する。 The first pipe 50a is provided with five first nozzles 51a1, 51a2, 51a3, 51a4, and 51a5. Each of the first nozzles 51a1 to 51a5 is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example. The first nozzles 51a1 to 51a5 are arranged at regular intervals (for example, about 0.2 m) in the vertical direction, and are arranged from the first header side to the second header side with respect to the flow paths P1 to P4 of the heat exchange section 130. Sprinkle water.
 また、各第1ノズル51a1~51a5の散水量は、室外熱交換器13の温度分布に応じて異なるよう設定される。具体的には、室外熱交換器13の温度が相対的に高い部分に配置されたノズルの散水量が、温度が相対的に低い部分に配置されたノズルの散水量より多くなるよう設定される。図6の構成の場合、上方に配置される第1ノズル51a1及び51a2の散水量は、下方に配置される第1ノズル51a3~51a5の散水量よりも多い。一例として、第1ノズル51a1及び第1ノズル51a2の散水量は0.27L/minである。第1ノズル51a3の散水量は0.21L/minである。第1ノズル51a4の散水量は0.17L/minである。第1ノズル51a5の散水量は0.09L/minである。各第1ノズル51a1~51a5から散布される水の液滴径は160μm以下であり、散水量に応じて設定される。 Further, the amount of water sprayed by each of the first nozzles 51a1 to 51a5 is set to be different depending on the temperature distribution of the outdoor heat exchanger 13. Specifically, the amount of water sprayed by a nozzle placed in a portion of the outdoor heat exchanger 13 where the temperature is relatively high is set to be greater than the amount of water sprinkled by a nozzle placed in a portion where the temperature is relatively low. . In the configuration of FIG. 6, the amount of water sprayed by the first nozzles 51a1 and 51a2 arranged above is greater than the amount of water sprayed by the first nozzles 51a3 to 51a5 arranged below. As an example, the amount of water sprayed by the first nozzle 51a1 and the first nozzle 51a2 is 0.27 L/min. The amount of water sprayed from the first nozzle 51a3 is 0.21 L/min. The amount of water sprayed from the first nozzle 51a4 is 0.17 L/min. The amount of water sprayed from the first nozzle 51a5 is 0.09 L/min. The diameter of water droplets sprayed from each of the first nozzles 51a1 to 51a5 is 160 μm or less, and is set according to the amount of water sprayed.
 第2配管50bには、5つの第2ノズル51b1、51b2、51b3、51b4及び51b5が設けられている。各第2ノズル51b1~51b5は、例えば噴霧角度60°で霧状の水を噴霧する中空円錐ノズルである。各第2ノズル51b1~51b5は、垂直方向に等間隔(例えば約0.2m)で配置され、熱交換部130の流路P1~P4に対し、第2ヘッダ側から第1ヘッダ側に向けて水を散布する。第2ノズル51b1~51b5は、第1ノズル51a1~51a5と対向して配置されており、各第2ノズル51b1~51b5の垂直方向の位置は、各第1ノズル51a1~51a5の垂直方向の位置と同じである。 The second pipe 50b is provided with five second nozzles 51b1, 51b2, 51b3, 51b4, and 51b5. Each of the second nozzles 51b1 to 51b5 is a hollow conical nozzle that sprays atomized water at a spray angle of 60°, for example. The second nozzles 51b1 to 51b5 are arranged at equal intervals (for example, about 0.2 m) in the vertical direction, and are arranged from the second header side toward the first header side with respect to the flow paths P1 to P4 of the heat exchange section 130. Sprinkle water. The second nozzles 51b1 to 51b5 are arranged to face the first nozzles 51a1 to 51a5, and the vertical position of each second nozzle 51b1 to 51b5 is the same as the vertical position of each first nozzle 51a1 to 51a5. It's the same.
 また、第2配管50bの第2ノズル51b1~51b5の散水量は、第1配管50aの第1ノズル51a1~51a5と同様に、室外熱交換器13の温度分布に応じて異なるよう設定される。具体的には、室外熱交換器13の温度が相対的に高い部分に配置されたノズルの散水量が、温度が相対的に低い部分に配置されたノズルの散水量より多くなるよう設定される。図6の構成の場合、上方に配置される第2ノズル51b1及び51b2の散水量は、下方に配置される第2ノズル51b3~51b5の散水量よりも多い。一例として、第2ノズル51b1及び第2ノズル51b2の散水量は0.27L/minである。第2ノズル51b3の散水量は0.21L/minである。第2ノズル51b4の散水量は0.17L/minである。第2ノズル51b5の散水量は0.09L/minである。各第2ノズル51b1~51b5から散布される水の液滴径は160μm以下であり、散水量に応じて設定される。 Furthermore, the amount of water sprayed by the second nozzles 51b1 to 51b5 of the second pipe 50b is set to vary depending on the temperature distribution of the outdoor heat exchanger 13, similarly to the first nozzles 51a1 to 51a5 of the first pipe 50a. Specifically, the amount of water sprayed by a nozzle placed in a portion of the outdoor heat exchanger 13 where the temperature is relatively high is set to be greater than the amount of water sprinkled by a nozzle placed in a portion where the temperature is relatively low. . In the configuration of FIG. 6, the amount of water sprayed by the second nozzles 51b1 and 51b2 arranged above is greater than the amount of water sprayed by the second nozzles 51b3 to 51b5 arranged below. As an example, the amount of water sprayed by the second nozzle 51b1 and the second nozzle 51b2 is 0.27 L/min. The amount of water sprayed from the second nozzle 51b3 is 0.21 L/min. The amount of water sprayed from the second nozzle 51b4 is 0.17 L/min. The amount of water sprayed from the second nozzle 51b5 is 0.09 L/min. The diameter of water droplets sprayed from each of the second nozzles 51b1 to 51b5 is 160 μm or less, and is set according to the amount of water sprayed.
 本実施の形態の散水装置5Bにおいては、第1配管50a及び第2配管50bのノズルの数は同じであり、配置も均等である。ただし、熱交換部130において相対的に高温となる流路P1に対して散水を行うノズルの散水量は、熱交換部130において相対的に低温となる流路P2~P4に対して散水を行うノズルの散水量よりも多くなっている。これにより、熱交換部130において相対的に高温となる流路P1に対する単位面積当たりの散水量を、相対的に低温となる流路P2~P4に対する単位面積当たりの散水量よりも多くすることができる。 In the water sprinkler 5B of this embodiment, the number of nozzles in the first pipe 50a and the second pipe 50b are the same, and the arrangement is also uniform. However, the amount of water sprayed by the nozzle that sprays water on the channel P1, which is relatively high temperature in the heat exchange section 130, is the same as that of the nozzle that sprays water on the channels P2 to P4, which are relatively low temperature in the heat exchange section 130. The amount is higher than the amount of water sprayed by the nozzle. This makes it possible to make the amount of water sprayed per unit area for the flow path P1, which is relatively high temperature, in the heat exchange section 130 larger than the amount of water sprayed per unit area for the flow paths P2 to P4, which are relatively low temperature. can.
 以上のように、本実施の形態においても、実施の形態1と同様の効果を得ることができる。また、水平方向に延伸する第3配管50cを省略することで、散水装置5の構成を簡素化し、部品点数を削減することができる。 As described above, the same effects as in Embodiment 1 can be obtained in this embodiment as well. Furthermore, by omitting the third pipe 50c extending in the horizontal direction, the configuration of the water sprinkler 5 can be simplified and the number of parts can be reduced.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形又は組み合わせることが可能である。例えば、上記実施の形態では、冷凍サイクル装置100がヒートポンプチラーの場合について説明したが、冷凍サイクル装置100は、冷暖切替可能機を備えない冷房専用機、冷蔵倉庫の冷却用の冷凍機又は直膨式の空気調和装置などであってもよい。冷凍サイクル装置100が冷房専用機又は冷凍機の場合、四方弁12は省略され、室外熱交換器13は凝縮器となり、室内熱交換器21は蒸発器となる。 The above is a description of the embodiments, but the present disclosure is not limited to the above embodiments, and various modifications or combinations can be made without departing from the gist of the present disclosure. For example, in the above embodiment, the refrigeration cycle device 100 is a heat pump chiller, but the refrigeration cycle device 100 may be a cooling-only machine without a cooling/heating switch, a refrigerator for cooling a refrigerated warehouse, or a direct expansion It may also be a type air conditioner. When the refrigeration cycle device 100 is a cooling-only machine or a refrigerator, the four-way valve 12 is omitted, the outdoor heat exchanger 13 becomes a condenser, and the indoor heat exchanger 21 becomes an evaporator.
 また、室外熱交換器13の温度分布は、図3に示す例に限定されるものではなく、室外熱交換器13の構成又は使用する冷媒の種類に応じて異なるものである。そのため、室外熱交換器13の高温部分における単位面積当たりの散水量を、低温部分における単位面積当たりの散水量よりも多くすることができれば、散水装置5のノズルの向き、数又は配置、もしくはノズルの散水量又は液滴径を任意に変更することができる。 Furthermore, the temperature distribution of the outdoor heat exchanger 13 is not limited to the example shown in FIG. 3, but varies depending on the configuration of the outdoor heat exchanger 13 or the type of refrigerant used. Therefore, if the amount of water sprinkled per unit area in the high temperature part of the outdoor heat exchanger 13 can be made larger than the amount of water sprinkled per unit area in the low temperature part, the orientation, number or arrangement of the nozzles of the water sprinkler 5, or the nozzle The amount of water sprayed or the droplet size can be changed arbitrarily.
 例えば、第3配管50cの垂直方向の位置は、実施の形態1又は実施の形態2に限定されるものではない。第3配管50cは、第3ノズル51cが熱交換部130の温度が相対的に高い部分を散水できる位置であれば、熱交換部130の流路P1の下端よりも上方又は下方に配置されてもよい。 For example, the vertical position of the third pipe 50c is not limited to the first embodiment or the second embodiment. The third pipe 50c is arranged above or below the lower end of the flow path P1 of the heat exchange section 130, as long as the third nozzle 51c is in a position where the temperature of the portion of the heat exchange section 130 is relatively high can be sprayed with water. Good too.
 また、上記実施の形態では、室外熱交換器13の上方から下方に向けて温度が下がる場合の、散水装置5の単位面積当たりの散水量の調整を説明したが、これに限定されるものではない。例えば、室外熱交換器13の水平方向に対する散水量についても温度分布に応じて異ならせてもよい。具体的には、実施の形態1及び2において、第3配管50cに設けられた第3ノズル51cの散水量を室外熱交換器13の温度分布に応じて異ならせてもよい。この場合、室外熱交換器13の冷媒入口に最も近い左端の第3ノズル51cの散水量を、室外熱交換器13の冷媒入口から最も遠い右端の第3ノズル51cの散水量よりも多くする。これにより、凝縮能力及び散水効率をさらに向上させることができる。 Furthermore, in the embodiment described above, the adjustment of the amount of water sprinkled per unit area of the water sprinkler 5 when the temperature decreases from the top to the bottom of the outdoor heat exchanger 13 has been described, but the invention is not limited to this. do not have. For example, the amount of water sprayed in the horizontal direction of the outdoor heat exchanger 13 may also be varied depending on the temperature distribution. Specifically, in the first and second embodiments, the amount of water sprayed from the third nozzle 51c provided in the third pipe 50c may be varied depending on the temperature distribution of the outdoor heat exchanger 13. In this case, the amount of water sprayed by the third nozzle 51c at the left end closest to the refrigerant inlet of the outdoor heat exchanger 13 is made larger than the amount of water sprayed by the third nozzle 51c at the right end furthest from the refrigerant inlet of the outdoor heat exchanger 13. Thereby, condensation ability and water sprinkling efficiency can be further improved.
 また、上記実施の形態では、熱源ユニット1が4系統の冷媒回路を有する構成としたが、これに限定されず、3系統以下、又は5系統以上の冷媒回路を有してもよい。さらに、上記実施の形態では、室外熱交換器13が4つの流路P1~P4を有する場合について説明したが、室外熱交換器13の流路の数は3つ以下でもよいし、5つ以上でもよい。また、室外熱交換器13は、コルゲートフィンを有するPFC熱交換器に限定されるものではなく、プレートフィンを有するフィンチューブ式の熱交換器であってもよい。 Further, in the above embodiment, the heat source unit 1 has a configuration having four refrigerant circuits, but is not limited to this, and may have three or less refrigerant circuits, or five or more refrigerant circuits. Further, in the above embodiment, the case where the outdoor heat exchanger 13 has four channels P1 to P4 has been described, but the number of channels in the outdoor heat exchanger 13 may be three or less, or five or more. But that's fine. Further, the outdoor heat exchanger 13 is not limited to a PFC heat exchanger having corrugated fins, but may be a fin tube type heat exchanger having plate fins.
 1 熱源ユニット、2 室内ユニット、3 制御装置、5、5A、5B 散水装置、11 圧縮機、12 四方弁、13 室外熱交換器、14 膨張弁、15 アキュムレータ、16 室外ファン、21 室内熱交換器、22 室内流量調整装置、23 室内ファン、50a 第1配管、50b 第2配管、50c 第3配管、51a、51a1、51a2、51a3、51a4、51a5 第1ノズル、51b、51b1、51b2、51b3、51b4、51b5 第2ノズル、51c 第3ノズル、52 接続配管、60 水熱交換器、80 ポンプ、100 冷凍サイクル装置、130 熱交換部、131 伝熱管、132 フィン、133a、133b、133c 第1ヘッダ、134a、134b 第2ヘッダ、135a、135b 接続配管。 1 Heat source unit, 2 Indoor unit, 3 Control device, 5, 5A, 5B Water sprinkler, 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Expansion valve, 15 Accumulator, 16 Outdoor fan, 21 Indoor heat exchanger , 22 Indoor flow rate adjustment device, 23 Indoor fan, 50a First piping, 50b Second piping, 50c Third piping, 51a, 51a1, 51a2, 51a3, 51a4, 51a5 First nozzle, 51b, 51b1, 51b2, 51b3, 51b4 , 51b5 second nozzle, 51c third nozzle, 52 connection piping, 60 water heat exchanger, 80 pump, 100 refrigeration cycle device, 130 heat exchange section, 131 heat transfer tube, 132 fin, 133a, 133b, 133c first header, 134a, 134b second header, 135a, 135b connection piping.

Claims (8)

  1.  凝縮器と、
     前記凝縮器に散水する散水装置と、を備え、
     前記散水装置の単位面積当たりの散水量は、前記凝縮器の温度分布に応じて異なる冷凍サイクル装置。
    a condenser;
    a water sprinkler device for sprinkling water on the condenser;
    A refrigeration cycle device in which the amount of water sprinkled per unit area of the water sprinkler varies depending on the temperature distribution of the condenser.
  2.  前記凝縮器の温度が相対的に高い部分の単位面積当たりの散水量は、前記凝縮器の温度が相対的に低い部分の単位面積当たりの散水量よりも多い請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the amount of water sprinkled per unit area in a portion where the temperature of the condenser is relatively high is greater than the amount of water sprinkled per unit area in a portion where the temperature of the condenser is relatively low. .
  3.  前記散水装置は、複数のノズルを備え、
     前記複数のノズルのうち、前記凝縮器の温度が相対的に高い部分に散水するノズルの数又は散水量は、前記凝縮器の温度が相対的に低い部分に散水するノズルの数又は散水量よりも多い請求項1又は2に記載の冷凍サイクル装置。
    The watering device includes a plurality of nozzles,
    Among the plurality of nozzles, the number of nozzles or the amount of water sprayed on a portion where the temperature of the condenser is relatively high is greater than the number of nozzles or the amount of water sprayed on a portion where the temperature of the condenser is relatively low. The refrigeration cycle device according to claim 1 or 2, wherein the refrigeration cycle device includes a large number of refrigeration cycle devices.
  4.  前記散水装置は、
     複数の第1ノズルが設けられ、第1方向に延びる第1配管と、
     複数の第2ノズルが設けられ、前記第1方向に延びる第2配管と、
     複数の第3ノズルが設けられ、前記第1方向に直交する第2方向に延びる第3配管と、を備え、
     前記第1配管と前記第2配管は、対向して配置され、
     前記第3配管の一端が前記第1配管に接続され、他端が前記第2配管に接続され、
     前記複数の第3ノズルは、前記凝縮器の温度が相対的に高い部分に散水するものであり、
     前記複数の第1ノズル及び前記複数の第2ノズルは、前記凝縮器の温度が相対的に低いい部分に散水するものであり、
     前記複数の第3ノズルの数は、前記複数の第1ノズルの数より多く、前記複数の第2ノズルの数より多い請求項1又は請求項2に記載の冷凍サイクル装置。
    The watering device includes:
    a first pipe provided with a plurality of first nozzles and extending in a first direction;
    a second pipe provided with a plurality of second nozzles and extending in the first direction;
    a third piping provided with a plurality of third nozzles and extending in a second direction perpendicular to the first direction;
    The first pipe and the second pipe are arranged to face each other,
    One end of the third pipe is connected to the first pipe, the other end is connected to the second pipe,
    The plurality of third nozzles spray water to a portion of the condenser where the temperature is relatively high,
    The plurality of first nozzles and the plurality of second nozzles spray water to a portion of the condenser where the temperature is relatively low,
    The refrigeration cycle device according to claim 1 or 2, wherein the number of the plurality of third nozzles is greater than the number of the plurality of first nozzles and greater than the number of the plurality of second nozzles.
  5.  前記第3配管は、前記凝縮器の上端よりも下方に設けられ、
     前記複数の第3ノズルは、上向きに散水を行うものである請求項4に記載の冷凍サイクル装置。
    The third pipe is provided below the upper end of the condenser,
    The refrigeration cycle device according to claim 4, wherein the plurality of third nozzles spray water upward.
  6.  前記第3配管は、前記凝縮器の上端よりも上方に設けられ、
     前記複数の第3ノズルは、下向きに散水を行うものである請求項4に記載の冷凍サイクル装置。
    The third pipe is provided above the upper end of the condenser,
    The refrigeration cycle device according to claim 4, wherein the plurality of third nozzles spray water downward.
  7.  前記散水装置は、
     複数の第1ノズルが設けられ、第1方向に延びる第1配管と、
     複数の第2ノズルが設けられ、前記第1方向に延びる第2配管と、を備え、
     前記第1配管と前記第2配管は、対向して配置され、
     前記複数の第1ノズル及び前記複数の第2ノズルのうち、前記凝縮器の温度が相対的に高い部分に散水する第1ノズル及び第2ノズルの散水量は、前記凝縮器の温度が相対的に低い部分に散水する第1ノズル及び第2ノズルの散水量よりも多い請求項1又は請求項2に記載の冷凍サイクル装置。
    The watering device includes:
    a first pipe provided with a plurality of first nozzles and extending in a first direction;
    a second pipe provided with a plurality of second nozzles and extending in the first direction;
    The first pipe and the second pipe are arranged to face each other,
    Among the plurality of first nozzles and the plurality of second nozzles, the amount of water sprayed by the first nozzle and the second nozzle, which spray water on a portion where the temperature of the condenser is relatively high, is determined depending on the temperature of the condenser. The refrigeration cycle device according to claim 1 or 2, wherein the amount of water sprayed is greater than the amount of water sprayed by the first nozzle and the second nozzle that spray water on the lower part.
  8.  前記複数の第1ノズル及び前記複数の第2ノズルは、それぞれ前記第1方向に等間隔で配置されている請求項7に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 7, wherein the plurality of first nozzles and the plurality of second nozzles are arranged at equal intervals in the first direction.
PCT/JP2022/015571 2022-03-29 2022-03-29 Refrigeration cycle device WO2023188009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015571 WO2023188009A1 (en) 2022-03-29 2022-03-29 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015571 WO2023188009A1 (en) 2022-03-29 2022-03-29 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023188009A1 true WO2023188009A1 (en) 2023-10-05

Family

ID=88200120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015571 WO2023188009A1 (en) 2022-03-29 2022-03-29 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023188009A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317821A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Air heat source type cooling apparatus and cooling method using the same
JP2008075949A (en) * 2006-09-20 2008-04-03 Daikin Ind Ltd Air conditioner
JP2009150625A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Steam generation system
JP2014031926A (en) * 2012-08-02 2014-02-20 Osaka Shiroguchi Kenkyusho:Kk Power saving device of air conditioner
JP5880019B2 (en) * 2011-12-21 2016-03-08 ダイキン工業株式会社 Air conditioner outdoor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317821A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Air heat source type cooling apparatus and cooling method using the same
JP2008075949A (en) * 2006-09-20 2008-04-03 Daikin Ind Ltd Air conditioner
JP2009150625A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Steam generation system
JP5880019B2 (en) * 2011-12-21 2016-03-08 ダイキン工業株式会社 Air conditioner outdoor unit
JP2014031926A (en) * 2012-08-02 2014-02-20 Osaka Shiroguchi Kenkyusho:Kk Power saving device of air conditioner

Similar Documents

Publication Publication Date Title
JP6352401B2 (en) Air conditioner
CN107110577B (en) Heat-exchange device and the air conditioner for having the heat-exchange device
JP4358832B2 (en) Refrigeration air conditioner
US10386081B2 (en) Air-conditioning device
CN100557337C (en) Heating vent air regulating system with power-actuated aftercooler
CN101086352B (en) Air conditioner
US6070423A (en) Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
KR0142506B1 (en) Airconditioner employing non-azeotrope refrigerant
CN204806560U (en) Off -premises station and refrigeration cycle device
CN104807087A (en) Air conditioner
TW200921030A (en) Economized vapor compression circuit
JP7108177B2 (en) heat exchangers and air conditioners
JP6668469B2 (en) Heat exchanger and refrigeration cycle device with refrigerant branch distributor
JP2009133624A (en) Refrigerating/air-conditioning device
US5660056A (en) Air conditioner
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP2021017991A (en) Heat exchanger, air conditioner, indoor machine and outdoor machine
JP2004162945A (en) Air conditioner
JP2008267725A (en) Refrigerating cycle device
WO2023188009A1 (en) Refrigeration cycle device
WO2023188010A1 (en) Refrigeration cycle device
JP6918257B1 (en) Air conditioner and heat exchanger
JP4863218B2 (en) Refrigeration cycle equipment
WO2023199426A1 (en) Refrigeration cycle device
WO2023013347A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024510809

Country of ref document: JP