JP2002054834A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JP2002054834A
JP2002054834A JP2000239852A JP2000239852A JP2002054834A JP 2002054834 A JP2002054834 A JP 2002054834A JP 2000239852 A JP2000239852 A JP 2000239852A JP 2000239852 A JP2000239852 A JP 2000239852A JP 2002054834 A JP2002054834 A JP 2002054834A
Authority
JP
Japan
Prior art keywords
watering
outside air
temperature
condenser
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000239852A
Other languages
Japanese (ja)
Other versions
JP4476456B2 (en
Inventor
Jiro Okajima
次郎 岡島
Hitoshi Iijima
等 飯嶋
Takuya Suganami
拓也 菅波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000239852A priority Critical patent/JP4476456B2/en
Publication of JP2002054834A publication Critical patent/JP2002054834A/en
Application granted granted Critical
Publication of JP4476456B2 publication Critical patent/JP4476456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle device to effect sprinkling on a condenser without the occurrence of a response delay, reduce a consumption power of an air conditioner, and be compatible between comfortability and energy saving. SOLUTION: Based on an outside air temperature detected by an outside air temperature detecting means 34, a future value of an outdoor air temperature is predicted. Based on the prediction value of the outside air temperature, a sprinkle amount is computed by a sprinkle amount computing means 26, and the sprinkle amount is controlled by a sprinkle amount controlling means 27 such that a sprinkle amount is adjusted to the computing value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和機、冷
凍機等の冷媒凝縮器に散水して熱交換効率を向上させる
冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus for spraying water onto a refrigerant condenser such as an air conditioner or a refrigerator to improve heat exchange efficiency.

【0002】[0002]

【従来の技術】図14は、例えば特開平7−40732
号公報に示された従来の冷凍サイクル装置の構成図であ
り、車両空調用の散水設備を示す。図において、冷凍サ
イクル51がコンデンサ52、サブコンデンサ53、膨
張弁54、エバポレータ55、コンプレッサ56で構成
されている。エバポレータ55の下方には、エバポレー
タ55に付着した凝縮水を受ける容器57と、この容器
57内の凝縮水をコンデンサ52またはサブコンデンサ
53もしくは両方に放出するノズル58を備えている。
2. Description of the Related Art FIG.
FIG. 1 is a configuration diagram of a conventional refrigeration cycle device disclosed in Japanese Patent Laid-Open No. H10-208, and shows a watering facility for vehicle air conditioning. In the figure, a refrigeration cycle 51 includes a condenser 52, a sub-condenser 53, an expansion valve 54, an evaporator 55, and a compressor 56. Below the evaporator 55, there is provided a container 57 for receiving the condensed water attached to the evaporator 55, and a nozzle 58 for discharging the condensed water in the container 57 to the condenser 52 or the sub-condenser 53 or both.

【0003】さらに、冷凍サイクル51内の圧力を測定
する圧力センサ59と、温度を測定する車室内温度セン
サ60を備え、圧力センサ59の設置場所はサブコンデ
ンサ53の出口に取り付けてある。そこで、圧力センサ
59にて検出された圧力信号と、車室内温度センサ60
にて検出された温度信号とが、制御装置61に入力され
る。そして、この制御装置61にて、ポンプ62により
コンデンサ前面の容器63内に供給する凝縮水の供給量
を制御するための供給量の信号を送出する。
Further, a pressure sensor 59 for measuring the pressure in the refrigeration cycle 51 and a vehicle interior temperature sensor 60 for measuring the temperature are provided. The pressure sensor 59 is installed at the outlet of the sub-condenser 53. Therefore, the pressure signal detected by the pressure sensor 59 and the vehicle interior temperature sensor 60
And the temperature signal detected by the control unit 61 are input to the control device 61. Then, the control device 61 sends out a supply amount signal for controlling the supply amount of the condensed water supplied into the container 63 on the front of the condenser by the pump 62.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の冷
凍サイクル装置では、圧力信号や温度信号に基づき凝縮
水へ凝縮水を放出するため、圧力や温度に変化が生じた
場合は、放出動作の応答遅れが生じてしまうという問題
点があった。また、凝縮水のみでは凝縮器の冷却効果は
さほど得られず、また、室内環境の快適性を考慮してい
ないため快適性を阻害することがあるという問題点があ
った。
In the above-described conventional refrigeration cycle apparatus, since the condensed water is released to the condensed water based on the pressure signal and the temperature signal, when the pressure or the temperature changes, the discharging operation is performed. There is a problem that a response delay occurs. In addition, there is a problem that the cooling effect of the condenser is not so much obtained only with the condensed water, and the comfort may be hindered because the comfort of the indoor environment is not considered.

【0005】この発明は、上述のような課題を解決する
ためになされたもので、応答遅れが生じることなく凝縮
器へ散水を行い、空調機の消費電力を削減するととも
に、水を無駄にすることなく効率的に散水を行い、被空
調域の室内温度、室内湿度の制御も行い、快適性と省エ
ネルギーを両立する冷凍サイクル装置を提供することで
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and water is sprinkled on a condenser without delay in response, thereby reducing power consumption of an air conditioner and wasting water. An object of the present invention is to provide a refrigeration cycle device that performs water spraying efficiently without controlling the indoor temperature and indoor humidity in the air-conditioned area, and achieves both comfort and energy saving.

【0006】[0006]

【課題を解決するための手段】この発明に係る冷凍サイ
クル装置は、凝縮器へ散水する散水手段と、外気温度を
検出する外気温度検出手段と、外気温度に基づいて凝縮
器への散水量を演算する散水量演算手段と、この散水量
演算手段による散水量になるように、散水手段による散
水量を制御する散水制御手段とを備え、外気温度検出手
段により検出された外気温度に基づいて、外気温度の未
来値を予測し、この外気温度の予測値に基づいて散水量
演算手段により散水量を演算するものである。
SUMMARY OF THE INVENTION A refrigeration cycle apparatus according to the present invention includes a water sprinkling means for sprinkling water to a condenser, an outside air temperature detecting means for detecting an outside air temperature, and a water sprinkling amount to the condenser based on the outside air temperature. A watering amount calculating means for calculating, and a watering control means for controlling a watering amount by the watering means so as to be a watering amount by the watering amount calculating means, based on the outside air temperature detected by the outside air temperature detecting means, A future value of the outside air temperature is predicted, and the watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature.

【0007】また、凝縮器へ散水する散水手段と、外気
温度を検出する外気温度検出手段と、外気湿度を検出す
る外気湿度検出手段と、外気温度および外気湿度に基づ
いて凝縮器への散水量を演算する散水量演算手段と、こ
の散水量演算手段による散水量になるように、散水手段
による散水量を制御する散水制御手段とを備え、外気温
度検出手段および外気湿度検出手段により検出された外
気温度および外気湿度に基づいて、外気温度および外気
湿度の未来値を予測し、この外気温度および外気湿度の
予測値に基づいて散水量演算手段により散水量を演算す
るものである。
[0007] Further, water sprinkling means for sprinkling water to the condenser, outside air temperature detecting means for detecting the outside air temperature, outside air humidity detecting means for detecting the outside air humidity, and the amount of water sprayed to the condenser based on the outside air temperature and the outside air humidity. And a watering control means for controlling the watering amount by the watering means so that the watering amount becomes the watering amount by the watering amount calculating means, and the watering amount is detected by the outside air temperature detecting means and the outdoor air humidity detecting means. The future value of the outside air temperature and the outside air humidity is predicted based on the outside air temperature and the outside air humidity, and the watering amount is calculated by the watering amount calculating means based on the predicted values of the outside air temperature and the outside air humidity.

【0008】また、圧縮機の運転容量を制御する運転容
量制御手段を備え、運転容量制御手段により検出された
運転容量に基づいて、運転容量の未来値を予測し、この
運転容量の予測値および外気温度または外気湿度の予測
値に基づいて、散水量演算手段により散水量を演算する
ものである。
[0008] The present invention further comprises operating capacity control means for controlling the operating capacity of the compressor, and predicts a future value of the operating capacity based on the operating capacity detected by the operating capacity control means. The watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature or the outside air humidity.

【0009】さらに、冷凍サイクル装置の消費電力を検
出する消費電力検出手段を備え、消費電力検出手段によ
り検出された消費電力に基づいて、消費電力の未来値を
予測し、この消費電力の予測値および外気温度または外
気湿度の予測値に基づいて、散水量演算手段により散水
量を演算するものである。
[0009] Further, there is provided a power consumption detecting means for detecting the power consumption of the refrigeration cycle apparatus, and a future value of the power consumption is predicted based on the power consumption detected by the power consumption detecting means. The watering amount is calculated by the watering amount calculating means on the basis of the predicted value of the outside air temperature or the outside air humidity.

【0010】また、冷凍サイクル装置の凝縮温度を検出
する凝縮温度検出手段を備え、凝縮温度検出手段により
検出された凝縮温度に基づいて、凝縮温度の未来値を予
測し、この凝縮温度の予測値および外気温度または外気
湿度の予測値に基づいて、散水量演算手段により散水量
を演算するものである。
In addition, the apparatus is provided with a condensing temperature detecting means for detecting the condensing temperature of the refrigeration cycle device, and predicts a future value of the condensing temperature based on the condensing temperature detected by the condensing temperature detecting means, The watering amount is calculated by the watering amount calculating means on the basis of the predicted value of the outside air temperature or the outside air humidity.

【0011】また、冷凍サイクル装置の凝縮圧力を検出
する凝縮圧力検出手段を備え、凝縮圧力検出手段により
検出された凝縮圧力に基づいて凝縮圧力の未来値を予測
し、この凝縮圧力の予測値および外気温度または外気湿
度の予測値に基づいて、散水量演算手段により散水量を
演算するものである。
Further, the apparatus is provided with a condensing pressure detecting means for detecting the condensing pressure of the refrigeration cycle device, and predicts a future value of the condensing pressure based on the condensing pressure detected by the condensing pressure detecting means. The watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature or the outside air humidity.

【0012】また、冷却対象の室内空気の乾球温度を検
出する室内温度検出手段と、冷却対象の室内空気の湿度
を検出する室内湿度検出手段と、蒸発器の蒸発温度を検
知する蒸発温度検出手段と、凝縮器へ散水する散水手段
と、凝縮器への散水量を演算する散水量演算手段と、こ
の散水量演算手段による散水量になるように、散水手段
による散水量を制御する散水制御手段とを備え、散水量
演算手段は、室内温度検出手段による室内温度、室内湿
度検出手段による室内湿度、蒸発温度検出手段による蒸
発温度に基づいて凝縮器への散水量を演算するものであ
る。
Further, an indoor temperature detecting means for detecting a dry bulb temperature of indoor air to be cooled, an indoor humidity detecting means for detecting humidity of indoor air to be cooled, and an evaporating temperature detecting means for detecting an evaporating temperature of an evaporator. Means, watering means for watering the condenser, watering amount calculating means for calculating the watering amount to the condenser, and watering control for controlling the watering amount by the watering means such that the watering amount is calculated by the watering amount calculating means. Means for calculating the amount of water sprayed on the condenser based on the indoor temperature by the indoor temperature detecting means, the indoor humidity by the indoor humidity detecting means, and the evaporation temperature by the evaporating temperature detecting means.

【0013】また、蒸発器へ送風する送風機の送風量を
制御する蒸発器送風量制御手段または/および凝縮器へ
送風する送風機の送風量を制御する凝縮器送風量制御手
段を備え、散水量演算手段により演算された散水量に応
じて、蒸発器送風量制御手段または/および凝縮器送風
量制御手段により、蒸発器または/および凝縮器への送
風量を制御するものである。
[0013] Further, there is provided an evaporator air volume control means for controlling the air volume of a blower for blowing to the evaporator and / or a condenser air volume control means for controlling the air volume of a blower for blowing to the condenser. The amount of air blown to the evaporator and / or the condenser is controlled by the evaporator air flow control means and / or the condenser air flow control means in accordance with the water spray amount calculated by the means.

【0014】また、凝縮器へ散水する散水手段と、この
散水手段による散水量を制御する散水制御手段と、凝縮
器の表面下部に設けられ、凝縮器表面上の水分を検出す
る第1の水分検出手段と、凝縮器の下方に設けられ、凝
縮器表面から流れ落ちる水分を検出する第2の水分検出
手段とを備え、散水制御手段により、第1の水分検出手
段により水分が検出される状態、かつ、第2の水分検出
手段により水分が検出されない状態になるように散水手
段による散水量を制御するものである。
Watering means for watering the condenser, watering control means for controlling the amount of watering by the watering means, and first water provided below the surface of the condenser and detecting water on the surface of the condenser. Detecting means, provided below the condenser, and provided with second moisture detecting means for detecting moisture flowing down from the condenser surface, and a state in which moisture is detected by the first moisture detecting means by the watering control means; In addition, the amount of water sprayed by the water spraying means is controlled so that water is not detected by the second water detecting means.

【0015】[0015]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1を示す冷凍サイクル装置の構成図、図2は
この冷凍サイクル装置において、外気温度と散水の有無
による消費電力の関係を示す図、図3はこの冷凍サイク
ル装置において、外気温度に対して全て有効に使える必
要散水量を示す図、図4はこの冷凍サイクル装置におい
て、外気温度Toの未来値の予測演算を示すグラフ図、図
5はこの冷凍サイクル装置において、外気温度による散
水量制御を示すフローチャートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention, FIG. 2 is a view showing a relationship between outside air temperature and power consumption depending on the presence or absence of water spraying in this refrigeration cycle apparatus, and FIG. In FIG. 4, a diagram showing the required watering amount that can be used effectively with respect to the outside air temperature, FIG. 4 is a graph showing a prediction calculation of a future value of the outside air temperature To in this refrigeration cycle device, and FIG. It is a flow chart which shows sprinkling amount control by outside air temperature.

【0016】図において、冷凍サイクル装置は、被空調
域である室内4内に室内機3が設置され、冷媒配管で室
外の室外機2と接続される。室内機3と室外機2より冷
凍サイクルが構成され、冷媒を圧縮する圧縮機11と、
凝縮器12、膨張弁を示す絞り機構13、蒸発器14、
四方弁15が冷媒管により連結される。凝縮器12には
凝縮温度検出手段36、凝縮圧力検出手段37が設置さ
れる。また、室内4内に室内温度検出手段31と、室内
湿度検出手段32が設置されている。
In the figure, the refrigeration cycle apparatus has an indoor unit 3 installed in a room 4 which is an area to be air-conditioned, and is connected to an outdoor unit 2 outside by a refrigerant pipe. A refrigerating cycle is constituted by the indoor unit 3 and the outdoor unit 2, and a compressor 11 for compressing a refrigerant;
A condenser 12, a throttle mechanism 13 showing an expansion valve, an evaporator 14,
The four-way valve 15 is connected by a refrigerant pipe. The condenser 12 is provided with a condensing temperature detecting means 36 and a condensing pressure detecting means 37. Further, an indoor temperature detecting means 31 and an indoor humidity detecting means 32 are installed in the room 4.

【0017】この実施の形態1では、冷房を対象として
説明するので、四方弁15により室内機3内に蒸発器1
4、室外機2内に凝縮器12が設定される。凝縮器1
2、蒸発器14にはそれぞれ凝縮器送風機16、蒸発器
送風機17が近接して設置される。蒸発器14には、冷
媒の蒸発温度を検出する蒸発温度検出手段33が設置さ
れ、冷凍サイクル装置の運転制御を行う制御器18の入
力側には室内温度検出手段31、室内湿度検出手段3
2、蒸発温度検出手段33が接続され、出力側には圧縮
機11、蒸発器送風機17、凝縮器送風機16が接続さ
れる。電源には室外機2の消費電力を検出する消費電力
検出手段38が接続される。
In the first embodiment, since the description will be made for cooling, the evaporator 1 is installed in the indoor unit 3 by the four-way valve 15.
4. The condenser 12 is set in the outdoor unit 2. Condenser 1
2. A condenser blower 16 and an evaporator blower 17 are installed close to the evaporator 14, respectively. The evaporator 14 is provided with an evaporating temperature detecting means 33 for detecting the evaporating temperature of the refrigerant, and the input side of the controller 18 for controlling the operation of the refrigeration cycle apparatus is provided with the indoor temperature detecting means 31 and the indoor humidity detecting means 3.
2. The evaporating temperature detecting means 33 is connected, and the compressor 11, the evaporator blower 17, and the condenser blower 16 are connected to the output side. The power supply is connected to power consumption detection means 38 for detecting the power consumption of the outdoor unit 2.

【0018】また、室外機2の凝縮器12に付随して散
水ユニット1が設置される。散水ユニット1は、散水手
段を示すスプレーノズル21、流量調整弁22、ストレ
ーナ23が給水口24を有する水道配管により接続され
るとともに、散水制御器25、外気温度検出手段34、
外気湿度検出手段35から構成される。散水制御器25
の入力側には外気温度検出手段34、外気湿度検出手段
35、消費電力検出手段38、制御器18が接続され、
出力側には流量調整弁22が接続される。また、散水制
御器25は散水量演算手段26と散水制御手段27を有
する。
The sprinkling unit 1 is installed along with the condenser 12 of the outdoor unit 2. The spraying unit 1 is connected to a spray nozzle 21, a flow regulating valve 22, and a strainer 23, which are watering means, by a water supply pipe having a water supply port 24, and a watering controller 25, an outside air temperature detecting means 34,
It comprises an outside air humidity detecting means 35. Watering controller 25
Is connected to an outside air temperature detecting means 34, an outside air humidity detecting means 35, a power consumption detecting means 38, and a controller 18,
A flow control valve 22 is connected to the output side. The watering controller 25 has a watering amount calculating means 26 and a watering control means 27.

【0019】次に、動作について説明する。まず、図2
は散水の有無による外気温度と消費電力の関係を示し、
散水有は、一定散水量を行った場合である。そこで、散
水有無による消費電力の入力差を見てみると、外気温度
の低下とともに入力差が小さくなっており、外気温度が
低い場合には、散水量の一部が有効に使われていないこ
とがわかる。そこで、図3に外気温度Toに対して全て有
効に使える必要散水量Gを示す。外気温度Toの低下とと
もに必要散水量は小さくなり、たとえば次式(1)のよう
に表される。 G=0.1711・To+3.9736 ・・・ (1) 散水量演算手段26では、外気温度Toから式(1)の演算
が成され、必要散水量Gを決定する。
Next, the operation will be described. First, FIG.
Indicates the relationship between the outside air temperature and power consumption depending on the presence or absence of watering,
With watering is when a certain amount of watering is performed. Therefore, looking at the difference in input of power consumption depending on whether or not watering is performed, the input difference decreases as the outside air temperature decreases.If the outside air temperature is low, a part of the watering amount is not used effectively. I understand. Therefore, FIG. 3 shows the necessary watering amount G that can be used effectively with respect to the outside air temperature To. The required watering amount decreases as the outside air temperature To decreases, and is expressed, for example, by the following equation (1). G = 0.1711 · To + 3.9736 (1) In the watering amount calculation means 26, the calculation of Expression (1) is performed from the outside air temperature To, and the required watering amount G is determined.

【0020】そこで、このまま、外気温度に応じて必要
散水量Gを散水ユニットから凝縮器12へ散水してもよ
いが、外気温度が上昇傾向または下降傾向にあるとき、
現在の外気温度に基づいて散水量を調整すると散水量の
増減に時間遅れが生ずる場合があり、この時間遅れのた
め高圧カットにより空調機が停止してしまうこともあ
る。そこで、外気温度Toの未来値を予測して、その予測
値により必要散水量Gを決定し、時間遅れを補償する。
Therefore, the required watering amount G may be sprayed from the watering unit to the condenser 12 in accordance with the outside air temperature. However, when the outside air temperature is increasing or decreasing,
Adjusting the watering rate based on the current outside air temperature may cause a time delay in increasing or decreasing the watering rate, and the time delay may cause the air conditioner to stop due to high pressure cut. Therefore, a future value of the outside air temperature To is predicted, the required watering amount G is determined based on the predicted value, and the time delay is compensated.

【0021】予測値算出の一例を図4に示す。図中の記
号yが外気温度Toとする。現在時刻がt0、一定時間間隔
τで現在から過去へt0、t-1、t-2時刻のときの外気温度
検出値をそれぞれy0、y-1、y-2とすると、現在からτ時
間後の時刻t1での外気温度予測値y1は次式(2)のように
表せる。 y1=(y0−y-1)2/(y-1−y-2)+y0 ・・・ (2)
FIG. 4 shows an example of the prediction value calculation. The symbol y in the figure is the outside air temperature To. Assuming that the current time is t0, the fixed time interval τ is from the present to the past at the time t0, t-1, and t-2, and the outside air temperature detection values are y0, y-1, and y-2, respectively, τ hours after the present The outside air temperature predicted value y1 at time t1 can be expressed as the following equation (2). y1 = (y0−y−1) 2 / (y−1−y−2) + y0 (2)

【0022】そこで、演算式(2)により上記外気温度
の時間遅れの補償を行った場合の散水量制御を図5を用
いて説明する。まず、ステップS10では、外気温度To
を検出する。この値は時々刻々3点まで、すなわちt0、
t-1、t-2時刻のときの各外気温度検出値y0、y-1、y-2が
散水制御器25に記憶される。ステップS11では、検
知し記憶されている3点の外気温度Toから式(2)により
外気温度の予測値Toyが演算される。ステップS12で
は、外気温度予測値Toyと散水を行う基準温度として予
め設定された設定外気温度To*を比較して、ToがTo*以上
であるかどうか判断する。ここで、例えば設定外気温度
To*=30℃と設定しておく。
A description will now be given, with reference to FIG. 5, of the watering amount control in the case where the time delay of the outside air temperature is compensated for by the arithmetic expression (2). First, in step S10, the outside air temperature To
Is detected. This value is always up to 3 points, ie t0,
The outside air temperature detection values y0, y-1, and y-2 at the times t-1 and t-2 are stored in the watering controller 25. In step S11, a predicted value Toy of the outside air temperature is calculated from the detected and stored three outside air temperatures To by the equation (2). In step S12, a comparison is made between the predicted outside air temperature value Toy and the set outside air temperature To * preset as a reference temperature for watering to determine whether To is equal to or higher than To *. Here, for example, the set outside air temperature
Set To * = 30 ° C.

【0023】そこで、外気温度の予測値Toyが設定外気
温度To*以上であれば、ステップS13へ進み、上記式
(1)を用いて外気温度の予測値Toyから散水量Gを演算
する。ステップS14では、例えば数十秒間隔等のある
一定制御タイミングを経過したかどうかを判断し、経過
した場合には、ステップ10へ戻り、上記動作を繰り返
す。
If the predicted outside air temperature value Toy is equal to or higher than the set outside air temperature To *, the process proceeds to step S13, where
The water spray amount G is calculated from the predicted value of the outside air temperature Toy using (1). In step S14, it is determined whether or not a certain fixed control timing such as an interval of several tens of seconds has elapsed, and if it has elapsed, the process returns to step 10 and the above operation is repeated.

【0024】この散水量制御は、図1においては、外気
温度検出手段34にて外気温度を検出して散水制御器2
5に記憶し、散水量演算手段26により、記憶された外
気温度検出値から外気温度予測値を演算して、予測値か
ら必要な散水量Gを演算する。この必要散水量Gになる
ように散水制御手段27が流量調整弁22の開度を調節
し、以上の動作をある一定制御タイミングで繰り返し行
う。
In FIG. 1, the water spray amount is controlled by detecting the outside air temperature by the outside air temperature detecting means 34 in FIG.
The water spray amount calculating means 26 calculates an outside air temperature predicted value from the stored outside air temperature detection value, and calculates a required water spray amount G from the predicted value. The watering control means 27 adjusts the opening of the flow control valve 22 so as to reach the required watering amount G, and repeats the above operation at a certain control timing.

【0025】以上のように、この実施の形態1では、散
水による消費電力の低減効果に加え、外気温度に対して
水を過不足無く使用することができ、さらに散水動作の
応答遅れを補償することができる。なお、上記式(2)は
外気温度の予測に用いたものを示したが、空調負荷の増
減によって生じる運転周波数、消費電力、凝縮温度、凝
縮圧力の予測にも用いることができる。また、式(2)で
はなく単純な直線近似による予測でも代用は可能であ
る。
As described above, in the first embodiment, in addition to the effect of reducing the power consumption by watering, water can be used without any excess or shortage with respect to the outside air temperature, and further, the response delay of the watering operation is compensated. be able to. Although the above equation (2) is used for predicting the outside air temperature, it can also be used for predicting the operating frequency, power consumption, condensing temperature, and condensing pressure caused by the increase or decrease of the air conditioning load. Further, instead of the equation (2), prediction by simple linear approximation can be used instead.

【0026】実施の形態2.実施の形態1では室内負荷
を検出する方法として外気温度を検出して必要な散水量
を演算し散水したものを示したが、外気温度以外の検出
値でも必要な散水量を演算し散水することができる。本
実施の形態2では、外気温度以外の検出値による散水に
ついて詳述する。なお、冷凍サイクル装置の構成図は、
図1と同様である。
Embodiment 2 FIG. In the first embodiment, as a method of detecting the indoor load, the method of detecting the outside air temperature and calculating the required amount of water spray and spraying water is shown. However, the detection value other than the outside air temperature may be used to calculate the required amount of water spray and spray water. Can be. In the second embodiment, water sprinkling based on a detected value other than the outside air temperature will be described in detail. The configuration diagram of the refrigeration cycle device is as follows:
It is the same as FIG.

【0027】図6はこの発明の実施の形態2を示す冷凍
サイクル装置の圧縮機の運転容量である運転周波数と必
要散水量の関係を示す図である。図において、周波数fz
の上昇とともに必要散水量は大きくなり、たとえば次式
(3)のように表される。 G=0.0613・fz + 6.2149 ・・・ (3) ここで、周波数が増えていくと冷凍サイクル側では、消
費電力、凝縮温度、凝縮圧力が同時に上昇していくのが
容易に想像できる。
FIG. 6 is a diagram showing the relationship between the operating frequency, which is the operating capacity of the compressor of the refrigeration cycle apparatus according to Embodiment 2 of the present invention, and the required watering amount. In the figure, the frequency fz
The required watering rate increases with the rise of
It is expressed as (3). G = 0.0613 · fz + 6.2149 (3) Here, it can be easily imagined that the power consumption, the condensing temperature, and the condensing pressure simultaneously increase on the refrigeration cycle side as the frequency increases.

【0028】図7はこの発明の実施の形態2を示す冷凍
サイクル装置の消費電力Pと必要散水量の関係を示す図
である。図において、消費電力Pの上昇とともに必要散
水量は大きくなり、たとえば次式(4)のように表され
る。 G=0.0084・P + 5.7879 ・・・ (4)
FIG. 7 is a diagram showing the relationship between the power consumption P and the required watering amount of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure, the required watering amount increases as the power consumption P increases, and is represented, for example, by the following equation (4). G = 0.0084 P + 5.7879 (4)

【0029】図8はこの発明の実施の形態2を示す冷凍
サイクル装置の凝縮温度Tcと必要散水量の関係を示す図
である。図において、凝縮温度Tcの上昇とともに必要散
水量は大きくなり、たとえば次式(5)のように表され
る。 G=1.2223・Tc + 24.24 ・・・ (5)
FIG. 8 is a diagram showing the relationship between the condensing temperature Tc and the required watering amount of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure, the required watering amount increases as the condensing temperature Tc increases, and is expressed, for example, by the following equation (5). G = 1.2223 · Tc + 24.24 ・ ・ ・ (5)

【0030】図9はこの発明の実施の形態2を示す冷凍
サイクル装置の凝縮圧力Pcと必要散水量の関係を示す
図である。図において、凝縮圧力Pcの上昇とともに必
要散水量は大きくなり、たとえば次式(6)のように表さ
れる。 G=3.9832・Pc + 36.303 ・・・ (6) よって、運転周波数、消費電力、凝縮温度、凝縮圧力の
いずれを検知しても必要な散水量を演算することができ
る。
FIG. 9 is a diagram showing the relationship between the condensing pressure Pc and the required watering amount of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure, the required watering amount increases as the condensing pressure Pc increases, and is expressed, for example, by the following equation (6). G = 3.9832 · Pc + 36.303 (6) Therefore, even if any of the operating frequency, power consumption, condensing temperature, and condensing pressure is detected, the required watering amount can be calculated.

【0031】また、必要散水量に影響を及ぼすもう一つ
の要因として、外気湿度がある。図10はこの発明の実
施の形態2を示す冷凍サイクル装置の外気湿度Ro外気温
度Toと必要散水量の関係を示す図である。図において、
外気湿度Roが低い状態では散水した水が蒸散しやすく蒸
発潜熱が有効に使えるので散水量が多くなり、一方、湿
度が高い状態では散水した水が蒸散しにくくなり、必要
以上の散水は無駄となる。そこで、外気湿度Ro、外気温
度Toと必要散水量の関係はたとえば次式(7)のように表
される。 G=(−0.2598・To + 0.0605)・Ro +(0.265・To + 3.8953) ・・・ (7)
Another factor affecting the required watering amount is the outside air humidity. FIG. 10 is a diagram showing the relationship between the outside air humidity Ro outside air temperature To and the required watering amount of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure,
When the outside air humidity Ro is low, the sprinkled water is easy to evaporate and the latent heat of evaporation can be used effectively, so the amount of water sprinkled increases.On the other hand, when the humidity is high, the sprinkled water becomes difficult to evaporate, and unnecessary sprinkling is waste Become. Therefore, the relationship between the outside air humidity Ro, the outside air temperature To, and the required watering amount is expressed, for example, by the following equation (7). G = (-0.2598 · To + 0.0605) · Ro + (0.265 · To + 3.8953) ・ ・ ・ (7)

【0032】図11はこの発明の実施の形態2を示す冷
凍サイクル装置の外気温度、消費電力、外気湿度による
散水量制御を示すフローチャートであり、上記条件を加
味した制御フローを示すが、周波数、消費電力、凝縮温
度、凝縮圧力のいずれを検出しても必要散水量を演算で
きるので、ここでは消費電力を例に説明する。
FIG. 11 is a flow chart showing the control of the watering amount by the outside air temperature, the power consumption and the outside air humidity of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. The control flow taking the above conditions into account is shown. The required watering amount can be calculated by detecting any one of the power consumption, the condensing temperature, and the condensing pressure. Therefore, the power consumption will be described here as an example.

【0033】まず、ステップS20では、外気温度検出
手段34にて外気温度Toを検出する。ステップS21で
は外気湿度検出手段35にて外気湿度Roを検出する。ス
テップS22では消費電力検出手段38により消費電力
Pを検知する。これらの値は時々刻々3点まで、すなわ
ちt0、t-1、t-2時刻のときの外気温度/外気湿度/消費
電力の各検出値y0、y-1、y-2が散水制御器25に記憶さ
れる。
First, at step S20, the outside air temperature detection means 34 detects the outside air temperature To. In step S21, the outside air humidity Ro is detected by the outside air humidity detection means 35. In step S22, the power consumption P is detected by the power consumption detecting means 38. These values are changed up to three points every moment, that is, the detected values y0, y-1, and y-2 of the outside air temperature, the outside air humidity, and the power consumption at the times t0, t-1, and t-2 are determined by the watering controller 25. Is stored.

【0034】ステップS23では、図5のステップS1
2と同様に、たとえば外気温度の設定外気温度と比較し
散水するか判断する。そこで、散水する場合にはステッ
プS24へ進み、散水量演算手段26により、ステップ
S22で検出し記憶されている3点の消費電力Pから式
(2)により消費電力Pの予測値Pyが演算され、ステップ
S25では、予測値Pyから式(4)により必要散水量G'を
求める。
In step S23, step S1 in FIG.
As in the case of 2, it is determined whether or not water is to be sprayed, for example, by comparing with the set outside air temperature. Therefore, in the case of watering, the process proceeds to step S24, and the watering amount calculating means 26 calculates the equation from the three points of power consumption P detected and stored in step S22.
The predicted value Py of the power consumption P is calculated according to (2), and in step S25, the required watering amount G 'is obtained from the predicted value Py by using equation (4).

【0035】ステップS26では、散水量演算手段26
により、ステップS21で検出し記憶されている3点の
外気温度To/外気湿度Roから式(2)により外気温度To/
外気湿度Roの予測値Toy/Royが演算され、この予測値To
y/Royから式(7)により散水量の修正値△Gを求める。
その後、ステップS27では、散水量G'と修正散水量
△Gより必要散水量Gを求め、必要散水量Gになるよう
に散水制御手段27が流量調整弁22の開度を調節す
る。ステップS28では、例えば数十秒間隔等のある一
定制御タイミングを経過したかどうかを判断し、経過し
た場合には、ステップS20へ戻り、上記動作を繰り返
す。
In step S26, the watering amount calculating means 26
From the three points of outside air temperature To / outside humidity Ro detected and stored in step S21, the outside air temperature To /
The predicted value Toy / Roy of the outside air humidity Ro is calculated, and the predicted value To
From y / Roy, the correction value ΔG of the watering amount is obtained by equation (7).
Then, in step S27, the required watering amount G is obtained from the watering amount G 'and the corrected watering amount △ G, and the watering control means 27 adjusts the opening of the flow rate adjusting valve 22 so that the required watering amount G is obtained. In step S28, it is determined whether or not a certain fixed control timing such as an interval of several tens of seconds has elapsed. If the certain control timing has elapsed, the process returns to step S20 and the above operation is repeated.

【0036】なお、上記説明は、消費電力を検出したも
のを示したが、周波数、凝縮温度、凝縮圧力を検出して
も同様に行われることはいうまでもない。以上のよう
に、この実施の形態2では、散水による消費電力の低減
効果に加え、運転周波数、凝縮温度、凝縮圧力、消費電
力、外気温度、外気湿度に対して水を過不足無く使用す
ることができ、さらに散水動作の応答遅れを補償するこ
とができる。
In the above description, the power consumption is detected. However, it goes without saying that the same operation can be performed by detecting the frequency, the condensing temperature, and the condensing pressure. As described above, in the second embodiment, in addition to the effect of reducing the power consumption due to the water spray, it is necessary to use the water with no excess or shortage with respect to the operating frequency, the condensation temperature, the condensation pressure, the power consumption, the outside air temperature, and the outside air humidity. And a response delay of the watering operation can be compensated.

【0037】実施の形態3.図12はこの発明の実施の
形態3を示す冷凍サイクル装置における圧縮機の運転周
波数に対する蒸発器の蒸発温度を示す図、図13はこの
冷凍サイクル装置における圧縮機の運転周波数に対する
顕熱比(以下、SHFという)を示す図、図14はこの
冷凍サイクル装置の圧縮機の運転周波数に対する蒸発器
の吹出温度を示す図である。なお、冷凍サイクル装置の
構成図は、図1と同様である。
Embodiment 3 FIG. 12 is a diagram showing the evaporation temperature of the evaporator with respect to the operating frequency of the compressor in the refrigeration cycle apparatus according to Embodiment 3 of the present invention, and FIG. 13 is the sensible heat ratio (hereinafter referred to as the operating frequency of the compressor in this refrigeration cycle apparatus). , SHF), and FIG. 14 is a diagram showing the outlet temperature of the evaporator with respect to the operating frequency of the compressor of the refrigeration cycle apparatus. The configuration diagram of the refrigeration cycle device is the same as that of FIG.

【0038】次に、被空調域の快適性について考察す
る。まず、被空調域の快適性を向上させるには、室内の
温度制御に加えて、室内の湿度制御を行う必要がある。
冷房の場合には除湿が重要となる。除湿する方法として
は、室内に蒸発器と再熱器を並べて配置するのが理想的
であるが、構造が複雑になる上、コスト高になり、実用
的ではない。そこで、別の方法として、蒸発器14によ
る除湿を考えると、除湿するには蒸発温度を低くし、冷
凍サイクルのSHFを小さくする必要がある。
Next, the comfort of the air-conditioned area will be considered. First, in order to improve the comfort of the air-conditioned area, it is necessary to control indoor humidity in addition to indoor temperature control.
In the case of cooling, dehumidification is important. Ideally, a dehumidifying method is to arrange an evaporator and a reheater side by side in a room, but the structure becomes complicated, the cost increases, and the method is not practical. Then, considering the dehumidification by the evaporator 14 as another method, it is necessary to lower the evaporation temperature and the SHF of the refrigeration cycle to dehumidify.

【0039】蒸発温度を低くするには、圧縮機11の運
転周波数を上げる、蒸発器送風機17の送風量を小さく
する、凝縮器送風機16の送風量を大きくする、などの
方法がある。しかしながら、圧縮機11の運転周波数を
上げると電気入力が大きくなってしまい、蒸発器送風機
17の送風量を小さくすると吹出温度が低くなり被空調
域の快適性が阻害される(図14)、凝縮器送風機16
の送風量を大きくすると蒸発温度低下に差ほど効果がな
い、などのそれぞれ問題点がある。
In order to lower the evaporating temperature, there are methods such as increasing the operating frequency of the compressor 11, reducing the amount of air blown by the evaporator blower 17, and increasing the amount of air blown by the condenser blower 16. However, when the operating frequency of the compressor 11 is increased, the electric input is increased, and when the amount of air blown by the evaporator blower 17 is reduced, the blow-out temperature is lowered and the comfort of the air-conditioned area is impaired (FIG. 14). Air blower 16
However, there is a problem that when the air blowing amount is increased, the effect of reducing the evaporation temperature is not so much different.

【0040】そこで、凝縮器12への散水を行った場合
には、図12に示すように蒸発器14の蒸発温度が下が
り、結果として図13に示すようにSHFが小さくな
り、蒸発器14の吹出温度も凝縮器送風機16の風量も
そのままであり、下がることがないという利点がある。
以上のことから、凝縮器12への散水量を制御すること
により、上記問題点が生じることなく、被空調域の湿度
を制御することが可能となる。
Therefore, when water is sprayed on the condenser 12, the evaporation temperature of the evaporator 14 decreases as shown in FIG. 12, and as a result, the SHF decreases as shown in FIG. There is an advantage that the blowout temperature and the air volume of the condenser blower 16 remain unchanged, and do not decrease.
From the above, by controlling the amount of water sprayed to the condenser 12, it becomes possible to control the humidity of the air-conditioned area without the above-mentioned problems.

【0041】次に、凝縮器への散水量制御による被空調
域の湿度制御について説明する。図15はこの発明の実
施の形態3を示す冷凍サイクル装置の空気線図における
室内空気状態(室内温度Tr、室内湿度Rr)と目標室内空
気状態(目標室内温度Tr*、目標室内湿度Rr*)と目標蒸
発温度Te*の関係を示す図である。図において、室内空
気状態は蒸発器14の入口空気状態に相当し、室内空気
状態と目標室内空気状態を結ぶ直線が飽和線と交差する
点が目標蒸発温度Te*となる。すなわち、この勾配の状
態が冷凍サイクル装置のSHFと被空調室の空調負荷S
HFが等しい状態に相当する。よって、ここで求めた目
標蒸発温度Te*に蒸発温度Teを収束させれば、室内空気
状態を目標室内空気状態にすることができ、以下に図を
用いて説明する。
Next, the control of the humidity of the air-conditioned area by controlling the amount of water sprayed on the condenser will be described. FIG. 15 shows the indoor air condition (indoor temperature Tr, indoor humidity Rr) and the target indoor air condition (target indoor temperature Tr *, target indoor humidity Rr *) in the psychrometric diagram of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. FIG. 5 is a diagram showing a relationship between the target evaporation temperature Te * and the target evaporation temperature Te *. In the figure, the indoor air state corresponds to the inlet air state of the evaporator 14, and the point at which the straight line connecting the indoor air state and the target indoor air state intersects with the saturation line is the target evaporation temperature Te *. That is, the state of this gradient is the SHF of the refrigeration cycle device and the air conditioning load S of the conditioned room.
This corresponds to a state where HF is equal. Therefore, if the evaporation temperature Te is converged to the target evaporation temperature Te * obtained here, the indoor air state can be changed to the target indoor air state, which will be described below with reference to the drawings.

【0042】図16はこの発明の実施の形態3を示す冷
凍サイクル装置における室内温度、室内湿度の散水量制
御ブロック線図である。図において、ステップS40で
は、室内温度検出手段31による室内温度Trと目標室内
温度Tr*の室内温度差△Trを演算し、ステップS41で
は、室内温度差△Trにより圧縮機11の運転周波数fzを
設定する。ここまでは周知の技術である。
FIG. 16 is a control block diagram of the watering amount control of the room temperature and the room humidity in the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In the figure, in step S40, the indoor temperature difference ΔTr between the indoor temperature Tr and the target indoor temperature Tr * by the indoor temperature detecting means 31 is calculated, and in step S41, the operating frequency fz of the compressor 11 is calculated based on the indoor temperature difference ΔTr. Set. This is a well-known technique.

【0043】ステップS42では、室内温度検出手段3
1による室内温度Tr、室内湿度検出手段32による室内
湿度Rrと目標室内温度Tr*、目標室内湿度Rr*から図15
の空気線図の関係から目標蒸発温度Te*を演算する。ス
テップS43では、目標蒸発温度Te*と現在の蒸発温度
との温度差△Teを求める。ステップS44では、蒸発温
度差△Teから散水量G(G = 0.4・△Te + 0.7)を演算
し、必要散水量Gになるように散水制御手段27が流量
調整弁22の開度を調節し、凝縮器12へ散水する。こ
れにより、室内空気状態を目標室内温度Tr*、目標室内
湿度Rr*とする。
In step S42, the room temperature detecting means 3
1 from the indoor temperature Tr, the indoor humidity Rr, the target indoor temperature Tr *, and the target indoor humidity Rr * by the indoor humidity detecting means 32.
The target evaporation temperature Te * is calculated from the relationship of the psychrometric chart. In step S43, a temperature difference ΔTe between the target evaporation temperature Te * and the current evaporation temperature is determined. In step S44, the watering amount G (G = 0.4 · △ Te + 0.7) is calculated from the evaporation temperature difference ΔTe, and the watering control means 27 adjusts the opening of the flow rate regulating valve 22 so that the required watering amount G is obtained. Then, water is sprayed to the condenser 12. Thus, the indoor air condition is set to the target indoor temperature Tr * and the target indoor humidity Rr *.

【0044】以上のように、この実施の形態3では、散
水による電気入力の低減効果に加え、室内温度と室内湿
度の制御が可能となり、省エネと快適性向上を両立でき
る。
As described above, in the third embodiment, in addition to the effect of reducing the electric input by watering, the control of the room temperature and the room humidity becomes possible, and both energy saving and improvement in comfort can be achieved.

【0045】実施の形態4.実施の形態3では、凝縮器
12への散水により室内温度、室内湿度制御が可能とな
るが、被空調域の空調負荷SHFが、さらに小さい場合
には散水のみでは室内湿度制御が困難になる場合があ
る。そこで、実施の形態3の手法に加えて、凝縮器送風
機16の送風量と蒸発器送風機17の送風量の制御を行
い、湿度制御の範囲を広くすることについて、以下に図
を用いて説明する。
Embodiment 4 In the third embodiment, it is possible to control the indoor temperature and the indoor humidity by spraying water to the condenser 12, but if the air conditioning load SHF of the air-conditioned area is even smaller, it becomes difficult to control the indoor humidity only by spraying water. There is. Therefore, in addition to the method of the third embodiment, the control of the blower amount of the condenser blower 16 and the blower amount of the evaporator blower 17 to widen the range of the humidity control will be described below with reference to the drawings. .

【0046】図17はこの発明の実施の形態4を示す冷
凍サイクル装置における室内温度、室内湿度の散水量制
御、蒸発器、凝縮器送風量制御の制御フローチャートで
ある。なお、冷凍サイクル装置の構成図は、図1と同様
である。なお、蒸発器送風量制御手段、凝縮器送風量制
御手段は、制御器18を示す。
FIG. 17 is a control flowchart for controlling the watering amount of the room temperature and the indoor humidity, and controlling the amount of air blown to the evaporator and the condenser in the refrigeration cycle apparatus according to the fourth embodiment of the present invention. The configuration diagram of the refrigeration cycle device is the same as that of FIG. The evaporator air flow control means and the condenser air flow control means represent the controller 18.

【0047】次に、動作について説明する。図におい
て、ステップS50からS57の動作は、上記実施の形
態3の図16のブロック線図の動作と同一であるため、
説明を省略する。ステップS58では、ステップS57
で求めた散水量Gが散水量最大値Gmax(可能最大値)
を超えたかどうかを判断し、超えた場合には、散水量G
をGmaxと設定し、ステップS59で凝縮器送風機16の
送風量Vcをアップする。ステップS60では、凝縮器
送風機16の送風量Vcが凝縮器送風機16の送風量最
大値Vcmaxを超えたかどうかを判断し、超えた場合に
は、凝縮器送風機16の送風量VcはVcmaxに設定し、
ステップS61に進み蒸発器送風機17の送風量Veをダ
ウンする。これら一連の動作により蒸発温度を下げるこ
とが可能となる。
Next, the operation will be described. In the figure, the operations in steps S50 to S57 are the same as the operations in the block diagram of FIG.
Description is omitted. In step S58, step S57
The watering amount G obtained in the above is the maximum watering amount Gmax (maximum possible value)
Is determined, and if it is exceeded, the amount of watering G
Is set to Gmax, and the air flow Vc of the condenser blower 16 is increased in step S59. In step S60, it is determined whether or not the air flow Vc of the condenser blower 16 has exceeded the maximum air flow amount Vcmax of the condenser blower 16, and if so, the air flow Vc of the condenser blower 16 is set to Vcmax. ,
Proceeding to step S61, the air flow Ve of the evaporator air blower 17 is reduced. These series of operations make it possible to lower the evaporation temperature.

【0048】また、ステップS58で散水量Gが散水量
最大値Gmax(可能最大値)を超えない場合には、ステ
ップS63で凝縮器送風機16の送風量Vcをダウン
し、ステップS64で蒸発器送風機17の送風量Veを
アップする。さらに、ステップS60で凝縮器送風機1
6の送風量Vcが凝縮器送風機16の送風量最大値Vcm
axを超えない場合には、ステップS64で蒸発器送風機
17の送風量Veはアップする。その後、ステップS6
2では、例えば数十秒間隔等のある一定制御タイミング
を経過したかどうかを判断し、経過した場合には、ステ
ップS51へ戻り、上記動作を繰り返す。
If the sprinkling amount G does not exceed the sprinkling amount maximum value Gmax (maximum possible value) in step S58, the blowing amount Vc of the condenser blower 16 is reduced in step S63, and in step S64, the evaporator blower is reduced. The amount of air Ve 17 is increased. Further, in step S60, the condenser blower 1
6 is the maximum air flow Vcm of the condenser blower 16
If it does not exceed ax, the flow rate Ve of the evaporator blower 17 increases in step S64. Then, step S6
In 2, it is determined whether a certain control timing such as an interval of several tens of seconds has passed, and if it has passed, the flow returns to step S51 to repeat the above operation.

【0049】以上のように、この実施の形態4では、散
水による電気入力の低減効果に加え、室内温度と室内湿
度の制御が広い温度、湿度範囲で可能となり、省エネと
快適性向上を両立できる。
As described above, in the fourth embodiment, in addition to the effect of reducing the electric input by watering, the control of the room temperature and the room humidity can be performed in a wide temperature and humidity range, and both energy saving and improvement in comfort can be achieved. .

【0050】実施の形態5.図18はこの発明の実施の
形態5を示す冷凍サイクル装置の一部構成図であり、散
水ユニットおよび凝縮器のみの構成を示す。なお、散水
ユニットおよび凝縮器以外の構成は、図示していない
が、図1と同一である。図において、図1と同一または
相当部分には同一符号を付け、説明を省略する。40は
凝縮器12の下端部表面に取り付けられ、凝縮器12表
面の水分の有無を検出する第1の水分センサ、41は凝
縮器12近傍の下方に取り付けられ、凝縮器12から流
れ落ちた水分の有無を検出する第2の水分センサであ
る。なお、第1の水分センサ、第2の水分センサは、そ
れぞれ第1の水分検出手段、第2の水分検出手段を示
す。
Embodiment 5 FIG. 18 is a partial configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention, and shows only the configuration of a watering unit and a condenser. The configuration other than the water sprinkling unit and the condenser is not shown, but is the same as that of FIG. In the figure, the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. A first moisture sensor 40 is attached to the lower end surface of the condenser 12 and detects the presence or absence of moisture on the surface of the condenser 12. A first moisture sensor 41 is attached below the vicinity of the condenser 12 and detects water flowing down from the condenser 12. It is a second moisture sensor for detecting the presence or absence. Note that the first moisture sensor and the second moisture sensor represent a first moisture detecting unit and a second moisture detecting unit, respectively.

【0051】次に動作について説明する。本実施形態で
は、凝縮器12への散水動作について説明する。最も効
率的に散水するには、凝縮器12が満遍なく濡れた状態
で、かつ、凝縮器12の下方へ水が流れ落ちないように
散水量を設定することが必要である。そこで、第1の水
分センサ40により凝縮器12下端表面の水分有りを検
出し、かつ、第2の水分センサ41により凝縮器12か
ら離れた下方に水分を検出しないように、スプレーノズ
ル21により散水を行う。
Next, the operation will be described. In the present embodiment, an operation of watering the condenser 12 will be described. In order to spray water most efficiently, it is necessary to set the amount of water sprayed so that the condenser 12 is uniformly wet and the water does not flow down below the condenser 12. Therefore, water spraying is performed by the spray nozzle 21 so that the first moisture sensor 40 detects the presence of moisture on the lower end surface of the condenser 12 and the second moisture sensor 41 does not detect moisture downward away from the condenser 12. I do.

【0052】すなわち、第1の水分センサ40と第2の
水分センサ41ともに水を検出せず、乾いた状態の場合
には、散水制御部25により流量調整弁22の開度を大
にして散水量をアップさせる。また、第1の水分センサ
40と第2の水分センサ41ともに濡れた状態では、流
量調整弁22の開度を小にして散水量をダウンさせる。
さらに、第1の水分センサ40が濡れた状態、かつ、第
2の水分センサ41が乾いた状態の場合には、効率的に
散水されているため、流量調整弁22の開度は変更せ
ず、現状の散水量を保持する。なお、この実施形態で
は、散水動作のみを説明したが、散水以外の動作につい
ては上記各実施形態のように行ってもよいことはいうま
でもない。
That is, when the first moisture sensor 40 and the second moisture sensor 41 do not detect water and are in a dry state, the sprinkling control unit 25 increases the opening of the flow control valve 22 to increase the sprinkling. Increase the amount of water. When both the first moisture sensor 40 and the second moisture sensor 41 are wet, the opening of the flow control valve 22 is reduced to reduce the amount of water spray.
Further, when the first moisture sensor 40 is in a wet state and the second moisture sensor 41 is in a dry state, water is efficiently sprinkled, so that the opening of the flow control valve 22 is not changed. , Keep the current watering rate. In this embodiment, only the watering operation has been described, but it goes without saying that operations other than watering may be performed as in the above embodiments.

【0053】以上のように、この実施例においては、散
水による電気入力の低減効果に加え、常に凝縮器が濡
れ、かつ、凝縮器の下方に水が流れ落ちないように散水
するので、無駄に散水することがなく、水の節約を行う
ことができる。
As described above, in this embodiment, in addition to the effect of reducing the electric input by watering, the water is sprayed so that the condenser is always wet and the water does not flow down below the condenser. Water can be saved.

【0054】[0054]

【発明の効果】この発明は、以上のように構成されてい
るので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0055】凝縮器へ散水する散水手段と、外気温度を
検出する外気温度検出手段と、外気温度に基づいて凝縮
器への散水量を演算する散水量演算手段と、この散水量
演算手段による散水量になるように、散水手段による散
水量を制御する散水制御手段とを備え、外気温度検出手
段により検出された外気温度に基づいて、外気温度の未
来値を予測し、この外気温度の予測値に基づいて散水量
演算手段により散水量を演算するので、凝縮温度の低下
による消費電力の低減効果に加え、外気温度に対して水
を過不足無く使用することができ、さらに散水動作の応
答遅れを補償することができる。
Watering means for spraying water to the condenser, outdoor temperature detecting means for detecting the outside air temperature, watering amount calculating means for calculating the watering amount to the condenser based on the outside air temperature, and watering by the watering amount calculating means Water sprinkling control means for controlling the amount of water sprinkled by the water sprinkling means so that the amount of water is obtained.Based on the outside air temperature detected by the outside air temperature detecting means, a future value of the outside air temperature is predicted. The watering amount is calculated by the watering amount calculating means based on the water temperature, so that in addition to the effect of reducing the power consumption due to the lowering of the condensing temperature, water can be used without excess and deficiency with respect to the outside air temperature, and further, the response delay of the watering operation Can be compensated for.

【0056】また、凝縮器へ散水する散水手段と、外気
温度を検出する外気温度検出手段と、外気湿度を検出す
る外気湿度検出手段と、外気温度および外気湿度に基づ
いて凝縮器への散水量を演算する散水量演算手段と、こ
の散水量演算手段による散水量になるように、散水手段
による散水量を制御する散水制御手段とを備え、外気温
度検出手段および外気湿度検出手段により検出された外
気温度および外気湿度に基づいて、外気温度および外気
湿度の未来値を予測し、この外気温度および外気湿度の
予測値に基づいて散水量演算手段により散水量を演算す
るので、凝縮温度の低下による消費電力の低減効果に加
え、外気温度、外気湿度に対して水を過不足無く使用す
ることができ、さらに散水動作の応答遅れを補償するこ
とができる。
Further, water sprinkling means for sprinkling water to the condenser, outside air temperature detecting means for detecting the outside air temperature, outside air humidity detecting means for detecting the outside air humidity, and the amount of water sprayed to the condenser based on the outside air temperature and the outside air humidity. And a watering control means for controlling the watering amount by the watering means so that the watering amount becomes the watering amount by the watering amount calculating means, and the watering amount is detected by the outside air temperature detecting means and the outdoor air humidity detecting means. A future value of the outside air temperature and the outside air humidity is predicted based on the outside air temperature and the outside air humidity, and a watering amount is calculated by the watering amount calculating means based on the predicted values of the outside air temperature and the outside air humidity. In addition to the effect of reducing the power consumption, water can be used without any excess or shortage with respect to the outside air temperature and the outside air humidity, and the response delay of the watering operation can be compensated.

【0057】さらに、圧縮機の運転容量を制御する運転
容量制御手段を備え、運転容量制御手段により検出され
た運転容量に基づいて、運転容量の未来値を予測し、こ
の運転容量の予測値および外気温度または外気湿度の予
測値に基づいて、散水量演算手段により散水量を演算す
るので、散水による消費電力の低減効果に加え、運転周
波数に対して水を過不足無く使用することができ、さら
に散水動作の応答遅れを補償することができる。
Further, there is provided operating capacity control means for controlling the operating capacity of the compressor, and a future value of the operating capacity is predicted based on the operating capacity detected by the operating capacity control means. Since the watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature or the outside air humidity, in addition to the effect of reducing the power consumption by watering, water can be used for the operating frequency without excess or shortage, Further, it is possible to compensate for a response delay of the watering operation.

【0058】また、冷凍サイクル装置の消費電力を検出
する消費電力検出手段を備え、消費電力検出手段により
検出された消費電力に基づいて、消費電力の未来値を予
測し、この消費電力の予測値および外気温度または外気
湿度の予測値に基づいて、散水量演算手段により散水量
を演算するので、散水による消費電力の低減効果に加
え、消費電力に対して水を過不足無く使用することがで
き、さらに散水動作の応答遅れを補償することができ
る。
[0058] The apparatus further comprises a power consumption detecting means for detecting the power consumption of the refrigeration cycle device, and predicts a future value of the power consumption based on the power consumption detected by the power consumption detecting means. Based on the predicted value of the outside air temperature or the outside air humidity, the watering amount is calculated by the watering amount calculation means, so that in addition to the effect of reducing the power consumption by watering, water can be used for the power consumption without excess or shortage. In addition, the response delay of the watering operation can be compensated.

【0059】また、冷凍サイクル装置の凝縮温度を検出
する凝縮温度検出手段を備え、凝縮温度検出手段により
検出された凝縮温度に基づいて、凝縮温度の未来値を予
測し、この凝縮温度の予測値および外気温度または外気
湿度の予測値に基づいて、散水量演算手段により散水量
を演算するので、散水による消費電力の低減効果に加
え、凝縮温度に対して水を過不足無く使用することがで
き、さらに散水動作の応答遅れを補償することができる
Further, a condensing temperature detecting means for detecting the condensing temperature of the refrigeration cycle device is provided, and a future value of the condensing temperature is predicted based on the condensing temperature detected by the condensing temperature detecting means, and the predicted value of the condensing temperature is calculated. Based on the predicted value of the outside air temperature or the outside air humidity, the watering amount is calculated by the watering amount calculation means, so that in addition to the effect of reducing the power consumption by watering, water can be used to the condensation temperature without excess or shortage. , Can further compensate the response delay of watering operation

【0060】また、冷凍サイクル装置の凝縮圧力を検出
する凝縮圧力検出手段を備え、凝縮圧力検出手段により
検出された凝縮圧力に基づいて凝縮圧力の未来値を予測
し、この凝縮圧力の予測値および外気温度または外気湿
度の予測値に基づいて、散水量演算手段により散水量を
演算するので、散水による消費電力の低減効果に加え、
凝縮圧力に対して水を過不足無く使用することができ、
さらに散水動作の応答遅れを補償することができる。
Further, the apparatus is provided with a condensing pressure detecting means for detecting the condensing pressure of the refrigeration cycle device, and predicts a future value of the condensing pressure based on the condensing pressure detected by the condensing pressure detecting means, Based on the predicted value of the outside air temperature or the outside air humidity, the watering amount is calculated by the watering amount calculation means, in addition to the effect of reducing the power consumption by watering,
Water can be used for the condensation pressure without excess or shortage,
Further, it is possible to compensate for a response delay of the watering operation.

【0061】また、冷却対象の室内空気の乾球温度を検
出する室内温度検出手段と、冷却対象の室内空気の湿度
を検出する室内湿度検出手段と、蒸発器の蒸発温度を検
知する蒸発温度検出手段と、凝縮器へ散水する散水手段
と、凝縮器への散水量を演算する散水量演算手段と、こ
の散水量演算手段による散水量になるように、散水手段
による散水量を制御する散水制御手段とを備え、散水量
演算手段は、室内温度検出手段による室内温度、室内湿
度検出手段による室内湿度、蒸発温度検出手段による蒸
発温度に基づいて凝縮器への散水量を演算するので、散
水による電気入力の低減効果に加え、室内温度と室内湿
度の制御が可能となり省エネと快適性向上を両立でき
る。
Further, an indoor temperature detecting means for detecting the dry bulb temperature of the indoor air to be cooled, an indoor humidity detecting means for detecting the humidity of the indoor air to be cooled, and an evaporating temperature detecting means for detecting the evaporating temperature of the evaporator. Means, watering means for watering the condenser, watering amount calculating means for calculating the watering amount to the condenser, and watering control for controlling the watering amount by the watering means such that the watering amount is calculated by the watering amount calculating means. Means for calculating the amount of water sprayed on the condenser based on the indoor temperature by the indoor temperature detecting means, the indoor humidity by the indoor humidity detecting means, and the evaporation temperature by the evaporating temperature detecting means. In addition to the effect of reducing the electric input, it is possible to control the indoor temperature and the indoor humidity, and it is possible to achieve both energy saving and improved comfort.

【0062】また、蒸発器へ送風する送風機の送風量を
制御する蒸発器送風量制御手段または/および凝縮器へ
送風する送風機の送風量を制御する凝縮器送風量制御手
段を備え、散水量演算手段により演算された散水量に応
じて、蒸発器送風量制御手段または/および凝縮器送風
量制御手段により、蒸発器または/および凝縮器への送
風量を制御するので、散水による電気入力の低減効果に
加え、室内温度と室内湿度の制御が広い温度、湿度範囲
で可能となり省エネと快適性向上を両立できる。
Further, there is provided an evaporator air volume control means for controlling the air volume of a blower for blowing air to the evaporator and / or a condenser air volume control means for controlling the air volume of the blower for blowing air to the condenser. The amount of water blown to the evaporator and / or the condenser is controlled by the evaporator air flow control means and / or the condenser air flow control means in accordance with the water spray amount calculated by the means. In addition to the effects, it is possible to control the indoor temperature and the indoor humidity in a wide temperature and humidity range, and it is possible to achieve both energy saving and improved comfort.

【0063】また、凝縮器へ散水する散水手段と、この
散水手段による散水量を制御する散水制御手段と、凝縮
器の表面下部に設けられ、凝縮器表面上の水分を検出す
る第1の水分検出手段と、凝縮器の下方に設けられ、凝
縮器表面から流れ落ちる水分を検出する第2の水分検出
手段とを備え、散水制御手段により、第1の水分検出手
段により水分が検出される状態、かつ、第2の水分検出
手段により水分が検出されない状態になるように散水手
段による散水量を制御するので、散水による電気入力の
低減効果に加え、常に凝縮器が濡れた状態に散水し、無
駄に散水することがないので水の節約になる。
Water spraying means for spraying water to the condenser, water spraying control means for controlling the amount of water sprayed by the water spraying means, and first water for detecting water on the surface of the condenser, which is provided below the surface of the condenser. Detecting means, provided below the condenser, and provided with second moisture detecting means for detecting moisture flowing down from the condenser surface, and a state in which moisture is detected by the first moisture detecting means by the watering control means; In addition, since the amount of water sprayed by the water spraying means is controlled so that water is not detected by the second water detecting means, in addition to the effect of reducing the electric input by watering, water is constantly sprayed in a wet state of the condenser, and waste is generated. Water is not saved, so water is saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す冷凍サイクル
装置の構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1を示す冷凍サイクル
装置における外気温度と散水の有無による消費電力の関
係を示す図である。
FIG. 2 is a diagram illustrating a relationship between an outside air temperature and power consumption depending on whether or not water is sprayed in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1を示す冷凍サイクル
装置における外気温度に対して全て有効に使える必要散
水量を示す図である。
FIG. 3 is a diagram illustrating a required watering amount that can be used effectively with respect to the outside air temperature in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図4】 この発明の実施の形態1を示す冷凍サイクル
装置における外気温度の未来値の予測演算を示す図であ
る。
FIG. 4 is a diagram showing a prediction calculation of a future value of an outside air temperature in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図5】 この発明の実施の形態1を示す冷凍サイクル
装置における外気温度による散水量制御を示すフローチ
ャートである。
FIG. 5 is a flowchart showing water spouting amount control based on outside air temperature in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図6】 この発明の実施の形態2を示す冷凍サイクル
装置における圧縮機運転周波数と必要散水量の関係を示
す図である。
FIG. 6 is a diagram illustrating a relationship between a compressor operating frequency and a required watering amount in a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図7】 この発明の実施の形態2を示す冷凍サイクル
装置における消費電力と必要散水量の関係を示す図であ
る。
FIG. 7 is a diagram showing a relationship between power consumption and a required watering amount in a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図8】 この発明の実施の形態2を示す冷凍サイクル
装置における凝縮温度と必要散水量の関係を示す図であ
る。
FIG. 8 is a diagram illustrating a relationship between a condensing temperature and a required watering amount in a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図9】 この発明の実施の形態2を示す冷凍サイクル
装置における凝縮圧力と必要散水量の関係を示す図であ
る。
FIG. 9 is a diagram illustrating a relationship between a condensing pressure and a required watering amount in a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図10】 この発明の実施の形態2を示す冷凍サイク
ル装置における外気湿度、外気温度と必要散水量の関係
を示す図である。
FIG. 10 is a diagram showing a relationship between outside air humidity, outside air temperature and a required watering amount in the refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図11】 この発明の実施の形態2を示す冷凍サイク
ル装置における外気温度、消費電力、外気湿度による散
水量制御を示すフローチャートである。
FIG. 11 is a flowchart showing water spouting amount control based on outside air temperature, power consumption, and outside air humidity in a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図12】 この発明の実施の形態3を示す冷凍サイク
ル装置における圧縮機の運転周波数に対する蒸発器の蒸
発温度を示す図である。
FIG. 12 is a diagram showing an evaporating temperature of an evaporator with respect to an operating frequency of a compressor in a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図13】 この発明の実施の形態3を示す冷凍サイク
ル装置における圧縮機の運転周波数に対する顕熱比を示
す図である。
FIG. 13 is a diagram illustrating a sensible heat ratio with respect to an operating frequency of a compressor in a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図14】 この発明の実施の形態3を示す冷凍サイク
ル装置における圧縮機の運転周波数に対する蒸発器の吹
出温度を示す図である。
FIG. 14 is a diagram showing a blowing temperature of an evaporator with respect to an operating frequency of a compressor in a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図15】 この発明の実施の形態3を示す冷凍サイク
ル装置の空気線図における室内空気状態と目標室内空気
状態と目標蒸発温度の関係を示す図である。
FIG. 15 is a diagram showing a relationship between an indoor air state, a target indoor air state, and a target evaporation temperature in a psychrometric diagram of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図16】 この発明の実施の形態3を示す冷凍サイク
ル装置における室内温度、室内湿度の散水量制御のブロ
ック線図である
FIG. 16 is a block diagram of watering amount control of room temperature and room humidity in a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図17】 この発明の実施の形態4を示す冷凍サイク
ル装置における制御フローチャートである。
FIG. 17 is a control flowchart in a refrigeration cycle apparatus according to Embodiment 4 of the present invention.

【図18】 この発明の実施の形態5を示す冷凍サイク
ル装置の散水ユニットと凝縮器の構成図である。
FIG. 18 is a configuration diagram of a watering unit and a condenser of a refrigeration cycle apparatus showing Embodiment 5 of the present invention.

【図19】 従来の冷凍サイクル装置の構成図である。FIG. 19 is a configuration diagram of a conventional refrigeration cycle device.

【符号の説明】[Explanation of symbols]

1 散水ユニット、 2 室外機、 3 室内機、 4
室内、 11 圧縮機、 12 凝縮器、 13 絞
り機構、 14 蒸発器、 15 四方弁、16 凝縮
器送風機、 17 蒸発器送風機、 18 制御器、
21 スプレーノズル、 22 流量調整弁、 23
ストレーナ、 24 給水口、 25散水制御器、 2
6 散水量演算手段、 27 散水制御手段、 31
室内温度検出手段、 32 室内湿度検出手段、 33
蒸発温度検出手段、 34外気温度検出手段、 35
外気湿度検出手段、 36 凝縮温度検出手段、37
凝縮圧力検出手段、 38 消費電力検出手段、 4
0 第1の水分センサ、 41 第2の水分センサ。
1 watering unit, 2 outdoor unit, 3 indoor unit, 4
Indoor, 11 compressor, 12 condenser, 13 throttle mechanism, 14 evaporator, 15 four-way valve, 16 condenser blower, 17 evaporator blower, 18 controller,
21 spray nozzle, 22 flow control valve, 23
Strainer, 24 water inlets, 25 watering controller, 2
6 Watering amount calculation means, 27 Watering control means, 31
Indoor temperature detecting means, 32 Indoor humidity detecting means, 33
Evaporating temperature detecting means, 34 outside air temperature detecting means, 35
Outside air humidity detecting means, 36 condensation temperature detecting means, 37
Condensation pressure detecting means, 38 Power consumption detecting means, 4
0 first moisture sensor, 41 second moisture sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅波 拓也 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L060 AA03 CC02 CC03 CC04 CC06 CC07 CC10 CC16 DD02 DD08 EE45  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takuya Kanba 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 3L060 AA03 CC02 CC03 CC04 CC06 CC07 CC10 CC16 DD02 DD08 EE45

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、蒸発器、膨張手段を有す
る冷媒回路を形成した冷凍サイクル装置において、 前記凝縮器へ散水する散水手段と、 外気温度を検出する外気温度検出手段と、 外気温度に基づいて前記凝縮器への散水量を演算する散
水量演算手段と、 この散水量演算手段による散水量になるように、前記散
水手段による散水量を制御する散水制御手段とを備え、 前記外気温度検出手段により検出された外気温度に基づ
いて、外気温度の未来値を予測し、この外気温度の予測
値に基づいて前記散水量演算手段により散水量を演算す
ることを特徴とする冷凍サイクル装置。
1. A refrigeration cycle apparatus having a refrigerant circuit having a compressor, a condenser, an evaporator, and an expansion means, wherein: a water spray means for spraying water to the condenser; an outside air temperature detection means for detecting an outside air temperature; Watering amount calculating means for calculating the watering amount to the condenser based on the temperature, and watering control means for controlling the watering amount by the watering means so that the watering amount by the watering amount calculating means, A refrigeration cycle wherein a future value of the outside air temperature is predicted based on the outside air temperature detected by the outside air temperature detecting means, and the watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature. apparatus.
【請求項2】圧縮機、凝縮器、蒸発器、膨張手段を有す
る冷媒回路を形成した冷凍サイクルにおいて、 前記凝縮器へ散水する散水手段と、 外気温度を検出する外気温度検出手段と、 外気湿度を検出する外気湿度検出手段と、 外気温度および外気湿度に基づいて前記凝縮器への散水
量を演算する散水量演算手段と、 この散水量演算手段による散水量になるように、前記散
水手段による散水量を制御する散水制御手段とを備え、 前記外気温度検出手段および前記外気湿度検出手段によ
り検出された外気温度および外気湿度に基づいて、外気
温度および外気湿度の未来値を予測し、この外気温度お
よび外気湿度の予測値に基づいて前記散水量演算手段に
より散水量を演算することを特徴とする冷凍サイクル装
置。
2. A refrigeration cycle having a refrigerant circuit having a compressor, a condenser, an evaporator, and an expansion means, wherein: a water sprinkling means for spraying water to the condenser; an outside air temperature detecting means for detecting an outside air temperature; Outside water humidity detecting means for detecting the amount of water sprayed on the condenser based on the outside air temperature and the outside air humidity; and Water spray control means for controlling the amount of water sprayed, based on the outside air temperature and the outside air humidity detected by the outside air temperature detection means and the outside air humidity detection means, to predict future values of the outside air temperature and the outside air humidity, A refrigeration cycle apparatus wherein a watering amount is calculated by the watering amount calculating means based on predicted values of temperature and outside air humidity.
【請求項3】前記圧縮機の運転容量を制御する運転容量
制御手段を備え、 前記運転容量制御手段により検出された運転容量に基づ
いて、運転容量の未来値を予測し、この運転容量の予測
値および前記外気温度または外気湿度の予測値に基づい
て、前記散水量演算手段により散水量を演算することを
特徴とする請求項1または2記載の冷凍サイクル装置。
3. An operating capacity control means for controlling an operating capacity of the compressor, wherein a future value of the operating capacity is predicted based on the operating capacity detected by the operating capacity control means, and the operating capacity is predicted. 3. The refrigeration cycle apparatus according to claim 1, wherein the watering amount is calculated by the watering amount calculation unit based on the value and the predicted value of the outside air temperature or the outside air humidity. 4.
【請求項4】冷凍サイクル装置の消費電力を検出する消
費電力検出手段を備え、 前記消費電力検出手段により検出された消費電力に基づ
いて、消費電力の未来値を予測し、この消費電力の予測
値および前記外気温度または外気湿度の予測値に基づい
て、前記散水量演算手段により散水量を演算することを
特徴とする請求項1または2記載の冷凍サイクル装置。
4. A power consumption detecting means for detecting power consumption of the refrigeration cycle device, wherein a future value of power consumption is predicted based on the power consumption detected by the power consumption detecting means, and the power consumption is predicted. 3. The refrigeration cycle apparatus according to claim 1, wherein the watering amount is calculated by the watering amount calculation unit based on the value and the predicted value of the outside air temperature or the outside air humidity. 4.
【請求項5】冷凍サイクル装置の凝縮温度を検出する凝
縮温度検出手段を備え、 前記凝縮温度検出手段により検出された凝縮温度に基づ
いて、凝縮温度の未来値を予測し、この凝縮温度の予測
値および前記外気温度または外気湿度の予測値に基づい
て、前記散水量演算手段により散水量を演算することを
特徴とする請求項1または2記載の冷凍サイクル装置。
5. A condensing temperature detecting means for detecting a condensing temperature of a refrigeration cycle device, wherein a future value of the condensing temperature is predicted based on the condensing temperature detected by the condensing temperature detecting means, and the condensing temperature is predicted. 3. The refrigeration cycle apparatus according to claim 1, wherein the watering amount is calculated by the watering amount calculation unit based on the value and the predicted value of the outside air temperature or the outside air humidity. 4.
【請求項6】冷凍サイクル装置の凝縮圧力を検出する凝
縮圧力検出手段を備え、 前記凝縮圧力検出手段により検出された凝縮圧力に基づ
いて凝縮圧力の未来値を予測し、この凝縮圧力の予測値
および前記外気温度または外気湿度の予測値に基づい
て、前記散水量演算手段により散水量を演算することを
特徴とする請求項1または2記載の冷凍サイクル装置。
6. A condensing pressure detecting means for detecting a condensing pressure of a refrigeration cycle device, wherein a future value of the condensing pressure is predicted based on the condensing pressure detected by the condensing pressure detecting means, and a predicted value of the condensing pressure is calculated. 3. The refrigeration cycle apparatus according to claim 1, wherein the watering amount is calculated by the watering amount calculating means based on the predicted value of the outside air temperature or the outside air humidity.
【請求項7】圧縮機、凝縮器、蒸発器、膨張手段を有す
る冷媒回路を形成した冷凍サイクル装置において、 冷却対象の室内空気の乾球温度を検出する室内温度検出
手段と、 冷却対象の室内空気の湿度を検出する室内湿度検出手段
と、 前記蒸発器の蒸発温度を検知する蒸発温度検出手段と、 前記凝縮器へ散水する散水手段と、 前記凝縮器への散水量を演算する散水量演算手段と、 この散水量演算手段による散水量になるように、前記散
水手段による散水量を制御する散水制御手段とを備え、 前記散水量演算手段は、前記室内温度検出手段による室
内温度、前記室内湿度検出手段による室内湿度、前記蒸
発温度検出手段による蒸発温度に基づいて前記凝縮器へ
の散水量を演算することを特徴とする冷凍サイクル装
置。
7. A refrigeration cycle apparatus having a refrigerant circuit having a compressor, a condenser, an evaporator, and expansion means, wherein: indoor temperature detection means for detecting a dry bulb temperature of indoor air to be cooled; Indoor humidity detecting means for detecting the humidity of the air; evaporating temperature detecting means for detecting the evaporating temperature of the evaporator; watering means for watering the condenser; and watering amount calculation for calculating the watering amount to the condenser. Means, and watering control means for controlling the watering amount by the watering means so that the watering amount is obtained by the watering amount calculating means, wherein the watering amount calculating means comprises: an indoor temperature detected by the indoor temperature detecting means; A refrigeration cycle apparatus that calculates an amount of water sprayed to the condenser based on indoor humidity by a humidity detection unit and an evaporation temperature by the evaporation temperature detection unit.
【請求項8】前記蒸発器へ送風する送風機の送風量を制
御する蒸発器送風量制御手段または/および前記凝縮器
へ送風する送風機の送風量を制御する凝縮器送風量制御
手段を備え、前記散水量演算手段により演算された散水
量に応じて、蒸発器送風量制御手段または/および凝縮
器送風量制御手段により、蒸発器または/および凝縮器
への送風量を制御することを特徴とする請求項7項記載
の冷凍サイクル装置。
8. An evaporator air volume control means for controlling an air volume of a blower for blowing air to the evaporator and / or a condenser air volume control means for controlling an air volume of a blower air blown to the condenser. The amount of air blown to the evaporator and / or the condenser is controlled by the evaporator air volume control means and / or the condenser air volume control means in accordance with the water volume calculated by the water volume calculation means. The refrigeration cycle apparatus according to claim 7.
【請求項9】圧縮機、凝縮器、蒸発器、膨張手段を有す
る冷媒回路を形成した冷凍サイクル装置において、 前記凝縮器へ散水する散水手段と、 この散水手段による散水量を制御する散水制御手段と、 前記凝縮器の表面下部に設けられ、凝縮器表面上の水分
を検出する第1の水分検出手段と、 前記凝縮器の下方に設けられ、凝縮器表面から流れ落ち
る水分を検出する第2の水分検出手段とを備え、 前記散水制御手段により、第1の水分検出手段により水
分が検出される状態、かつ、第2の水分検出手段により
水分が検出されない状態になるように前記散水手段によ
る散水量を制御する特徴とする冷凍サイクル装置。
9. A refrigeration cycle apparatus having a refrigerant circuit having a compressor, a condenser, an evaporator, and an expansion means. A watering means for watering the condenser, and a watering control means for controlling an amount of watering by the watering means. First moisture detecting means provided below the surface of the condenser and detecting moisture on the surface of the condenser; and second means provided below the condenser and detecting moisture flowing down from the surface of the condenser. A water detecting means, wherein the water spraying control means sprays water by the water spraying means such that water is detected by the first water detecting means and water is not detected by the second water detecting means. A refrigeration cycle device characterized by controlling the amount of water.
JP2000239852A 2000-08-08 2000-08-08 Refrigeration cycle equipment Expired - Lifetime JP4476456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239852A JP4476456B2 (en) 2000-08-08 2000-08-08 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239852A JP4476456B2 (en) 2000-08-08 2000-08-08 Refrigeration cycle equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009250392A Division JP4990339B2 (en) 2009-10-30 2009-10-30 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2002054834A true JP2002054834A (en) 2002-02-20
JP4476456B2 JP4476456B2 (en) 2010-06-09

Family

ID=18731325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239852A Expired - Lifetime JP4476456B2 (en) 2000-08-08 2000-08-08 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4476456B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069170A (en) * 2002-08-06 2004-03-04 Toyo Standard:Kk Method and equipment for controlling water spray
JP2004308962A (en) * 2003-04-03 2004-11-04 Daikin Ind Ltd Equipment control system, equipment control device, and equipment control method
GR1004846B (en) * 2004-02-20 2005-03-23 Μιχαλης Βραχοπουλος Built evaporative condenser
JP2006162226A (en) * 2004-12-10 2006-06-22 Daikin Ind Ltd Freezing device
JP2006234249A (en) * 2005-02-24 2006-09-07 Sharp Corp Integrated air-conditioner
JP2007285686A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Auxiliary cooling device, auxiliary cooling system, and spray controller
JP2008089289A (en) * 2006-10-05 2008-04-17 Daikin Ind Ltd Air conditioner
JP2008241072A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008286473A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Refrigerating cycle device
JP2008309464A (en) * 2007-05-15 2008-12-25 Sanki Service:Kk Energy-saving device of air conditioner or the like
JP2010007993A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2011069589A (en) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd Cooling device for outdoor unit
JP2011089659A (en) * 2009-10-20 2011-05-06 Shimon Company:Kk Efficiency improvement device of heat exchanger, reduction rate verification method and reduction rate verification device
ITAN20100072A1 (en) * 2010-05-05 2011-11-06 Tecno Fog S R L CONDENSATION EQUIPMENT FOR CONDENSING A REFRIGERANT FLUID IN A REFRIGERATOR SYSTEM AND REFRIGERATING SYSTEM INCLUDING SUCH A CONDENSATION EQUIPMENT
JP2013104598A (en) * 2011-11-11 2013-05-30 Daikin Industries Ltd Air conditioning system
JP2014115024A (en) * 2012-12-11 2014-06-26 Ntt Facilities Inc Air conditioner
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
CN109612185A (en) * 2018-11-13 2019-04-12 上海可瑞视冷链科技有限公司 A kind of movable square compartment
WO2019073514A1 (en) * 2017-10-10 2019-04-18 三菱電機株式会社 Refrigeration cycle device
JP2021092370A (en) * 2019-12-12 2021-06-17 オリオン機械株式会社 Cooling device and cooling method for the same
CN113819624A (en) * 2021-09-26 2021-12-21 新誉轨道交通科技有限公司 Air conditioner spraying control method and system and air conditioner
CN113864974A (en) * 2021-09-27 2021-12-31 珠海格力电器股份有限公司 Air conditioning unit, control method and device thereof, storage medium and processor
CN114087711A (en) * 2021-11-12 2022-02-25 珠海格力电器股份有限公司 Method and device for predicting environment humidity and semiconductor dehumidifier
WO2023191007A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Ventilation device and ventilation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117561409A (en) * 2021-07-09 2024-02-13 三星电子株式会社 Air conditioner and control method thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069170A (en) * 2002-08-06 2004-03-04 Toyo Standard:Kk Method and equipment for controlling water spray
JP2004308962A (en) * 2003-04-03 2004-11-04 Daikin Ind Ltd Equipment control system, equipment control device, and equipment control method
GR1004846B (en) * 2004-02-20 2005-03-23 Μιχαλης Βραχοπουλος Built evaporative condenser
JP2006162226A (en) * 2004-12-10 2006-06-22 Daikin Ind Ltd Freezing device
JP4541923B2 (en) * 2005-02-24 2010-09-08 シャープ株式会社 Integrated air conditioner
JP2006234249A (en) * 2005-02-24 2006-09-07 Sharp Corp Integrated air-conditioner
JP2007285686A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Auxiliary cooling device, auxiliary cooling system, and spray controller
JP2008089289A (en) * 2006-10-05 2008-04-17 Daikin Ind Ltd Air conditioner
JP2008241072A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008309464A (en) * 2007-05-15 2008-12-25 Sanki Service:Kk Energy-saving device of air conditioner or the like
JP2008286473A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Refrigerating cycle device
JP2010007993A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2011069589A (en) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd Cooling device for outdoor unit
JP2011089659A (en) * 2009-10-20 2011-05-06 Shimon Company:Kk Efficiency improvement device of heat exchanger, reduction rate verification method and reduction rate verification device
ITAN20100072A1 (en) * 2010-05-05 2011-11-06 Tecno Fog S R L CONDENSATION EQUIPMENT FOR CONDENSING A REFRIGERANT FLUID IN A REFRIGERATOR SYSTEM AND REFRIGERATING SYSTEM INCLUDING SUCH A CONDENSATION EQUIPMENT
JP2013104598A (en) * 2011-11-11 2013-05-30 Daikin Industries Ltd Air conditioning system
JP2014115024A (en) * 2012-12-11 2014-06-26 Ntt Facilities Inc Air conditioner
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
GB2540906A (en) * 2014-05-13 2017-02-01 Mitsubishi Electric Corp Air conditioning system
US10317120B2 (en) 2014-05-13 2019-06-11 Mitsubishi Electric Corporation Air conditioning system with indoor and ventilation circuits
GB2540906B (en) * 2014-05-13 2020-03-04 Mitsubishi Electric Corp Air conditioning system
US11262108B2 (en) 2017-10-10 2022-03-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2019073514A1 (en) * 2017-10-10 2019-04-18 三菱電機株式会社 Refrigeration cycle device
JPWO2019073514A1 (en) * 2017-10-10 2020-04-02 三菱電機株式会社 Refrigeration cycle device
CN109612185A (en) * 2018-11-13 2019-04-12 上海可瑞视冷链科技有限公司 A kind of movable square compartment
JP2021092370A (en) * 2019-12-12 2021-06-17 オリオン機械株式会社 Cooling device and cooling method for the same
JP7361375B2 (en) 2019-12-12 2023-10-16 オリオン機械株式会社 Cooling method of cooling device
CN113819624A (en) * 2021-09-26 2021-12-21 新誉轨道交通科技有限公司 Air conditioner spraying control method and system and air conditioner
CN113864974A (en) * 2021-09-27 2021-12-31 珠海格力电器股份有限公司 Air conditioning unit, control method and device thereof, storage medium and processor
CN114087711A (en) * 2021-11-12 2022-02-25 珠海格力电器股份有限公司 Method and device for predicting environment humidity and semiconductor dehumidifier
WO2023191007A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Ventilation device and ventilation method

Also Published As

Publication number Publication date
JP4476456B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP2002054834A (en) Refrigerating cycle device
JP4990339B2 (en) Refrigeration cycle equipment
JPH09295512A (en) Air conditioner for vehicle
KR20170016727A (en) Method for controlling of air conditioner
JP5391785B2 (en) Air conditioning system
JP4445246B2 (en) Air conditioner
JP2003130430A (en) Air conditioner and its control method
JP2004324973A (en) Air conditioner and operating method of air conditioner
JP3684860B2 (en) Air conditioner
JP2010007961A (en) Temperature-humidity controller
JP4408284B2 (en) Auxiliary cooling device
JP2003148856A (en) Antisweating heater control device for showcase
JP2518420B2 (en) Operation control device for air conditioner
JPH10148378A (en) Air conditioner
JP2928162B2 (en) Heating / humidification output conversion type environmental test equipment
JP3895449B2 (en) Overload avoidance control method for air source heat pump device
JP3118177B2 (en) Dehumidifier on-off type environmental device
JPH05126384A (en) Air conditioner
JPH04332331A (en) Humidity control method and air-conditioner
CN115507563B (en) Defrosting control method for variable-frequency heat pump unit and variable-frequency heat pump unit
WO2021156937A1 (en) Dehumidification device
JPS6191443A (en) Operation control device of air conditioner
JPH05340577A (en) Automatic operating device for simultaneously supplying and discharging type ventilating fan
JP4138503B2 (en) Refrigeration system with hot gas control
JPH0432599Y2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4476456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term