JP2008270391A - Multilayer chip varistor and its manufacturing method - Google Patents

Multilayer chip varistor and its manufacturing method Download PDF

Info

Publication number
JP2008270391A
JP2008270391A JP2007108908A JP2007108908A JP2008270391A JP 2008270391 A JP2008270391 A JP 2008270391A JP 2007108908 A JP2007108908 A JP 2007108908A JP 2007108908 A JP2007108908 A JP 2007108908A JP 2008270391 A JP2008270391 A JP 2008270391A
Authority
JP
Japan
Prior art keywords
varistor
material layer
glass
glass ceramic
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007108908A
Other languages
Japanese (ja)
Inventor
Hidenori Katsumura
英則 勝村
Tatsuya Inoue
竜也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007108908A priority Critical patent/JP2008270391A/en
Publication of JP2008270391A publication Critical patent/JP2008270391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer chip varistor which is highly reliable and corresponds to thinning, while holding a varistor characteristic with respect to an electrostatic surge voltage, and to provide its manufacturing method. <P>SOLUTION: The multilayer chip varistor includes: a lamination body 10 where a plurality of varistor parts are arranged along a prescribed direction, having varistor material layers 12 composed of zinc oxide as a main component so as to express a voltage nonlinear characteristic and a plurality of internal electrodes 11 arranged to sandwich the varistor material layers 12: glass ceramic material layers 13, 14 which are arranged on at least the upper and lower main surfaces of the lamination body 10 and where ceramic powder containing at least alumina or silica is mixed with glass powder containing SiO<SB>2</SB>-Al<SB>2</SB>O<SB>3</SB>-MO (M is at least the one to be selected from Ca, Ba, Sr)-base crystallized glass; and a pair of terminal electrodes 15 to be connected to the internal electrodes 11. A part of the configuration components of the varistor material layers 12 exists in the glass ceramic material layers 13, 14 and a part of glass components of the glass ceramic material layers 13, 14 exists in the varistor material layers 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、静電気パルスなどの過電圧から電子機器を保護する積層型チップバリスタおよびその製造方法に関するものである。   The present invention relates to a multilayer chip varistor that protects an electronic device from an overvoltage such as an electrostatic pulse, and a method of manufacturing the same.

以下、従来の積層型チップバリスタについて図面を参照しながら説明する。   A conventional multilayer chip varistor will be described below with reference to the drawings.

近年、携帯電話等の電子機器の小型化、高性能化が急速に進み、それに伴い電子機器回路が高密度化し電子機器の耐電圧は低下している。そのため、人体と電子機器の端子が接触したときに発生する静電気パルスによる機器内部の電気回路の破壊が増えてきている。   2. Description of the Related Art In recent years, electronic devices such as mobile phones have been rapidly downsized and enhanced in performance, and electronic device circuits have become denser and voltage resistance of electronic devices has been reduced. Therefore, the destruction of the electric circuit inside the device due to the electrostatic pulse generated when the human body and the terminal of the electronic device contact each other is increasing.

このような静電気パルスへの対策として、静電気が入るラインとグランド間に積層型チップバリスタを設け、静電気をバイパスさせ、電子機器の電気回路に印加される電圧を抑制する方法が行われている。   As a countermeasure against such an electrostatic pulse, there is a method in which a laminated chip varistor is provided between a line where static electricity enters and the ground, and the voltage applied to the electric circuit of the electronic device is suppressed by bypassing the static electricity.

図9は上記積層型チップバリスタの断面図である。   FIG. 9 is a sectional view of the multilayer chip varistor.

図9において、積層型チップバリスタは、内部導体1を有するバリスタ材層2と、このバリスタ材層2の端面に前記内部電極1と接続された端子電極3とを備えている。バリスタ材層2の表面には高抵抗層4が形成されている。   In FIG. 9, the multilayer chip varistor includes a varistor material layer 2 having an internal conductor 1 and a terminal electrode 3 connected to the internal electrode 1 on an end face of the varistor material layer 2. A high resistance layer 4 is formed on the surface of the varistor material layer 2.

なお、本発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特許第3453857号公報
For example, Patent Document 1 is known as prior art document information related to the present invention.
Japanese Patent No. 3453857

上記従来の積層型チップバリスタでは、端子電極の半田くわれ性、ぬれ性を改善するために、端子電極導体の表面にメッキ法によってニッケル、スズ膜を形成する。しかし酸化亜鉛を主成分とするバリスタ材は半導体電気特性を示すため、前述の端子電極メッキ工程でバリスタ材層表面にもメッキ金属膜が形成されてしまい、最も悪い状態では両端子電極がショートしてしまう。また通常の酸化亜鉛系バリスタ材は、完全に緻密に焼結する温度よりも低い温度で焼結した方が電圧非直線に優れたバリスタ特性を示すことが発明者らの検討によりわかっているが、そのような焼結状態では前記端子電極メッキ工程においてメッキ液がバリスタ材層内に浸入しバリスタ材を浸食し信頼性が低下してしまう。また焼成炉内の温度バラツキに対し敏感な焼成条件であるため、バリスタ電圧(1mAの電流を流したときの電圧)や電圧非直線性などバリスタ特性にバラツキが生じやすかった。   In the conventional multilayer chip varistor, a nickel or tin film is formed on the surface of the terminal electrode conductor by plating in order to improve the solderability and wettability of the terminal electrode. However, since the varistor material mainly composed of zinc oxide exhibits semiconductor electrical characteristics, a plated metal film is also formed on the surface of the varistor material layer in the terminal electrode plating process described above, and in the worst case, both terminal electrodes are short-circuited. End up. In addition, it has been found by the inventors that ordinary zinc oxide varistor materials exhibit superior varistor characteristics in voltage nonlinearity when sintered at a temperature lower than the temperature at which they are sintered completely densely. In such a sintered state, the plating solution penetrates into the varistor material layer in the terminal electrode plating step, and the varistor material is eroded and reliability is lowered. Also, since the firing conditions are sensitive to temperature variations in the firing furnace, varistor characteristics such as varistor voltage (voltage when a current of 1 mA is passed) and voltage nonlinearity are likely to vary.

したがって従来の積層型チップバリスタは、厳密に制御された条件で焼成するか、特別な方法で焼成していた。前記特許文献1には、シリカなどの酸化物混合粉体中にバリスタ素子を埋め込んで焼成したり、ジルコニア等のボールとともに酸化物混合粉体とバリスタ素子を回転、攪拌しながらバリスタ素子を焼成する方法が開示されている。この焼成方法によればバリスタ特性のバラツキを抑えられるとともに、バリスタ材表面にガラスや酸化物による高抵抗層4が形成されるため、バリスタ材の耐メッキ性、耐湿性が向上する。しかしこのような焼成方法は効率が悪く大量生産の工法として不向きである。   Therefore, the conventional multilayer chip varistor has been baked under strictly controlled conditions or by a special method. In Patent Document 1, the varistor element is embedded in an oxide mixed powder such as silica and fired, or the varistor element is fired while rotating and stirring the oxide mixed powder and the varistor element together with balls such as zirconia. A method is disclosed. According to this firing method, variation in varistor characteristics can be suppressed, and the high resistance layer 4 made of glass or oxide is formed on the surface of the varistor material, so that the plating resistance and moisture resistance of the varistor material are improved. However, such a firing method is inefficient and unsuitable as a mass production method.

また近年、積層型チップバリスタによって保護する集積回路素子や青色ダイオードなどの厚みが薄くなり、薄型の積層型チップバリスタが要望されている。通常1005サイズと呼ばれる積層型チップバリスタは外形寸法が1.0mm、0.5mmで厚みも0.5mmであるが、集積回路素子などの厚みに合わせると0.3mm以下の厚みが望まれている。厚みが0.3mmの積層型チップバリスタとしては0603サイズ(外形寸法0.6mm、0.3mm、厚み0.3mm)のものが実用化されているが、0603サイズのチップ部品を基板に実装するためには専用の実装機が必要であるため一部の業界以外では一般的でない。このような状況から1005サイズで厚みが0.3mm以下の薄板状の積層型チップバリスタが求められているが、バリスタ材それ自体の強度が低いため端子電極形成時や基板上への実装の際に破壊されるという問題があった。   In recent years, the thickness of integrated circuit elements and blue diodes protected by the multilayer chip varistor has been reduced, and a thin multilayer chip varistor has been desired. The multilayer chip varistor, usually called 1005 size, has outer dimensions of 1.0 mm, 0.5 mm, and a thickness of 0.5 mm. However, a thickness of 0.3 mm or less is desired in accordance with the thickness of an integrated circuit element or the like. . As a multilayer chip varistor having a thickness of 0.3 mm, a 0603 size (outer dimensions: 0.6 mm, 0.3 mm, thickness: 0.3 mm) has been put into practical use. A 0603 size chip component is mounted on a substrate. For this purpose, a dedicated mounting machine is required, so it is not common outside some industries. Under these circumstances, a 1005 size thin laminated chip varistor having a thickness of 0.3 mm or less is required. However, since the strength of the varistor material itself is low, the terminal electrode is formed or mounted on the substrate. There was a problem of being destroyed.

本発明は上記問題点を解決するもので、バラツキが小さく優れたバリスタ電気特性を有し、信頼性の向上した薄型化に対応した積層型チップバリスタおよび量産性に優れたその製造方法を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above problems, and provides a multilayer chip varistor that has excellent varistor electrical characteristics with small variations, and that is improved in reliability and compatible with thinning, and a manufacturing method that is excellent in mass productivity. The purpose is that.

上記目的を達成するために本発明は、以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

本発明の積層型チップバリスタは、主成分に酸化亜鉛、副成分に少なくとも酸化ビスマスを含む電圧非直線特性を発現するバリスタ材層と、このバリスタ材層を挟むように配置される複数の内部電極とを有する複数のバリスタ部が所定の方向に沿って配されている積層体と、この積層体の少なくとも上下主面に配置されるアルミナまたはシリカを少なくとも含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合したガラスセラミック材層と、前記内部電極と接続する一対の端子電極を備え、前記ガラスセラミック材層には前記バリスタ材層の構成成分の一部が存在し、前記バリスタ材層には前記ガラスセラミック材層のガラス成分の一部が存在することを特徴とする。 The multilayer chip varistor of the present invention includes a varistor material layer that exhibits voltage nonlinear characteristics including zinc oxide as a main component and at least bismuth oxide as a subcomponent, and a plurality of internal electrodes arranged so as to sandwich the varistor material layer. And a ceramic powder containing at least alumina or silica arranged on at least the upper and lower main surfaces of the laminate, and SiO 2 —Al 2 O 3. A glass ceramic material layer in which glass powder containing MO (M is at least one selected from Ca, Ba, Sr) based crystallized glass and a pair of terminal electrodes connected to the internal electrodes, the glass ceramic Part of the constituent components of the varistor material layer is present in the material layer, and part of the glass component of the glass ceramic material layer is present in the varistor material layer. And wherein the door.

また本発明の積層型チップバリスタの製造方法は、主成分に酸化亜鉛、副成分に少なくとも酸化ビスマスを含む電圧非直線特性を発現するバリスタ材層と、このバリスタ材層を挟むように複数の内部電極を配置したバリスタ積層体を作製する工程と、前記バリスタ積層体の少なくとも上下主面に、アルミナまたはシリカを少なくとも含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合したガラスセラミック材層を積層した複合積層体を作製する工程と、前記バリスタ材層が焼結する温度で前記複合積層体を焼成する工程と、焼成工程の前もしくは後に、機械的方法によって前記複合積層体の辺、角を面取りする工程と、前記内部電極と接続する一対の端子電極を形成する工程を少なくとも含むことを特徴とする。 Also, the manufacturing method of the multilayer chip varistor of the present invention includes a varistor material layer exhibiting voltage nonlinear characteristics including zinc oxide as a main component and at least bismuth oxide as a subcomponent, and a plurality of internal varistor layers sandwiching the varistor material layer. A step of producing a varistor laminated body in which electrodes are arranged; and ceramic powder containing at least alumina or silica and SiO 2 —Al 2 O 3 —MO (M is Ca, Ba, Sr) on at least the upper and lower main surfaces of the varistor laminated body. At least one selected from: a step of producing a composite laminate in which a glass ceramic material layer mixed with glass powder containing a crystallized glass is laminated, and the composite laminate is fired at a temperature at which the varistor material layer is sintered. And a step of chamfering the sides and corners of the composite laminate by a mechanical method before or after the firing step, and a connection with the internal electrode. Characterized in that it comprises at least the step of forming the terminal electrodes of the.

本発明の積層型チップバリスタは、バリスタ材層の少なくとも上下主面にアルミナまたはシリカを少なくとも含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合したガラスセラミック材層を積層して焼成しており、バリスタ材を構成している副成分の酸化ビスマスなどが過剰に蒸発することなくガラスセラミック材層に拡散し固定化されるため、バラツキが小さくかつ優れたバリスタ電気特性を有する積層型チップバリスタを、簡便な方法で得ることができる。 The multilayer chip varistor of the present invention comprises at least one selected from ceramic powder containing at least alumina or silica on the upper and lower principal surfaces of the varistor material layer and SiO 2 —Al 2 O 3 —MO (M is Ca, Ba, Sr). ) Glass ceramic material layer mixed with glass powder containing crystallized glass is laminated and fired, and the bismuth oxide, which is a minor component of varistor material, is not excessively evaporated. Since it is diffused and fixed, a multilayer chip varistor having small variation and excellent varistor electrical characteristics can be obtained by a simple method.

またバリスタ材層にはガラスセラミック材のガラス成分の一部が拡散し、特にバリスタ材層側面に固定化され緻密で絶縁性の高い層が形成されるために、端子電極のメッキ工程によるバリスタ材層表面へのメッキ析出や、メッキ液によるバリスタ材層の浸食を容易に抑えることができ、その結果、信頼性を向上することができる。   In addition, a part of the glass component of the glass ceramic material diffuses in the varistor material layer, and in particular, the varistor material is fixed on the side surface of the varistor material layer to form a dense and highly insulating layer. Plating deposition on the layer surface and erosion of the varistor material layer by the plating solution can be easily suppressed, and as a result, reliability can be improved.

またバリスタ材よりも機械的強度の高いガラスセラミック材を上下主面に積層しているため、端子電極形成時や基板への実装時の破壊を抑制することができる強度の高い薄板状の積層型チップバリスタを得ることができる。   In addition, because the glass ceramic material with higher mechanical strength than the varistor material is laminated on the top and bottom main surfaces, it is a thin laminated type with high strength that can suppress breakage when forming terminal electrodes or mounting on the substrate A chip varistor can be obtained.

この結果、バラツキが小さく優れたバリスタ電気特性を有し、信頼性の向上した、薄型化に対応した積層型チップバリスタおよび量産性に優れたその製造方法を提供することができる。   As a result, it is possible to provide a multilayer chip varistor that has excellent varistor electrical characteristics with small variations, improved reliability, and that can be made thinner, and a manufacturing method that is excellent in mass productivity.

(実施の形態1)
以下、本発明の実施の形態1を用いて、特に、本発明の請求項1〜4および8に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the inventions described in claims 1 to 4 and 8 of the present invention will be described with reference to the first embodiment of the present invention.

図1は本発明の実施の形態1における積層型チップバリスタの断面図、図2は同積層型チップバリスタの斜視図である。図1、図2において、本発明の実施の形態1における積層型チップバリスタは、二層以上の内部電極11を積層したバリスタ材層12からなる積層体10と、この積層体10の上下面に積層したガラスセラミック材層13,14と、バリスタ材層12の内部電極11に接続し形成した端子電極15と、端子電極15のメッキ膜16,17を備えている。   1 is a cross-sectional view of a multilayer chip varistor according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of the multilayer chip varistor. 1 and 2, the multilayer chip varistor according to the first embodiment of the present invention includes a laminate 10 composed of a varistor material layer 12 in which two or more internal electrodes 11 are laminated, and upper and lower surfaces of the laminate 10. The laminated glass ceramic material layers 13 and 14, the terminal electrode 15 connected to the internal electrode 11 of the varistor material layer 12, and the plating films 16 and 17 of the terminal electrode 15 are provided.

バリスタ材層12を構成するバリスタ材料は、酸化亜鉛を主成分とし、副成分として少なくとも酸化ビスマスを含み、その他酸化アンチモン、酸化マンガン、酸化コバルト等を添加してバリスタ特性を発現させておりガラス等を添加することにより950℃前後で焼成するものを用いた。なお優れたバリスタ特性を発現するのであれば、その他の副成分として上記以外の酸化物を添加しても構わない。   The varistor material constituting the varistor material layer 12 is mainly composed of zinc oxide, contains at least bismuth oxide as a subsidiary component, and exhibits varistor characteristics by adding antimony oxide, manganese oxide, cobalt oxide, etc. A material that is fired at around 950 ° C. by adding s. Note that oxides other than the above may be added as other subcomponents as long as they exhibit excellent varistor characteristics.

このバリスタ材料の粉末とバインダ樹脂、可塑剤を溶剤によって混合し、公知のドクターブレード法等によって厚み約50μmのグリーンシートを成形する。このグリーンシート上に銀パラジウム合金を主成分とする導電性ペーストをスクリーン印刷等の方法によって内部電極11をパターン形成し、図1のように内部電極11がバリスタ材層12を挟んで一部対向させるように積層する。   The varistor material powder, a binder resin, and a plasticizer are mixed with a solvent, and a green sheet having a thickness of about 50 μm is formed by a known doctor blade method or the like. A conductive paste mainly composed of a silver-palladium alloy is formed on the green sheet by patterning the internal electrode 11 by a method such as screen printing, and the internal electrode 11 is partially opposed with the varistor material layer 12 sandwiched as shown in FIG. Laminate so that

またガラスセラミック材層13,14を構成するガラスセラミック材料は、アルミナまたはシリカを少なくとも含むセラミック粉末と、SiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合した材料を用いた。このような組成のガラスセラミック材料を選定した理由については後で述べる。ガラスセラミック材料も、バリスタ材料と同様の方法により厚み約40μmのグリーンシートを成形し、図1のように積層体10の上下主面に、ガラスセラミック材グリーンシートを積層し、ガラスセラミック材層13,14を形成する。以上により複合積層体を形成する。 The glass ceramic material constituting the glass ceramic material layers 13 and 14 includes ceramic powder containing at least alumina or silica, and SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, and Sr). A material mixed with glass powder containing system crystallized glass was used. The reason for selecting the glass ceramic material having such a composition will be described later. As for the glass ceramic material, a green sheet having a thickness of about 40 μm is formed by the same method as the varistor material, and the glass ceramic material green sheet is laminated on the upper and lower main surfaces of the laminate 10 as shown in FIG. , 14 are formed. Thus, a composite laminate is formed.

前記複合積層体に温度(85℃)と圧力(500kg/cm2)を1分間加えることによって完全に密着させ、その後一個一個のチップ積層体にカッターで切断する。これを焼成炉に入れ約500℃の温度で樹脂成分を焼却した後、950℃で2時間焼成する。この焼成時において、バリスタ材を構成する主成分の酸化亜鉛、副成分の酸化ビスマスなどがガラスセラミック材層13,14に、ガラスセラミック材を構成するSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスがバリスタ材層12にそれぞれ相互拡散し、バリスタ材層とガラスセラミック材層は接着し一体化する。 A temperature (85 ° C.) and a pressure (500 kg / cm 2 ) are applied to the composite laminate for 1 minute, and then, the composite laminate is cut into individual chip laminates with a cutter. This is put into a baking furnace, the resin component is incinerated at a temperature of about 500 ° C., and then baked at 950 ° C. for 2 hours. During the firing, zinc oxide as a main component constituting the varistor material, bismuth oxide as a subsidiary component, and the like are formed on the glass ceramic material layers 13 and 14 by SiO 2 —Al 2 O 3 —MO (where M is the glass ceramic material). At least one selected from Ca, Ba, and Sr) system crystallized glass mutually diffuses in the varistor material layer 12, and the varistor material layer and the glass ceramic material layer are bonded and integrated.

端子電極塗布工程時や基板への実装時にチッピングなどの発生を防止するため、複合積層体チップをSiCを表面に付着させたアルミナボールと水とともに遊星ボールミルなどによってバレル研磨し、複合積層体チップの辺、角を丸くする。この工程は複合積層体チップを焼成する前でも、後でも良く、複合積層体チップを破壊することなく効率よくバレル研磨できれば良い。またこのバレル研磨工程は、ガラスセラミック材層とバリスタ材層の焼成挙動の差による歪形状を解消するためにも効果がある。   In order to prevent chipping during the terminal electrode coating process or mounting on the substrate, the composite laminate chip is barrel-polished with an alumina ball and water with SiC attached to the surface with a planetary ball mill, etc. Round the edges and corners. This step may be performed before or after the composite laminate chip is fired, as long as barrel polishing can be efficiently performed without destroying the composite laminate chip. This barrel polishing process is also effective for eliminating the distortion shape due to the difference in the firing behavior of the glass ceramic material layer and the varistor material layer.

この複合積層体チップの内部電極が露出した側面に、銀パラジウム電極ペーストを塗布し焼き付けるなどによって端子電極15として形成する。これを電界メッキ法などによってニッケルメッキ膜16、スズメッキ膜17を端子電極15表面上に形成すると図1、図2に示した積層型チップバリスタが完成する。   A terminal electrode 15 is formed by applying and baking a silver-palladium electrode paste on the side surface where the internal electrode of the composite laminate chip is exposed. When the nickel plating film 16 and the tin plating film 17 are formed on the surface of the terminal electrode 15 by the electrolytic plating method or the like, the multilayer chip varistor shown in FIGS. 1 and 2 is completed.

前述したようにバリスタ材層にはガラスセラミック材層を構成するガラスが拡散しているが、バリスタ材層の側面表面には特に高濃度のガラスが拡散しており、バリスタ材層内部と比較すると絶縁抵抗値が高い状態になっている。したがって本発明のこの構成によれば、電界メッキ工程によってバリスタ材層の表面にメッキ膜が析出する可能性は極めて低くなる。   As described above, the glass constituting the glass ceramic material layer is diffused in the varistor material layer, but a particularly high concentration of glass is diffused on the side surface of the varistor material layer, compared with the inside of the varistor material layer. The insulation resistance value is high. Therefore, according to this configuration of the present invention, the possibility that the plating film is deposited on the surface of the varistor material layer by the electroplating process is extremely low.

端子電極15は図1、図2に示した構造以外に、図3の断面図に示したようにガラスセラミック材層13,14の表面だけに形成し、内部電極11とは内部ビア導体としてビア電極18で電気的接続をとる構造でも良い。この場合内部電極11は複合積層体チップ側面に露出させる必要はない。この構造では、端子電極15は絶縁抵抗値がもともと高いガラスセラミック材層上に形成されるため、例えバリスタ材層12の側面表面にメッキ膜が析出したとしても、ガラスセラミック材層13,14表面にはメッキ膜が析出する可能性はさらに低い。したがってこのより好ましい構造によれば、左右の端子電極15がメッキ膜の異常析出による電気的短絡が起こる可能性は極めて低くなる。   In addition to the structure shown in FIGS. 1 and 2, the terminal electrode 15 is formed only on the surface of the glass ceramic material layers 13 and 14 as shown in the sectional view of FIG. 3, and the internal electrode 11 is a via as an internal via conductor. The electrode 18 may be electrically connected. In this case, the internal electrode 11 does not need to be exposed on the side surface of the composite laminate chip. In this structure, since the terminal electrode 15 is formed on the glass ceramic material layer having an originally high insulation resistance value, even if a plating film is deposited on the side surface of the varistor material layer 12, the surface of the glass ceramic material layers 13, 14 The possibility of depositing a plating film is even lower. Therefore, according to this more preferable structure, the possibility that the left and right terminal electrodes 15 are electrically short-circuited due to abnormal deposition of the plating film is extremely low.

次にガラスセラミック材層を構成する材料として、アルミナまたはシリカを少なくとも含むセラミック粉末と、SiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合した材料を選択した理由について説明する。表1はガラスセラミック材料種を変えたときのバリスタ電気特性と焼成後のガラスセラミック材層の厚みを測定した結果である。 Next, as a material constituting the glass ceramic material layer, ceramic powder containing at least alumina or silica, and SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, Sr) based crystallized glass The reason for selecting the material mixed with the glass powder containing the will be described. Table 1 shows the results of measuring the varistor electrical characteristics when the glass ceramic material type was changed and the thickness of the glass ceramic material layer after firing.

Figure 2008270391
Figure 2008270391

表1から明らかなように、ガラスセラミック材層を構成する材料としてアルミナまたはシリカを少なくとも含むセラミック粉末と、SiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合した材料を選定した場合、電流の変化に対する電圧の変化が小さく優れたバリスタ特性を示す。一方本発明の範囲外のガラスセラミック材料を積層した場合(No.23〜26)や、比較例として作製したガラスセラミック材層を積層していない場合(No.27)では、バリスタ電圧V1mA(1mAの電流を流したときの電圧)が高く、かつ、電流の変化に対する電圧の変化が大きい電圧非直線性に劣ったバリスタ特性しか得られない。主成分が酸化亜鉛、副成分として少なくとも酸化ビスマスを含むバリスタ材料は、焼成時に酸化ビスマスなどの副成分が蒸発、拡散し、酸化亜鉛と酸化ビスマスなど副成分が、絶縁性の高い化合物を酸化亜鉛の粒界に形成することによって、電圧非直線性いわゆるバリスタ特性を発現させている。粒界の絶縁性化合物層の種類や厚みがバリスタ特性の優劣に影響し、特に薄くなりすぎると電圧非直線性は失われオームの法則に従う電圧−電流特性に近づく。比較例のようにガラスセラミック材層を積層しない酸化ビスマスなど副成分の蒸発が激しい条件で焼成すると、粒界の絶縁性化合物の厚みが薄くなりすぎてしまい、電圧非直線性をほとんど示さない。一方バリスタ材層の上下主面に、本発明の組成のガラスセラミック材層を積層すると、酸化ビスマスなどの副成分はまず、バリスタ材層の側面よりもガラスセラミック材層が積層された上下面へ選択的に拡散されていく。ガラスセラミック材層へ拡散した酸化ビスマスなどの副成分は、ガラスセラミック材層を構成するアルミナ、シリカ、SiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスと化合物を形成し、ガラスセラミック材層中に固定化される。同時にガラスセラミック材層のガラス成分はバリスタ材層の特に側面表面へ拡散し絶縁抵抗性の高い化合物を形成する。この状態で焼成すると酸化ビスマスなどの副成分の過剰な蒸発が抑えられ、酸化亜鉛の粒界には高抵抗の絶縁性化合物が均一に形成され、優れた電圧非直線性特性を示すバリスタが焼成できると考えられる。ガラスセラミック材層を構成する材料としてアルミナ、シリカ、SiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスと限定したのは、今回の発明によって上記のような現象が安定して発現することを新たに確認できたためである。 As is apparent from Table 1, ceramic powder containing at least alumina or silica as a material constituting the glass ceramic material layer, and SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, Sr) ) When a material mixed with glass powder containing system crystallized glass is selected, the voltage change with respect to the current change is small and excellent varistor characteristics are exhibited. On the other hand, when a glass ceramic material outside the scope of the present invention is laminated (No. 23 to 26) or when a glass ceramic material layer produced as a comparative example is not laminated (No. 27), the varistor voltage V 1 mA ( Only a varistor characteristic inferior in voltage non-linearity is obtained, which is high when the current of 1 mA is passed, and has a large voltage change with respect to the current change. Varistor materials that contain zinc oxide as the main component and at least bismuth oxide as a subcomponent evaporate and diffuse subcomponents such as bismuth oxide during firing, and subcomponents such as zinc oxide and bismuth oxide contain highly insulating compounds. By forming at the grain boundaries, voltage non-linearity, so-called varistor characteristics are developed. The type and thickness of the insulating compound layer at the grain boundary affect the superiority or inferiority of the varistor characteristics. When the thickness becomes particularly thin, the voltage nonlinearity is lost and the voltage-current characteristics conform to Ohm's law. When firing under conditions where the evaporation of subcomponents such as bismuth oxide without laminating a glass ceramic material layer as in the comparative example is performed, the thickness of the insulating compound at the grain boundary becomes too thin and hardly exhibits voltage nonlinearity. On the other hand, when the glass ceramic material layer having the composition of the present invention is laminated on the upper and lower main surfaces of the varistor material layer, subcomponents such as bismuth oxide are first directed to the upper and lower surfaces on which the glass ceramic material layer is laminated rather than the side surfaces of the varistor material layer. It is diffused selectively. Subcomponents such as bismuth oxide diffused into the glass ceramic material layer are alumina, silica, SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, Sr) constituting the glass ceramic material layer. A compound is formed with the system crystallized glass and is fixed in the glass ceramic material layer. At the same time, the glass component of the glass ceramic material layer diffuses particularly to the side surface of the varistor material layer to form a compound having high insulation resistance. When baked in this state, excessive evaporation of secondary components such as bismuth oxide is suppressed, high resistance insulating compounds are uniformly formed at the grain boundaries of zinc oxide, and varistors exhibiting excellent voltage nonlinearity characteristics are baked. It is considered possible. The present invention is limited to alumina, silica, SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, and Sr) based crystallized glass as a material constituting the glass ceramic material layer. This is because it has been newly confirmed that the above phenomenon is stably expressed.

ガラスセラミック材料を構成するアルミナまたはシリカを含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラス粉末との重量比は、セラミック粉末が30重量%〜60重量%、結晶化ガラス粉末が70重量%〜40重量%の範囲内であることが好ましい。この範囲外の重量比のガラスセラミック材層では、ガラスセラミック材料の強度が低くなり、薄型の積層型チップバリスタを作製した場合、端子電極形成時や基板への実装時にガラスセラミック材層にクラックなどの欠陥が発生しやすくなるためである。ガラスセラミック材層を積層しない場合は、端子電極形成時にほぼ全数バリスタ材層にクラックが発生するのに比較すると、欠陥の発生頻度は極めて低いが、より薄型の積層型チップバリスタに対応するためには、上記重量比率範囲内のガラスセラミック材料とした方が好ましい。 The weight ratio of the ceramic powder containing alumina or silica constituting the glass ceramic material to the SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, Sr) based crystallized glass powder is ceramic It is preferable that the powder is in the range of 30 to 60% by weight and the crystallized glass powder is in the range of 70 to 40% by weight. If the glass ceramic material layer has a weight ratio outside this range, the strength of the glass ceramic material will be low, and if a thin multilayer chip varistor is produced, cracks may occur in the glass ceramic material layer when the terminal electrode is formed or mounted on the substrate. This is because the defect is likely to occur. When the glass ceramic material layer is not stacked, cracks are generated in almost all varistor material layers when forming the terminal electrode, but the frequency of defects is extremely low, but in order to accommodate thinner multilayer chip varistors. Is preferably a glass ceramic material within the above weight ratio range.

またガラスセラミック材層の焼成後の厚みは10μm〜40μmの範囲内であることが好ましい。表2はガラスセラミック材層の焼成後の厚み(表2中、ガラセラ厚みと表記)と作製直後のバリスタ特性、および85℃、85%の高温高湿槽に24時間放置した後のバリスタ特性の関係を測定した結果である。厚みが10μmより薄くなると作製直後のバリスタ特性も若干悪く、さらに高温高湿槽放置後のバリスタ特性はさらに劣化する。また厚み40μm以上では、作製直後のバリスタ特性は優れているが、高温高湿槽放置後のバリスタ特性が低下する。いずれもガラスセラミック材層を積層しない場合よりは優れた特性を示すが、ガラスセラミック材層の焼成後の厚みを10μm〜40μmの範囲内に規定した方が、より優れたバリスタ特性を示し、高い信頼性を確保できる積層型チップバリスタを得ることができる。   Moreover, it is preferable that the thickness after baking of a glass-ceramic material layer exists in the range of 10 micrometers-40 micrometers. Table 2 shows the thickness of the glass-ceramic material layer after firing (in Table 2, expressed as the glass-ceramic thickness), the varistor characteristics immediately after production, and the varistor characteristics after being left in a high-temperature and high-humidity tank at 85 ° C. and 85% for 24 hours. It is the result of measuring the relationship. When the thickness is less than 10 μm, the varistor characteristics immediately after fabrication are also slightly deteriorated, and further, the varistor characteristics after being left in a high-temperature and high-humidity tank are further deteriorated. When the thickness is 40 μm or more, the varistor characteristics immediately after fabrication are excellent, but the varistor characteristics after leaving in a high-temperature and high-humidity tank are degraded. Both show superior characteristics than when the glass ceramic material layer is not laminated, but the stipulated thickness within the range of 10 μm to 40 μm shows better varistor characteristics and is higher. A multilayer chip varistor that can ensure reliability can be obtained.

Figure 2008270391
Figure 2008270391

なお図4の断面図に示すようにガラスセラミック材層はバリスタ材層上下面だけでなく、中央部にガラスセラミック材層19を配置しても、不具合がなければ構わない。   As shown in the cross-sectional view of FIG. 4, the glass ceramic material layer is not limited to the upper and lower surfaces of the varistor material layer, and even if the glass ceramic material layer 19 is arranged at the center, there is no problem.

(実施の形態2)
以下、本発明の実施の形態2を用いて、特に、本発明の請求項5〜7に記載の発明について説明する。
(Embodiment 2)
Hereinafter, the invention described in claims 5 to 7 of the present invention will be described in particular using Embodiment 2 of the present invention.

バリスタ材料とガラスセラミック材料の焼結挙動を調整して、バリスタ材料よりもガラスセラミック材料の焼結速度を速くし、ガラスセラミック材層の焼結終了以降のバリスタ材層の焼成収縮を大きくすると、図5の断面図に示すようにバリスタ材層12中央部の側面周囲長が上下のガラスセラミック材層13,14の側面周囲長よりも短くなり、バリスタ材層12中央部が凹状に湾曲する(いわゆる積層方向にくびれを有するつづみ形状である。)。このような形状は、上下面から力が作用した場合、応力が分散し破壊しにくくなるため、薄板状の積層型チップバリスタの形状として最適である。   By adjusting the sintering behavior of the varistor material and the glass ceramic material, increasing the sintering speed of the glass ceramic material than the varistor material, and increasing the firing shrinkage of the varistor material layer after the sintering of the glass ceramic material layer, As shown in the cross-sectional view of FIG. 5, the side perimeter of the center portion of the varistor material layer 12 is shorter than the side perimeter of the upper and lower glass ceramic material layers 13 and 14, and the center portion of the varistor material layer 12 is curved in a concave shape ( This is a spelled shape with a constriction in the so-called stacking direction.) Such a shape is optimal as the shape of the thin plate-shaped multilayer chip varistor because stress is dispersed and hardly broken when force is applied from the upper and lower surfaces.

またバリスタ材層表面へのメッキ膜析出を完全に抑えるためには、内部電極が露出し端子電極が形成されていないバリスタ材層の側面表面にシリコーン樹脂などの絶縁体をメッキ工程前に形成するのが望ましい。図6の断面図に示すようにバリスタ材層12中央部が凹状に湾曲していると、絶縁体20を厚く形成することができ、バリスタ材層12と絶縁体20との接着強度が飛躍的に向上するため、メッキ以降の工程で絶縁体が剥がれるなどの不具合が発生する可能性はほとんどなくなる。   In addition, in order to completely suppress plating film deposition on the surface of the varistor material layer, an insulator such as silicone resin is formed on the side surface of the varistor material layer where the internal electrode is exposed and the terminal electrode is not formed before the plating step. Is desirable. As shown in the cross-sectional view of FIG. 6, when the central portion of the varistor material layer 12 is curved in a concave shape, the insulator 20 can be formed thick, and the adhesive strength between the varistor material layer 12 and the insulator 20 is dramatically increased. Therefore, there is almost no possibility that problems such as peeling off of the insulator occur in the processes after plating.

またバリスタ材層側面に露出した内部電極と接続した端子電極を形成する場合、内部電極が露出していないバリスタ材層側面にメッキ金属膜が異常析出して、端子電極間の電気的短絡を完全に抑制するためには、内部電極が露出した側面とその上下のガラスセラミック材層のみに端子電極を形成し、内部電極が露出していない側面には端子電極が形成されないようにするのが望ましい。しかし通常の矩形断面チップ積層体では端子電極厚みが薄くなるため、所望の端子電極強度が得られない。一方上記のようにバリスタ材層中央部が凹状に湾曲していると、図7の断面図に示すように内部電極11が露出している面のみに端子電極15を形成しても十分な厚みを有する端子電極15が得られるため、信頼性の高い積層型チップバリスタが得られる。   Also, when forming a terminal electrode connected to the internal electrode exposed on the side surface of the varistor material layer, the plated metal film is abnormally deposited on the side surface of the varistor material layer where the internal electrode is not exposed, thus completely preventing an electrical short circuit between the terminal electrodes. Therefore, it is desirable to form the terminal electrode only on the side surface where the internal electrode is exposed and the glass ceramic material layer above and below the side electrode, and prevent the terminal electrode from being formed on the side surface where the internal electrode is not exposed. . However, in a normal rectangular cross-sectional chip laminate, the terminal electrode thickness is thin, so that a desired terminal electrode strength cannot be obtained. On the other hand, if the central portion of the varistor material layer is concavely curved as described above, sufficient thickness can be obtained even if the terminal electrode 15 is formed only on the surface where the internal electrode 11 is exposed as shown in the sectional view of FIG. Therefore, a highly reliable multilayer chip varistor can be obtained.

なおガラスセラミック材層がバリスタ材層上下面だけでなく中央部にも配置しても、バリスタ材料とガラスセラミック材料の焼結挙動を上記のように調整すれば、図8の断面図に示すような形状となり上記と同じ効果が得られる。   Even if the glass ceramic material layer is arranged not only on the upper and lower surfaces of the varistor material layer but also in the center portion, if the sintering behavior of the varistor material and the glass ceramic material is adjusted as described above, as shown in the sectional view of FIG. The same effect as above can be obtained.

以上のように本発明にかかる積層型チップバリスタとその製造方法は、バラツキの小さい優れたバリスタ電気特性を有し、信頼性を向上させることができ、薄型化に対応しており、量産性にも優れているため、静電気パルス電圧に弱い各種電子デバイスに適用できる。   As described above, the multilayer chip varistor and the manufacturing method thereof according to the present invention have excellent varistor electrical characteristics with small variations, can improve reliability, and are compatible with thinning, and are thus mass-productive. Therefore, it can be applied to various electronic devices that are vulnerable to electrostatic pulse voltage.

本発明の実施の形態1における積層型チップバリスタの断面図Sectional drawing of the multilayer chip varistor in Embodiment 1 of this invention 同積層型チップバリスタの斜視図Perspective view of the same multilayer chip varistor 実施の形態1における他の積層型チップバリスタの断面図Sectional drawing of the other multilayer chip varistor in Embodiment 1 実施の形態1における他の積層型チップバリスタの断面図Sectional drawing of the other multilayer chip varistor in Embodiment 1 本発明の実施の形態2における積層型チップバリスタの断面図Sectional drawing of the multilayer chip varistor in Embodiment 2 of this invention 実施の形態2における他の積層型チップバリスタの断面図Sectional drawing of the other multilayer chip varistor in Embodiment 2 実施の形態2における他の積層型チップバリスタの断面図Sectional drawing of the other multilayer chip varistor in Embodiment 2 実施の形態2における他の積層型チップバリスタの断面図Sectional drawing of the other multilayer chip varistor in Embodiment 2 従来の積層型チップバリスタの断面図Cross-sectional view of a conventional multilayer chip varistor

符号の説明Explanation of symbols

10 積層体
11 内部電極
12 バリスタ材層
13 ガラスセラミック材層
14 ガラスセラミック材層
15 端子電極
16 ニッケルメッキ膜
17 スズメッキ膜
18 ビアホール電極
19 ガラスセラミック材層
20 絶縁体
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Internal electrode 12 Varistor material layer 13 Glass ceramic material layer 14 Glass ceramic material layer 15 Terminal electrode 16 Nickel plating film 17 Tin plating film 18 Via-hole electrode 19 Glass ceramic material layer 20 Insulator

Claims (8)

主成分に酸化亜鉛、副成分に少なくとも酸化ビスマスを含む電圧非直線特性を発現するバリスタ材層と、このバリスタ材層を挟むように配置される複数の内部電極とを有する複数のバリスタ部が所定の方向に沿って配されている積層体と、この積層体の少なくとも上下主面に配置される、アルミナまたはシリカを少なくとも含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合したガラスセラミック材層と、前記内部電極と接続する一対の端子電極を備え、前記ガラスセラミック材層には前記バリスタ材層の構成成分の一部が存在し、前記バリスタ材層には前記ガラスセラミック材層のガラス成分の一部が存在していることを特徴とする積層型チップバリスタ。 A plurality of varistor portions each having a varistor material layer exhibiting voltage nonlinear characteristics including zinc oxide as a main component and at least bismuth oxide as a subcomponent and a plurality of internal electrodes arranged so as to sandwich the varistor material layer are predetermined. And a ceramic powder containing at least alumina or silica and SiO 2 —Al 2 O 3 —MO (M is Ca, Ba) disposed on at least the upper and lower main surfaces of the laminate. And a glass ceramic material layer mixed with glass powder containing a crystallized glass, and a pair of terminal electrodes connected to the internal electrode, wherein the glass ceramic material layer includes the varistor material layer. And a part of the glass component of the glass ceramic material layer is present in the varistor material layer. Varistor. 前記ガラスセラミック材層は、セラミック粉末が30重量%〜60重量%、ガラス粉末が70重量%〜40重量%の構成比率であることを特徴とする請求項1記載の積層型チップバリスタ。 2. The multilayer chip varistor according to claim 1, wherein the glass ceramic material layer has a ceramic powder content of 30 wt% to 60 wt% and a glass powder content of 70 wt% to 40 wt%. 前記ガラスセラミック材層の厚みは、10μm〜40μmであることを特徴とする請求項1記載の積層型チップバリスタ。 The multilayer chip varistor according to claim 1, wherein the glass ceramic material layer has a thickness of 10 μm to 40 μm. 前記ガラスセラミック材層の表面のみに端子電極を形成し、この端子電極と内部電極は内部ビア導体によって接続されていることを特徴とする請求項1記載の積層型チップバリスタ。 2. The multilayer chip varistor according to claim 1, wherein a terminal electrode is formed only on the surface of the glass ceramic material layer, and the terminal electrode and the internal electrode are connected by an internal via conductor. 前記バリスタ材層の積層方向の中央部の側面周囲長が前記ガラスセラミック材層の側面周囲長よりも短く、前記バリスタ材層の積層方向の中央部が前記ガラスセラミック材層よりも断面凹状に湾曲していることを特徴とする請求項1記載の積層型チップバリスタ。 The side perimeter of the central part of the varistor material layer in the stacking direction is shorter than the side perimeter of the glass ceramic material layer, and the center of the varistor material layer in the stacking direction is curved in a cross-sectional concave shape than the glass ceramic material layer. The multilayer chip varistor according to claim 1, wherein the multilayer chip varistor is formed. 前記内部電極が露出していない面のバリスタ材層の断面凹状湾曲部に、絶縁体を充填形成したことを特徴とする請求項5記載の積層型チップバリスタ。 6. The multilayer chip varistor according to claim 5, wherein an insulator is filled in the concave curved portion of the cross section of the varistor material layer on the surface where the internal electrode is not exposed. 前記内部電極が露出した面のバリスタ材層の凹状湾曲部面とその上下のガラスセラミック材層のみに導体を形成し端子電極としたことを特徴とする請求項5記載の積層型チップバリスタ。 6. The multilayer chip varistor according to claim 5, wherein a conductor is formed only on the concave curved surface of the varistor material layer on the surface where the internal electrode is exposed and the glass ceramic material layer above and below the concave curved part surface. 主成分に酸化亜鉛、副成分に少なくとも酸化ビスマスを含む電圧非直線特性を発現するバリスタ材層と、このバリスタ材層を挟むように複数の内部電極を配置したバリスタ積層体を作製する工程と、
前記バリスタ積層体の少なくとも上下主面に、アルミナまたはシリカを少なくとも含むセラミック粉末とSiO2−Al23−MO(MはCa,Ba,Srから選ばれる少なくとも一つ)系結晶化ガラスを含むガラス粉末を混合したガラスセラミック材層を積層した複合積層体を作製する工程と、
前記バリスタ材層が焼結する温度で前記複合積層体を焼成する工程と、
焼成工程の前もしくは後に、機械的方法によって前記複合積層体の辺、角を面取りする工程と、
前記内部電極と接続する一対の端子電極を形成する工程を少なくとも含むことを特徴とする積層型チップバリスタの製造方法。
A step of producing a varistor laminated body in which a varistor material layer expressing a voltage non-linear characteristic including zinc oxide as a main component and at least bismuth oxide as a subcomponent, and a plurality of internal electrodes arranged so as to sandwich the varistor material layer;
At least the upper and lower main surfaces of the varistor laminate include ceramic powder containing at least alumina or silica and SiO 2 —Al 2 O 3 —MO (M is at least one selected from Ca, Ba, Sr) based crystallized glass. Producing a composite laminate in which glass ceramic material layers mixed with glass powder are laminated;
Firing the composite laminate at a temperature at which the varistor material layer is sintered;
Before or after the firing step, chamfering the sides and corners of the composite laminate by a mechanical method;
A method of manufacturing a multilayer chip varistor, comprising at least a step of forming a pair of terminal electrodes connected to the internal electrodes.
JP2007108908A 2007-04-18 2007-04-18 Multilayer chip varistor and its manufacturing method Pending JP2008270391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108908A JP2008270391A (en) 2007-04-18 2007-04-18 Multilayer chip varistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108908A JP2008270391A (en) 2007-04-18 2007-04-18 Multilayer chip varistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008270391A true JP2008270391A (en) 2008-11-06

Family

ID=40049533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108908A Pending JP2008270391A (en) 2007-04-18 2007-04-18 Multilayer chip varistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008270391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040793A (en) * 2010-11-24 2011-02-24 Tdk Corp Collective substrate and method of manufacturing the same
JP2020047686A (en) * 2018-09-18 2020-03-26 株式会社明電舎 Zinc oxide element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040793A (en) * 2010-11-24 2011-02-24 Tdk Corp Collective substrate and method of manufacturing the same
JP2020047686A (en) * 2018-09-18 2020-03-26 株式会社明電舎 Zinc oxide element

Similar Documents

Publication Publication Date Title
JP5206440B2 (en) Ceramic electronic components
JP5796568B2 (en) Ceramic electronic components
KR20150125454A (en) paste for external electrode, multilayer ceramic electronic component and method of manufacturing the same
US8508325B2 (en) Chip varistor and chip varistor manufacturing method
US8525634B2 (en) Chip varistor
JP4682214B2 (en) Ceramic element and manufacturing method thereof
JP3008567B2 (en) Chip type varistor
JP3945010B2 (en) Multilayer varistor and manufacturing method thereof
KR20130090335A (en) Ceramic electronic component and manufacturing method therefor
JP2005353845A (en) Laminated chip varistor
JP2008270391A (en) Multilayer chip varistor and its manufacturing method
JP4262141B2 (en) Multilayer chip varistor and manufacturing method thereof
JP4683068B2 (en) Multilayer chip varistor
JP2007005500A (en) Zinc oxide laminated varistor and its manufacturing method
KR20130027784A (en) Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
JP2012033616A (en) Chip varistor
JP2005303160A (en) Laminated semiconductor ceramic electronic parts
JP2006269985A (en) Multilayer chip varistor
JP4087359B2 (en) Multilayer chip varistor
JPH0613206A (en) Laminated varistor
US8552831B2 (en) Chip varistor
JP5375810B2 (en) Chip varistor
JP5304772B2 (en) Chip varistor and method of manufacturing chip varistor
JP2019165103A (en) Laminated varistor
JP4788619B2 (en) Varistor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124