JP2008266769A - Surface-treated aluminum material, and surface treatment method for aluminum material - Google Patents

Surface-treated aluminum material, and surface treatment method for aluminum material Download PDF

Info

Publication number
JP2008266769A
JP2008266769A JP2007213576A JP2007213576A JP2008266769A JP 2008266769 A JP2008266769 A JP 2008266769A JP 2007213576 A JP2007213576 A JP 2007213576A JP 2007213576 A JP2007213576 A JP 2007213576A JP 2008266769 A JP2008266769 A JP 2008266769A
Authority
JP
Japan
Prior art keywords
acid
aluminum material
treatment
treatment liquid
oxo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213576A
Other languages
Japanese (ja)
Other versions
JP4894679B2 (en
Inventor
Masaki Iino
誠己 飯野
Yoshihiro Taguchi
喜弘 田口
Takeshi Ebihara
健 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2007213576A priority Critical patent/JP4894679B2/en
Publication of JP2008266769A publication Critical patent/JP2008266769A/en
Application granted granted Critical
Publication of JP4894679B2 publication Critical patent/JP4894679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated aluminum material having low dusting properties, and to provide a surface treatment method for an aluminum material capable of obtaining a surface-treated aluminum material having low dusting properties. <P>SOLUTION: The surface of an aluminum material is smoothed using a surface smoothing treatment liquid comprising phosphoric acid by 50 to <100 wt.%, is subjected to ultrasonic cleaning, is thereafter treated with an oxo acid treatment liquid comprising one or more kinds of oxo acid constituting elements selected from the group consisting of phosphorous, silicon and chromium, and is further subjected to heating treatment at 80 to 400°C, so as to obtain a surface-treated aluminum material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、表面処理アルミニウム材、及びアルミニウム材の表面処理方法に関し、特に、低発塵性の表面処理アルミニウム材、及びアルミニウム材からの発塵を抑制することができるアルミニウム材の表面処理方法に関する。   The present invention relates to a surface-treated aluminum material and a surface treatment method for an aluminum material, and particularly to a surface-treated aluminum material having a low dust generation property and a surface treatment method for an aluminum material capable of suppressing dust generation from the aluminum material. .

コンピューターをはじめ、近年では種々の携帯機器にハードディスクドライブが搭載されるようになり、ハードディスクドライブの性能向上がますます要求されている。通常、ハードディスクドライブは、大気中の塵や埃からディスク(磁気ディスク)を保護するためにカバーケースによって覆われるが、このカバーケースには、ハードディスクドライブの小型化や軽量化の要請を受けて、軽量であると共に機械的強度に優れ、かつ、加工性及びコスト性等に優れるアルミニウム材が主に用いられている。また、ディスクに記録したり、ディスクから再生したりするための磁気ヘッドは、通常、アクチュエータアーム(スイングアーム)によって位置制御されるが、アクチュエータアーム自体が高速で、かつ、高精度で駆動する必要があることから、同様に、軽量かつ機械的強度に優れたアルミニウム材が使用されている。   In recent years, hard disk drives have been installed in various portable devices including computers, and the performance of hard disk drives has been increasingly demanded. Normally, hard disk drives are covered with a cover case to protect the disk (magnetic disk) from atmospheric dust and dirt, but this cover case has received requests for miniaturization and weight reduction of hard disk drives. Aluminum materials that are lightweight and excellent in mechanical strength and excellent in workability and cost are mainly used. In addition, a magnetic head for recording on or reproducing from a disk is usually position-controlled by an actuator arm (swing arm), but the actuator arm itself needs to be driven at high speed and with high accuracy. Therefore, an aluminum material that is light in weight and excellent in mechanical strength is also used.

一方、ハードディスクドライブの高性能化の要請が高まるにつれ、塵や埃等の微粒子による影響について検討されるようになっている。特にカバーケースやアクチュエータアーム等に使用されるアルミニウム材自体が発塵すると、ハードディスクドライブや周辺の他の精密機器で誤動作が生じるおそれがある。そこで、成形加工したアクチュエータアームの表面に無電解NiPめっきで処理して被膜を形成する方法(マグネシウム系合金からなるアクチュエータアームの例ではあるが、例えば特許文献1参照)や、カバーケースの外側にあたるアルミニウム材の表面に樹脂皮膜を設けたハードディスクドライブケース用樹脂被覆アルミニウム材等が提案されている(例えば特許文献2及び3参照)。   On the other hand, as the demand for higher performance of hard disk drives increases, the influence of fine particles such as dust and dirt has been studied. In particular, if the aluminum material itself used in the cover case, the actuator arm, etc. generates dust, malfunction may occur in the hard disk drive and other precision devices in the vicinity. Therefore, a method of forming a film by treating the surface of the molded actuator arm with electroless NiP plating (this is an example of an actuator arm made of a magnesium-based alloy, but refer to Patent Document 1, for example), or the outside of the cover case A resin-coated aluminum material for a hard disk drive case in which a resin film is provided on the surface of an aluminum material has been proposed (for example, see Patent Documents 2 and 3).

しかしながら、無電解NiPめっき処理は、発塵を抑制する効果では優れるものの、使用する無電解NiPめっき液のコストがハードディスクカバーケースの製造原価のおよそ半分を占め、また、前処理としてアルミニウム材の表面を亜鉛に置換するジンケート処理を、通常、酸洗を繰り返しながら複数回行う必要があり、処理工程数も多くコストがかかるといった問題がある。更には、無電解NiPめっきを施した後には、めっき皮膜を安定化させるためにクロメート処理を行う方法も試みられているが、このような処理は環境に影響を及ぼすおそれもある。一方、上記の樹脂被覆アルミニウム材では、ディスクを格納した際にディスク側にあたるアルミニウム材の表面には樹脂皮膜が設けられないことになることから、例えば外部からの衝撃によってディスク側のアルミニウム材の表面で発塵するおそれがある。仮に、ディスク側のアルミニウム材の表面に樹脂皮膜を形成したとすると、今度はディスクの回転駆動による温度上昇によって樹脂皮膜からガスが発生し、ハードディスクドライブの誤動作や故障を引き起こすおそれがある。更には、アルミニウム材の表面に樹脂皮膜が形成されていると、プレス加工等によって樹脂皮膜が剥離するおそれがあることから、カバーケースの形状や加工が制限されてしまうといった問題もある。   However, although the electroless NiP plating treatment is excellent in the effect of suppressing dust generation, the cost of the electroless NiP plating solution used accounts for about half of the manufacturing cost of the hard disk cover case, and the surface of the aluminum material is used as a pretreatment. There is a problem that the zincate treatment for substituting zinc with zinc usually needs to be performed a plurality of times while repeating pickling, and the number of treatment steps is large and the cost is high. Furthermore, after performing electroless NiP plating, a method of performing chromate treatment to stabilize the plating film has also been attempted, but such treatment may affect the environment. On the other hand, in the above resin-coated aluminum material, since the resin film is not provided on the surface of the aluminum material corresponding to the disk side when the disk is stored, for example, the surface of the aluminum material on the disk side due to an external impact. There is a risk of generating dust. If a resin film is formed on the surface of the aluminum material on the disk side, gas may be generated from the resin film due to a temperature rise due to the rotational drive of the disk, which may cause malfunction or failure of the hard disk drive. Furthermore, if the resin film is formed on the surface of the aluminum material, the resin film may be peeled off by press working or the like, so that there is a problem that the shape and processing of the cover case are limited.

このような状況において、本発明者等は、ハードディスクドライブ等のような精密機器のカバーケースやアクチュエータアーム等のような精密機器部品の材料として好適な新たな低発塵性の表面処理アルミニウム材を提案している(特許文献4参照)。すなわち、本発明者等は、アルミニウム材の表面状態を詳細に観察し、アルミニウム材の表面に存在する第二相化合物が発塵源となり得ることを突き止めた。そして、アルミニウム材を特定元素のオキソ酸からなるオキソ酸処理液で処理することで、アルミニウム材の表面からの第二相化合物の離脱を防止する皮膜を形成して、低発塵性の表面処理アルミニウム材を得ることに成功している。ところが、ハードディスクカバーケースやアクチュエータアーム等の形状がより複雑になる場合には、発塵抑制の効果について更なる改良の余地があることが分った。   Under such circumstances, the present inventors have developed a new low dust-generating surface-treated aluminum material suitable as a material for precision equipment parts such as a cover case of a precision equipment such as a hard disk drive or an actuator arm. It has been proposed (see Patent Document 4). That is, the present inventors have observed the surface state of the aluminum material in detail, and have found that the second phase compound present on the surface of the aluminum material can be a source of dust generation. Then, by treating the aluminum material with an oxo acid treatment liquid comprising an oxo acid of a specific element, a film that prevents the second phase compound from detaching from the surface of the aluminum material is formed, and a surface treatment with low dust generation We have succeeded in obtaining aluminum material. However, when the shape of the hard disk cover case, the actuator arm, or the like becomes more complicated, it has been found that there is room for further improvement in the effect of suppressing dust generation.

ところで、アクチュエータアームの成形加工によってコーナー部に生じたバリが、ディスクに組み込まれた後に微細な金属片として剥がれ落ち、読み取り障害等を引き起こす問題に対処すべく、アクチュエータアームをリン酸及び硝酸を含む混合水溶液で化学研磨する表面処理方法が提案されている(特許文献5及び6参照)。しかしながら、この表面処理方法は、比較的低濃度のリン酸及び硝酸を用いて(実施例は全てリン酸:40〜50重量%、硝酸:4重量%以下)、切削やプレスのような成形加工によって発生した数十μm程度のバリをコーナー部から除去するものであって、第二相化合物の離脱に起因するようなアルミニウム材の発塵を抑制するための技術とは異なる。
特開2004−27304号公報 特開平10−249994号公報 特開平11−25653号公報 特開2005−336605号公報 特開2004−131757号公報 特開2004−216480号公報
By the way, in order to cope with the problem that the burr generated in the corner portion due to the molding process of the actuator arm is peeled off as a fine metal piece after being incorporated in the disk and causes the reading trouble or the like, the actuator arm contains phosphoric acid and nitric acid. A surface treatment method for chemically polishing with a mixed aqueous solution has been proposed (see Patent Documents 5 and 6). However, this surface treatment method uses relatively low concentrations of phosphoric acid and nitric acid (all examples are phosphoric acid: 40 to 50% by weight, nitric acid: 4% by weight or less), and molding processing such as cutting and pressing. This method removes burrs of about several tens of μm from the corner portion, and is different from the technique for suppressing dust generation of the aluminum material caused by the separation of the second phase compound.
JP 2004-27304 A Japanese Patent Laid-Open No. 10-249994 Japanese Patent Laid-Open No. 11-25653 JP 2005-336605 A JP 2004-131757 A JP 2004-216480 A

そして、本発明者等は、先に報告した低発塵性の表面処理アルミニウム材を得るアルミニウム材の表面処理方法とハードディスクカバーケースやアクチュエータアーム等の形状に由来するアルミニウム材の発塵量との関係について更に詳細に検討を加えた結果、切断、切削、プレス、穴あけ、打抜き等のような成形加工を施したアルミニウム材の切断部には、図1に示すようなSEM観察で確認できる微細な表面凹凸を有した破断面が生じ、このような表面凹凸を有した破断面では、破断面を有さないその他の場所に比べて第二相化合物の離脱が生じ易くなるという新たな知見を得た。すなわち、成形加工による破断面が多くなるにつれ、アルミニウム材は、破断面に存在する第二相化合物による発塵が増すことになる。   Then, the inventors of the present invention reported the previously reported aluminum material surface treatment method for obtaining a low dusting surface treatment aluminum material and the amount of dust generated by the aluminum material derived from the shape of the hard disk cover case, actuator arm, etc. As a result of examining the relationship in more detail, the cut portion of the aluminum material subjected to forming processing such as cutting, cutting, pressing, punching, punching, etc., can be confirmed by SEM observation as shown in FIG. Obtained a new finding that fractured surfaces with surface irregularities were produced, and that fractures with such surface irregularities were more likely to cause separation of the second phase compound than other places without fractured surfaces. It was. That is, as the fracture surface due to the forming process increases, the aluminum material is increased in dust generation due to the second phase compound existing on the fracture surface.

そこで、本発明者等は、いくつかの成形加工が求められ、なおかつ低発塵性が要求される精密機器のカバーケースや精密機器部品の材料として好適な表面処理アルミニウム材を得る方法について鋭意検討した結果、特定の表面平滑化処理液を用いて、破断面に現れた微細な表面凹凸を均一に取り除いて破断面のはだ荒れを処理し、更にオキソ酸処理液で処理することで、破断面からの第二相化合物の離脱を可及的に防止し、発塵抑制効果をより一層向上させることができることを見い出し、本発明を完成した。   Therefore, the present inventors have intensively studied a method for obtaining a surface-treated aluminum material suitable as a material for precision instrument cover cases and precision instrument parts that require several molding processes and require low dust generation. As a result, a specific surface smoothing solution was used to uniformly remove fine surface irregularities that appeared on the fracture surface, to treat the rough surface of the fracture surface, and to further treat with the oxo acid treatment solution. The inventors have found that the second phase compound can be prevented from detaching from the cross section as much as possible, and the dust generation suppressing effect can be further improved, thereby completing the present invention.

したがって、本発明の目的は、例えば無電解NiPめっき処理したアルミニウム材と同等又はそれ以上のレベルの低発塵性能を備えた表面処理アルミニウム材を提供することにある。   Accordingly, an object of the present invention is to provide a surface-treated aluminum material having low dust generation performance equivalent to or higher than that of an aluminum material subjected to electroless NiP plating, for example.

また、本発明の別の目的は、例えば無電解NiPめっき処理したアルミニウム材と同等又はそれ以上のレベルの低発塵性能を備えた表面処理アルミニウム材を、低コストで簡便にかつ確実に得ることができるアルミニウム材の表面処理方法を提供することにある。   Another object of the present invention is to obtain a surface-treated aluminum material having low dust generation performance at a level equivalent to or higher than that of, for example, an electroless NiP-plated aluminum material easily and reliably at a low cost. An object of the present invention is to provide a surface treatment method for an aluminum material.

すなわち、本発明は、アルミニウム材の表面を表面平滑化処理液で処理し、超音波洗浄した後、オキソ酸処理液で処理し、更に80〜400℃の温度で加熱処理して得られる表面処理アルミニウム材であって、上記表面平滑化処理液が、リン酸を50重量%以上100重量%未満含有した表面平滑化処理液であり、上記オキソ酸処理液が、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含有することを特徴とする表面処理アルミニウム材である。   That is, the present invention provides a surface treatment obtained by treating the surface of an aluminum material with a surface smoothing treatment liquid, ultrasonically cleaning it, treating with an oxo acid treatment liquid, and further heat-treating at a temperature of 80 to 400 ° C. An aluminum material, wherein the surface smoothing solution is a surface smoothing solution containing 50% by weight or more and less than 100% by weight of phosphoric acid, and the oxo acid treatment solution is composed of phosphorus, silicon, and chromium. A surface-treated aluminum material comprising an oxo acid composed of one or more oxo acid constituent elements selected from the group.

また、本発明は、アルミニウム材の表面を表面平滑化処理液で処理し、超音波洗浄した後、オキソ酸処理液で処理し、更に80〜400℃の温度で加熱処理するアルミニウム材の表面処理方法であって、上記表面平滑化処理液が、リン酸を50重量%以上100重量%未満含有した表面平滑化処理液であり、上記オキソ酸処理液が、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含有することを特徴とするアルミニウム材の表面処理方法である。   Further, the present invention provides a surface treatment of an aluminum material that is treated with a surface smoothing treatment liquid, subjected to ultrasonic cleaning, then treated with an oxo acid treatment liquid, and further subjected to a heat treatment at a temperature of 80 to 400 ° C. It is a method, The said surface smoothing process liquid is a surface smoothing process liquid which contained 50 weight% or more and less than 100 weight% of phosphoric acid, The said oxo acid treatment liquid is a group which consists of phosphorus, silicon, and chromium. A surface treatment method for an aluminum material, comprising an oxo acid composed of at least one oxo acid constituent element selected from:

本発明では、先ず、リン酸を主成分とした溶液(表面平滑化処理液)でアルミニウム材の表面を化学的に平滑化することで、切断、切削、プレス、穴あけ、打抜き等の成形加工によって生じたアルミニウム材の破断面のはだ荒れ(微細な表面凹凸)を処理する。すなわち、破断面には、図1に示したように、SEM観察で確認できるような微細な表面凹凸が発生し、この表面凹凸からは第二相化合物の離脱が生じ易くなってしまうことから、リン酸を主成分とした表面平滑化処理液で処理することで、この微細な表面凹凸を平滑化してアルミニウム材の発塵源を除去するようにする。このような表面平滑化処理液を用いた表面平滑化処理により、破断面の微細な表面凹凸からの第二相化合物の離脱を効果的に防止し、かつ微細な表面凹凸(破断面)自身が発塵源となり得る場合についてもこれを防止することができる。   In the present invention, first, the surface of an aluminum material is chemically smoothed with a solution containing phosphoric acid as a main component (surface smoothing treatment solution), thereby forming a cutting process such as cutting, cutting, pressing, punching, or punching. The rough surface (fine surface irregularities) of the fracture surface of the resulting aluminum material is treated. That is, as shown in FIG. 1, fine surface irregularities that can be confirmed by SEM observation are generated on the fracture surface, and from this surface irregularities, the second phase compound is likely to be detached. By treating with a surface smoothing treatment liquid containing phosphoric acid as a main component, the fine surface irregularities are smoothed and the dust source of the aluminum material is removed. Surface smoothing using such a surface smoothing solution effectively prevents detachment of the second phase compound from the fine surface irregularities of the fracture surface, and the fine surface irregularities (fracture surface) itself This can also be prevented when it can be a dust source.

表面平滑化処理液のリン酸濃度については、50重量%以上100重量%未満であり、好ましくは70〜90重量%である。リン酸の含有量が50重量%より少ないと、下記式(1)で示されるように、平滑化に寄与するリン酸量が少なくなるため破断面の微細な凹凸が十分に平滑化されないおそれがある。さらに表面平滑化処理液の粘性も低くなるため、破断面の微細な表面凹凸において表面平滑化処理液が均一に拡散するため、破断面の表面凹凸がその凹凸を有したまま均一に溶解してしまい、破断面が平滑化されないおそれもある。50重量%以上であれば、平滑化に寄与するリン酸量が十分確保され、さらに表面平滑化処理液の高い粘性により、表面平滑化処理液の破断面の凹部での拡散が遅くなり、凸部の溶解が優先的に進行するため破断面の微細な凹凸が平滑化される。なお、リン酸濃度の上限については、市販のリン酸溶液(85重量%)中の水分を蒸発させ濃縮すれば、理論上リン酸100重量%は可能であるが、アルミニウム材の破断面の表面凹凸からの溶解により液中のアルミニウム成分量が増加するためリン酸100重量%は建浴時以外には実現しない点、また建浴時においても下記式(2)に示されるようにリン酸の分子内脱水反応による水の生成によりリン酸100重量%は実現しない点から、リン酸濃度の上限は100重量%未満である。ただし、上記記載のリン酸の濃縮には時間がかかるため実用上好ましくは90重量%以下である。
2Al + 6H3PO4 → 2Al(H2PO4)3 +3H2 ・・・・・・(1)
2H3PO4 → H4P2O7 +H2O ・・・・・・・・(2)
The phosphoric acid concentration of the surface smoothing treatment liquid is 50% by weight or more and less than 100% by weight, and preferably 70 to 90% by weight. If the phosphoric acid content is less than 50% by weight, as shown by the following formula (1), the amount of phosphoric acid that contributes to smoothing decreases, so that fine irregularities on the fracture surface may not be smoothed sufficiently. is there. Furthermore, since the viscosity of the surface smoothing treatment liquid decreases, the surface smoothing treatment liquid spreads evenly on the fine surface irregularities of the fractured surface, so that the surface irregularities of the fractured surface are uniformly dissolved while having the irregularities. As a result, the fracture surface may not be smoothed. If it is 50% by weight or more, a sufficient amount of phosphoric acid that contributes to smoothing is ensured, and furthermore, due to the high viscosity of the surface smoothing treatment liquid, diffusion at the concave portion of the fracture surface of the surface smoothing treatment liquid becomes slow and Since the dissolution of the part proceeds preferentially, fine irregularities on the fracture surface are smoothed. As for the upper limit of the phosphoric acid concentration, if the water in a commercially available phosphoric acid solution (85% by weight) is evaporated and concentrated, 100% by weight of phosphoric acid is theoretically possible, but the surface of the fracture surface of the aluminum material. Since the amount of aluminum component in the liquid increases due to dissolution from the unevenness, 100% by weight of phosphoric acid is not realized except during the bathing, and also in the bathing as shown in the following formula (2) The upper limit of the phosphoric acid concentration is less than 100% by weight because 100% by weight of phosphoric acid is not realized due to the production of water by intramolecular dehydration reaction. However, since it takes time to concentrate the phosphoric acid described above, the concentration is preferably 90% by weight or less.
2Al + 6H 3 PO 4 → 2Al (H 2 PO 4 ) 3 + 3H 2 (1)
2H 3 PO 4 → H 4 P 2 O 7 + H 2 O (2)

また、本発明の表面平滑化処理液については、表面凹凸を取り除いて破断面をより平滑にする観点から、好ましくは、リン酸のほかに、硝酸又は硫酸のいずれか又は両方を1〜30重量%、より好ましくは2〜10重量%、更に好ましくは2〜8重量%含有するのがよい。硝酸又は硫酸は表面に酸化性の不動態皮膜を形成し、この酸化性の不動態皮膜が特に凹部での溶解を抑制するため凸部の溶解が優先的に進行し、平滑化が促進される。硝酸又は硫酸の濃度が1重量%より少ないと、酸化性の不動態皮膜が生成しにくいため、不動態皮膜による凹部の溶解抑制効果が希薄となり、場合によっては表面凹凸がその凹凸を有したまま均一に溶解してしまうため、平滑化を向上させる作用が望めない。反対に30重量%を超えると、酸化性の不動態皮膜が表面に厚く形成するため、リン酸による表面凹凸の溶解反応の進行が遅くなってしまう。また、硝酸のみを添加する場合については、その添加量が30重量%を超えると有害な量のNOxが発生するおそれがある。なお、硝酸及び硫酸の両方を含有する場合は、両者の合計が上記濃度範囲となるように、すなわち硝酸及び硫酸の合計濃度が1〜30重量%、好ましくは2〜10重量%、より好ましくは2〜8重量%となるようにする。   Moreover, about the surface smoothing processing liquid of this invention, from a viewpoint which removes surface unevenness | corrugation and makes a torn surface smoother, Preferably, in addition to phosphoric acid, either or both nitric acid or a sulfuric acid are 1-30 weight. %, More preferably 2 to 10% by weight, still more preferably 2 to 8% by weight. Nitric acid or sulfuric acid forms an oxidative passive film on the surface, and this oxidative passive film suppresses dissolution particularly in the concave portion, so that dissolution of the convex portion proceeds preferentially and smoothing is promoted. . When the concentration of nitric acid or sulfuric acid is less than 1% by weight, it is difficult to form an oxidative passive film, so that the effect of suppressing the dissolution of the concave portions by the passive film becomes dilute, and in some cases the surface irregularities remain with the irregularities. Since it melt | dissolves uniformly, the effect | action which improves smoothing cannot be expected. On the other hand, if it exceeds 30% by weight, an oxidizing passive film is formed thick on the surface, so that the progress of dissolution reaction of surface irregularities by phosphoric acid is delayed. Further, in the case of adding only nitric acid, if the addition amount exceeds 30% by weight, a harmful amount of NOx may be generated. When both nitric acid and sulfuric acid are contained, the total concentration of both is within the above-mentioned concentration range, that is, the total concentration of nitric acid and sulfuric acid is 1 to 30% by weight, preferably 2 to 10% by weight, more preferably 2-8% by weight.

また、表面平滑化処理液が硝酸を含有する場合には、更に尿素を0.2〜10重量%含有させるようにしてもよい。リン酸と硝酸とを含む表面平滑化処理液でアルミニウム材を処理すると、下記式(3)で示されるように亜硝酸性ガス(NOx)が発生するが、尿素を含有させた場合には、下記式(4)で示されるように亜硝酸性ガスの発生を抑制することができる。表面平滑化処理液が硝酸を含む場合は、上述の通り、硝酸の存在によって表面凹凸における凸部の優先的溶解が進行し、凹凸の平滑化が効果的になされるが、濃度が高くなると亜硝酸性ガスの発生が作業性を阻害するおそれがある。そのため、硝酸濃度が1重量%以上になる場合を目安に、尿素を含有させるようにするのがよい。
7Al+7H3PO4+5HNO3 → 7AlPO4+2N2+NO2+13H2O ……(3)
10Al+10H3PO4+6HNO3 → 10AlPO4+3N2+18H2O ……(4)
Moreover, when the surface smoothing process liquid contains nitric acid, you may make it contain 0.2 to 10 weight% of urea further. When an aluminum material is treated with a surface smoothing treatment solution containing phosphoric acid and nitric acid, nitrite gas (NOx) is generated as shown by the following formula (3), but when urea is contained, Generation | occurrence | production of nitrous acid gas can be suppressed as shown by following formula (4). When the surface smoothing solution contains nitric acid, as described above, the preferential dissolution of the protrusions on the surface unevenness proceeds due to the presence of nitric acid, and the uneven unevenness is effectively smoothed. The generation of nitrate gas may hinder workability. Therefore, it is preferable to contain urea with reference to a case where the nitric acid concentration is 1% by weight or more.
7Al + 7H 3 PO 4 + 5HNO 3 → 7AlPO 4 + 2N 2 + NO 2 + 13H 2 O (3)
10Al + 10H 3 PO 4 + 6HNO 3 → 10AlPO 4 + 3N 2 + 18H 2 O (4)

上記表面平滑化処理液を用いた処理の具体的な処理条件については、60〜110℃、好ましくは65〜105℃にした表面平滑化処理液中に、処理時間10秒〜20分、好ましくは30秒〜5分でアルミニウム材を浸漬させるのがよい。処理温度が60℃より低いと反応速度が遅くなり処理時間が長くなってしまい非効率的であり、反対に110℃を超えると表面平滑化処理液中の水分の蒸発量が多くなり、特に硝酸や硫酸を含んだ場合にはそれらの蒸発量も多くなるため浴組成の管理が困難になる。なお、破断面の微細な表面凹凸を平滑にするためには、反応速度が一定であることが望ましく、浴温度は一定であるのが望ましい。一方、処理時間が10秒より短いとアルミニウム材の表面がほとんど平滑化されないため、破断面の微細な表面凹凸の除去が困難になる。反対に20分を超えると溶解量が多くなり過ぎてアルミニウム材の寸法精度の維持が難しくなる。   About the specific process conditions of the process using the said surface smoothing process liquid, in the surface smoothing process liquid made into 60-110 degreeC, Preferably 65-105 degreeC, process time 10 second-20 minutes, Preferably The aluminum material is preferably immersed in 30 seconds to 5 minutes. If the treatment temperature is lower than 60 ° C., the reaction rate becomes slow and the treatment time becomes longer, which is inefficient. On the other hand, if the treatment temperature exceeds 110 ° C., the amount of water evaporation in the surface smoothing solution increases. When sulfuric acid or sulfuric acid is included, the amount of evaporation increases, making it difficult to manage the bath composition. In order to smooth the fine surface irregularities of the fracture surface, it is desirable that the reaction rate is constant and the bath temperature is constant. On the other hand, if the treatment time is shorter than 10 seconds, the surface of the aluminum material is hardly smoothed, so that it is difficult to remove fine surface irregularities on the fracture surface. On the other hand, if it exceeds 20 minutes, the amount of dissolution becomes excessive, and it becomes difficult to maintain the dimensional accuracy of the aluminum material.

表面平滑化処理液を用いた表面平滑化処理後のアルミニウム材については、超音波洗浄を行うようにする。表面平滑化処理液による処理後のアルミニウム材の表面には、除去しきれなかった微細な表面凹凸の一部や、第二相化合物が残存するおそれがあるため、超音波洗浄によってこれらのものを物理的に除去するようにする。また、アルミニウム材の表面に表面平滑化処理液が残存していると、後にアルミニウム材が腐食するおそれがあるため、超音波洗浄による表面平滑化処理液の除去が耐食性の向上により貢献するという効果も相乗される。超音波洗浄の具体的な処理条件については特に制限されず、公知の方法を用いることができるが、例えば40kHz、100Wの条件で超音波水洗する場合には、1〜3分間程度処理するようにすればよい。このような洗浄処理を2回以上繰り返すようにしてもよい。   The aluminum material after the surface smoothing treatment using the surface smoothing treatment liquid is subjected to ultrasonic cleaning. The surface of the aluminum material after the treatment with the surface smoothing solution may have some fine surface irregularities that could not be removed, or the second phase compound may remain. Try to remove it physically. In addition, if the surface smoothing treatment liquid remains on the surface of the aluminum material, the aluminum material may corrode later, so that the removal of the surface smoothing treatment solution by ultrasonic cleaning contributes to the improvement of the corrosion resistance. Are also synergistic. Specific processing conditions for ultrasonic cleaning are not particularly limited, and known methods can be used. For example, when ultrasonic water cleaning is performed at 40 kHz and 100 W, the processing is performed for about 1 to 3 minutes. do it. Such a cleaning process may be repeated two or more times.

超音波洗浄後のアルミニウム材は、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含有したオキソ酸処理液で処理し、更に加熱処理して、表面に皮膜を形成するようにする。所定のオキソ酸処理液で処理して、更に加熱処理することで、アルミニウム材の表面に強固な皮膜(オキソ酸アルミニウム皮膜)を形成し、アルミニウム材の表面に存在する第二相化合物の離脱を防ぐと共に、優れた耐食性を付与せしめることができる。   The aluminum material after ultrasonic cleaning is treated with an oxo acid treatment solution containing an oxo acid composed of one or more oxo acid constituent elements selected from the group consisting of phosphorus, silicon, and chromium, and further heat-treated. A film is formed on the surface. By treating with a predetermined oxo acid treatment solution and further heat treatment, a strong film (aluminum oxo acid film) is formed on the surface of the aluminum material, and the second phase compound existing on the surface of the aluminum material is released. While preventing, it can give the outstanding corrosion resistance.

このうち、オキソ酸処理液については、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含んだ水溶液であればよく、具体的にはホスフィン酸(HPH2O2)、亜リン酸(H3PO3)、ホスホン酸(H2PHO3)、リン酸(H3PO4)、二リン酸(H4P2O7)、メタリン酸〔(HPO3)n〕、次リン酸〔(HO)2OP-PO(OH)2〕、オルトケイ酸(H4SiO4)、メタケイ酸〔(H2SiO3)n〕、メタ二ケイ酸(H2Si2O5)、クロム酸(H2CrO4)、及び二クロム酸(H2Cr2O7)等の水溶液を例示することができ、好ましくはホスフィン酸、亜リン酸、ホスホン酸、リン酸、二リン酸、メタリン酸、及び次リン酸の水溶液であるのがよい。なお、オキソ酸はいずれか1種を用いてもよく、2種以上を混合して用いてもよい。 Of these, the oxo acid treatment solution may be an aqueous solution containing an oxo acid composed of one or more oxo acid constituent elements selected from the group consisting of phosphorus, silicon, and chromium. (HPH 2 O 2 ), phosphorous acid (H 3 PO 3 ), phosphonic acid (H 2 PHO 3 ), phosphoric acid (H 3 PO 4 ), diphosphoric acid (H 4 P 2 O 7 ), metaphosphoric acid [ (HPO 3 ) n ], hypophosphoric acid [(HO) 2 OP-PO (OH) 2 ], orthosilicic acid (H 4 SiO 4 ), metasilicic acid [(H 2 SiO 3 ) n ], metadisilicate ( Examples include aqueous solutions of H 2 Si 2 O 5 ), chromic acid (H 2 CrO 4 ), dichromic acid (H 2 Cr 2 O 7 ), preferably phosphinic acid, phosphorous acid, phosphonic acid It may be an aqueous solution of phosphoric acid, diphosphoric acid, metaphosphoric acid, and hypophosphoric acid. In addition, any 1 type may be used for an oxo acid, and 2 or more types may be mixed and used for it.

オキソ酸処理液中のオキソ酸構成元素の含有量については、その総量が10〜10000ppm、好ましくは25〜500ppmであるのがよい。10ppmより少ないと皮膜形成が不十分となってアルミニウム材の表面に存在する第二相化合物の離脱を効果的に防止することが難しくなり、また、オキソ酸アルミニウム皮膜によって耐食性を付与せしめる効果が十分に望めない。反対に10000ppmを超えると、未反応のオキソ酸がアルミニウム材の表面に残存してしまい、酸による腐食のおそれがある。なお、オキソ酸構成元素の含有量が10ppm以上であれば、第二相化合物の離脱を防止できる皮膜を形成することが可能であり、25ppm以上であればより効果的であるが、コスト面を考慮する場合には500ppm以下であるのがよい。   Regarding the content of oxo acid constituent elements in the oxo acid treatment liquid, the total amount is 10 to 10,000 ppm, preferably 25 to 500 ppm. If it is less than 10 ppm, the film formation is insufficient and it becomes difficult to effectively prevent the separation of the second phase compound existing on the surface of the aluminum material, and the effect of imparting corrosion resistance by the aluminum oxoacid film is sufficient. I can't expect it. On the other hand, if it exceeds 10,000 ppm, unreacted oxo acid remains on the surface of the aluminum material and there is a risk of corrosion by the acid. If the content of the oxo acid constituent element is 10 ppm or more, it is possible to form a film that can prevent the second-phase compound from leaving, and if it is 25 ppm or more, it is more effective. When considering, it is good to be 500 ppm or less.

また、オキソ酸処理液は、上記オキソ酸構成元素からなるオキソ酸以外の他のオキソ酸や、オキソ酸構成元素からなるオキソ酸の金属塩を実質的に含まないようにするのがよい。ここで、他のオキソ酸とは、リン、珪素及びクロム以外の元素を含むオキソ酸であり、また、オキソ酸構成元素からなるオキソ酸の金属塩とは、例えばリン酸亜鉛、リン酸ジルコニウム、リン酸クロム等のオキソ酸塩を挙げることができる。   Further, the oxo acid treatment liquid preferably contains substantially no oxo acid other than the oxo acid composed of the oxo acid constituent element or a metal salt of the oxo acid composed of the oxo acid constituent element. Here, the other oxo acid is an oxo acid containing an element other than phosphorus, silicon and chromium, and a metal salt of an oxo acid composed of an oxo acid constituent element is, for example, zinc phosphate, zirconium phosphate, There may be mentioned oxo acid salts such as chromium phosphate.

オキソ酸処理液がオキソ酸構成元素からなるオキソ酸の金属塩を含むと、アルミニウム材の表面にリン酸亜鉛やリン酸ジルコニウムの皮膜を形成してしまい、これらの皮膜は素地のアルミニウム材との結合力が弱いため、アルミニウム材の表面に析出して発塵源となり、また、アルミニウム材の表面に存在する第二相化合物の離脱を十分に防ぐことができなくなる。一方、特定のオキソ酸構成元素からなるオキソ酸以外の他のオキソ酸を含むと、素地となるアルミニウム材と強い結合を形成することがないため、処理したアルミニウム材の表面に析出して発塵源となってしまう。そのため、オキソ酸処理液については、オキソ酸構成元素からなるオキソ酸以外の他のオキソ酸、又はオキソ酸構成元素からなるオキソ酸の金属塩を実質的に含まないようにするのがよく、好ましくは、他のオキソ酸及びオキソ酸構成元素からなるオキソ酸の金属塩をいずれも実質的に含まないようにするのがよい。   When the oxo acid treatment solution contains a metal salt of an oxo acid composed of an oxo acid constituent element, a film of zinc phosphate or zirconium phosphate is formed on the surface of the aluminum material, and these films are in contact with the base aluminum material. Since the bonding force is weak, it is deposited on the surface of the aluminum material to become a dust generation source, and the separation of the second phase compound existing on the surface of the aluminum material cannot be sufficiently prevented. On the other hand, inclusion of oxo acids other than oxo acids composed of specific oxo acid constituents does not form a strong bond with the aluminum material that forms the base material, so it precipitates on the surface of the treated aluminum material and generates dust. It becomes a source. Therefore, the oxo acid treatment solution should be substantially free of oxo acids other than oxo acids composed of oxo acid constituent elements, or metal salts of oxo acids composed of oxo acid constituent elements, and preferably It is preferable that substantially no oxoacids and metal salts of oxoacids composed of oxoacid constituent elements are contained.

また、上記と同様な理由から、オキソ酸処理液にはフッ化水素アンモニウム、フッ化カリウム等のフッ化物、ジルコニウム、チタン、亜鉛、ニッケル等の3〜12族の金属及びこれらの塩、アルカリ金属やアルカリ土類金属及びこれらの塩、フッ化水素酸等が実質的に含まれないようにするのがよい。なお、実質的に含まれてはいけない上記の各物質であっても、例えばICP発光分析法、原子吸光光度法、又はイオンクロマトグラフ法による金属元素、非金属元素、陰イオン物質の測定で検出されない1ppm以下の物質については本発明におけるオキソ酸処理液に含まれていても特段支障はない。   For the same reason as described above, the oxo acid treatment liquid contains fluorides such as ammonium hydrogen fluoride and potassium fluoride, metals of Group 3-12 such as zirconium, titanium, zinc and nickel, and salts and alkali metals thereof. And alkaline earth metals and their salts, hydrofluoric acid and the like should be substantially not contained. Even the above-mentioned substances that should not be substantially contained are detected by measuring metal elements, non-metal elements, and anionic substances by, for example, ICP emission spectrometry, atomic absorption spectrophotometry, or ion chromatography. Even if it is contained in the oxo acid treatment liquid in the present invention for the 1 ppm or less substances that are not added, there is no particular problem.

オキソ酸処理液によってアルミニウム材の表面を処理する手段については、例えば浸漬処理、スプレー処理、刷毛等を用いた塗布等を用いることができるが、好ましくはオキソ酸処理液中にアルミニウム材を浸漬させる浸漬処理であるのがよい。浸漬処理での具体的な処理条件については、温度10〜100℃、好ましくは25〜80℃のオキソ酸処理液中に10秒〜30分、好ましくは1分〜15分の間アルミニウム材を浸漬させるようにするのがよい。オキソ酸処理液の温度が10℃より低いとオキソ酸とアルミニウム材との反応が起こり難く、反対に100℃より高くなるとアルミニウム材の溶解量が多くなってしまう。浸漬時間が10秒より短いとアルミニウム材の表面のオキソ酸付着量が不十分となり、加熱処理後の皮膜形成が不十分となって第二相化合物の離脱が起こるおそれがあり、反対に30分より長くなるとアルミニウム材の溶解量が多くなってしまい、寸法精度の維持が難しくなる。   As a means for treating the surface of the aluminum material with the oxo acid treatment solution, for example, dipping treatment, spray treatment, application using a brush or the like can be used, but preferably the aluminum material is immersed in the oxo acid treatment solution. It is good that it is an immersion process. For specific treatment conditions in the immersion treatment, the aluminum material is immersed in an oxo acid treatment solution at a temperature of 10 to 100 ° C., preferably 25 to 80 ° C. for 10 seconds to 30 minutes, preferably 1 minute to 15 minutes. It is better to let them. When the temperature of the oxo acid treatment solution is lower than 10 ° C., the reaction between the oxo acid and the aluminum material is difficult to occur. If the immersion time is shorter than 10 seconds, the amount of oxo acid attached to the surface of the aluminum material becomes insufficient, and the film formation after the heat treatment may become insufficient, and the second phase compound may be detached. If the length is longer, the amount of the aluminum material dissolved increases, and it becomes difficult to maintain the dimensional accuracy.

オキソ酸処理液での処理の後に行う加熱処理については、温度80〜400℃、好ましくは100〜300℃で行うようにする。加熱処理の温度が80℃より低いとオキソ酸処理液によって処理したアルミニウム材の表面に皮膜が十分に形成されないおそれがあり、反対に400℃より高くなると基材となるアルミニウム材が軟化して強度が低下するおそれがある。加熱処理の時間については0.5〜120分、好ましくは3〜60分であるのがよい。加熱処理の時間が0.5分より短いとアルミニウム材の表面の皮膜形成が不十分となって第二相化合物の離脱が起きるおそれがあり、反対に120分より長くなると表面処理アルミニウム材としての材料強度が低下するおそれがある。なお、加熱処理の雰囲気については大気中で行うことができる。   The heat treatment performed after the treatment with the oxo acid treatment solution is performed at a temperature of 80 to 400 ° C, preferably 100 to 300 ° C. If the temperature of the heat treatment is lower than 80 ° C, a film may not be sufficiently formed on the surface of the aluminum material treated with the oxo acid treatment solution. On the other hand, if the temperature is higher than 400 ° C, the aluminum material serving as the base material becomes soft and strong. May decrease. The heat treatment time is 0.5 to 120 minutes, preferably 3 to 60 minutes. If the heat treatment time is shorter than 0.5 minutes, film formation on the surface of the aluminum material may be insufficient and the second phase compound may be detached. Conversely, if it is longer than 120 minutes, the surface treatment aluminum material There is a risk that the material strength may decrease. Note that the atmosphere of the heat treatment can be performed in the air.

本発明において、表面処理を行うアルミニウム材については、アルミニウム又はアルミニウム合金からなるものであればよく、その大きさや形状等にも制限されず、用途に応じて適宜選択することができる。例えば高純度アルミニウム(JIS H4170; 1N99)のほか、A1100、A5052、A6063等の種々のアルミニウム合金からなるアルミニウム材を用いることができ、また、押出成形により形成された押出型材、圧延加工あるいは射出成形により形成された厚肉又は薄肉の板材、これらの板材を適宜折曲加工して得られた曲げ加工材等であってもよい。   In the present invention, the aluminum material to be surface-treated may be made of aluminum or an aluminum alloy, and is not limited by its size or shape, and can be appropriately selected according to the application. For example, in addition to high-purity aluminum (JIS H4170; 1N99), aluminum materials made of various aluminum alloys such as A1100, A5052, and A6063 can be used. Extrusion molds formed by extrusion, rolling, or injection molding It may be a thick or thin plate material formed by the above, a bending material obtained by appropriately bending these plate materials, and the like.

また、本発明の表面処理方法については、基材となるアルミニウム材の表面全面について表面平滑化処理をはじめとした各処理を行うようにしてもよく、あるいはコスト性を考慮してアルミニウム材の表面を適宜選択して処理するようにしてもよい。処理する部分を選択するに際しては、アルミニウム材の表面を観察して、少なくとも切断、切削、プレス、穴あけ、打抜き等のような成形加工を施した領域を処理するようにするのがよい。   In the surface treatment method of the present invention, the entire surface of the aluminum material serving as the base material may be subjected to each treatment including a surface smoothing treatment, or the surface of the aluminum material in consideration of cost. May be appropriately selected and processed. When selecting the portion to be processed, it is preferable to observe the surface of the aluminum material and to process at least a region subjected to a forming process such as cutting, cutting, pressing, punching, punching, or the like.

更に、本発明においては、表面平滑化処理液を用いた表面平滑化処理に先駆けて、脱脂処理、エッチング処理、デスマット処理又は電解研磨処理のいずれかを行うようにしてもよい。このうち、脱脂処理については、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウム、界面活性剤等からなる通常の脱脂浴を用いて行うことができ、処理条件としては、通常、浸漬温度が15〜55℃、好ましくは25〜40℃であって、浸漬時間が1〜10分、好ましくは3〜6分であるのがよい。また、エッチング処理については、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ水溶液を用い、その濃度は20〜200g/L、好ましくは50〜150g/Lであって、処理条件としては、浸漬温度が30〜70℃、好ましくは40〜60℃であって、浸漬時間が0.5〜5分、好ましくは1〜3分であるのがよい。   Furthermore, in the present invention, any one of a degreasing process, an etching process, a desmut process, or an electropolishing process may be performed prior to the surface smoothing process using the surface smoothing process liquid. Among these, the degreasing treatment can be performed using a normal degreasing bath made of sodium hydroxide, sodium carbonate, sodium phosphate, a surfactant, etc., and the treatment condition is usually an immersion temperature of 15 to 55. C., preferably 25 to 40.degree. C., and immersion time is 1 to 10 minutes, preferably 3 to 6 minutes. For the etching treatment, an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, sodium carbonate or the like is used, and its concentration is 20 to 200 g / L, preferably 50 to 150 g / L. The temperature is 30 to 70 ° C, preferably 40 to 60 ° C, and the immersion time is 0.5 to 5 minutes, preferably 1 to 3 minutes.

デスマット処理については、例えば1〜30%硝酸からなるデスマット浴を用いて行うことができ、処理条件としては、通常、浸漬温度が15〜55℃、好ましくは25〜40℃であって、浸漬時間が1〜10分、好ましくは3〜6分であるのがよい。また、電解研磨処理については、例えば過塩素酸20重量%とエタノール80重量%からなる混合処理液を用いて行うことができ、処理条件としては、電流密度1〜10A/dm2、浴電圧20〜30Vで1〜5分間の処理でおこなうようにするのがよい。 The desmut treatment can be performed using, for example, a desmut bath made of 1 to 30% nitric acid, and the treatment conditions are usually an immersion temperature of 15 to 55 ° C, preferably 25 to 40 ° C, and an immersion time. Is 1 to 10 minutes, preferably 3 to 6 minutes. In addition, the electrolytic polishing treatment can be performed using, for example, a mixed treatment liquid composed of 20% by weight of perchloric acid and 80% by weight of ethanol. The treatment conditions include a current density of 1 to 10 A / dm 2 , a bath voltage of 20 It is better to perform the treatment at -30V for 1-5 minutes.

ところで、アルミニウム材に存在する第二相化合物とは、素材金属のアルミニウム(Al)以外の物質(Fe, Si, Cu, Mg, Znその他の不純物)によって相を形成している物質であり、例えばAl3Fe、αAlFeSi、Al3Mg2、Mg2Si、及びAl-Mg-Zn化合物等の化合物を挙げることができる。アルミニウム材の表面に存在するこれらの第二相化合物については、走査型電子顕微鏡(SEM)の反射電子像を利用してその大きさや分布状態を調べることができ、また、X線回折によってその物質を同定することもできる。 By the way, the second phase compound existing in the aluminum material is a substance that forms a phase with a substance (Fe, Si, Cu, Mg, Zn or other impurities) other than the material metal aluminum (Al). Mention may be made of compounds such as Al 3 Fe, αAlFeSi, Al 3 Mg 2 , Mg 2 Si, and Al-Mg-Zn compounds. The size and distribution of these second phase compounds present on the surface of an aluminum material can be examined using a backscattered electron microscope (SEM) reflected electron image, and the substance can be detected by X-ray diffraction. Can also be identified.

そして、本発明の表面処理方法を施した後の表面処理アルミニウム材は低発塵性を備え、好ましくは、走査型電子顕微鏡(SEM)の反射電子像を利用した場合に、アルミニウム材の表面に観察される長径1.0μm以上の第二相化合物の単位面積あたりの数が20個/mm2以下である表面処理アルミニウム材を得ることができる。 The surface-treated aluminum material after the surface treatment method of the present invention has a low dust generation property, and preferably, on the surface of the aluminum material when a reflected electron image of a scanning electron microscope (SEM) is used. A surface-treated aluminum material in which the number per unit area of the second phase compound having a major axis of 1.0 μm or more observed is 20 / mm 2 or less can be obtained.

本発明における表面処理方法によれば、アルミニウム材の表面に形成した特定のオキソ酸処理液による皮膜が発塵源と考えられる第二相化合物の離脱を効果的に防止し、皮膜自体が発塵源となるおそれもないため、低発塵性の表面処理アルミニウム材を得ることができる。特に切断、切削、プレス、穴あけ、打抜き等の成形加工によって形成された破断面をいくつか有するようなアルミニウム材であっても、所定の表面平滑化処理液を用いた表面平滑化処理により破断面の微細な表面凹凸を除去して第二相化合物の離脱を未然に防ぐことができる。そして、得られた表面処理アルミニウム材は、無電解NiPめっき処理したアルミニウム材と同等又はそれ以上のレベルの低発塵性を備えるため、作業性やコストの面でも有利である。また、得られた表面処理アルミニウム材は耐食性にも優れることから、様々な用途に適用することができる。   According to the surface treatment method of the present invention, the film formed by the specific oxoacid treatment liquid formed on the surface of the aluminum material effectively prevents the separation of the second phase compound considered as a dust generation source, and the film itself generates dust. Since there is no possibility of becoming a source, a surface-treated aluminum material with low dust generation can be obtained. In particular, even an aluminum material having several fractured surfaces formed by molding, such as cutting, cutting, pressing, drilling, punching, etc., is fractured by surface smoothing using a predetermined surface smoothing solution. It is possible to prevent the second phase compound from being removed by removing the fine surface irregularities. The obtained surface-treated aluminum material is advantageous in terms of workability and cost because it has a low dust generation level equivalent to or higher than that of an aluminum material subjected to electroless NiP plating. Moreover, since the obtained surface treatment aluminum material is excellent also in corrosion resistance, it can be applied to various uses.

以下、実施例及び比較例等に基づいて、本発明をより具体的に説明する。   Hereinafter, based on an Example, a comparative example, etc., this invention is demonstrated more concretely.

[試験用表面処理アルミニウム材の作製]
市販のA5052アルミニウム材(板厚1.0mm)の四方をシャーリングによって縦100mm、横70mmに切り出した後、破断面を有したこのアルミニウム材の全体を90℃に加熱したリン酸80重量%、及び水20重量%からなる表面平滑化処理液に2分間浸漬して表面平滑化処理を行った。次いで、表面平滑化処理後のアルミニウム材を洗浄容器に入れて周波数40kHz、出力100Wでの超音波水洗(超音波洗浄)を3分間行った。更に、超音波洗浄後のアルミニウム材をリン酸0.2g/L(Pの含有量63ppm)を含んだ25℃の水溶液(オキソ酸処理液)に5分間浸漬させてオキソ酸処理を行い、そして、オキソ酸処理液から取り出したアルミニウム材を200℃の空気中で5分間加熱保持して(加熱処理)、試験用表面処理アルミニウム材を得た。
[Production of surface-treated aluminum material for testing]
After cutting four sides of a commercially available A5052 aluminum material (plate thickness 1.0 mm) into a length of 100 mm and a width of 70 mm by shearing, the entire aluminum material having a fractured surface was heated to 90 ° C. and 80% by weight of phosphoric acid and water The surface smoothing treatment was performed by immersing in a surface smoothing solution comprising 20% by weight for 2 minutes. Next, the aluminum material after the surface smoothing treatment was put in a cleaning container, and ultrasonic water washing (ultrasonic cleaning) at a frequency of 40 kHz and an output of 100 W was performed for 3 minutes. Further, the aluminum material after ultrasonic cleaning is immersed in a 25 ° C. aqueous solution (oxo acid treatment solution) containing 0.2 g / L of phosphoric acid (P content 63 ppm) for 5 minutes to perform oxo acid treatment, and The aluminum material taken out from the oxo acid treatment solution was heated and held in air at 200 ° C. for 5 minutes (heat treatment) to obtain a surface-treated aluminum material for testing.

[発塵性の評価]
試験液として600mlの超純水を市販のホウケイ酸ガラス製ビーカー(1L)に入れ、上記で得た試験用表面処理アルミニウム材を容器に接触しないように糸を用いて宙吊り状態で超純水中に浸漬し、洗浄槽下部に超音波発信源が備え付けてある超音波洗浄機を用いて、周波数40kHz、出力100Wの超音波を発生させて、超純水中の試験用表面処理アルミニウム材に1分間照射した。その後、試験液中に存在する粒子径0.5μm以上の粒子数を液中パーティクルカウンター(日本電色工業社製NP 500T)を用いて測定し、超純水中の微粒子増加数から、試験用表面処理アルミニウム材の単位面積あたりの発塵量(発塵性)を評価し、1000個/cm2以下を○とし、1000個/cm2を超える場合を×として判定した。なお、試験用表面処理アルミニウム材を浸漬する前の試験液(超純水)中の粒子数については、予め上記と同様に液中パーティクルカウンターを用いて測定した。結果を表1に示す。
[Evaluation of dust generation]
As a test solution, 600 ml of ultrapure water is placed in a commercially available borosilicate glass beaker (1 L), and the surface-treated aluminum material for testing obtained above is suspended in ultrapure water using a thread so that it does not contact the container. Using an ultrasonic cleaner equipped with an ultrasonic transmission source at the bottom of the cleaning tank, ultrasonic waves with a frequency of 40 kHz and an output of 100 W are generated, and the surface-treated aluminum material for testing in ultrapure water is 1 Irradiated for 1 minute. Then, the number of particles with a particle size of 0.5 μm or more present in the test solution was measured using a particle counter (NP 500T manufactured by Nippon Denshoku Industries Co., Ltd.). The amount of dust generation per unit area (dust generation property) of the surface-treated aluminum material was evaluated, and 1000 / cm 2 or less was evaluated as ◯, and the case of exceeding 1000 / cm 2 was determined as x. The number of particles in the test solution (ultra pure water) before immersing the test surface-treated aluminum material was measured in advance using a submerged particle counter in the same manner as described above. The results are shown in Table 1.

[耐食性の評価]
上記試験用表面処理アルミニウム材を温度85℃及び湿度90%の環境下に500時間放置して耐食性試験を行い、試験用表面処理アルミニウム材の表面における変色の様子を評価した。評価については、○:変化なし、△:わずかに変化あり、×:著しく変化ありの3段階で行った。結果を表1に示す。
[Evaluation of corrosion resistance]
The surface-treated aluminum material for testing was left in an environment of 85 ° C. and 90% humidity for 500 hours to conduct a corrosion resistance test, and the state of discoloration on the surface of the surface-treated aluminum material for testing was evaluated. The evaluation was performed in three stages: ○: no change, Δ: slight change, ×: significant change. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用いた以外は実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, a test surface was prepared in the same manner as in Example 1 except that a surface smoothing solution of phosphoric acid 80% by weight, nitric acid 5% by weight, urea 5% by weight, and water 10% by weight was used. A treated aluminum material was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硫酸10重量%、及び水10重量%の表面平滑化処理液を用いた以外は実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, a test surface-treated aluminum material was obtained in the same manner as in Example 1 except that a surface smoothing solution containing 80% by weight of phosphoric acid, 10% by weight of sulfuric acid, and 10% by weight of water was used. It was. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硝酸5重量%、硫酸5重量%、尿素5重量%、及び水5重量%の表面平滑化処理液を用いた以外は実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, the same procedure as in Example 1 was used except that a surface smoothing solution of 80% by weight of phosphoric acid, 5% by weight of nitric acid, 5% by weight of sulfuric acid, 5% by weight of urea, and 5% by weight of water was used. Thus, a surface-treated aluminum material for test was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、オキソ酸処理液として、リン酸0.5g/L(Pの含有量158ppm)、及びケイ酸0.5g/L(Siの含有量179ppm)を含んだ水溶液(オキソ酸構成元素の総含有量337ppm)を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, as an oxoacid treatment solution, an aqueous solution (oxoacid) containing 0.5 g / L of phosphoric acid (P content 158 ppm) and 0.5 g / L of silicic acid (Si content 179 ppm) A surface-treated aluminum material for testing was obtained in the same manner as in Example 1 except that the total content of the constituent elements was 337 ppm. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用い、かつ、オキソ酸処理液として、リン酸0.5g/L(Pの含有量158ppm)、及びケイ酸0.5g/L(Siの含有量179ppm)を含んだ水溶液(オキソ酸構成元素の総含有量337ppm)を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, a surface smoothing solution of phosphoric acid 80% by weight, nitric acid 5% by weight, urea 5% by weight, and water 10% by weight was used. / L (P content 158 ppm) and Example 1 except that an aqueous solution containing 0.5 g / L of silicic acid (Si content 179 ppm) (total content of oxo acid constituent elements 337 ppm) was used. Similarly, a surface-treated aluminum material for test was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硫酸10重量%、及び水10重量%の表面平滑化処理液を用い、かつ、オキソ酸処理液として、リン酸0.5g/L(Pの含有量158ppm)、及びケイ酸0.5g/L(Siの含有量179ppm)を含んだ水溶液(オキソ酸構成元素の総含有量337ppm)を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, a surface smoothing solution of phosphoric acid 80% by weight, sulfuric acid 10% by weight, and water 10% by weight was used, and phosphoric acid 0.5 g / L (P The test was conducted in the same manner as in Example 1 except that an aqueous solution (total content of oxo acid constituent elements 337 ppm) containing 0.5 g / L of silicic acid (content of 158 ppm) and Si content of 179 ppm was used. A surface-treated aluminum material was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硝酸5重量%、硫酸5重量%、尿素5重量%、及び水5重量%の表面平滑化処理液を用い、かつ、オキソ酸処理液として、リン酸0.5g/L(Pの含有量158ppm)、及びケイ酸0.5g/L(Siの含有量179ppm)を含んだ水溶液(オキソ酸構成元素の総含有量337ppm)を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, using a surface smoothing solution of phosphoric acid 80% by weight, nitric acid 5% by weight, sulfuric acid 5% by weight, urea 5% by weight, and water 5% by weight, and as an oxo acid treatment solution, Except for using 0.5 g / L phosphoric acid (P content 158 ppm) and an aqueous solution containing 0.5 g / L silicic acid (Si content 179 ppm) (total content of oxo acid constituent elements 337 ppm) In the same manner as in Example 1, a test surface-treated aluminum material was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、オキソ酸処理液として、リン酸0.05g/L(Pの含有量16ppm)を含んだ水溶液を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, the surface-treated aluminum for test was used in the same manner as in Example 1 except that an aqueous solution containing 0.05 g / L of phosphoric acid (P content: 16 ppm) was used as the oxoacid treatment solution. The material was obtained. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1に示すように、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用い、かつ、オキソ酸処理液として、リン酸0.05g/L(Pの含有量16ppm)を含んだ水溶液を用いた以外は上記実施例1と同様にして、試験用表面処理アルミニウム材を得た。発塵性及び耐食性の評価についてもそれぞれ実施例1と同様にして行った。結果を表1に示す。   As shown in Table 1, a surface smoothing solution of phosphoric acid 80% by weight, nitric acid 5% by weight, urea 5% by weight, and water 10% by weight was used. A surface-treated aluminum material for testing was obtained in the same manner as in Example 1 except that an aqueous solution containing / L (P content: 16 ppm) was used. Dust generation and corrosion resistance were also evaluated in the same manner as in Example 1. The results are shown in Table 1.

[比較例1〜10]
表1に示すように、上記実施例1の条件を次のように変えた以外は同様にして、比較例1〜18に係る試験用表面処理アルミニウム材を得た。すなわち、リン酸30重量%、及び水70重量%の表面平滑化処理液を用いた場合(比較例1)、リン酸40重量%、硝酸40重量%、尿素10重量%、及び水10重量%の表面平滑化処理液を用いた場合(比較例2)、超音波水洗を行わなかった場合(比較例3)、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用いて表面平滑化処理を行い、かつ、超音波水洗を行わなかった場合(比較例4)、オキソ酸処理を行わなかった場合(比較例5)、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用いて表面平滑化処理を行い、かつ、オキソ酸処理を行わなかった場合(比較例6)、加熱処理の温度を50℃にした場合(比較例7)、リン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用いて表面平滑化処理を行い、かつ、加熱処理の温度を50℃にした場合(比較例8)、超音波水洗及びオキソ酸処理を行わなかった場合(比較例9)、及びリン酸80重量%、硝酸5重量%、尿素5重量%、及び水10重量%の表面平滑化処理液を用いて表面平滑化処理を行い、かつ、超音波水洗及びオキソ酸処理を行わなかった場合(比較例10)について、それぞれ試験用表面処理アルミニウム材を作製し、発塵性及び耐食性を実施例1と同様に評価した。結果を表1に示す。
[Comparative Examples 1 to 10]
As shown in Table 1, surface treatment aluminum materials for testing according to Comparative Examples 1 to 18 were obtained in the same manner except that the conditions of Example 1 were changed as follows. That is, when using a surface smoothing solution of phosphoric acid 30% by weight and water 70% by weight (Comparative Example 1), phosphoric acid 40% by weight, nitric acid 40% by weight, urea 10% by weight, and water 10% by weight. When using the surface smoothing solution (Comparative Example 2), without ultrasonic washing (Comparative Example 3), phosphoric acid 80% by weight, nitric acid 5% by weight, urea 5% by weight and water 10% by weight % Surface smoothing treatment was performed and ultrasonic water washing was not performed (Comparative Example 4), oxo acid treatment was not performed (Comparative Example 5), phosphoric acid 80 When the surface smoothing treatment is performed using the surface smoothing treatment solution of 5% by weight, nitric acid 5% by weight, urea 5% by weight and water 10% by weight, and the oxo acid treatment is not performed (Comparative Example 6). When the temperature of the heat treatment is 50 ° C. (Comparative Example 7), phosphoric acid is 80% by weight, When a surface smoothing treatment is performed using a surface smoothing treatment solution of 5% by weight of acid, 5% by weight of urea, and 10% by weight of water, and the temperature of the heat treatment is set to 50 ° C. (Comparative Example 8), In the case where sonic water washing and oxo acid treatment were not performed (Comparative Example 9), and using a surface smoothing solution of phosphoric acid 80 wt%, nitric acid 5 wt%, urea 5 wt%, and water 10 wt% The surface treatment aluminum material for the test was prepared for each of the cases where the treatment was performed and the ultrasonic water washing and the oxo acid treatment were not performed (Comparative Example 10), and the dust generation and corrosion resistance were evaluated in the same manner as in Example 1. did. The results are shown in Table 1.

[参考例1及び2]
実施例1で使用したアルミニウム材を無処理のまま、実施例1と同様に発塵性及び耐食性を評価した(参考例1)。また、実施例1で使用したアルミニウム材の表面に、メルテックス株式会社製メルプレートNI−871からなるめっき浴を使用して温度90度で15分間無電解めっき処理を行い、表面に5μmのNiPめっきを形成したアルミニウム材について、実施例1と同様に発塵性及び耐食性を評価した(参考例2)。結果をそれぞれ表1に示す。
[Reference Examples 1 and 2]
Dust generation and corrosion resistance were evaluated in the same manner as in Example 1 with the aluminum material used in Example 1 untreated (Reference Example 1). In addition, the surface of the aluminum material used in Example 1 was subjected to electroless plating treatment at a temperature of 90 degrees for 15 minutes using a plating bath made of Melplate NI-871 manufactured by Meltex Co., Ltd., and 5 μm NiP on the surface. About the aluminum material which formed plating, dust generation property and corrosion resistance were evaluated similarly to Example 1 (reference example 2). The results are shown in Table 1, respectively.

上述した実施例1〜10で得られた試験用表面処理アルミニウム材は、いずれも低発塵性及び耐食性に優れ、特に、無電解NiPめっき処理したアルミニウム材(参考例2)と同等又はそれ以上の低発塵性を備えることが確認された。   The test surface-treated aluminum materials obtained in Examples 1 to 10 described above are all excellent in low dust generation and corrosion resistance, and in particular, equal to or more than the aluminum material subjected to electroless NiP plating (Reference Example 2). It was confirmed that it has low dust generation.

本発明で得られる表面処理アルミニウム材は、優れた低発塵性能性を備えるため、コンピューターやワープロ等に記憶装置として搭載されるハードディスクドライブのカバーケースや、アクチュエータアーム等のハードディスクドライブ材料をはじめ、コンピューター関連装置、半導体製造装置、計測・分析器、電子・電気装置、光学装置、医療用装置等のような各種精密機器のカバーケースや精密機器部品の材料として好適に利用することができる。その他、塵や埃を嫌う環境下で使用される機器や部品等の材料やクリーンルーム等で使用される建材としても利用可能である。本発明におけるアルミニウム材の表面処理方法は、特に他の制限がない限り、アルミニウム材を使用するものであればよく、既存の機器や部品等に対しても適用することができる。   Since the surface-treated aluminum material obtained in the present invention has excellent low dust generation performance, it includes hard disk drive materials such as hard disk drive cover cases and actuator arms mounted as storage devices in computers and word processors, It can be suitably used as a cover case for various precision equipment such as computer-related equipment, semiconductor manufacturing equipment, measuring / analyzing equipment, electronic / electrical equipment, optical equipment, medical equipment, and the like and materials for precision equipment parts. In addition, it can also be used as materials such as equipment and parts used in environments where dust and dust are hated, and as building materials used in clean rooms and the like. As long as there is no other restriction | limiting in particular, the surface treatment method of the aluminum material in this invention should just use an aluminum material, and can be applied also to the existing apparatus, components, etc.

図1(a)は、アルミニウム材の破断面とせん断面の様子を示すSEM写真であり、(b)は破断面の一部を拡大したものである。FIG. 1A is an SEM photograph showing a fracture surface of an aluminum material and a state of a shear surface, and FIG. 1B is an enlarged view of a part of the fracture surface.

Claims (13)

アルミニウム材の表面を表面平滑化処理液で処理し、超音波洗浄した後、オキソ酸処理液で処理し、更に80〜400℃の温度で加熱処理して得られる表面処理アルミニウム材であって、上記表面平滑化処理液が、リン酸を50重量%以上100重量%未満含有した表面平滑化処理液であり、上記オキソ酸処理液が、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含有することを特徴とする表面処理アルミニウム材。   A surface-treated aluminum material obtained by treating the surface of an aluminum material with a surface smoothing treatment liquid, ultrasonically cleaning, then treating with an oxo acid treatment liquid, and further heat-treating at a temperature of 80 to 400 ° C. The surface smoothing treatment liquid is a surface smoothing treatment liquid containing phosphoric acid in an amount of 50 wt% to less than 100 wt%, and the oxo acid treatment liquid is selected from the group consisting of phosphorus, silicon, and chromium A surface-treated aluminum material characterized by containing an oxoacid composed of at least one kind of oxoacid constituent element. 表面平滑化処理液が、硝酸又は硫酸のいずれか又は両方を1〜30重量%含有する請求項1に記載の表面処理アルミニウム材。   The surface-treated aluminum material according to claim 1, wherein the surface smoothing treatment liquid contains 1 to 30% by weight of either or both of nitric acid and sulfuric acid. 表面平滑化処理液による処理が、60〜110℃の表面平滑化処理液にアルミニウム材を10秒〜20分間浸漬する処理である請求項1又は2のいずれかに記載の表面処理アルミニウム材。   The surface-treated aluminum material according to claim 1, wherein the treatment with the surface smoothing treatment liquid is a treatment of immersing the aluminum material in a surface smoothing treatment liquid at 60 to 110 ° C. for 10 seconds to 20 minutes. オキソ酸処理液が、ホスフィン酸、亜リン酸、ホスホン酸、リン酸、二リン酸、メタリン酸、次リン酸、オルトケイ酸、メタケイ酸、メタ二ケイ酸、クロム酸、及び二クロム酸からなる群から選ばれた1種又は2種以上の水溶液からなる請求項1〜3のいずれかに記載の表面処理アルミニウム材。   Oxo acid treatment solution is composed of phosphinic acid, phosphorous acid, phosphonic acid, phosphoric acid, diphosphoric acid, metaphosphoric acid, hypophosphoric acid, orthosilicic acid, metasilicic acid, metadisilicic acid, chromic acid, and dichromic acid The surface-treated aluminum material according to any one of claims 1 to 3, comprising one or two or more aqueous solutions selected from the group. オキソ酸処理液中のオキソ酸構成元素の総含有量が10〜10000ppmである請求項1〜4のいずれかに記載の表面処理アルミニウム材。   The surface-treated aluminum material according to any one of claims 1 to 4, wherein the total content of oxo acid constituent elements in the oxo acid treatment liquid is 10 to 10,000 ppm. 表面に観察される長径1.0μm以上の第二相化合物の単位面積あたりの数が20個/mm2以下である請求項1〜5のいずれかに記載の表面処理アルミニウム材。 The surface-treated aluminum material according to any one of claims 1 to 5, wherein the number per unit area of the second phase compound having a major axis of 1.0 µm or more observed on the surface is 20 pieces / mm 2 or less. アルミニウム材の表面を表面平滑化処理液で処理し、超音波洗浄した後、オキソ酸処理液で処理し、更に80〜400℃の温度で加熱処理するアルミニウム材の表面処理方法であって、上記表面平滑化処理液が、リン酸を50重量%以上100重量%未満含有した表面平滑化処理液であり、上記オキソ酸処理液が、リン、珪素、及びクロムからなる群から選ばれた1種以上のオキソ酸構成元素からなるオキソ酸を含有することを特徴とするアルミニウム材の表面処理方法。   A surface treatment method for an aluminum material, wherein the surface of the aluminum material is treated with a surface smoothing treatment liquid, subjected to ultrasonic cleaning, then treated with an oxo acid treatment liquid, and further heat-treated at a temperature of 80 to 400 ° C. The surface smoothing solution is a surface smoothing solution containing 50% by weight or more and less than 100% by weight of phosphoric acid, and the oxo acid treatment solution is selected from the group consisting of phosphorus, silicon, and chromium A method for surface treatment of an aluminum material, comprising an oxo acid comprising the above oxo acid constituent elements. 表面平滑化処理液が、硝酸又は硫酸のいずれか又は両方を1〜30重量%する請求項7に記載のアルミニウム材の表面処理方法。   The method for surface treatment of an aluminum material according to claim 7, wherein the surface smoothing treatment liquid contains 1 to 30% by weight of either or both of nitric acid and sulfuric acid. 表面平滑化処理液による処理が、60〜110℃の表面平滑化処理液にアルミニウム材を10秒〜20分間浸漬する処理である請求項7又は8に記載のアルミニウム材の表面処理方法。   The surface treatment method for an aluminum material according to claim 7 or 8, wherein the treatment with the surface smoothing treatment liquid is a treatment of immersing the aluminum material in a surface smoothing treatment liquid at 60 to 110 ° C for 10 seconds to 20 minutes. オキソ酸処理液が、ホスフィン酸、亜リン酸、ホスホン酸、リン酸、二リン酸、メタリン酸、次リン酸、オルトケイ酸、メタケイ酸、メタ二ケイ酸、クロム酸、及び二クロム酸からなる群から選ばれた1種又は2種以上の水溶液からなる請求項7〜9のいずれかに記載のアルミニウム材の表面処理方法。   Oxo acid treatment solution is composed of phosphinic acid, phosphorous acid, phosphonic acid, phosphoric acid, diphosphoric acid, metaphosphoric acid, hypophosphoric acid, orthosilicic acid, metasilicic acid, metadisilicic acid, chromic acid, and dichromic acid The method for surface treatment of an aluminum material according to any one of claims 7 to 9, comprising one or two or more aqueous solutions selected from the group. オキソ酸処理液中のオキソ酸構成元素の総含有量が10〜10000ppmである請求項7〜10のいずれかに記載のアルミニウム材の表面処理方法。   The method for treating the surface of an aluminum material according to any one of claims 7 to 10, wherein the total content of oxo acid constituent elements in the oxo acid treatment liquid is 10 to 10,000 ppm. 表面平滑化処理液での処理に先駆けて、脱脂処理、エッチング処理、デスマット処理又は電解研磨処理のいずれかを行う請求項7〜11のいずれかに記載のアルミニウム材の表面処理方法。   The method for surface treatment of an aluminum material according to any one of claims 7 to 11, wherein any one of degreasing treatment, etching treatment, desmutting treatment or electrolytic polishing treatment is performed prior to the treatment with the surface smoothing treatment liquid. 表面に観察される長径1.0μm以上の第二相化合物の単位面積あたりの数が20個/mm2以下の表面処理アルミニウム材を得ることができる請求項7〜12のいずれかに記載のアルミニウム材の表面処理方法。 The aluminum in any one of Claims 7-12 which can obtain the surface treatment aluminum material whose number per unit area of the 2nd phase compound with a major axis of 1.0 micrometer or more observed on the surface is 20 pieces / mm < 2 > or less. Material surface treatment method.
JP2007213576A 2006-12-15 2007-08-20 Surface treatment aluminum material and surface treatment method of aluminum material Expired - Fee Related JP4894679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213576A JP4894679B2 (en) 2006-12-15 2007-08-20 Surface treatment aluminum material and surface treatment method of aluminum material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006337850 2006-12-15
JP2006337850 2006-12-15
JP2007083497 2007-03-28
JP2007083497 2007-03-28
JP2007213576A JP4894679B2 (en) 2006-12-15 2007-08-20 Surface treatment aluminum material and surface treatment method of aluminum material

Publications (2)

Publication Number Publication Date
JP2008266769A true JP2008266769A (en) 2008-11-06
JP4894679B2 JP4894679B2 (en) 2012-03-14

Family

ID=40046640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213576A Expired - Fee Related JP4894679B2 (en) 2006-12-15 2007-08-20 Surface treatment aluminum material and surface treatment method of aluminum material

Country Status (1)

Country Link
JP (1) JP4894679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130799B1 (en) 2009-09-28 2012-03-28 에스티엑스메탈 주식회사 Surface Treatment Method of Stainless Steel for End Plate of Proton Exchange Membrane Fuel Cell
WO2012095954A1 (en) * 2011-01-12 2012-07-19 株式会社Neomaxマテリアル Solar-cell metal substrate and method of manufacturing solar-cell metal substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272985A (en) * 1996-02-08 1997-10-21 Dakuro Shizuoka:Kk Surface treatment of non-ferrous metal
JP2001214285A (en) * 1999-11-22 2001-08-07 Stmicroelectronics Srl Corrosion inhibiting protective layer of aluminum alloy metallized layer and producing method therefor
JP2002180263A (en) * 2000-12-13 2002-06-26 Mitsubishi Heavy Ind Ltd Method for depositing corrosion-resistant film on surface of aluminum or aluminum alloy
JP2002285360A (en) * 2001-03-23 2002-10-03 Mitejima Kagaku Kk Chemical polishing solution
JP2003049285A (en) * 2001-08-08 2003-02-21 Mitsubishi Chemicals Corp Etching method, quantitative analysis method for etching solution and method for recovering phosphoric acid from etching solution
JP2004216480A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Actuator arm and surface treatment method
JP2005336605A (en) * 2004-04-27 2005-12-08 Nippon Light Metal Co Ltd Surface-treated aluminum material, manufacturing method therefor, and cover case for precision instrument formed of the surface-treated aluminum material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272985A (en) * 1996-02-08 1997-10-21 Dakuro Shizuoka:Kk Surface treatment of non-ferrous metal
JP2001214285A (en) * 1999-11-22 2001-08-07 Stmicroelectronics Srl Corrosion inhibiting protective layer of aluminum alloy metallized layer and producing method therefor
JP2002180263A (en) * 2000-12-13 2002-06-26 Mitsubishi Heavy Ind Ltd Method for depositing corrosion-resistant film on surface of aluminum or aluminum alloy
JP2002285360A (en) * 2001-03-23 2002-10-03 Mitejima Kagaku Kk Chemical polishing solution
JP2003049285A (en) * 2001-08-08 2003-02-21 Mitsubishi Chemicals Corp Etching method, quantitative analysis method for etching solution and method for recovering phosphoric acid from etching solution
JP2004216480A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Actuator arm and surface treatment method
JP2005336605A (en) * 2004-04-27 2005-12-08 Nippon Light Metal Co Ltd Surface-treated aluminum material, manufacturing method therefor, and cover case for precision instrument formed of the surface-treated aluminum material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130799B1 (en) 2009-09-28 2012-03-28 에스티엑스메탈 주식회사 Surface Treatment Method of Stainless Steel for End Plate of Proton Exchange Membrane Fuel Cell
WO2012095954A1 (en) * 2011-01-12 2012-07-19 株式会社Neomaxマテリアル Solar-cell metal substrate and method of manufacturing solar-cell metal substrate
CN103299433A (en) * 2011-01-12 2013-09-11 株式会社新王材料 Solar-cell metal substrate and method of manufacturing solar-cell metal substrate

Also Published As

Publication number Publication date
JP4894679B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP2009293122A (en) Surface-treated aluminum material, method for producing the same, and surface treatment method for aluminum material
TWI627884B (en) Manufacturing method of printed circuit board
KR101512888B1 (en) Method of laser joining of aluminum alloy member and resin member
KR101411676B1 (en) Method for producing aluminum-resin complex
US6183570B1 (en) Surface treatment process of metallic material and metallic material obtained thereby
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP6115912B2 (en) High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material
US20090223829A1 (en) Micro-Arc Assisted Electroless Plating Methods
WO2000070123A1 (en) Process for the surface treatment of magnesium alloys
JPWO2018168786A1 (en) Electromagnetic wave shielding member
CN111033837A (en) Metal foil, method for producing metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
WO2016094380A1 (en) Treatment of conversion coated metal surfaces with a calcium-containing aqueous agent
JP7405905B2 (en) A base material at least in whole or in part made of a metal material, the surface of the metal material having pores, and a composite of the base material and a cured resin material, including the base material and a cured resin material.
JP4894679B2 (en) Surface treatment aluminum material and surface treatment method of aluminum material
WO2011071062A1 (en) Bonded aluminium composite and manufacturing method for same
Singh et al. Establishing environment friendly surface treatment for AZ91 magnesium alloy for subsequent electroless nickel plating
KR100795729B1 (en) Methods and removers for removing anodized films
JP2006348368A (en) Method for surface treating aluminum and aluminum alloy
US20070269677A1 (en) Method for forming a nickel-based layered structure on a magnesium alloy substrate, a surface-treated magnesium alloy article made therefrom, and a cleaning solution and a surface treatment solution used therefor
JP2002275668A (en) Surface treatment method for molded goods of magnesium alloy
WO2000050666A1 (en) Method for treating magnesium-based metal formed article and treating solution therefor
JP2005336605A (en) Surface-treated aluminum material, manufacturing method therefor, and cover case for precision instrument formed of the surface-treated aluminum material
JP4994719B2 (en) Anodized film stripper and anodized film stripping method
TWI555449B (en) Printed circuit board copper foil and its manufacturing method and the use of the copper foil printed circuit board
JP2003258182A (en) Method for roughening metal foil and roughened metal foil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees