JP2008263585A - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
JP2008263585A
JP2008263585A JP2007336367A JP2007336367A JP2008263585A JP 2008263585 A JP2008263585 A JP 2008263585A JP 2007336367 A JP2007336367 A JP 2007336367A JP 2007336367 A JP2007336367 A JP 2007336367A JP 2008263585 A JP2008263585 A JP 2008263585A
Authority
JP
Japan
Prior art keywords
signal
phase
quadrature
pilot
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336367A
Other languages
Japanese (ja)
Other versions
JP4925462B2 (en
Inventor
Teruji Ide
輝二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007336367A priority Critical patent/JP4925462B2/en
Publication of JP2008263585A publication Critical patent/JP2008263585A/en
Application granted granted Critical
Publication of JP4925462B2 publication Critical patent/JP4925462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect and correct a phase deviation and an amplitude deviation that occur when performing quadrature detection on a received signal in accordance with a direct detection scheme, through digital signal processing. <P>SOLUTION: A pilot replica signal P<SB>rep</SB>constituted of a real part (in-phase) P<SB>r</SB>and an imaginary part (quadrature) P<SB>i</SB>generated by a phase and amplitude deviation correction processing section 12 is quadrature-modulated into RF band by multiplication circuits 16, 15 and a combination circuit 14 and combined with a received signal R<SB>RF</SB>of RF band by a combination circuit 13. The combined signal is quadrature-detected in accordance with a direct detection scheme by frequency converting circuits 3, 4 and LPF 7, 8 and an in-phase components (I<SB>0</SB>, S<SB>r</SB>) and quadrature components (Q<SB>0</SB>, S<SB>i</SB>) thereof are AD-converted by AD conversion circuits 9, 10, respectively, and supplied to the phase and amplitude deviation correction processing section 12. At the phase and amplitude deviation correction processing section 12, a correction value of the phase and amplitude deviation is created from the real part S<SB>r</SB>and the imaginary part S<SB>i</SB>of the AD-converted pilot replica signal and this value is used to correct the phase and amplitude deviation of the in-phase signal I<SB>0</SB>and the quadrature signal Q<SB>0</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、受信信号を直交検波する受信機に係り、特に、直交検波された受信信号に生ずる位相偏差や振幅偏差を、この直交検波された受信信号をデジタル信号処理する際に、補正するようにした直接検波受信機に関する。   The present invention relates to a receiver that quadrature-detects a received signal, and in particular, corrects a phase deviation and an amplitude deviation generated in a quadrature-detected received signal when the quadrature-detected received signal is digitally processed. The present invention relates to a direct detection receiver.

実信号であるRF(Radio Frequency:無線周波)帯の広帯域直交変調信号を受信し、これをゼロIF方式(RF帯の受信信号を直接ベースバンドの信号に直交復調(直交検波)する方式)や低IF方式(RF帯の受信信号を直接ベースバンド付近の信号に直交復調する方式)といった直接検波方式を用いて直接ベースバンド付近の信号に直交復調する受信機が知られている(例えば、特許文献1参照)。   Receives RF (Radio Frequency) band wideband quadrature modulation signal, which is a real signal, and uses it as a zero IF system (a system that performs quadrature demodulation (orthogonal detection) of RF band received signal directly to baseband signal) There is known a receiver that directly quadrature-demodulates a signal near the baseband using a direct detection method such as a low-IF method (a method that orthogonally demodulates a received signal in the RF band to a signal near the baseband) (for example, a patent Reference 1).

図7は直交変調された同相信号Iと直交信号QのRF受信信号をゼロIF方式又は低IF方式(以後、ゼロIF方式等という)で直交復調する受信機の一般的な構成を示すブロック図であって、1はBPF(帯域通過フィルタ)、2はLNA(低雑音増幅器)、3,4は周波数変換回路(ミキサ,乗算器)、5は局部発振器、6は90゜移相器、7,8はLPF(低域通過フィルタ)、9,10はAD(アナログ・デジタル)変換回路、11はベースバンド復調部である。   FIG. 7 is a block diagram showing a general configuration of a receiver that performs quadrature demodulation on the RF reception signals of the in-phase signal I and the quadrature signal Q that have been subjected to quadrature modulation by the zero IF method or the low IF method (hereinafter referred to as zero IF method or the like). 1 is a BPF (band pass filter), 2 is an LNA (low noise amplifier), 3 and 4 are frequency conversion circuits (mixers and multipliers), 5 is a local oscillator, 6 is a 90 ° phase shifter, 7 and 8 are LPFs (low-pass filters), 9 and 10 are AD (analog / digital) conversion circuits, and 11 is a baseband demodulator.

同図において、BPF1では、所要の周波数帯域を通過帯域として、この所要の周波数帯域外において減衰量が設定されており、これにより、所要周波数帯域(RF帯)の同相信号Iと直交信号Qが直交変調されてなる受信信号が抽出される。この受信信号は、LNA2で所要の増幅度で低雑音増幅処理がなされた後、周波数変換回路3,4に供給される。   In the figure, the BPF 1 uses a required frequency band as a pass band, and an attenuation amount is set outside the required frequency band, whereby the in-phase signal I and the quadrature signal Q in the required frequency band (RF band) are set. Is extracted by orthogonal modulation. The received signal is supplied to the frequency conversion circuits 3 and 4 after being subjected to low noise amplification processing at a required amplification degree by the LNA 2.

周波数変換回路3では、このRF帯の受信信号が局部発振器5の出力信号で周波数変換(乗算)処理され、この周波数変換回路3の出力信号がLPF7に供給されることにより、RF受信信号のキャリア周波数と局部発振器5の出力信号の周波数との和の周波数成分が減衰され、これら周波数の差の周波数成分である同相信号Iが得られる。ここで、局部発振器5の出力信号の周波数はRF受信信号のキャリア周波数と等しくなる(低IF方式の場合は所定のオフセットを有する)ように設定されている。またLPF7は、0Hz付近において1キャリアの帯域幅相当の通過帯域幅を有しており、周波数変換回路3の出力信号から局部発振器5の出力信号の周波数の2倍の周波数成分等が減衰され、ベースバンドの同相信号IがLPF7から出力される。   In the frequency conversion circuit 3, the received signal in the RF band is subjected to frequency conversion (multiplication) processing with the output signal of the local oscillator 5, and the output signal of the frequency conversion circuit 3 is supplied to the LPF 7, whereby the carrier of the RF received signal is obtained. The frequency component of the sum of the frequency and the frequency of the output signal of the local oscillator 5 is attenuated, and the in-phase signal I which is the frequency component of the difference between these frequencies is obtained. Here, the frequency of the output signal of the local oscillator 5 is set to be equal to the carrier frequency of the RF reception signal (having a predetermined offset in the case of the low IF method). The LPF 7 has a pass bandwidth corresponding to the bandwidth of one carrier in the vicinity of 0 Hz, and a frequency component twice the frequency of the output signal of the local oscillator 5 is attenuated from the output signal of the frequency conversion circuit 3. A baseband in-phase signal I is output from the LPF 7.

また、局部発振器5の出力信号が90゜移相器6で90゜移相される。周波数変換回路4では、LNA2からのRF帯の受信信号がこの90゜移相器6の出力信号で周波数変換(乗算)処理され、この周波数変換回路4の出力信号がLPF8に供給されることにより、RF受信信号のキャリア周波数と90゜移相器6の出力信号の周波数との和の周波数成分が減衰され、これら周波数の差の周波数成分である直交信号Qが得られる。ここで、90゜移相器6の出力信号の周波数もRF受信信号のキャリア周波数と等しいので、LPF8では、周波数変換回路4の出力信号から90゜移相器6の出力信号の周波数の2倍の周波数成分等が減衰され、ベースバンドの直交信号QがLPF8から出力される。   Further, the output signal of the local oscillator 5 is phase shifted by 90 ° by the 90 ° phase shifter 6. In the frequency conversion circuit 4, the received signal in the RF band from the LNA 2 is frequency-converted (multiplied) with the output signal of the 90 ° phase shifter 6, and the output signal of the frequency conversion circuit 4 is supplied to the LPF 8. The frequency component of the sum of the carrier frequency of the RF reception signal and the frequency of the output signal of the 90 ° phase shifter 6 is attenuated, and an orthogonal signal Q which is the frequency component of the difference between these frequencies is obtained. Here, since the frequency of the output signal of the 90 ° phase shifter 6 is also equal to the carrier frequency of the RF reception signal, the LPF 8 doubles the frequency of the output signal of the 90 ° phase shifter 6 from the output signal of the frequency conversion circuit 4. And the baseband quadrature signal Q is output from the LPF 8.

このように、RF帯の受信信号が周波数変換回路3,4で、局部発振器5と90゜移相器6との出力信号を用いた直接検波方式により、直交復調され、LPF7,8から夫々ベースバンドの同相信号Iと直交信号Qとが得られる。   In this way, the received signal in the RF band is quadrature demodulated by the frequency conversion circuits 3 and 4 by the direct detection method using the output signals of the local oscillator 5 and the 90 ° phase shifter 6, and is based on the LPFs 7 and 8, respectively. In-band signal I and quadrature signal Q of the band are obtained.

LPF7,8から出力されるベースバンドの同相信号Iと直交信号Qはいずれもアナログ信号であり、これらは、AD変換回路9,10でデジタル信号に変換された後、ベースバンド復調部11に供給され、デジタル信号処理によって復調処理されて復調出力が得られる。   The baseband in-phase signal I and the quadrature signal Q output from the LPFs 7 and 8 are both analog signals, which are converted into digital signals by the AD conversion circuits 9 and 10 and then sent to the baseband demodulation unit 11. The signal is supplied and demodulated by digital signal processing to obtain a demodulated output.

ところで、広帯域の受信信号を、上記のように、直接検波方式で復調する場合、復調信号に位相偏差や振幅偏差が生ずるという問題がある。   By the way, when a wideband received signal is demodulated by the direct detection method as described above, there is a problem that a phase deviation or an amplitude deviation occurs in the demodulated signal.

特に、直交周波数分割多重(OFDM)方式による受信信号(以下、OFDM信号という)の場合、直接検波方式を用いると、かかる問題が大きい。即ち、OFDM信号は、特定の離散フーリエ変換のウィンドウにおいて、互いに直交関係にある一定の周波数間隔に配置された多数のサブキャリアを、夫々対応する同相信号Iと直交信号Qに基づいてRF変調した形態をなすものである。このため、かかるOFDM信号の個々のサブキャリアは、周波数軸上で、中心のサブキャリア(DCサブキャリア)を中心に、サブキャリアが左右対象に配列されたものとなっている。   In particular, in the case of a received signal by the orthogonal frequency division multiplexing (OFDM) system (hereinafter referred to as OFDM signal), such a problem is great when the direct detection system is used. That is, an OFDM signal is obtained by RF-modulating a large number of subcarriers arranged at fixed frequency intervals orthogonal to each other in a specific discrete Fourier transform window based on the corresponding in-phase signal I and quadrature signal Q, respectively. It takes the form. For this reason, each subcarrier of the OFDM signal has subcarriers arranged on the left and right sides with a center subcarrier (DC subcarrier) as the center on the frequency axis.

即ち、かかるRF信号において、n番目の(但し、n=…,−2,−1,0、1,2,…)の周波数成分のサブキャリアの角周波数ωnは、直流成分のサブキャリアの角周波数をω0とし、隣接するサブキャリアの角周波数差をΔωとすると、
ωn=ω0+n・Δω
但し、Δωはサブキャリア間隔に相当する各周波数である。
That is, in this RF signal, the angular frequency ω n of the n-th (where n =..., −2, −1, 0, 1, 2,...) Frequency component subcarrier is the DC component subcarrier. If the angular frequency is ω 0 and the angular frequency difference between adjacent subcarriers is Δω,
ω n = ω 0 + n · Δω
However, Δω is each frequency corresponding to the subcarrier interval.

かかるRF信号を上記のゼロIF方式等を用いてベースバンド信号に検波すると、角周波数(ω0+n・Δω)のサブキャリアの周波数成分は正の角周波数(n・Δω)のサブキャリアの周波数成分に検波される、角周波数(ω0−n・Δω)のサブキャリアの周波数成分は負の角周波数(−n・Δω)のサブキャリアの周波数成分に検波される。しかし、直交復調する際に同相信号Iと直交信号Qとの間の利得のばらつき(振幅偏差)や、同相信号Iと直交信号Qとの間の直行性の誤差(位相偏差)が存在すると、角周波数が反転した成分が生じる。その結果、正の角周波数(n・Δω)のサブキャリアが負の角周波数(−n・Δω)に漏れ、負の角周波数(−n・Δω)のサブキャリアが正の角周波数(n・Δω)に漏れて、これら周波数成分が互いに干渉することになる。 When such an RF signal is detected as a baseband signal using the above-described zero IF method or the like, the frequency component of the subcarrier of the angular frequency (ω 0 + n · Δω) is the frequency of the subcarrier of the positive angular frequency (n · Δω). The frequency component of the subcarrier having the angular frequency (ω 0 −n · Δω) detected by the component is detected to the frequency component of the subcarrier having the negative angular frequency (−n · Δω). However, there is a gain variation (amplitude deviation) between the in-phase signal I and the quadrature signal Q and an orthogonal error (phase deviation) between the in-phase signal I and the quadrature signal Q when performing quadrature demodulation. Then, a component having an inverted angular frequency is generated. As a result, a subcarrier having a positive angular frequency (n · Δω) leaks to a negative angular frequency (−n · Δω), and a subcarrier having a negative angular frequency (−n · Δω) is positive. Leaking into Δω), these frequency components interfere with each other.

このような位相偏差や振幅偏差を補正する方法としては、大きく分けで、かかる偏差の検出やその補正を全てアナログ処理で行なう方法(1)と、かかる偏差をデジタル信号処理で検出し、アナログ回路を用いて補正を行なう方法(2)と、かかる偏差の検出やその補正を全てデジタル信号処理で行なう方法(3)とが考えられる。   Methods for correcting such phase deviation and amplitude deviation are roughly divided into a method (1) in which such deviation is detected and corrected entirely by analog processing, and such deviation is detected by digital signal processing. And a method (2) for performing correction by using digital signal processing and a method (3) for performing detection and correction of such deviation by digital signal processing.

全てアナログ処理で行なう方法(1)としては、図7において、AD変換回路7,8に入力される直前の同相信号I,直交信号Qについて、位相偏差と振幅偏差の検出と補正を行なうものである(例えば、特許文献2の図1を参照)。   As a method (1) for all analog processing, in FIG. 7, phase deviation and amplitude deviation are detected and corrected for the in-phase signal I and the quadrature signal Q immediately before being input to the AD conversion circuits 7 and 8. (For example, see FIG. 1 of Patent Document 2).

また、偏差をデジタル信号処理で検出し、アナログ回路を用いて(即ち、アナログ信号処理による)補正を行なう方法(2)としては、図7において、AD変換回路7,8から出力される同相信号I,直交信号Qとを用いて位相偏差や振幅偏差を検出し、AD変換回路7,8に入力される直前の同相信号I,直交信号Qについて、フィードバック制御等を用いてこれら偏差の補正を行なうものである(例えば、特許文献1の図3を参照)。   Further, as a method (2) of detecting a deviation by digital signal processing and performing correction using an analog circuit (that is, by analog signal processing), in-phase output from the AD conversion circuits 7 and 8 in FIG. The signal I and the quadrature signal Q are used to detect a phase deviation and an amplitude deviation. The in-phase signal I and the quadrature signal Q immediately before being input to the AD conversion circuits 7 and 8 are detected using feedback control or the like. Correction is performed (see, for example, FIG. 3 of Patent Document 1).

さらに、偏差の検出やその補正を全てデジタル信号処理で行なう方法(3)としては、図7において、AD変換回路7,8から出力されるデジタルの同相信号I,直交信号Qとを用いて位相偏差や振幅偏差を検出し、その検出結果をもとに、AD変換回路7,8から出力されるデジタルの同相信号I,直交信号Qについて、これら偏差の補正を行なうものである(例えば、特許文献3参照)。   Further, as a method (3) for detecting deviation and correcting it entirely by digital signal processing, the digital in-phase signal I and quadrature signal Q output from the AD conversion circuits 7 and 8 in FIG. A phase deviation and an amplitude deviation are detected, and based on the detection result, these deviations are corrected for the digital in-phase signal I and quadrature signal Q output from the AD conversion circuits 7 and 8 (for example, And Patent Document 3).

図8はその方法(3)の構成を概略的に示すブロック図であって、12は位相及び振幅偏差補正処理部であり、図7に対応する部分には同一符号をつけて重複する説明を省略する。   FIG. 8 is a block diagram schematically showing the configuration of the method (3). Reference numeral 12 denotes a phase and amplitude deviation correction processing unit. The same reference numerals are given to the portions corresponding to those in FIG. Omitted.

同図において、AD変換回路7,8から出力されるデジタルの同相信号Iと直交信号Qとは位相及び振幅偏差補正処理部12に供給される。この位相及び振幅偏差補正処理部12では、供給された同相信号Iと直交信号Qとから位相偏差と振幅偏差とが検出され、この検出結果に基づいて、これら供給された同相信号Iと直交信号Qの位相偏差と振幅偏差との補正処理が行なわれる。かかる補正処理がなされた同相信号Iと直交信号Qとはベースバンド復調部11に供給され、デジタル信号処理によって復調処理される。
特開平9ー247228号公報 特開2005ー217934号公報 特開2000ー216839号公報 特開2004ー278750号公報
In the figure, a digital in-phase signal I and a quadrature signal Q output from the AD conversion circuits 7 and 8 are supplied to a phase and amplitude deviation correction processing unit 12. The phase and amplitude deviation correction processing unit 12 detects a phase deviation and an amplitude deviation from the supplied in-phase signal I and quadrature signal Q, and based on the detection result, these supplied in-phase signal I and Correction processing of the phase deviation and amplitude deviation of the orthogonal signal Q is performed. The corrected in-phase signal I and quadrature signal Q are supplied to the baseband demodulator 11 and demodulated by digital signal processing.
JP-A-9-247228 JP 2005-217934 A JP 2000-216839 A JP 2004-278750 A

従来の、全てアナログ処理で行なう方法(1)は、位相偏差と振幅偏差の検出と補正を行なう対象がアナログ信号であるため、検出のための回路、特に、位相偏差を正確に検出するデバイスが実用的な範囲で存在しないということや、位相偏差を正確に検出することができるものと仮定しても、補正手段については、アナログ回路の処理では、正確に補正できるような手段を実用的に入手するのは非常に困難である。また、アナログ回路の部品などの誤差により、検出や補正を正確に行なうことができないし、部品の誤差により、調整誤差に限界があるという問題もある。   In the conventional method (1), which is all analog processing, the object to be detected and corrected for the phase deviation and the amplitude deviation is an analog signal. Therefore, a circuit for detection, in particular, a device for accurately detecting the phase deviation is required. Even if it is assumed that it does not exist in a practical range and that the phase deviation can be detected accurately, the correction means is practically a means that can be corrected accurately in the analog circuit processing. It is very difficult to obtain. In addition, there is a problem that detection and correction cannot be performed accurately due to errors in analog circuit components, and adjustment errors are limited due to component errors.

偏差をデジタル信号処理で検出し、アナログ回路を用いて補正を行なう方法(2)は、位相偏差や振幅偏差の検出は精度良く行なうことができるが、アナログ信号処理による偏差の補正は、上述の方法(1)と同様、精度良く行なうことは困難である。   In the method (2) in which the deviation is detected by digital signal processing and correction is performed using an analog circuit, phase deviation and amplitude deviation can be detected with high accuracy. However, the correction of deviation by analog signal processing is performed as described above. Similar to method (1), it is difficult to carry out with high accuracy.

図8に示す偏差の検出やその補正を全てデジタル信号処理で行なう方法(3)は、部品の誤差などの影響がなく、位相偏差や振幅偏差が検出できるものであれば、上記3つの方法のうちでもっとも有効な方法である。   The method (3) in which the deviation detection and correction shown in FIG. 8 are all performed by digital signal processing is the above three methods as long as the phase deviation and the amplitude deviation can be detected without being affected by component errors. This is the most effective method.

しかしながら、受信されてAD変換回路7,8から得られる同相信号I,直交信号Qは、一般に、既知の信号ではなく、このような既知でない同相信号I,直交信号Qから位相偏差や振幅偏差を精度良く検出することは困難である。一方でサブキャリアの変調方式に64QAMなどの多値変調を用いる場合、例として位相偏差、振幅偏差がそれそれ0.1度以下、0.1dB以下であることが望まれる。   However, the in-phase signal I and the quadrature signal Q that are received and obtained from the AD conversion circuits 7 and 8 are generally not known signals, and are not known from the in-phase signal I and the quadrature signal Q. It is difficult to accurately detect the deviation. On the other hand, when multi-level modulation such as 64QAM is used as the subcarrier modulation scheme, it is desirable that the phase deviation and amplitude deviation be 0.1 degrees or less and 0.1 dB or less, respectively.

本発明は、かかる問題を解消し、直接検波方式によって直交検波された受信信号の位相偏差及び振幅偏差を通常の受信を行いながらデジタル信号処理によって精度良く検出し、更にこの受信信号の位相偏差及び振幅偏差の精度良く補正することができるようにした位相及び振幅偏差補正回路を提供することにある。   The present invention solves such a problem, and detects the phase deviation and amplitude deviation of the received signal orthogonally detected by the direct detection method with high accuracy by digital signal processing while performing normal reception. An object of the present invention is to provide a phase and amplitude deviation correction circuit capable of accurately correcting an amplitude deviation.

上記目的を達成するために、本発明は、同相信号と直交信号とが直交変調されてなる受信信号を直接検波方式で直交検波する周波数変換手段と、該周波数変換手段の出力信号をAD変換するAD変換手段と、該AD変換手段から出力されるデジタルの該同相信号と直交信号とをデジタル信号処理して復調する復調手段とを備えた受信機の位相及び振幅偏差補正処理方式であって、パイロットレプリカ信号を生成する位相及び振幅偏差補正処理処理手段と、該パイロットレプリカ信号を、該周波数変換手段の局部発振器や90゜移相器の出力信号を用いて、直交変調する直交変調手段と、該直交変調手段の出力信号を該受信信号と合成して該周波数変換手段に供給する合成手段とを設けて、直交変調された該パイロットレプリカ信号を、該受信信号とともに、該周波数変換手段で直交検波し、AD変換して該位相及び振幅偏差補正処理処理手段に供給し、該位相及び振幅偏差補正処理手段は、生成する該パイロットレプリカ信号と該周波数変換手段で周波数変換されてAD変換された該パイロットレプリカ信号との演算処理により、周波数変換されてAD変換された該受信信号の同相信号と直交信号とでの該周波数変換手段などのアナログ手段で生じた位相及び振幅偏差を補正するための補正値を求め、該補正値を用いて周波数変換されてAD変換された該受信信号の同相信号と直交信号とをデジタル信号処理し、該同相信号と該直交信号とでの位相及び振幅偏差を補正して、該復調手段に供給することを特徴とするものである。   In order to achieve the above object, the present invention provides frequency conversion means for performing quadrature detection on a received signal obtained by quadrature modulation of an in-phase signal and a quadrature signal by direct detection, and AD conversion of the output signal of the frequency conversion means A phase and amplitude deviation correction processing method for a receiver, comprising: an AD converting means that performs the above-mentioned processing, and a demodulating means that digitally processes and demodulates the digital in-phase signal and quadrature signal output from the AD converting means. Phase and amplitude deviation correction processing processing means for generating a pilot replica signal, and quadrature modulation means for quadrature modulating the pilot replica signal using a local oscillator of the frequency conversion means or an output signal of a 90 ° phase shifter And a synthesizing unit that synthesizes the output signal of the quadrature modulation unit with the received signal and supplies the synthesized signal to the frequency conversion unit, and receives the quadrature modulated pilot replica signal Together with the signal, quadrature detection by the frequency conversion means, AD conversion and supply to the phase and amplitude deviation correction processing processing means, the phase and amplitude deviation correction processing means, the generated pilot replica signal and the frequency conversion means Is generated in analog means such as the frequency conversion means for the in-phase signal and the quadrature signal of the received signal that has been frequency converted and AD converted by arithmetic processing with the pilot replica signal that has been frequency converted and AD converted by A correction value for correcting the phase and amplitude deviation obtained is obtained, the in-phase signal and the quadrature signal of the received signal subjected to frequency conversion and AD conversion using the correction value are subjected to digital signal processing, and the in-phase signal is processed. And the quadrature signal and the phase deviation are corrected and supplied to the demodulating means.

また、本発明の他の実現手段として、所定の時間毎に所定の時間長のパイロット信号を含む同相信号と直交信号とが直交変調されてなる受信信号を直接検波方式で直交検波する周波数変換手段と、該周波数変換手段の出力信号をAD変換するAD変換手段と、該AD変換手段から出力されるデジタルの該同相信号と直交信号とを、チャンネル推定処理手段で該パイロット信号を用いてチャンネル推定処理を行なった後、デジタル信号処理して復調する復調手段とを備えた受信機の位相及び振幅偏差補正処理方式であって、該AD変換手段から出力されるデジタルの該同相信号と直交信号と、該チャンネル推定処理に用いられる該受信信号に含まれる該パイロット信号とが供給される位相及び振幅偏差補正処理処理手段が設けられ、該振幅偏差補正処理処理手段は、該周波数変換手段で直交検波された該受信信号に含まれる該パイロット信号と同じ角周波数のパイロット信号を生成するパイロット信号生成手段を備え、生成された該パイロット信号と該チャンネル推定処理手段からの該パイロット信号との演算処理により、周波数変換されてAD変換された該受信信号の同相信号と直交信号とでの該周波数変換手段などのアナログ手段で生じた位相及び振幅偏差を補正するための補正値を求め、該補正値を用いて周波数変換されてAD変換された該受信信号の同相信号と直交信号とをデジタル信号処理し、該同相信号と該直交信号とでの位相及び振幅偏差を補正し、位相及び振幅偏差が補正された該同相信号と該直交信号に対し、該チャンネル推定処理手段でチャンネル推定処理を行なうことを特徴とするものである。   Further, as another means for realizing the present invention, frequency conversion for performing quadrature detection using a direct detection method on a received signal obtained by quadrature modulation of an in-phase signal and a quadrature signal including a pilot signal having a predetermined time length every predetermined time. Means, AD converting means for AD converting the output signal of the frequency converting means, and the digital in-phase signal and quadrature signal output from the AD converting means using the pilot signal in the channel estimation processing means A phase and amplitude deviation correction processing method of a receiver comprising a demodulating means for performing digital signal processing and demodulating after performing channel estimation processing, wherein the digital in-phase signal output from the AD converting means and Phase and amplitude deviation correction processing means for supplying an orthogonal signal and the pilot signal included in the received signal used for the channel estimation processing are provided, and the amplitude deviation is provided. The normal processing processing means includes pilot signal generating means for generating a pilot signal having the same angular frequency as the pilot signal included in the received signal orthogonally detected by the frequency converting means, and the generated pilot signal and the channel Phase and amplitude deviation caused by analog means such as the frequency conversion means between the in-phase signal and the quadrature signal of the received signal that has been frequency-converted and AD-converted by arithmetic processing with the pilot signal from the estimation processing means Correction signal is obtained, digital signal processing is performed on the in-phase signal and the quadrature signal of the received signal that have been frequency-converted and AD-converted using the correction value, and the in-phase signal and the quadrature signal The channel estimation processing means performs channel estimation processing on the in-phase signal and the quadrature signal with the phase and amplitude deviation corrected. And it is characterized in Ukoto.

また、本発明は、請求項1又は2に記載の直接検波受信機において、前記受信信号は直交周波数分割多重方式の信号であって、前記直交検波されてAD変換された該受信信号を、シンボル単位で時間領域から周波数領域に変換するFFT処理手段と、前記FFT処理手段の出力から伝搬路推定処理用のパイロット信号を検出して位相及び振幅の両者又は一方の偏差を算出し、積分を含むフィードバック制御ループを介して補正を施してから前記復調手段に出力する位相又は振幅補正手段と、を備え、位相又は振幅補正手段は、サブキャリアの周波数に応じて異なる補正を施すことを特徴とする直接検波受信機。   Further, the present invention provides the direct detection receiver according to claim 1 or 2, wherein the received signal is a signal of an orthogonal frequency division multiplexing system, and the received signal that has been subjected to the orthogonal detection and AD converted is represented by a symbol. FFT processing means for converting from the time domain to the frequency domain in units, and detecting a pilot signal for propagation path estimation processing from the output of the FFT processing means, calculating a deviation of one or both of the phase and amplitude, and including integration A phase or amplitude correction unit that performs correction via a feedback control loop and then outputs to the demodulation unit, and the phase or amplitude correction unit performs different corrections according to the subcarrier frequency. Direct detection receiver.

本発明によると、受信信号を直交検波する際の周波数変換手段などのアナログ回路によって生ずる位相及び振幅偏差をデジタル信号処理によって検出し、補正することができるので、その検出にアナログ回路の影響がなく、精度の高い検出が可能となるし、従って、高い精度で補正することが可能となる。   According to the present invention, since the phase and amplitude deviation caused by an analog circuit such as a frequency conversion means when quadrature detection of a received signal can be detected and corrected by digital signal processing, there is no influence of the analog circuit on the detection. Therefore, detection with high accuracy is possible, and therefore correction can be performed with high accuracy.

本発明は、基本的には、図8で示すように、位相偏差及び振幅偏差の検出やその補正を全てデジタル信号処理で行なう方法(3)を用いるものであるが、送信側で予め含ませるかもしくは受信側で注入したパイロット信号を用いて、これら偏差を高精度で検出できるようにしたものである。   As shown in FIG. 8, the present invention basically uses a method (3) in which detection and correction of phase deviation and amplitude deviation are all performed by digital signal processing. Alternatively, these deviations can be detected with high accuracy using a pilot signal injected on the receiving side.

まず、本発明の位相及び振幅偏差補正処理部12での位相偏差や振幅偏差の検出及び補正の原理について、図8を参照して説明する。   First, the principle of detection and correction of phase deviation and amplitude deviation in the phase and amplitude deviation correction processing unit 12 of the present invention will be described with reference to FIG.

いま、周波数変換回路3,4に供給されるRF帯の受信信号RRFを、任意の1つの角周波数ωcに注目してx(t)=cos(ωct+θ)とし、局部発振器5の出力信号を、角周波数ωc’の単一周波数信号であるcos(ωc't)とし、90゜移相器6の位相角を90゜+Δφとし、周波数変換回路3,4及びそれ以降で生じる同相信号I,直交信号Q間の振幅偏差をgとする。ただしθは任意位相である。また、受信信号x(t)の同相信号Iと直交信号Qの夫々の平均値は、送信側において1に正規化されているものと仮定する。 Now, the RF band received signal R RF supplied to the frequency conversion circuits 3 and 4 is set to x (t) = cos (ω c t + θ) by paying attention to an arbitrary angular frequency ω c , and the local oscillator 5 The output signal is cos (ω c ′ t), which is a single frequency signal with an angular frequency ω c ′, the phase angle of the 90 ° phase shifter 6 is 90 ° + Δφ, and the frequency conversion circuits 3 and 4 and thereafter. Let g be the amplitude deviation between the generated in-phase signal I and quadrature signal Q. However, θ is an arbitrary phase. Further, it is assumed that the average value of the in-phase signal I and the quadrature signal Q of the received signal x (t) is normalized to 1 on the transmission side.

このとき、周波数変換回路3,4からそれぞれ得られる同相信号I、直交信号Qは、次の式の実部、虚部として表わされる。
cos(ωct+θ)・[cos(ωc't)−jgsin(ωc't+Δφ)]
上式を整理し、LPF7,8で除かれる角周波数(ωc'+ωc)の信号を無視すれば、LPF7,8からそれぞれ得られるベースバンド信号RBBの同相信号IO、直交信号QOは、次の式で表わされる。
BB=(1/2)cos{(ωc'−ωc)t+θ}
−j(1/2)g〔sin{(ωc'−ωc)t+Δφ−θ}]……(1)
At this time, the in-phase signal I and the quadrature signal Q respectively obtained from the frequency conversion circuits 3 and 4 are expressed as a real part and an imaginary part of the following expression.
cos (ω c t + θ) · [cos (ω c 't) −jgsin (ω c ' t + Δφ)]
If the above equation is arranged and the signal of the angular frequency (ω c ′ + ω c ) removed by the LPFs 7 and 8 is ignored, the in-phase signal I O and the quadrature signal Q of the baseband signal R BB obtained from the LPFs 7 and 8 respectively. O is represented by the following formula.
R BB = (1/2) cos {(ω c '−ω c ) t + θ}
-J (1/2) g [sin {([omega] c '-[omega] c ) t + [Delta] [phi]-[theta]}] (1)

上記式(1)において、直流に変換される受信信号(ゼロIF方式を例とするが、低IF方式でも同様に実現できる)に注目してωc'=ωcとすると、上記式(1)は次の式(2)になる。
BB=(1/2)cosθ−j(1/2)gsin{Δφ−θ} ……(2)
=(1/4)・(e+e-jθ)−(1/4)・g{ej(Δφ-θ)−e-j(Δφ-θ)
=(1/4)・e{1+ge-jΔφ}+(1/4)・e-jθ{1−gejΔφ} ……(3)
=(1/4)・e[1+g{cos(Δφ)−jsin(Δφ)]
+(1/4)・e-jθ[1−g{cos(Δφ)+jsin(Δφ)] ……(4)
=Ae+Be-jθ ……(5)
ただし、
A=Ar+jAi
=(1/4)・[1+g{cos(Δφ)−jsin(Δφ)}],
B=Br+jBi
=(1/4)・[1−g{cos(Δφ)+jsin(Δφ)}] ……(6)
と定義する。Aeが注目信号x(t)の本来の成分(希望波成分)、Be-jθが位相/振幅偏差に由来する不要成分(イメージ)を意味している。
In the above equation (1), if ω c ′ = ω c , paying attention to the received signal converted into direct current (the zero IF method is taken as an example, but it can be similarly realized in the low IF method), the above equation (1) ) Becomes the following equation (2).
R BB = (1/2) cosθ−j (1/2) gsin {Δφ−θ} (2)
= (1/4) · (e + e −jθ ) − (1/4) · g {e j (Δφ−θ) −e −j (Δφ−θ) }
= (1/4) · e jθ { 1 + ge -jΔφ} + (1/4) · e -jθ {1-ge jΔφ} ...... (3)
= (1/4) · e [1 + g {cos (Δφ) −jsin (Δφ)]
+ (1/4) · e −jθ [1-g {cos (Δφ) + jsin (Δφ)] (4)
= Ae + Be -jθ (5)
However,
A = A r + jA i
= (1/4) · [1 + g {cos (Δφ) −jsin (Δφ)}],
B = B r + jB i
= (1/4) · [1-g {cos (Δφ) + jsin (Δφ)}] (6)
It is defined as Ae means an original component (desired wave component) of the signal of interest x (t), and Be −jθ means an unnecessary component (image) derived from the phase / amplitude deviation.

上記式(5)をcosθとsinθで整理すると、
BB=(Ar+jAi)e+(Br+jBi)e-jθ
=Ar(cosθ+jsinθ)+jAi(cosθ+jsinθ)+Br(cosθ−jsinθ)+jBi(cosθ−jsinθ)
=(Ar+Br)cosθ+(−Ai+Bi)sinθ+j(Ai+Bi)cosθ+j(Ar−Br)sinθ ……(7)
となる。ここで、
(Ar+Br)=U11, (−Ai+Bi)=U12
, (Ai+Bi)=U21, (Ar−Br)=U22 ……(8)
とすると、上記式(5)は、
BB=U11cosθ+U12sinθ+jU21cosθ+jU22sinθ ……(9)となる。
If the above equation (5) is arranged by cos θ and sin θ,
R BB = (A r + jA i ) e + (B r + jB i ) e −jθ
= A r (cos θ + j sin θ) + j A i (cos θ + j sin θ) + B r (cos θ−j sin θ) + jB i (cos θ−j sin θ)
= (A r + B r ) cos θ + (− A i + B i ) sin θ + j (A i + B i ) cos θ + j (A r −B r ) sin θ (7)
It becomes. here,
(A r + B r ) = U 11 , (−A i + B i ) = U 12
, (A i + B i ) = U 21 , (A r −B r ) = U 22 (8)
Then, the above equation (5) becomes
R BB = U 11 cos θ + U 12 sin θ + jU 21 cos θ + jU 22 sin θ (9)

この式(9)の実部と虚部が、位相偏差が(Δφ)及び振幅偏差がgであるときの周波数変換回路3からの同相信号(Io=U11cosθ+U12sinθ)と、周波数変換回路4からの直交信号(Qo=U21cosθ+U22sinθ)ということになる。 The real part and the imaginary part of the equation (9) are the in-phase signal (I o = U 11 cos θ + U 12 sin θ) from the frequency conversion circuit 3 when the phase deviation is (Δφ) and the amplitude deviation is g, and the frequency This is the quadrature signal from the conversion circuit 4 (Q o = U 21 cos θ + U 22 sin θ).

位相偏差Δφ及び振幅偏差gがなければ、注目信号x(t)=cos(ωct+θ)を直交復調したときの真の同相信号Ii、直交信号Qiはそれぞれcosθ、sinθになるはずであるから、上記式(9)はcosθ→Ii、sinθ→Qiとして行列で表現すれば、
となる。ここで、
11=Ar+Br
=(1/4){1+gcos(Δφ)}+(1/4){1−gcos(Δφ)}=1/2,
12=(−Ai+Bi
=−(1/4){−sin(Δφ)}+(1/4)sin(Δφ)=j(1/2)・sin(Δφ),
21=(Ai+Bi
=(1/4){−sin(Δφ)}+(1/4)sin(Δφ)=0
, U22=Ar−Br
=(1/4){1+gcos(Δφ)}−(1/4){1−gcos(Δφ)}=(1/2)gcos(Δφ)である。
Without phase deviation Δφ and amplitude deviation g, true in-phase signal I i and quadrature signal Q i when quadrature demodulation of signal of interest x (t) = cos (ω c t + θ) should be cos θ and sin θ, respectively. Therefore, if the above equation (9) is expressed in a matrix as cos θ → I i and sin θ → Q i ,
It becomes. here,
U 11 = A r + B r
= (1/4) {1 + gcos (Δφ)} + (1/4) {1−gcos (Δφ)} = 1/2,
U 12 = (− A i + B i )
= − (1/4) {− sin (Δφ)} + (1/4) sin (Δφ) = j (1/2) · sin (Δφ),
U 21 = (A i + B i )
= (1/4) {-sin (Δφ)} + (1/4) sin (Δφ) = 0
, U 22 = A r −B r
= (1/4) {1 + gcos (Δφ)} − (1/4) {1−gcos (Δφ)} = (1/2) gcos (Δφ).

位相偏差もなく(Δφ=0)、振幅偏差もない(g=1)場合には、t[Ioo]とt[Iii]は単位行列で結ばれるべきなので、大きさをそろえるために式(10)で2を掛けている。
位相偏差や振幅偏差がある場合、周波数変換回路3、4から出力されるIo、Qoに下記の式(11)のような逆行列の演算を行うことで、それら偏差の補正が為される。
When there is no phase deviation (Δφ = 0) and no amplitude deviation (g = 1), t [I o Q o ] and t [I i Q i ] should be connected by a unit matrix, so In order to align, 2 is multiplied by Formula (10).
When there is a phase deviation or amplitude deviation, the deviation is corrected by performing an inverse matrix operation such as the following equation (11) on I o and Q o output from the frequency conversion circuits 3 and 4. The

但し、det=U11・U22−U12・U21
=(Ar+Br)(Ar−Br)−(−Ai+Bi)(Ai+Bi
=(Ar 2+Ai 2)−(Br 2+Bi 2
=│A│2−│B│2
である。なお、実際の無線受信機では、フェージング等で変動する信号の大きさに追従する仕組みがあり、それに比べてdetの影響は無視できるほど小さいので、detの除算を実装する必要は無く、以下detは1と見なす。
However, det = U 11 · U 22 -U 12 · U 21
= (A r + B r ) (A r −B r ) − (− A i + B i ) (A i + B i )
= (A r 2 + A i 2 ) − (B r 2 + B i 2 )
= │A│ 2 −│B│ 2
It is. In addition, in an actual radio receiver, there is a mechanism that follows the magnitude of a signal that fluctuates due to fading, etc. Compared to that, the influence of det is so small that it can be ignored, so there is no need to implement det division. Is considered 1.

次に、RF帯の受信信号RRFに、任意の角周波数ωp+ωcのパイロット信号が重畳している場合を考える。ここでは仮にωpを当該OFDM帯域内のサブキャリアの1つに割当てられた角周波数とし、センタ周波数に対して対称の位置にある−ωpのサブキャリアは未使用であるとする。
上記式(5)のθは任意であったので、θをωpt+ψと置換すれば、LPF7,8から得られる(位相及び振幅偏差を受けた)ベースバンドの受信パイロット信号PBBは、次の式で表わされる。
BB=A・exp[j(ωpt+ψ)]+B・exp[−j(ωpt+ψ)]
より一般的には、パイロット信号が変調信号Mで直交変調されているとすると、
BB=M・A・exp[j(ωpt+ψ)]+M*・B・exp[−j(ωpt+ψ)] ……(13)
と表わされる。なおスター(*)は複素共役を意味し、またMは簡単のため大きさが1に正規化されているものとする。
また、受信パイロット信号PBBの実部及び虚部を以下のように定義する。
BB=Sr+jSi ……(14)
Next, consider a case where a pilot signal having an arbitrary angular frequency ω p + ω c is superimposed on the RF band received signal R RF . Here, it is assumed that ω p is an angular frequency assigned to one of the sub-carriers in the OFDM band, and a sub-carrier of −ω p at a symmetric position with respect to the center frequency is unused.
Since θ in the above equation (5) is arbitrary, if θ is replaced with ω p t + ψ, the baseband received pilot signal P BB (received phase and amplitude deviation) obtained from LPFs 7 and 8 is It is expressed by the following formula.
P BB = A · exp [j (ω p t + ψ)] + B · exp [−j (ω p t + ψ)]
More generally, if the pilot signal is quadrature modulated with modulated signal M,
P BB = M · A · exp [j (ω p t + ψ)] + M * · B · exp [−j (ω p t + ψ)] (13)
It is expressed as Note that a star (*) means a complex conjugate, and M is normalized to 1 for simplicity.
Further, defined as follows the real part and the imaginary part of the received pilot signal P BB.
P BB = S r + jS i (14)

ここで、以下の式のようなパイロットレプリカ信号Prep +、Prep -が用意できると想定する。
rep +=M・exp[jωPt]=Pr+jPi
rep -=M*・exp[−jωPt]=Pr−jPi ……(15)
つまり、角周波数はパイロット信号のそれと実質的に等しいωPで、位相には一定とみなせる任意位相差ψがある。
Here, it is assumed that pilot replica signals P rep + and P rep as shown in the following equation can be prepared.
P rep + = M · exp [jω P t] = P r + jP i
P rep = M * · exp [−jω P t] = P r −jP i (15)
That is, the angular frequency is ω P substantially equal to that of the pilot signal, and the phase has an arbitrary phase difference ψ that can be regarded as constant.

このとき、パイロット信号PBBと両パイロットレプリカ信号Prep +、Prep -夫々との、1OFDMシンボル時間単位の相関は以下のようになる。
〈PBB・Prep -
=〈{M・A・exp[j(ωpt+ψ)]+M*・B・exp[−j(ωpt+ψ)]}・M*・exp[−jωPt]〉
=〈A・exp(jψ)〉+〈M* 2・B・exp[−j(2ωPt+ψ)]〉
=Arcosψ−Aisinψ+j(Arsinψ+Aicosψ) ……(16)
〈PBB・Prep +
=〈{M・A・exp[j(ωpt+ψ)]+M*・B・exp[−j(ωpt+ψ)]}・M・exp[jωPt]〉
=〈M2・A・exp[j(2ωpt+ψ)]〉+〈B・exp(−jψ)〉
=Brcosψ+Bisinψ+j(−Brsinψ+Bicosψ) ……(17)
At this time, the correlation in 1 OFDM symbol time unit between the pilot signal P BB and both pilot replica signals P rep + and P rep is as follows.
<P BB · P rep ->
= <{M · A · exp [j (ω p t + ψ)] + M * · B · exp [−j (ω p t + ψ)]} · M * · exp [−jω P t]>
= <A · exp (jψ)> + <M * 2 · B · exp [−j (2ω P t + ψ)]>
= A r cosψ−A i sinφ + j (A r sinφ + A i cosφ) (16)
<P BB · P rep +>
= <{M · A · exp [j (ω p t + ψ)] + M * · B · exp [−j (ω p t + ψ)]} · M · exp [jω P t]>
= <M 2 · A · exp [j (2ω p t + ψ)]> + <B · exp (−jψ)>
= B r cosψ + B i sinψ + j (−B r sinψ + B i cosψ) (17)

上記の相関〈PBB・Prep -〉及び〈PBB・Prep +〉を、夫々A~及びB~と定義する。
一方、上記式(14)、(15)によれば、A~、B~は以下のようにも表せる。
A~=〈PBB・Prep -
=〈(Sr+jSi)・(Pr−jPi)〉
=〈(Sr・Pr+Si・Pi)+j(Si・Pr−Sr・Pi)〉 ……(18)
B~=〈PBB・Prep +
=〈(Sr+jSi)・(Pr+jPi)〉
=〈(Sr・Pr−Si・Pi)+j(Si・Pr+Sr・Pi)〉 ……(19)
The correlations <P BB · P rep > and <P BB · P rep + > are defined as and B˜, respectively.
On the other hand, according to the above formulas (14) and (15), A˜ and B˜ can also be expressed as follows.
A ~ = <P BB · P rep ->
= <(S r + jS i ) · (P r −jP i )>
= <(S r · P r + S i · P i) + j (S i · P r -S r · P i)> ...... (18)
B ~ = <P BB · P rep +>
= <(S r + jS i ) · (P r + jP i)>
= <(S r · P r -S i · P i) + j (S i · P r + S r · P i)> ...... (19)

上記式(16)と式(17)の和、差の実部、虚部を要素とする行列について計算すると、下記の式が得られる。
つまり、位相及び振幅偏差を補正する行列Fと、任意位相ψに応じた座標回転の変換行列Cとの積が得られる。
When calculating the matrix having the sum of the above formulas (16) and (17), the real part of the difference, and the imaginary part as elements, the following formula is obtained.
That is, the product of the matrix F for correcting the phase and amplitude deviation and the transformation matrix C for coordinate rotation corresponding to the arbitrary phase ψ is obtained.

上述した原理を踏まえて、本発明の実施例1に係る受信機を説明する。本例の受信機は、位相及び振幅偏差補正処理部12を除けば図8に示したものとほぼ同じである。本例の受信機は、その動作において、受信信号に既知の、あるいは復調により再生可能なパイロット信号が含まれていることを前提とする。   Based on the above-described principle, a receiver according to Embodiment 1 of the present invention will be described. The receiver of this example is substantially the same as that shown in FIG. 8 except for the phase and amplitude deviation correction processing unit 12. In the operation of the receiver of this example, it is assumed that the received signal includes a known pilot signal or a reproducible pilot signal.

本実施例1の位相及び振幅偏差補正処理部12は、上記式(1)に示すAD変換回路9,10からのベースバンドの受信信号RBBの同相信号Io,直交信号Qoに、上記式(11)に示す補正処理を施すことにより、これら同相信号Io,直交信号Qoの位相偏差や振幅偏差を補正するものである。その補正処理に必要な行列Fは、パイロット信号について上記式(20)を計算して決定する。 The phase and amplitude deviation correction processing unit 12 of the first embodiment applies the in-phase signal I o and the quadrature signal Q o of the baseband received signal R BB from the AD conversion circuits 9 and 10 shown in the above formula (1) to By performing the correction process shown in the above equation (11), the phase deviation and amplitude deviation of these in-phase signal I o and quadrature signal Q o are corrected. The matrix F necessary for the correction processing is determined by calculating the above equation (20) for the pilot signal.

図2は、本例の位相及び振幅偏差補正処理部12のブロック図であって、パイロット信号復調処理部17と、LPF18,19と、乗算回路20〜23と、加算回路24,25とを有する。
パイロット信号復調処理部17は、パイロットレプリカ信号生成部(後述する)を内蔵し、AD変換回路9,10から受信パイロット信号PBBを含んだ受信信号RBBの入力を受けると、式(15)のようなパイロットレプリカ信号Prepを生成し、1OFDMシンボル周期で式(20)の計算をして行列Fを出力する。すなわち、受信信号RBBの実部Io,虚部Qoと、パイロットレプリカ信号Prepの実部Pr,虚部Piとを用いて、補正値F11,F12,F21,F22を生成する。
FIG. 2 is a block diagram of the phase and amplitude deviation correction processing unit 12 of this example, and includes a pilot signal demodulation processing unit 17, LPFs 18 and 19, multiplication circuits 20 to 23, and addition circuits 24 and 25. .
When the pilot signal demodulation processing unit 17 includes a pilot replica signal generation unit (described later) and receives the reception signal R BB including the reception pilot signal P BB from the AD conversion circuits 9 and 10, the equation (15) A pilot replica signal P rep is generated, and the matrix F is output by calculating equation (20) in one OFDM symbol period. That is, the correction values F 11 , F 12 , F 21 , F are obtained by using the real part I o and imaginary part Q o of the received signal R BB and the real part P r and imaginary part P i of the pilot replica signal Prep. Generates 22 .

LPF18,19は、原理上本発明に必要ないが、一例として例示するものであり、フィルタとしての機能以外に、デシメーションや遅延線としての機能も持ちうる。本例の説明では、AD変換回路9,10の出力と、LPF18、19の出力は、特に区別せずに同相信号Io,直交信号Qoと呼ぶ。 The LPFs 18 and 19 are not necessary in the present invention in principle, but are exemplified as an example, and may have a function as a decimation or delay line in addition to a function as a filter. In the description of this example, the outputs of the AD conversion circuits 9 and 10 and the outputs of the LPFs 18 and 19 are referred to as an in-phase signal I o and a quadrature signal Q o without particular distinction.

乗算器20は、補正値F11と、LPF18から供給される同相信号I0とを乗算して出力する。
乗算器21は、補正値F12と、LPF19から供給される直交信号Q0とを乗算して出力する。
乗算器22は、補正値F21と、LPF18から供給される同相信号I0とを乗算して出力する。
乗算器23は、補正値F22と、LPF19から供給される直交信号Q0とを乗算して出力する。
乗算器20〜23は、LPF18や19から信号が供給される度に(すなわちサンプルレートで)動作する。
The multiplier 20 multiplies the correction value F 11 and the in-phase signal I 0 supplied from the LPF 18 and outputs the result.
The multiplier 21 multiplies the correction value F 12 and the orthogonal signal Q 0 supplied from the LPF 19 and outputs the result.
The multiplier 22 multiplies the correction value F 21 and the in-phase signal I 0 supplied from the LPF 18 and outputs the result.
The multiplier 23 multiplies the correction value F 22 and the orthogonal signal Q 0 supplied from the LPF 19 and outputs the result.
The multipliers 20 to 23 operate each time a signal is supplied from the LPF 18 or 19 (that is, at the sample rate).

加算器24は、乗算器20,21の出力信号を加算し、補正された同相信号Icとして出力する。
加算器25は、乗算器22,23の出力信号を加算し、補正された直交信号Qcとして出力する。
The adder 24 adds the output signals of the multipliers 20 and 21 and outputs the result as a corrected in-phase signal I c .
The adder 25 adds the output signals of the multipliers 22 and 23 and outputs the result as a corrected orthogonal signal Q c .

これら乗算器20〜23及び加算器24、25による処理は、上記式(11)に対応している。なお、補正により得られた信号は、真の同相信号Iiなどと区別するためにIcなどと表記したが、補正値が適切であれば両者は実質等しくなる。 The processing by the multipliers 20 to 23 and the adders 24 and 25 corresponds to the above equation (11). Note that the signal obtained by the correction is expressed as I c or the like in order to distinguish it from the true in-phase signal I i or the like. However, if the correction value is appropriate, both are substantially equal.

次に、パイロット信号復調処理部17による上記補正値(F11,F12,F21,F22)の算出について説明する。これは、復調により得られたパイロット信号PBBと、パイロットレプリカ信号Prepとの計算(式20)により簡単に求めることができる。 Next, calculation of the correction values (F 11 , F 12 , F 21 , F 22 ) by the pilot signal demodulation processing unit 17 will be described. This can be easily obtained by calculating the pilot signal P BB obtained by demodulation and the pilot replica signal Prep (Equation 20).

図3は図2のパイロット信号復調処理部17の内部ブロック図であって、26はパイロットレプリカ信号生成部、27は実部抽出部、28は虚部抽出部、29〜32は乗算回路、33,34は符号反転回路、35〜38はLPFである。   3 is an internal block diagram of the pilot signal demodulation processing unit 17 in FIG. 2, wherein 26 is a pilot replica signal generation unit, 27 is a real part extraction unit, 28 is an imaginary part extraction unit, 29 to 32 are multiplication circuits, 33 , 34 are sign inversion circuits, and 35 to 38 are LPFs.

パイロットレプリカ信号生成部26は、CP検出回路27と、変調パターン発生部28とを備え、パイロットレプリカ信号Prep(=Pr+jPi)を生成する。
CP(Cyclic Prefix)検出回路27は、AD変換回路9,10からベースバンドの受信信号RBBの入力を受け、OFDMシンボル長の自己相関のピークを検出し、シンボルタイミングを出力する。
変調パターン発生部28は、既知のパイロット信号が載せられるサブキャリア(その周波数は中心周波数からの差分)を、そのパイロット信号の変調パターンMで変調した複素信号(すなわち変調されたサブキャリアのベースバンド信号)のサンプルを、変調パターンの周期に相当する複数OFDMシンボル分、テーブルとして保持しており、CP検出回路27から与えられたシンボルタイミングに同期して、そのテーブルを読み出してパイロットレプリカ信号Prepとして出力する。
The pilot replica signal generation unit 26 includes a CP detection circuit 27 and a modulation pattern generation unit 28, and generates a pilot replica signal P rep (= P r + jP i ).
CP (Cyclic Prefix) detection circuit 27 receives an input of the received signal R BB baseband from the AD conversion circuit 9 detects the peaks of the autocorrelation of the OFDM symbol length, and outputs the symbol timing.
The modulation pattern generator 28 is a complex signal (that is, a baseband of a modulated subcarrier) obtained by modulating a subcarrier on which a known pilot signal is carried (the frequency is a difference from the center frequency) with the modulation pattern M of the pilot signal. Signal) samples are held as a table for a plurality of OFDM symbols corresponding to the period of the modulation pattern, and the table is read in synchronism with the symbol timing given from the CP detection circuit 27 to obtain the pilot replica signal P rep Output as.

実際のところ、0でないΨの変換行列Cと行列Fとの積を、行列Fとみなして扱ったとしても、補正された信号Ic、Qcに生じる角度Ψの位相回転は、パイロットレプリカの位相を基準として位相回転が補償されることを意味し、全く問題にならない。 Actually, even if the product of the transformation matrix C and the matrix F of Ψ which is not 0 is treated as the matrix F, the phase rotation of the angle Ψ occurring in the corrected signals I c and Q c is This means that the phase rotation is compensated with respect to the phase, which is not a problem at all.

乗算器29は、パイロットレプリカ信号の実部Prと、AD変換回路9から供給された同相信号Ioとを乗算して出力する。
乗算器30は、パイロットレプリカ信号の実部Prと、AD変換回路10から供給された同相信号Qoとを乗算して出力する。
乗算器31は、パイロットレプリカ信号の実部Piと、AD変換回路9から供給された同相信号Ioとを乗算して出力する。
乗算器32は、パイロットレプリカ信号の実部Piと、AD変換回路10から供給された同相信号Qoとを乗算して出力する。
The multiplier 29 multiplies the real part P r of the pilot replica signal by the in-phase signal I o supplied from the AD conversion circuit 9 and outputs the result.
The multiplier 30 multiplies the real part P r of the pilot replica signal by the in-phase signal Q o supplied from the AD conversion circuit 10 and outputs the result.
The multiplier 31 multiplies the real part P i of the pilot replica signal by the in-phase signal I o supplied from the AD conversion circuit 9 and outputs the result.
The multiplier 32 multiplies the real part P i of the pilot replica signal by the in-phase signal Q o supplied from the AD conversion circuit 10 and outputs the result.

符号反転回路33は、乗算器30の出力信号を、正負の符号を反転して出力する。
符号反転回路34は、乗算器31の出力信号を、正負の符号を反転して出力する。
LPF35は、乗算器32から供給された信号を1OFDMシンボル分、単純加算平均して、必要に応じて更にそれを数OFDMシンボル分、平均化(低域ろ波)して、補正値F11として出力する。
LPF36、37、38はそれぞれ、符号反転回路33、符号反転回路34、乗算器29から供給された信号をLPF35と同様に処理して、補正値F12、F21、F22として出力する。
The sign inversion circuit 33 inverts the positive / negative sign and outputs the output signal of the multiplier 30.
The sign inverting circuit 34 inverts the positive / negative sign and outputs the output signal of the multiplier 31.
The LPF 35 performs simple addition averaging of the signal supplied from the multiplier 32 for one OFDM symbol, and further averages (low-pass filtering) it for several OFDM symbols as necessary to obtain a correction value F 11. Output.
Each LPF36,37,38, sign inverting circuit 33, the sign inverting circuit 34, it was treated in the same manner as LPF35 signals supplied from the multiplier 29, and outputs the correction value F 12, F 21, F 22 .

乗算器32等が出力する信号は、注目している受信パイロット信号PBB以外に、RBBとパイロットレプリカ信号Prepとが複素乗算された成分を含んでいる。しかし、OFDMシンボル単位で扱う限り、RBBが有する他のサブキャリアは、パイロット信号のサブキャリアと直交しているので、それらの平均値は0となる。つまり式(16)、(17)は、PBBに対してだけでなく、PBBを含んだRBBに対しても成り立つ。 The signal output from the multiplier 32 and the like includes a component obtained by complex multiplication of R BB and the pilot replica signal Prep in addition to the reception pilot signal P BB of interest. However, as long as it is handled in units of OFDM symbols, other subcarriers included in R BB are orthogonal to the subcarriers of the pilot signal, and thus their average value is zero. That is, Expressions (16) and (17) hold not only for P BB but also for R BB including P BB .

なお、パイロットレプリカ信号生成部26において、変調パターンMとして一定値を用いても良く、パイロット信号が載せられるサブキャリアとして、周波数が0のDCサブキャリアを用いても良い。またパイロットレプリカ信号生成部26は上述したものに限らず、例えばパイロット信号に対応するサブキャリアを(FFTせずに)単体で直交復調してシンボル判定したものをパイロットレプリカ信号として用いても良い。パイロット信号が断続的にサブキャリアに載せられるような場合には、パイロットがないときはパイロットレプリカ信号復調処理部17の動作を休止し、同じ補償値Fを使い続けるようにしても良い。   In pilot replica signal generation unit 26, a constant value may be used as modulation pattern M, and a DC subcarrier having a frequency of 0 may be used as a subcarrier on which a pilot signal is placed. In addition, the pilot replica signal generation unit 26 is not limited to the above-described one, and for example, a subcarrier corresponding to the pilot signal (without FFT) may be orthogonally demodulated and subjected to symbol determination as the pilot replica signal. When the pilot signal is intermittently placed on the subcarrier, the operation of the pilot replica signal demodulation processing unit 17 may be stopped and the same compensation value F may be continuously used when there is no pilot.

これまでの説明では、位相偏差Δφや振幅偏差gを周波数に依存しないものとして扱ったが、受信信号RBBの帯域(OFDM信号の帯域)が広いときなどは、それらの周波数依存性を無視できないかもしれない。その場合、パイロット信号が載せられるサブキャリアを、帯域内で満遍なく複数配置し、それらのパイロット信号を用いて検出した補正値を平均化して用いるようにしてもよい。 In the above description, the phase deviation Δφ and the amplitude deviation g are treated as not depending on the frequency. However, when the band of the received signal R BB (OFDM signal band) is wide, the frequency dependence thereof cannot be ignored. It may be. In that case, a plurality of subcarriers on which pilot signals are carried may be arranged evenly in the band, and correction values detected using these pilot signals may be averaged and used.

以上のように、本実施例1では、パイロットレプリカ信号を用いることにより、受信信号を周波数変換回路3,4で直接検波方式により直交検波する際にこれら周波数変換回路3,4や90゜移相器6などのアナログ回路で発生する位相偏差や振幅偏差をデジタル信号処理によって検出することができ、また、デジタル信号処理によってこれら位相偏差や振幅偏差の補正を行なうことができ、高い精度で位相偏差や振幅偏差の検出や補正が可能となる。   As described above, in the first embodiment, when the received signal is subjected to quadrature detection by the direct detection method in the frequency conversion circuits 3 and 4 by using the pilot replica signal, the frequency conversion circuits 3 and 4 and the 90 ° phase shift are performed. The phase deviation and amplitude deviation generated in an analog circuit such as the detector 6 can be detected by digital signal processing, and the phase deviation and amplitude deviation can be corrected by digital signal processing. And amplitude deviation can be detected and corrected.

図1は、本発明の実施例2に係る受信機の構成図である。本例の受信機は、パイロット信号をアナログのRF信号として周波数変換回路の前段に注入する構成を備えた点などで、先の実施例1の受信機と異なる。本例の受信機は、受信信号にパイロット信号が含まれていることを前提としない。   FIG. 1 is a configuration diagram of a receiver according to Embodiment 2 of the present invention. The receiver of this example is different from the receiver of the first embodiment in that it includes a configuration in which a pilot signal is injected as an analog RF signal into the previous stage of the frequency conversion circuit. The receiver of this example does not assume that a pilot signal is included in the received signal.

本実施例2の位相及び振幅偏差補正処理部41は、本実施例1の位相及び振幅偏差補正処理部12と実質的に同じであるが、生成したパイロットレプリカ信号Prepをアナログベースバンド信号として外部に出力する機能を有する。
ただし、このパイロットレプリカ信号Prepは、その角周波数ωprepとして、例えばデータ伝送用のサブキャリアに使用されていない値を有し、一例としてDCサブキャリア付近のサブキャリアの各周波数を有する。また、パイロットレプリカ信号Pは本来、解析信号として
rep=Pr+jPi
と表わす必要があるので、実部(同相成分)のPrと、虚部(直交成分)のPiとにそれぞれ相当する2つの実信号からなる。パイロットレプリカ信号Pは後述するようにデジタル信号処理により生成され、同構成のDA変換器(図示しない)により出力されるので、PrとPi自体は十分な精度で直交しているとみなせる。
The phase and amplitude deviation correction processing unit 41 of the second embodiment is substantially the same as the phase and amplitude deviation correction processing unit 12 of the first embodiment, but the generated pilot replica signal Prep is used as an analog baseband signal. Has a function to output to the outside.
However, this pilot replica signal P rep has a value not used for, for example, a subcarrier for data transmission as its angular frequency ω prep , and has, for example, each frequency of a subcarrier near a DC subcarrier. In addition, the pilot replica signal P is essentially an analysis signal P rep = P r + jP i
It is necessary to represent a, and P r of the real part (in-phase component), each consisting of the corresponding two real signals in the P i of the imaginary part (quadrature component). As will be described later, the pilot replica signal P is generated by digital signal processing and is output by a DA converter (not shown) having the same configuration. Therefore, it can be assumed that Pr and Pi themselves are orthogonal with sufficient accuracy.

パイロットレプリカ信号Prepの実部Prは乗算器16で局部発振器5の出力信号と乗算され、パイロットレプリカ信号Prepの実部Piは乗算器15で90゜移相器6の出力信号と乗算され、これら乗算器16,15の出力信号が合成回路14で合成されて、パイロットレプリカ信号Prepの実部Prと虚部PiとをRF帯に直交変調した信号(以下、RF帯パイロットレプリカ信号)PRFが得られる。つまり、局部発振器5、90゜移相器6、乗算器15、16、合成回路14により直交変調器が構成されている。
合成回路14の出力に含まれるイメージ成分(RFパイロット信号の各周波数ωc+ωpに対し、ωc−ωpの周波数成分)は、位相及び振幅偏差の検出誤差の原因となるので十分抑圧されなければならないが、2次歪等はその影響が限定的であるので悪くても良い。
Real part P r of the pilot replica signal P rep is multiplied by the output signal of the local oscillator 5 by the multiplier 16, and a real part P i is the output signal of the multiplier 15 in the 90 ° phase shifter 6 of the pilot replica signal P rep is multiplied, the output signals of the multipliers 16 and 15 are combined in combining circuit 14, a pilot replica signal P rep real part P r and an imaginary part quadrature modulated signal and a P i to RF band (hereinafter, RF band pilot replica signal) P RF is obtained. That is, the local oscillator 5, the 90 ° phase shifter 6, the multipliers 15 and 16, and the synthesis circuit 14 constitute a quadrature modulator.
The image component (the frequency component of ω c −ω p with respect to each frequency ω c + ω p of the RF pilot signal) included in the output of the synthesis circuit 14 causes detection errors of the phase and amplitude deviation and is sufficiently suppressed. However, secondary distortion or the like may be bad because its influence is limited.

かかるRF帯パイロットレプリカ信号PRFは合成回路13でLNA2からのRF帯の受信信号RRFと合成され、周波数変換回路3,4にパイロット信号として供給される。このパイロット信号PRFは、実施例1同様、常時供給する必要はないので、供給を絶つためのスイッチ手段が適宜設けられる。 The RF band pilot replica signal P RF is combined with the RF band received signal R RF from the LNA 2 by the combining circuit 13 and supplied to the frequency conversion circuits 3 and 4 as a pilot signal. The pilot signal P RF is the same manner as in Example 1, there is no need to supply at all times, switching means for cutting off the supply is provided as appropriate.

周波数変換回路3、4では、RF帯の受信信号RRFとRF帯パイロット信号PRFとの合成信号が、局部発振器5の出力信号によって従来と同様に直接検波方式で検波され、その検波出力をLPF7、8に通すことにより、ベースバンドの合成信号の同相信号Iと直交信号Qが夫々得られる。これら合成信号は夫々、AD変換回路9,10でデジタル信号に変換されて移相及び振幅偏差補正処理部41に供給される。 In the frequency conversion circuits 3 and 4, the combined signal of the RF band received signal R RF and the RF band pilot signal P RF is detected by the direct detection method by the output signal of the local oscillator 5 in the same manner as in the past, and the detection output is obtained. By passing the signals through the LPFs 7 and 8, the in-phase signal I and the quadrature signal Q of the baseband composite signal are obtained. These combined signals are converted into digital signals by the AD conversion circuits 9 and 10 and supplied to the phase shift and amplitude deviation correction processing unit 41.

ここで、LPF7,8から出力されるベースバンドのパイロットレプリカ信号PBBの実部Srと虚部Siには、ベースバンドの受信信号RBBの同相信号I,直交信号Qと同様に、周波数変換回路3,4や90゜移相器6、LPF7,8、図示しない増幅器などのアナログ回路による位相偏差や振幅偏差が混入されている。位相及び振幅偏差補正処理部41では、ベースバンドのパイロットレプリカ信号PBBの実部Srと虚部Siとからかかる位相偏差や振幅偏差が検出され、その検出結果に基づいて、供給されるベースバンドの受信信号RBBの同相信号I,直交信号Qでの位相偏差及び振幅偏差を補正する。 Here, the real part S r and the imaginary part S i of the baseband pilot replica signal P BB output from the LPFs 7 and 8 are similar to the in-phase signal I and the quadrature signal Q of the base band received signal R BB. In addition, phase deviations and amplitude deviations by analog circuits such as the frequency conversion circuits 3 and 4, the 90 ° phase shifter 6, the LPFs 7 and 8, and an amplifier (not shown) are mixed. The phase and amplitude deviation correction processing unit 41 detects the phase deviation and amplitude deviation from the real part S r and the imaginary part S i of the baseband pilot replica signal P BB , and supplies them based on the detection result. phase signal I of the received signal R BB baseband, for correcting the phase deviation and amplitude deviation in an orthogonal signal Q.

ところで当初、本発明の原理の説明において、−ωpのサブキャリアは未使用であることを仮定したが、このサブキャリアが使用されている場合について検討する。
単純に考えれば、角周波数−ωprepのサブキャリアの変調パターンと、パイロットの変調パターンとの相関が0とみなせる程度の時間、補正値F11等を平均化すればよい。つまり十分な時間だけ平均化すれば、パイロット信号は、受信信号RBBの帯域内外を問わず、自由に設定できる。
次に、ωpと−ωpの両サブキャリアをパイロット信号用に用いることができ、さらに両サブキャリアの変調パターンも同じ(振幅も同じ)Mを用い、位相Ψも同じである場合を考える。
式(13)から式(20)は、ωpを任意とし、また線形なので重畳定理が成り立つ。式(13)のωpを−ωpに置き換えて得られる式をPBB -とすると、式(16)、式(17)は、PBB -に対しては、sinΨの符号を反転したものになり、当初の式(16)、式(17)と足し合わせると、cosΨの項のみ残る。その結果、式(20)における行列の積CFはcosΨ・Fとなり、片側のサブキャリアの時と同様の計算で補正値F11等が求められることになる。つまり、パイロットレプリカ信号をアップコンバートして周波数変換回路3、4の前段に注入する構成として、図1に示したような直交変調器を用いる必要はなく、ωpと−ωpの2トーンを生じる通常のミキサーでもよい。ただし両パイロットの振幅や位相は正確に一致している必要があるので、実施例1のように伝搬路の周波数特性を受けた受信信号RRF中のパイロットは使用できず、本例のように受信後に注入する場合においてもミキサの周波数特性の影響を避けるためωpと−ωpの差はなるべく小さくしたほうが良い。
なおcosΨによる利得の変動は、行列Uの行列式と同様、無線受信機の通常のAGCにより吸収できる。しかしcosΨがほぼ0になってしまうと感度が落ちるので、1ないし数OFDMシンボル毎にPrとPiを交互にミキサに入力して、、パイロットレプリカ信号の位相を0度と90度交互に発生させたり、あるいは補正値F11が0.5より小さくなったときにPrとPiを入れ替えたりしても良い。
By the way, initially, in the explanation of the principle of the present invention, it is assumed that the subcarrier of −ω p is unused, but the case where this subcarrier is used will be considered.
In simple terms, the correction value F 11 and the like may be averaged so that the correlation between the modulation pattern of the subcarrier of the angular frequency −ω prep and the modulation pattern of the pilot can be regarded as zero. That is, if averaging is performed for a sufficient time, the pilot signal can be set freely regardless of whether the reception signal R BB is inside or outside the band.
Next, let us consider a case where both subcarriers ω p and −ω p can be used for pilot signals, the modulation pattern of both subcarriers is the same (the amplitude is also the same) M, and the phase Ψ is also the same. .
Since Expressions (13) to (20) make ω p arbitrary and are linear, the superposition theorem holds. Assuming that P BB is an expression obtained by replacing ω p in Expression (13) with −ω p , Expression (16) and Expression (17) are obtained by inverting the sign of sinΨ with respect to P BB . When adding together with the initial formulas (16) and (17), only the term of cosΨ remains. As a result, the product CF of the matrix in equation (20) is cos Ψ · F, and the correction value F 11 and the like are obtained by the same calculation as in the case of the subcarrier on one side. That is, it is not necessary to use the quadrature modulator as shown in FIG. 1 as a configuration in which the pilot replica signal is up-converted and injected into the front stage of the frequency conversion circuits 3 and 4, and two tones of ω p and −ω p are used. The resulting normal mixer may be used. However, since the amplitude and phase of both pilots need to be exactly the same, the pilot in the received signal R RF that has received the frequency characteristic of the propagation path as in the first embodiment cannot be used, as in this example. Even when injection is performed after reception, the difference between ω p and −ω p should be as small as possible to avoid the influence of the frequency characteristics of the mixer.
Note that the gain fluctuation due to cos Ψ can be absorbed by the normal AGC of the radio receiver, as in the determinant of the matrix U. However, since the become cosΨ approximately 0 less sensitive, the phase of one to several OFDM symbols every P r and P i alternately enter the mixer the, pilot replica signal to 0 and 90 degrees alternately P r and P i may be exchanged when the correction value F 11 becomes smaller than 0.5.

このように、本実施例2の受信機は、受信信号RRFとは無関係にパイロット信号を自由に選定でき、どのようなRRFに対してもあるいはRRFを受信していないときでも位相及び振幅偏差を補正することができ、受信信号RRFからのパイロット信号の復調が困難なほど大きな位相及び振幅偏差があっても、それらを予め補正することができる。 As described above, the receiver according to the second embodiment can freely select a pilot signal regardless of the reception signal R RF, and the phase and phase for any R RF or when no R RF is received. The amplitude deviation can be corrected, and even if there is a phase and amplitude deviation that is so large that it is difficult to demodulate the pilot signal from the received signal RRF , it can be corrected in advance.

図4は本発明の実施例3に係る受信機を示す構成図であって、40はデジタル信号処理部、41は位相及び振幅偏差補正処理部、42は時間/周波数同期処理部、43はCP(CyclicPrefix:サイクリック プレフィックス)除去部、44はFFT(Fast Fourier Transform:高速フーリエ変換)処理部、45はチャンネル推定部、46はパラレル/シリアル変換部、47は復調処理部であり、前出図面に対応する部分には同一符号を付けて重複する説明を省略する。
本例の受信機は、OFDM信号を復調することを目的とし、OFDM信号にチャネル推定用に含まれているパイロット信号を用いるようにしたものである。
FIG. 4 is a block diagram showing a receiver according to Embodiment 3 of the present invention, in which 40 is a digital signal processing unit, 41 is a phase and amplitude deviation correction processing unit, 42 is a time / frequency synchronization processing unit, and 43 is a CP. (CyclicPrefix) removal unit, 44 is an FFT (Fast Fourier Transform) processing unit, 45 is a channel estimation unit, 46 is a parallel / serial conversion unit, and 47 is a demodulation processing unit. The same reference numerals are given to the portions corresponding to, and duplicate explanations are omitted.
The receiver of this example is intended to demodulate the OFDM signal and uses a pilot signal included in the OFDM signal for channel estimation.

同図において、周波数変換回路3,4には、LNA2からのRF帯の受信信号RRFのみが供給され、直接検波方式で直交検波されてLPF7,8に供給され、ベースバンドの受信信号RBBの同相信号I0と直交信号Q0とが得られる。これら同相信号I0,直交信号Q0は夫々AD変換回路9,10でデジタル信号に変換され、デジタル信号処理部40に供給される。 In the figure, only the RF band received signal R RF from the LNA 2 is supplied to the frequency conversion circuits 3 and 4, subjected to quadrature detection by the direct detection method and supplied to the LPFs 7 and 8, and the baseband received signal R BB In-phase signal I 0 and quadrature signal Q 0 are obtained. The in-phase signal I 0 and the quadrature signal Q 0 are converted into digital signals by the AD conversion circuits 9 and 10 and supplied to the digital signal processing unit 40.

このデジタル信号処理部40では、これら同相信号I0と直交信号Q0とが、位相及び振幅偏差補正処理部41で位相及び振幅偏差が補正され、時間/周波数同期処理部42でシンボル同期や周波数オフセット補償がなされ、CP除去処理部43でCP除去処理される。CP除去処理部43の出力信号は、FFT処理部44により、FFT処理されてサブキャリア毎のベースバンド変調波信号となる。このベースバンド変調波信号は、チャンネル推定処理部45に供給されて、ベースバンド変調波信号に既知の規則性で挿入される既知パターンのパイロット信号(以下、受信パイロット信号PRという)を手がかりにしてチャンネル推定、及びその補償処理(等化)がなされる。等化処理されたベースバンド変調波信号は、パラレル/シリアル変換部46に供給されてシリアル信号に変換され、復調処理部47に供給されて復調処理される。
時間/周波数同期処理部42から復調処理部47は、実施例1や2のベースバンド復調部11に相当し、公知の技術を用いて実現できる。サブキャリアの変調方式として、パイロット用のサブキャリアにはBPSK、データ用のサブキャリアにはQAMを用いることができる。デジタル信号処理部40の実現手段として、市販のDSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)、動的再構成デバイスを用いることができる。
In the digital signal processing unit 40, the phase and amplitude deviation of the in-phase signal I 0 and the quadrature signal Q 0 are corrected by the phase and amplitude deviation correction processing unit 41, and symbol synchronization and synchronization are performed by the time / frequency synchronization processing unit 42. Frequency offset compensation is performed and CP removal processing unit 43 performs CP removal processing. The output signal of the CP removal processing unit 43 is subjected to FFT processing by the FFT processing unit 44 and becomes a baseband modulated wave signal for each subcarrier. The baseband modulated signal is supplied to the channel estimation unit 45, a pilot signal of a known pattern to be inserted in a known regularity to the baseband modulated wave signal (hereinafter, referred to as the received pilot signal P R) to the clue Thus, channel estimation and compensation processing (equalization) are performed. The equalized baseband modulated wave signal is supplied to the parallel / serial converter 46, converted into a serial signal, supplied to the demodulation processor 47, and demodulated.
The time / frequency synchronization processing unit 42 to the demodulation processing unit 47 correspond to the baseband demodulation unit 11 of the first and second embodiments, and can be realized using a known technique. As a subcarrier modulation scheme, BPSK can be used for the pilot subcarrier and QAM can be used for the data subcarrier. As a means for realizing the digital signal processing unit 40, a commercially available DSP (Digital Signal Processor), FPGA (Field Programmable Gate Array), or dynamic reconfiguration device can be used.

チャンネル推定処理部45は、パイロット信号の本来のパターン(既知パターン)をパイロットレプリカ信号Prepとして記憶しており、受信パイロット信号PRとPrepとの比較に基づいて、位相等価や振幅等価を行っており、このPrepをシンボルタイミングで位相及び振幅偏差補正処理部41に供給する。 Channel estimation processing unit 45 may store the original pattern of the pilot signal (known pattern) as a pilot replica signal P rep, based on a comparison of the received pilot signals P R and P rep, the phase equivalent or amplitude equivalent This Prep is supplied to the phase and amplitude deviation correction processing unit 41 at symbol timing.

本例の位相及び振幅偏差補正処理部41のパイロットレプリカ信号生成部26は、チャンネル推定処理部45から供給されたパイロットレプリカ信号Prepを、対応するサブキャリアの周波数に変換してから、乗算器29〜32などに供給する点で先の実施例と異なる。すなわち、チャンネル推定処理部45からのパイロットレプリカ信号Prepは変調パターンMと同様の単なるシンボルであるので、テーブル等に記憶したサブキャリアの複素信号と複素乗算して、PBBと同じサブキャリア周波数に変換する。 The pilot replica signal generation unit 26 of the phase and amplitude deviation correction processing unit 41 of this example converts the pilot replica signal Prep supplied from the channel estimation processing unit 45 into the frequency of the corresponding subcarrier, and then the multiplier. It differs from the previous embodiment in that it is supplied to 29-32 and the like. That is, since the pilot replica signal P rep from the channel estimation processor 45 is just a symbol similar to the modulation pattern M, and the complex signal and the complex multiplication of the subcarrier stored in the table or the like, the same sub-carrier frequency and P BB Convert to

図5は本発明の実施例4に係る受信機を示す構成図であって、BPF1からAD変換回路9、10までの構成は実施例3等と同じなので、図示を省略してある。本例の受信機は、位相及び振幅偏差補正処理部41の後段に、更に位相補正処理部48と振幅補正処理部49とを備えて、残留する位相偏差や振幅偏差を更に補正するようにした点などで、実施例3の受信機と異なる。その他の、前出図面に対応する構成には同一符号を付けて重複する説明を省略する。   FIG. 5 is a block diagram showing a receiver according to the fourth embodiment of the present invention. The configuration from the BPF 1 to the AD conversion circuits 9 and 10 is the same as that in the third embodiment, and is not shown. The receiver of this example further includes a phase correction processing unit 48 and an amplitude correction processing unit 49 in the subsequent stage of the phase and amplitude deviation correction processing unit 41 so as to further correct the remaining phase deviation and amplitude deviation. This is different from the receiver of the third embodiment in the points. The other components corresponding to those in the previous drawings are given the same reference numerals and redundant description is omitted.

最初に本例の原理を簡単に説明する。
前出の式(2)の同相信号I0,直交信号Q0を乗算すると、
0・Q0=−(1/2)cos{(ωc'− ωc)t+θ}・gsin{(ωc'−ωc)t+θ−ΔΦ}
LPF[I0・Q0]=−(1/8)g・sin(ΔΦ) ……(21)
となる。ただし、LPF[]は十分な時間平均して直流付近の成分のみ取り出す関数である。FFT処理部44はデジタル処理であり、位相偏差や振幅偏差は発生しないので、FFT処理部44から得られるサブキャリア中の任意のサブキャリアの受信ベースバンド信号RSC=ISC+jQSCに対しても、式(21)は当てはまる。
また式(2)において、注目するサブキャリアに関して(ωc'− ωc)t+θ=αとおき(ベースバンドであればωc'= ωcであるが今は限定しない)、既に位相及び振幅偏差補正処理部41で補正されていることからcos(ΔΦ)≒1、g≒1とすると、式(2)は、
SC=(1/2)cosα−j(1/2)g{sinΔΦ・cosα+cosΔΦ・sinα}
≒(1/2)cosα
−j(1/2)g{sinΔΦ・cosα+sinα} ……(22)
となる。
式(22)において、cosαがRSCの本来の同相信号、sinαが本来の直交信号であるから、受信ベースバンド信号RSCの直交信号QSCに含まれる余計な成分を差し引けばよい。つまり同相信号ISCにg・sin(ΔΦ)を乗じた信号をQSCから減算する。
First, the principle of this example will be briefly described.
Multiplying the in-phase signal I 0 and the quadrature signal Q 0 in Equation (2) above,
I 0 · Q 0 = - ( 1/2) cos {(ω c '- ω c) t + θ} · gsin {(ω c' -ω c) t + θ-ΔΦ}
LPF [I 0 · Q 0 ] =-(1/8) g · sin (ΔΦ) (21)
It becomes. However, LPF [] is a function that takes out a component in the vicinity of a direct current on a sufficient time average. Since the FFT processing unit 44 is a digital process, and no phase deviation or amplitude deviation occurs, the received baseband signal R SC = I SC + jQ SC of any subcarrier in the subcarriers obtained from the FFT processing unit 44 However, Formula (21) is applicable.
Further, in the equation (2), (ω c ′ −ω c ) t + θ = α is set for the subcarrier of interest (ω c ′ = ω c in the case of baseband, but it is not limited now), and the phase and amplitude are already set Since it is corrected by the deviation correction processing unit 41, if cos (ΔΦ) ≈1 and g≈1, Equation (2) is
R SC = (1/2) cosα−j (1/2) g {sinΔΦ · cosα + cosΔΦ · sinα}
≒ (1/2) cosα
-J (1/2) g {sinΔΦ · cosα + sinα} (22)
It becomes.
In equation (22), cos α is the original in-phase signal of R SC , and sin α is the original quadrature signal, so an extra component contained in the quadrature signal Q SC of the received baseband signal R SC may be subtracted. That is, a signal obtained by multiplying the in-phase signal I SC by g · sin (ΔΦ) is subtracted from Q SC .

一方、式(2)の同相信号I0 (ISC)直交信号Q0(QSC)を夫々自乗すると、
SC 2=(1/2)[1+cos2{(ωc'− ωc)t+θ}]
SC 2=g2(1/2)[1+sin2{(ωc'− ωc)t+θ−ΔΦ}] ……(23)
となる。注目しているサブキャリアがQPSKやQAMのようにコンスタレーション上の各象限に均等にシンボルが発生する変調方式が採用されているとすると、式(22)中のcosやsinは十分なシンボル数だけ平均すれば0になるので、
LPF[QSC 2−ISC 2]=(g2−1)/2 ……(24)
となって、g2が求まる。その平方根で直交信号QSCを除算してもよいが、g≒1を仮定しているので以下の近似が成り立つ。
1/g≒1−(g2−1)/2 ……(25)
On the other hand, when the in-phase signal I 0 (I SC ) and the quadrature signal Q 0 (Q SC ) of Equation (2) are squared,
I SC 2 = (1/2) [1 + cos2 {(ω c '−ω c ) t + θ}]
Q SC 2 = g 2 (1/2) [1 + sin 2 {(ω c '−ω c ) t + θ−ΔΦ}] (23)
It becomes. Assuming that a modulation scheme in which symbols are generated evenly in each quadrant of the constellation, such as QPSK and QAM, is adopted as the subcarrier of interest, cos and sin in Equation (22) are sufficient symbols. If you average only 0,
LPF [Q SC 2 −I SC 2 ] = (g 2 −1) / 2 (24)
Thus g 2 is obtained. The quadrature signal Q SC may be divided by the square root, but since g≈1 is assumed, the following approximation holds.
1 / g≈1- (g 2 -1) / 2 (25)

図6は、図5の位相補正処理部48と振幅補正処理部49の内部ブロック図である。
位相補正処理部48は、パラレル/シリアル変換部46から、各サブキャリアのベースバンド信号(軟判定シンボルデータ)がOFDMシンボル周期で時分割多重された信号が入力される。
乗算器301は、パラレル/シリアル変換部46から入力された同相信号に、位相補正値(後述する)を乗算して出力する。
加算器302は、パラレル/シリアル変換部46から入力された直交信号に、乗算器301から入力された乗算結果を加算して出力する。
位相補正処理部48は、パラレル/シリアル変換部46から入力された同相信号と、加算器302の加算出力を、位相補正後の同相信号、直交信号としてそれぞれ振幅補正処理部49に出力する。
FIG. 6 is an internal block diagram of the phase correction processing unit 48 and the amplitude correction processing unit 49 of FIG.
The phase correction processing unit 48 receives from the parallel / serial conversion unit 46 a signal obtained by time-division multiplexing the baseband signal (soft decision symbol data) of each subcarrier in the OFDM symbol period.
The multiplier 301 multiplies the in-phase signal input from the parallel / serial converter 46 by a phase correction value (described later) and outputs the result.
The adder 302 adds the multiplication result input from the multiplier 301 to the orthogonal signal input from the parallel / serial converter 46 and outputs the result.
The phase correction processing unit 48 outputs the in-phase signal input from the parallel / serial conversion unit 46 and the addition output of the adder 302 to the amplitude correction processing unit 49 as an in-phase signal and a quadrature signal after phase correction. .

乗算器303は、位相補正後の同相信号と直交信号を乗算して出力する。
制御ループ304は、乗算器303から入力された乗算値をLPF311により低域ろ波(平均化)して式(21)に相当する値を得て、それを積分器312により積分し、乗算器313により所定のループゲインGPPを乗じて、乗算器301に位相補正値として出力する。
Multiplier 303 multiplies the phase-corrected in-phase signal and quadrature signal and outputs the result.
The control loop 304 performs low-pass filtering (averaging) on the multiplication value input from the multiplier 303 by the LPF 311 to obtain a value corresponding to the equation (21), and integrates it by the integrator 312. A predetermined loop gain GPP is multiplied by 313 and output to the multiplier 301 as a phase correction value.

乗算器313を除く位相補正処理部48内の各構成は全て、基本的にベースバンド信号が入力される都度(1サンプル毎に)動作する。ただし、制御ループ304は、位相補正処理部48が出力するベースバンドが信号が、BPSK変調されたパイロットサブキャリアやDCサブキャリアのものである等、平均化にふさわしくないときは、動作を停止する。
このように式(21)に相当する処理で検出したsin(ΔΦ)を積分してフィードバック制御するようにしたので、僅かに残留する偏差に対しても、それを補正する補正値に収束させることができる。なお、乗算器303の出力はサンプル毎にランダムに変動するため、LPF311はその変動が位相補正値に現れないようにするために設けてあるが、ループゲインGPPを1よりも十分小さい数に選べば不要にできる場合もある。また乗算器313の動作周期は任意であるが、例えば1OFDMシンボル周期である。
All the components in the phase correction processing unit 48 except the multiplier 313 operate basically every time a baseband signal is input (for each sample). However, the control loop 304 stops operation when the baseband output from the phase correction processing unit 48 is not suitable for averaging, such as when the signal is that of a BPSK modulated pilot subcarrier or DC subcarrier. .
Since sin (ΔΦ) detected in the process corresponding to the equation (21) is integrated and feedback controlled as described above, even a slight remaining deviation is converged to a correction value for correcting it. Can do. Since the output of the multiplier 303 varies randomly from sample to sample, the LPF 311 is provided to prevent the variation from appearing in the phase correction value. However, the loop gain G PP is set to a number sufficiently smaller than 1. If you choose, you may be able to make it unnecessary. The operation period of the multiplier 313 is arbitrary, but is, for example, one OFDM symbol period.

次に、振幅補正処理部49において、自乗器321は、位相補正処理部48から入力された同相信号を自乗して出力する。
乗算器322は、位相補正処理部48から入力された直交信号に、振幅補正値(後述する)を乗算して出力する。
自乗器323は、乗算器322から入力された信号を自乗して出力する。
減算器324は、自乗器323から入力された信号から、自乗器321から入力された信号を減算して出力する。
Next, in the amplitude correction processing unit 49, the squarer 321 squares and outputs the in-phase signal input from the phase correction processing unit 48.
The multiplier 322 multiplies the quadrature signal input from the phase correction processing unit 48 by an amplitude correction value (described later) and outputs the result.
The squarer 323 squares the signal input from the multiplier 322 and outputs the result.
The subtracter 324 subtracts the signal input from the squarer 321 from the signal input from the squarer 323 and outputs the result.

制御ループ324は、減算器324から入力された差分値をLPF331により低域ろ波して式(24)に相当する値を得て、それを積分器332により積分し、乗算器313により所定のループゲインGPPを乗じて出力する。
加算器325は、制御ループ324から入力された信号を1から減算して式(25)に相当する値を得て、乗算器322に振幅補正値として出力する。
振幅補正処理部49は、位相補正処理部48から入力された同相信号と、乗算器322が出力する直交信号とを、振幅補正後の同相信号、直交信号としてそれぞれ復調処理部47に出力する。
The control loop 324 obtains a value corresponding to the equation (24) by low-pass filtering the difference value input from the subtractor 324 by the LPF 331, integrates the value by the integrator 332, and outputs a predetermined value by the multiplier 313. It outputs the result of the loop gain G PP.
The adder 325 subtracts the signal input from the control loop 324 from 1 to obtain a value corresponding to Expression (25), and outputs the value to the multiplier 322 as an amplitude correction value.
The amplitude correction processing unit 49 outputs the in-phase signal input from the phase correction processing unit 48 and the quadrature signal output from the multiplier 322 to the demodulation processing unit 47 as an in-phase signal and a quadrature signal after amplitude correction, respectively. To do.

振幅補正処理部49においても位相補正処理部48と同様、乗算器321から減算器324は、ベースバンド信号が入力される都度(1サンプル毎に)動作する。また積分を含むフィードバックループによって、補正は偏差を残留させずに収束する。   In the amplitude correction processing unit 49 as well as the phase correction processing unit 48, the multiplier 321 to the subtracter 324 operate every time a baseband signal is input (for each sample). Also, the correction converges without leaving a deviation by a feedback loop including integration.

なお、位相補正処理部48と振幅補正処理部49は、図5に示した順で接続されるものに限らず、順序を入れ替えても良い。また、パラレル/シリアル変換処部46の直後に設けるものに限らず、位相及び振幅偏差補正処理部41以降のいずれの箇所に挿入してもよい。ただし本例のように等価後の各サブキャリアのベースバンド信号に対して処理する構成には以下のような利点がある。   The phase correction processing unit 48 and the amplitude correction processing unit 49 are not limited to being connected in the order shown in FIG. Further, the present invention is not limited to the one provided immediately after the parallel / serial conversion processing unit 46, and may be inserted at any location after the phase and amplitude deviation correction processing unit 41. However, the configuration for processing the baseband signal of each subcarrier after the equivalent as in this example has the following advantages.

すなわち、制御ループ304や324(正確には、それらにおけるLPFのタップ値や積分器の現在値を保持する手段)をそれぞれ複数設け、サブキャリアの周波数に応じて時分割で切り替えるようにすれば、位相偏差や振幅偏差が周波数依存性を有する場合であっても、それぞれの周波数に適した補正値を算出して補正を行うことができる。制御ループを切り替える数として、連続する所定数のサブキャリアを束ねたサブキャリア群(セグメント)の数にしてもよく、サブキャリア総数としてもよい。   That is, if a plurality of control loops 304 and 324 (more precisely, means for holding the tap value of the LPF and the current value of the integrator) are provided, and switching is performed in a time division manner according to the subcarrier frequency, Even when the phase deviation and the amplitude deviation have frequency dependence, correction can be performed by calculating a correction value suitable for each frequency. The number of switching control loops may be the number of subcarrier groups (segments) obtained by bundling a predetermined number of consecutive subcarriers, or the total number of subcarriers.

本発明の実施例2に係る受信機を示す構成図The block diagram which shows the receiver which concerns on Example 2 of this invention 図1における位相及び振幅偏差補正処理部の一例を示すブロック図The block diagram which shows an example of the phase and amplitude deviation correction process part in FIG. 図2におけるパイロット信号復調処理部の一例を示す内部ブロック図Internal block diagram showing an example of a pilot signal demodulation processing unit in FIG. 本発明の実施例3に係る受信機を示す構成図The block diagram which shows the receiver which concerns on Example 3 of this invention 本発明の実施例4に係る受信機を示す構成図The block diagram which shows the receiver which concerns on Example 4 of this invention 図5の位相補正処理部48と振幅補正処理部49の内部ブロック図Internal block diagram of the phase correction processing unit 48 and the amplitude correction processing unit 49 of FIG. 従来の直接検波方式の受信機のブロック図Block diagram of a conventional direct detection receiver 従来の方法(3)及び本発明の実施例1に係る受信機の基本構成を示すブロック図Block diagram showing the basic configuration of the conventional method (3) and the receiver according to Embodiment 1 of the present invention

符号の説明Explanation of symbols

1 BPF
2 LNA
3,4 周波数変換回路
5 局部発振器
6 90゜移相器
7,8 LPF
9,10 AD変換回路
11 ベースバンド復調部
12 位相及び振幅偏差補正処理部
13〜16 合成回路
17 パイロット信号復調処理部
18,19 LPF
20〜23 乗算器
24,25 加算器
26 パイロットレプリカ信号生成部
27 CP検出回路
28 変調パターン発生部
29〜32 乗算器
33,34 符号反転回路
35〜38 LPF
40 デジタル信号処理部
41 位相及び振幅偏差補正処理部
42 時間/周波数同期処理部
43 CP除去部
44 FFT処理部
45 チャンネル推定部
46 パラレル/シリアル変換部
47 復調処理部
48 位相補正処理部
49 振幅補正処理部
1 BPF
2 LNA
3, 4 Frequency conversion circuit 5 Local oscillator 6 90 ° phase shifter 7, 8 LPF
9, 10 AD conversion circuit 11 Baseband demodulation unit 12 Phase and amplitude deviation correction processing unit 13-16 Synthesis circuit 17 Pilot signal demodulation processing unit 18, 19 LPF
20-23 Multiplier 24, 25 Adder 26 Pilot Replica Signal Generation Unit 27 CP Detection Circuit 28 Modulation Pattern Generation Unit 29-32 Multiplier 33, 34 Sign Inversion Circuit 35-38 LPF
40 digital signal processing unit 41 phase and amplitude deviation correction processing unit 42 time / frequency synchronization processing unit 43 CP removal unit 44 FFT processing unit 45 channel estimation unit 46 parallel / serial conversion unit 47 demodulation processing unit 48 phase correction processing unit 49 amplitude correction Processing part

Claims (3)

同相信号と直交信号とが直交変調されてなる受信信号を直接検波方式で直交検波するアナログ直交検波手段と、該アナログ直交検波手段の出力信号をAD変換するAD変換手段と、該AD変換手段から出力されるデジタルの該同相信号と直交信号とをデジタル信号処理して復調する復調手段とを備えた直接検波受信機において、
パイロット信号を生成する位相及び振幅偏差補正処理処理手段と、
該パイロット信号を、該アナログ直交検波手段の局部発振器の出力信号を用いて、RF帯にアップコンバートする周波数変換手段と、
該周波数変換手段の出力信号を該受信信号と合成して該周波数変換手段に供給する合成手段と
を設けて、アップコンバートされた該パイロット信号を、該受信信号とともに、該アナログ直交検波手段で直交検波し、AD変換して該位相及び振幅偏差補正処理処理手段に供給し、
該位相及び振幅偏差補正処理手段は、
生成する該パイロット信号と該アナログ直交検波手段で直交検波されてAD変換された該受信信号との演算処理により、アナログ直交検波手段で生じた位相及び振幅偏差を補正するための補正値を求め、
該補正値を用いて、直交検波されてAD変換された該受信信号の同相信号と直交信号とをデジタル信号処理し、該同相信号と該直交信号とでの位相及び振幅偏差を補正して、該復調手段に供給する
ことを特徴とする直接検波受信機。
Analog quadrature detection means for quadrature detection of a received signal obtained by quadrature modulation of an in-phase signal and quadrature signal by direct detection method, AD conversion means for AD converting the output signal of the analog quadrature detection means, and the AD conversion means In a direct detection receiver provided with demodulation means for demodulating the digital in-phase signal and quadrature signal output from digital signal processing,
Phase and amplitude deviation correction processing means for generating a pilot signal;
Frequency conversion means for up-converting the pilot signal to an RF band using an output signal of a local oscillator of the analog quadrature detection means;
Synthesizing the output signal of the frequency converting means with the received signal and supplying the synthesized signal to the frequency converting means, and the upconverted pilot signal is orthogonalized by the analog quadrature detecting means together with the received signal. Detection, AD conversion, and supply to the phase and amplitude deviation correction processing means,
The phase and amplitude deviation correction processing means includes:
By calculating the pilot signal to be generated and the received signal subjected to quadrature detection and analog-to-digital conversion by the analog quadrature detection unit, a correction value for correcting the phase and amplitude deviation generated by the analog quadrature detection unit is obtained.
Using the correction value, the in-phase signal and the quadrature signal of the received signal subjected to quadrature detection and AD conversion are subjected to digital signal processing, and the phase and amplitude deviation between the in-phase signal and the quadrature signal are corrected. A direct detection receiver, characterized in that the direct detection receiver is supplied to the demodulation means.
所定の時間毎に所定の時間長のパイロット信号を含む同相信号と直交信号とが直交変調されてなる受信信号を直接検波方式で直交検波するアナログ直交検波手段と、該アナログ直交検波手段の出力信号をAD変換するAD変換手段と、該AD変換手段から出力されるデジタルの該同相信号と直交信号とを、チャンネル推定処理手段で該パイロット信号を用いてチャンネル推定処理を行なった後、デジタル信号処理して復調する復調手段とを備えた直接検波受信機において、
該AD変換手段から出力されるデジタルの該同相信号と直交信号と、該チャンネル推定処理に用いられる該受信信号に含まれる該パイロット信号とが供給される位相及び振幅偏差補正処理処理手段が設けられ、
該振幅偏差補正処理処理手段は、
該周波数変換手段で直交検波された該受信信号に含まれる該パイロット信号と実質的に同じ角周波数のパイロットレプリカ信号を生成するパイロットレプリカ生成手段を備え、
該パイロットレプリカ信号と該アナログ直交検波手段で直交検波されてAD変換された該受信信号との演算処理により、アナログ直交検波手段で生じた位相及び振幅偏差を補正するための補正値を求め、
該補正値を用いて、直交検波されてAD変換された該受信信号の同相信号と直交信号とをデジタル信号処理し、該同相信号と該直交信号とでの位相及び振幅偏差を補正し、
位相及び振幅偏差が補正された該同相信号と該直交信号に対し、該チャンネル推定処理手段でチャンネル推定処理を行なうことを特徴とする直接検波受信機。
Analog quadrature detection means for performing quadrature detection on a received signal obtained by quadrature modulation of an in-phase signal and a quadrature signal including a pilot signal having a predetermined time length every predetermined time, and an output of the analog quadrature detection means An AD conversion means for AD converting the signal, and the digital in-phase signal and quadrature signal output from the AD conversion means are subjected to channel estimation processing using the pilot signal by the channel estimation processing means, and then digitally processed. In a direct detection receiver provided with a demodulation means for demodulating by signal processing,
Phase and amplitude deviation correction processing processing means for supplying the digital in-phase signal and quadrature signal output from the AD conversion means and the pilot signal included in the reception signal used for the channel estimation processing is provided. And
The amplitude deviation correction processing means includes:
Pilot replica generation means for generating a pilot replica signal having substantially the same angular frequency as the pilot signal included in the received signal orthogonally detected by the frequency conversion means;
By calculating the pilot replica signal and the received signal that has been subjected to quadrature detection and analog-to-digital conversion by the analog quadrature detection means, a correction value for correcting the phase and amplitude deviation generated by the analog quadrature detection means is obtained.
Using the correction value, the in-phase signal and the quadrature signal of the received signal subjected to quadrature detection and AD conversion are subjected to digital signal processing, and the phase and amplitude deviation between the in-phase signal and the quadrature signal are corrected. ,
A direct detection receiver characterized in that the channel estimation processing means performs channel estimation processing on the in-phase signal and the quadrature signal whose phase and amplitude deviations are corrected.
請求項1又は2に記載の直接検波受信機において、前記受信信号は直交周波数分割多重方式の信号であって、
前記直交検波されてAD変換された該受信信号を、シンボル単位で時間領域から周波数領域に変換するFFT処理手段と、
前記FFT処理手段から出力された各サブキャリアの復調信号に対して、位相又は振幅の少なくとも一方の偏差を検出し、積分を含むフィードバック制御ループを介して補正を施してから前記復調手段に出力する位相又は振幅補正手段と、を備え、
位相又は振幅補正手段は、サブキャリアの周波数に応じて異なる補正を施すことを特徴とする直接検波受信機。
The direct detection receiver according to claim 1 or 2, wherein the received signal is an orthogonal frequency division multiplexing signal,
FFT processing means for converting the orthogonally detected and AD-converted received signal from the time domain to the frequency domain in symbol units;
For each subcarrier demodulated signal output from the FFT processing means, a deviation of at least one of phase and amplitude is detected, corrected through a feedback control loop including integration, and then output to the demodulating means. Phase or amplitude correction means, and
The direct detection receiver characterized in that the phase or amplitude correction means performs different correction according to the frequency of the subcarrier.
JP2007336367A 2007-03-19 2007-12-27 Receiving machine Active JP4925462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336367A JP4925462B2 (en) 2007-03-19 2007-12-27 Receiving machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007071394 2007-03-19
JP2007071394 2007-03-19
JP2007336367A JP4925462B2 (en) 2007-03-19 2007-12-27 Receiving machine

Publications (2)

Publication Number Publication Date
JP2008263585A true JP2008263585A (en) 2008-10-30
JP4925462B2 JP4925462B2 (en) 2012-04-25

Family

ID=39985712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336367A Active JP4925462B2 (en) 2007-03-19 2007-12-27 Receiving machine

Country Status (1)

Country Link
JP (1) JP4925462B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367332A1 (en) 2010-03-19 2011-09-21 Fujitsu Limited IQ imbalance correction method in a wireless communication device including a quadrature modulation/demodulation function
JP2012058014A (en) * 2010-09-07 2012-03-22 Ngk Insulators Ltd Particulate substance detector
WO2012153373A1 (en) * 2011-05-10 2012-11-15 パナソニック株式会社 Amplitude/orthogonality error compensation device
JP2020027966A (en) * 2018-08-09 2020-02-20 日本電気株式会社 Radio communication device and received signal correcting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022725A (en) * 1987-12-04 1990-01-08 Motorola Inc Apparatus and method for quick reference capture and phase error compenstation in data radio transmission
JPH0832636A (en) * 1994-07-18 1996-02-02 Matsushita Electric Ind Co Ltd Frequency offset detection device
JP2001189768A (en) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd Synchronous demodulator
JP2002261852A (en) * 2001-03-01 2002-09-13 Hitachi Kokusai Electric Inc Synchronization detecting circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022725A (en) * 1987-12-04 1990-01-08 Motorola Inc Apparatus and method for quick reference capture and phase error compenstation in data radio transmission
JPH0832636A (en) * 1994-07-18 1996-02-02 Matsushita Electric Ind Co Ltd Frequency offset detection device
JP2001189768A (en) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd Synchronous demodulator
JP2002261852A (en) * 2001-03-01 2002-09-13 Hitachi Kokusai Electric Inc Synchronization detecting circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367332A1 (en) 2010-03-19 2011-09-21 Fujitsu Limited IQ imbalance correction method in a wireless communication device including a quadrature modulation/demodulation function
US8514914B2 (en) 2010-03-19 2013-08-20 Fujitsu Limited IQ imbalance correction method in a wireless communication device including a quadrature modulation/demodulation function
JP2012058014A (en) * 2010-09-07 2012-03-22 Ngk Insulators Ltd Particulate substance detector
WO2012153373A1 (en) * 2011-05-10 2012-11-15 パナソニック株式会社 Amplitude/orthogonality error compensation device
US8724752B2 (en) 2011-05-10 2014-05-13 Panasonic Corporation Amplitude/orthogonality error compensator
JP2020027966A (en) * 2018-08-09 2020-02-20 日本電気株式会社 Radio communication device and received signal correcting method
JP7147350B2 (en) 2018-08-09 2022-10-05 日本電気株式会社 Wireless communication device and received signal correction method

Also Published As

Publication number Publication date
JP4925462B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US7139536B2 (en) Method and apparatus for I/Q imbalance calibration of a transmitter system
JP4149044B2 (en) Method and circuit apparatus for correcting phase and / or frequency error of digital multi-carrier signal
US7443783B2 (en) I/Q mismatch compensation in an OFDM receiver in presence of frequency offset
US20110051790A1 (en) Radio communication device and method
US7174146B2 (en) Method and apparatus for I/Q mismatch calibration in a receiver
JP4316965B2 (en) Method and apparatus for modulating a carrier having amplitude and phase error compensation
US7558338B2 (en) Method and apparatus for I/Q imbalance estimation
US20090092193A1 (en) Multi carrier transmission device, multi carrier reception device, and communication method
US10880149B2 (en) Transpositional modulation and demodulation
JP2010283589A (en) Communication apparatus
US20050026577A1 (en) Method and apparatus for I/Q mismatch calibration in a receiver
US20050041754A1 (en) Method and appatatus for I/Q mismatch calibration of transmitter
JP4809097B2 (en) Reception circuit and reception method
JP4925462B2 (en) Receiving machine
JP2004304507A (en) Ofdm demodulation method and semiconductor integrated circuit
JP4359864B2 (en) Orthogonal frequency division multiplexing apparatus and orthogonal frequency division multiplexing method
JP5640763B2 (en) Receiving device and propagation path compensation method thereof
US9106326B2 (en) Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus
US20100303139A1 (en) Method and apparatus for measuring signal phase shifts
US20060165187A1 (en) Multiplex signal error correction method and device
JP4698331B2 (en) Transmitter
JP4869859B2 (en) Pilot signal receiver
KR20030003230A (en) Correction of quadrature and gain errors in homodyne receives
JP2011109520A (en) Receiver
JP4930262B2 (en) OFDM receiving apparatus and OFDM receiving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250