JP2020027966A - Radio communication device and received signal correcting method - Google Patents

Radio communication device and received signal correcting method Download PDF

Info

Publication number
JP2020027966A
JP2020027966A JP2018150421A JP2018150421A JP2020027966A JP 2020027966 A JP2020027966 A JP 2020027966A JP 2018150421 A JP2018150421 A JP 2018150421A JP 2018150421 A JP2018150421 A JP 2018150421A JP 2020027966 A JP2020027966 A JP 2020027966A
Authority
JP
Japan
Prior art keywords
signal
correction
frequency
reception
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018150421A
Other languages
Japanese (ja)
Other versions
JP7147350B2 (en
Inventor
憲明 田和
Noriaki Tawa
憲明 田和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2018150421A priority Critical patent/JP7147350B2/en
Publication of JP2020027966A publication Critical patent/JP2020027966A/en
Application granted granted Critical
Publication of JP7147350B2 publication Critical patent/JP7147350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a radio communication device and a received signal correcting method, capable of suppressing deterioration in reception performance caused by gain difference or phase difference between a plurality of receiving circuits.SOLUTION: A receiving circuit 20 receives a radio signal through the corresponding antenna 40. Correction signal adding means 21 adds a correction signal of a prescribed frequency in a frequency band of received signal to the received signal. Correction signal extracting means 22 extracts the correction signal from the received signal to which the correction signal is added, and outputs the extracted correction signal to correction parameter calculating means 30. The correction parameter calculating means 30 generates correction parameters of the received signal on the basis of the correction signal input from the correction signal extracting means 22 of each receiving circuit 20. Correcting means 23 of each receiving circuit 20 corrects at least one of an amplitude and a phase of the receiving signal according to the correction parameters calculated by the correction parameter calculating means 30.SELECTED DRAWING: Figure 1

Description

本開示は、無線通信装置及び受信信号補正方法に関し、更に詳しくは、複数のアンテナを通じて複数の無線信号を受信する無線通信装置、及びそのような無線通信装置における受信信号補正方法に関する。   The present disclosure relates to a wireless communication device and a received signal correction method, and more particularly, to a wireless communication device that receives a plurality of wireless signals through a plurality of antennas, and a received signal correction method in such a wireless communication device.

近年、移動体通信の分野では、複数の送受信機を備え、MIMO(multiple-input and multiple-output)機能に対応した無線装置が一般的になりつつある。さらに、今後商用が見込まれている第5世代移動通信システム(5G:5th Generation)では、多数の送受信機を利用するMassive−MIMO技術の採用が検討されている。   2. Description of the Related Art In recent years, in the field of mobile communication, a wireless device that includes a plurality of transceivers and supports a multiple-input and multiple-output (MIMO) function is becoming popular. Furthermore, in the fifth generation mobile communication system (5G: 5th Generation), which is expected to be commercially used in the future, adoption of the Massive-MIMO technology using a large number of transceivers is being studied.

MIMO機能を有する無線装置では、電波の伝搬方向に指向性を与え、電波の利用効率を高めるために、ビームフォーミングが行われる場合がある。ビームフォーミングを行う無線装置において、各送受信機のゲインや位相が異なる場合、正確にビームフォーミングすることができない。ビームフォーミングを正確に行うためには、各送受信機のゲインや位相を合わせる必要がある。   In a wireless device having a MIMO function, beamforming may be performed in order to provide directivity to the propagation direction of a radio wave and increase the use efficiency of the radio wave. In a wireless device that performs beamforming, if the gains and phases of the transceivers are different, beamforming cannot be performed accurately. In order to perform beamforming accurately, it is necessary to match the gain and phase of each transceiver.

ここで、特許文献1は、単一キャリアで変調された信号を複数の受信アンテナを用いて受信し、受信した複数個の受信信号を選択又は合成するダイバーシティ受信装置を開示する。特許文献1に記載のダイバーシティ受信装置は、各受信アンテナから出力される受信信号に、参照信号(パイロット信号)を多重化する。パイロット信号の周波数は、受信信号の周波数帯域外の周波数に設定される。特許文献1には、パイロット信号を用いて、各受信アンテナから出力される受信信号のレベルを推定すること、及び受信信号の減衰量を推定することなどが記載されている。   Here, Patent Literature 1 discloses a diversity receiving apparatus that receives a signal modulated by a single carrier using a plurality of receiving antennas, and selects or combines the plurality of received signals. The diversity receiver described in Patent Literature 1 multiplexes a reference signal (pilot signal) into a reception signal output from each reception antenna. The frequency of the pilot signal is set to a frequency outside the frequency band of the received signal. Patent Document 1 describes estimating the level of a received signal output from each receiving antenna using a pilot signal, estimating the amount of attenuation of the received signal, and the like.

特開2003−174390号公報JP 2003-174390 A

複数の受信回路を備えた無線装置において、精度の高い受信信号を得るためには、複数の受信回路間の位相誤差などを推定する必要がある。しかしながら、特許文献1は受信電力(ゲイン)の調整のみを主眼としており、この文献には位相誤差を推定することは記載されていない。また、特許文献1では、受信信号の周波数帯域外にパイロット信号が多重化される。この場合、受信回路において、アンテナ直後に配置されるバンドパスフィルタを除いて、狭帯域なフィルタを用いることができない。このため、アンテナ直後に配置されるバンドパスフィルタで除去しきれないような、電力が強い妨害波や、受信信号の周波数帯域の近傍に妨害波が存在すると、受信性能が劣化するという問題がある。   In a wireless device including a plurality of receiving circuits, it is necessary to estimate a phase error between the plurality of receiving circuits in order to obtain a highly accurate received signal. However, Patent Document 1 focuses only on the adjustment of the received power (gain), and does not describe estimating the phase error. In Patent Document 1, a pilot signal is multiplexed outside the frequency band of a received signal. In this case, a narrow-band filter cannot be used in the receiving circuit except for a band-pass filter arranged immediately after the antenna. For this reason, there is a problem that the reception performance is degraded if there is an interfering wave with a strong power or an interfering wave near the frequency band of the received signal that cannot be completely removed by the band-pass filter disposed immediately after the antenna. .

本開示は、上記事項に鑑み、複数の受信回路を有する無線通信装置において、複数の受信回路間のゲイン差及び位相差に起因する受信性能の劣化を抑制可能な無線通信装置及び受信信号補正方法を提供することを目的とする。   The present disclosure has been made in view of the above circumstances, and in a wireless communication apparatus having a plurality of receiving circuits, a wireless communication apparatus and a received signal correction method capable of suppressing deterioration of reception performance due to a gain difference and a phase difference between the plurality of receiving circuits. The purpose is to provide.

上記課題を解決するために、本開示は、それぞれが、対応するアンテナを通じて無線信号を受信する複数の受信回路と、前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成する補正パラメータ算出手段とを備え、前記複数の受信回路は、それぞれ、受信信号に、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算する補正用信号加算手段と、前記補正用信号が加算された受信信号から前記補正用信号を抽出して前記補正パラメータ算出手段に出力する補正用信号抽出手段と、前記補正パラメータ算出手段が算出した補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する補正手段とを含み、前記補正パラメータ算出手段は、前記補正用信号抽出手段を通じて各受信回路から入力される補正用信号に基づいて前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出する無線通信装置を提供する。   In order to solve the above-described problems, the present disclosure has a plurality of receiving circuits each receiving a radio signal through a corresponding antenna, and calculates at least one of a gain and a phase shift between the plurality of receiving circuits. Correction parameter calculation means for generating a correction parameter of the received signal in each receiving circuit based on the calculated shift, wherein the plurality of receiving circuits each receive a signal of a predetermined frequency within a frequency band of the received signal. Correction signal adding means for adding a correction signal; correction signal extracting means for extracting the correction signal from the received signal to which the correction signal has been added and outputting the signal to the correction parameter calculating means; Correction means for correcting at least one of the amplitude and the phase of the received signal in accordance with the correction parameter calculated by the calculation means, Parameter calculating means provides a wireless communication device for calculating at least one of the deviation of the gain and phase between the plurality of reception circuits based on the correction signal input from the receiving circuit via the correction signal extraction means.

本開示は、また、複数のアンテナを通じて、複数の無線信号を受信し、受信された複数の受信信号のそれぞれに、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算し、前記補正用信号が加算された複数の受信信号のそれぞれから前記補正用信号を抽出し、前記複数の受信信号から抽出された補正用信号に基づいて、前記複数の無線信号を受信する複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成し、前記算出された補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する受信信号補正方法を提供する。   The present disclosure also receives a plurality of wireless signals through a plurality of antennas, and adds a correction signal of a predetermined frequency within a frequency band of the received signal to each of the plurality of received signals, wherein the correction is performed. The signal for correction is extracted from each of the plurality of received signals to which the signals for addition are added, and based on the signal for correction extracted from the plurality of received signals, a plurality of reception circuits for receiving the plurality of wireless signals are provided. Calculating a shift of at least one of the gain and the phase of the received signal, generating a correction parameter of the received signal in each receiving circuit based on the calculated shift, at least one of the amplitude and the phase of the received signal according to the calculated correction parameter. And a method for correcting a received signal.

本開示に係る無線通信装置及び受信信号補正方法は、複数の受信回路を有する無線通信装置において、複数の受信回路間のゲイン差及び位相差に起因する受信性能の劣化を抑制することができる。   The wireless communication device and the received signal correction method according to the present disclosure can suppress deterioration of reception performance due to a gain difference and a phase difference between a plurality of receiving circuits in a wireless communication device having a plurality of receiving circuits.

本開示に係る無線通信装置の概略的な構成を示すブロック図。1 is a block diagram illustrating a schematic configuration of a wireless communication device according to the present disclosure. 本開示の第1実施形態に係る無線通信装置を示すブロック図。FIG. 1 is a block diagram illustrating a wireless communication device according to a first embodiment of the present disclosure. 受信信号のスペクトルを示す図。The figure which shows the spectrum of a received signal. LPFの通過特性を示す図。The figure which shows the passing characteristic of LPF. 図5(a)及び(b)は、補正用信号が加算されていないベースバンド信号と補正用信号が加算されたベースバンド信号のスペクトルを示す図。FIGS. 5A and 5B are diagrams illustrating spectra of a baseband signal to which a correction signal is not added and a baseband signal to which a correction signal is added. 本開示の第2実施形態に係る無線通信装置の構成を示すブロック図。FIG. 7 is a block diagram illustrating a configuration of a wireless communication device according to a second embodiment of the present disclosure. 図7(a)は無線信号のスペクトルを示す図、(b)は補正用信号のスペクトルを示す図。7A is a diagram illustrating a spectrum of a radio signal, and FIG. 7B is a diagram illustrating a spectrum of a correction signal.

本開示の実施の形態の説明に先立って、本開示の概要を説明する。図1は、本開示に係る無線通信装置を概略的に示す。無線通信装置10は、複数の受信回路20と、補正パラメータ算出手段30とを備える。各受信回路20は、補正用信号加算手段21、補正用信号抽出手段22、及び、補正手段23を有する。   Prior to the description of the embodiments of the present disclosure, an overview of the present disclosure will be described. FIG. 1 schematically illustrates a wireless communication device according to the present disclosure. The wireless communication device 10 includes a plurality of receiving circuits 20 and a correction parameter calculating unit 30. Each receiving circuit 20 includes a correction signal adding unit 21, a correction signal extracting unit 22, and a correcting unit 23.

複数の受信回路20は、それぞれ対応するアンテナ40を通じて無線信号を受信する。補正用信号加算手段21は、受信信号に、受信信号の周波数帯域内の所定周波数の補正用信号を加算する。補正用信号抽出手段22は、補正用信号が加算された受信信号から補正用信号を抽出する。補正用信号抽出手段22は、抽出した補正用信号を補正パラメータ算出手段30に出力する。補正パラメータ算出手段30は、各受信回路20の補正用信号抽出手段22から、各受信回路20において抽出された補正用信号を受信する。   The plurality of receiving circuits 20 receive radio signals through the corresponding antennas 40, respectively. The correction signal adding means 21 adds a correction signal of a predetermined frequency within a frequency band of the received signal to the received signal. The correction signal extracting means 22 extracts a correction signal from the received signal to which the correction signal has been added. The correction signal extraction unit 22 outputs the extracted correction signal to the correction parameter calculation unit 30. The correction parameter calculation means 30 receives the correction signal extracted in each reception circuit 20 from the correction signal extraction means 22 of each reception circuit 20.

補正パラメータ算出手段30は、各受信回路20の補正用信号抽出手段22から入力される補正用信号に基づいて、複数の受信回路20間のゲイン及び位相の少なくとも一方のずれを算出する。補正パラメータ算出手段30は、算出したゲイン及び位相の少なくとも一方のずれに基づいて、各受信回路20における受信信号の補正パラメータを生成する。各受信回路20の補正手段23は、補正パラメータ算出手段30が算出した補正パラメータに従って、受信信号の振幅及び位相の少なくとも一方を補正する。   The correction parameter calculating means 30 calculates at least one of a gain and a phase shift between the plurality of receiving circuits 20 based on the correcting signal input from the correcting signal extracting means 22 of each receiving circuit 20. The correction parameter calculation means 30 generates a correction parameter of the received signal in each receiving circuit 20 based on at least one of the calculated gain and phase. The correction unit 23 of each reception circuit 20 corrects at least one of the amplitude and the phase of the received signal according to the correction parameter calculated by the correction parameter calculation unit 30.

本開示では、受信回路20内で受信信号に加算される補正用信号に、受信信号の周波数帯域内の所定周波数の信号が用いられる。この場合、補正用信号加算手段21と補正用信号抽出手段22との間に、受信信号の周波数帯域外の信号成分をカットする狭帯域なフィルタが配置される場合でも、補正用信号抽出手段22において補正用信号を抽出することができる。このため、本開示に係る無線通信装置10は、信号帯域外の周波数のパイロット信号が用いられる特許文献1に記載の装置とは異なり、妨害波が存在する場合でも、受信性能の劣化を抑制可能である。従って、本開示では、受信信号の受信性能に与える影響を抑えつつ、複数の受信回路20間のゲイン及び位相の少なくとも一方のずれを算出することができる。   In the present disclosure, a signal of a predetermined frequency within the frequency band of the received signal is used as the correction signal added to the received signal in the receiving circuit 20. In this case, even if a narrow band filter that cuts out a signal component outside the frequency band of the received signal is arranged between the correction signal adding means 21 and the correction signal extracting means 22, Can extract a correction signal. For this reason, the radio communication device 10 according to the present disclosure can suppress deterioration of the reception performance even when an interfering wave exists, unlike the device described in Patent Literature 1 in which a pilot signal having a frequency outside the signal band is used. It is. Therefore, in the present disclosure, it is possible to calculate at least one of the gain and the phase shift between the plurality of reception circuits 20 while suppressing the influence of the reception signal on the reception performance.

また、本開示では、各受信回路20において、補正手段23が、補正パラメータ算出手段30で算出された補正パラメータに従って受信信号の振幅及び位相の少なくとも一方を補正する。このようにすることで、各受信回路20が出力する受信信号の振幅及び位相の少なくとも一方を揃えることができ、複数の受信回路20間のゲイン差及び位相差に起因する受信性能の劣化を抑制することができる。受信回路20のゲイン差及び位相差は、装置の運用中でも変化し得る。本開示に係る無線通信装置10は、無線信号を受信しつつ、複数の受信回路20間のゲイン及び位相の少なくとも一方のずれを算出することができ、受信精度への影響を低く抑えつつ、ゲイン及び位相の誤差を校正することができる。   Further, in the present disclosure, in each reception circuit 20, the correction unit 23 corrects at least one of the amplitude and the phase of the received signal according to the correction parameter calculated by the correction parameter calculation unit 30. By doing so, it is possible to make at least one of the amplitude and the phase of the reception signal output from each reception circuit 20 uniform, and to suppress the deterioration of the reception performance due to the gain difference and the phase difference between the plurality of reception circuits 20. can do. The gain difference and the phase difference of the receiving circuit 20 may change during operation of the device. The wireless communication device 10 according to the present disclosure can calculate at least one of the gain and the phase shift between the plurality of receiving circuits 20 while receiving a wireless signal, and can reduce the influence on the reception accuracy while reducing the gain. And the phase error can be calibrated.

以下、図面を参照しつつ、本開示の実施の形態を詳細に説明する。図2は、本開示の第1実施形態に係る無線通信装置を示す。無線通信装置100は、Nを2以上の整数として、N個のアンテナ101−1〜101−N、補正信号用局部発振器102、IF(Intermediate Frequency)信号用局部発振器103、BB(Base Band)信号用局部発振器104、N個のLPF(Low Pass Filter)105−1〜105−N、補正パラメータ計算機106、受信信号処理部107、及びN個の受信回路110−1〜110−Nを有する。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. FIG. 2 illustrates a wireless communication device according to the first embodiment of the present disclosure. The wireless communication apparatus 100 sets N antennas 101-1 to 101-N, a local oscillator 102 for a correction signal, a local oscillator 103 for an IF (Intermediate Frequency) signal, and a BB (Base Band) signal, where N is an integer of 2 or more. It has a local oscillator 104, N LPFs (Low Pass Filters) 105-1 to 105-N, a correction parameter calculator 106, a reception signal processing unit 107, and N reception circuits 110-1 to 110-N.

nを1以上N以下の整数として、受信回路110−nは、BPF(Band Pass Filter)111−n、加算器112−n、LNA(Low Noise Amplifier)113−n、乗算器(Mixer)114−n、BPF115−n、ADC(Analog to Digital Converter)116−n、乗算器117−n、LPF118−n、補正器120−n、及び補正用信号除去部121−nを有する。   Assuming that n is an integer of 1 or more and N or less, the receiving circuit 110-n includes a BPF (Band Pass Filter) 111-n, an adder 112-n, an LNA (Low Noise Amplifier) 113-n, and a multiplier (Mixer) 114-. n, a BPF 115-n, an ADC (Analog to Digital Converter) 116-n, a multiplier 117-n, an LPF 118-n, a corrector 120-n, and a correction signal removing unit 121-n.

なお、以下の説明において、特に区別する必要がない場合は、アンテナ101−1〜101−N、LPF105−1〜105−N、及び受信回路110−1〜110−Nは、それぞれ単にアンテナ101、LPF105、及び受信回路110とも呼ばれる。受信回路110内の各要素についても同様である。また、図2には、無線通信装置100において、主に無線信号の受信に用いられる部分の構成が示されている。無線通信装置100は、復調器などの構成要素などを有していてもよい。無線通信装置100は、さらに、無線信号を送信するための送信回路などを有していてもよい。   In the following description, when it is not necessary to distinguish them, the antennas 101-1 to 101-N, the LPFs 105-1 to 105-N, and the receiving circuits 110-1 to 110-N are simply the antenna 101, Also referred to as the LPF 105 and the receiving circuit 110. The same applies to each element in the receiving circuit 110. FIG. 2 shows a configuration of a portion mainly used for receiving a wireless signal in wireless communication apparatus 100. The wireless communication device 100 may include components such as a demodulator. The wireless communication device 100 may further include a transmission circuit for transmitting a wireless signal.

本実施形態において、無線通信装置100は、変調方式がOFDM(OFDM:Orthogonal Frequency Division Multiplexing)であり、かつ中心サブキャリアが使用されない無線規格の無線信号を受信するものとする。例えば、無線通信装置100は、LTE(Long Term Evolution)や、WiMAX(Worldwide Interoperability for Microwave Access)などの通信規格に従った無線信号を受信する。また、本実施形態において、受信回路110は、IFコンバージョン方式の受信回路として構成されているものとする。IFコンバージョン方式とは、RF(Radio Frequency)帯域の受信信号を、中間周波数にダウンコンバートしたIF信号を用いる方式である。   In the present embodiment, the wireless communication apparatus 100 receives a wireless signal of a wireless standard whose modulation scheme is OFDM (Orthogonal Frequency Division Multiplexing) and whose center subcarrier is not used. For example, the wireless communication device 100 receives a wireless signal according to a communication standard such as LTE (Long Term Evolution) and WiMAX (Worldwide Interoperability for Microwave Access). In the present embodiment, it is assumed that the receiving circuit 110 is configured as an IF conversion type receiving circuit. The IF conversion method is a method that uses an IF signal obtained by down-converting an RF (Radio Frequency) band received signal to an intermediate frequency.

各受信回路110は、対応するアンテナ101を通じて無線信号を受信する。アンテナ101は、図1のアンテナ40に対応し、受信回路110は、図1の受信回路20に対応する。BPF111は、受信された無線信号(受信信号)の信号帯域内の信号成分を通過させ、信号帯域外の信号成分を抑制する。つまり、BPF111は、受信信号から、信号帯域外の信号を除去する。   Each receiving circuit 110 receives a radio signal through the corresponding antenna 101. The antenna 101 corresponds to the antenna 40 in FIG. 1, and the receiving circuit 110 corresponds to the receiving circuit 20 in FIG. The BPF 111 passes a signal component in a signal band of a received wireless signal (received signal) and suppresses a signal component outside the signal band. That is, the BPF 111 removes a signal outside the signal band from the received signal.

加算器112は、BPF111が出力する信号帯域外の信号が除去された受信信号に、補正信号用局部発振器102が出力する局部発振信号(補正用信号)を加算する。本実施形態において、補正信号用局部発振器102は、受信信号の搬送波周波数と同じ周波数のCW(Continuous Wave)信号を、補正用信号として出力する。補正信号用局部発振器102が生成する補正用信号は、複数の受信回路110−1〜110−Nに分配され、各受信回路110の加算器112に入力される。加算器112は、図1の補正用信号加算手段21に対応する。   The adder 112 adds the local oscillation signal (correction signal) output from the correction signal local oscillator 102 to the reception signal from which the signal outside the signal band output from the BPF 111 is removed. In the present embodiment, the correction signal local oscillator 102 outputs a CW (Continuous Wave) signal having the same frequency as the carrier frequency of the received signal as a correction signal. The correction signal generated by the correction signal local oscillator 102 is distributed to the plurality of receiving circuits 110-1 to 110-N, and is input to the adders 112 of the receiving circuits 110. The adder 112 corresponds to the correction signal adding means 21 of FIG.

図3は、受信信号のスペクトルを示す。図3において、横軸は周波数を表す。図3に示されるように、OFDM信号は、複数のサブキャリアを含む。複数のサブキャリアのうち、中心サブキャリアはデータ送信には用いられず、従って、受信信号には、中心サブキャリアの成分は含まれていない。このような受信信号に、搬送波周波数と同じ周波数の補正用信号を加算した場合、補正用信号は、受信信号の中央、つまり中心サブキャリアの周波数位置に追加される。中心サブキャリアがデータ送信に使用されていない場合、補正用信号が受信信号に与える影響は十分に小さい。   FIG. 3 shows the spectrum of the received signal. In FIG. 3, the horizontal axis represents frequency. As shown in FIG. 3, the OFDM signal includes a plurality of subcarriers. The center subcarrier among the plurality of subcarriers is not used for data transmission, and therefore, the received signal does not include the component of the center subcarrier. When a correction signal having the same frequency as the carrier frequency is added to such a received signal, the correction signal is added at the center of the received signal, that is, at the frequency position of the center subcarrier. When the center subcarrier is not used for data transmission, the effect of the correction signal on the received signal is sufficiently small.

図2に戻り、LNA113は、補正用信号が加算された受信信号を増幅する。乗算器114は、補正用信号が加算された受信信号と、IF信号用局部発振器103が出力する局部発振信号とを乗算し、受信信号をIF信号にダウンコンバートする。IF信号用局部発振器103が出力する局部発振信号は、複数の受信回路110−1〜110−Nに分配され、各受信回路110の乗算器114に入力される。IF信号用局部発振器103及び乗算器114は、補正用信号が加算された受信信号を中間周波数信号に変換する中間周波数信号変換手段を構成する。   Returning to FIG. 2, the LNA 113 amplifies the received signal to which the correction signal has been added. Multiplier 114 multiplies the received signal to which the correction signal is added by the local oscillation signal output from IF signal local oscillator 103, and down-converts the received signal into an IF signal. The local oscillation signal output from the IF signal local oscillator 103 is distributed to the plurality of receiving circuits 110-1 to 110 -N, and is input to the multiplier 114 of each receiving circuit 110. The IF signal local oscillator 103 and the multiplier 114 constitute an intermediate frequency signal converting means for converting the received signal to which the correction signal has been added into an intermediate frequency signal.

BPF115は、IF信号に変換された受信信号を帯域制限するアナログフィルタである。BPF115は、IF信号の信号帯域内の信号成分を通過させ、信号帯域外の信号成分を抑制する。つまり、BPF115は、IF信号から不要信号を除去する。ADC116は、帯域制限されたIF信号を、アナログ信号からデジタル信号に変換する。   The BPF 115 is an analog filter that limits the band of the received signal converted to the IF signal. The BPF 115 passes a signal component in the signal band of the IF signal and suppresses a signal component outside the signal band. That is, the BPF 115 removes an unnecessary signal from the IF signal. The ADC 116 converts the band-limited IF signal from an analog signal to a digital signal.

乗算器117は、デジタル信号に変換されたIF信号と、BB信号用局部発振器104が出力する局部発振信号とを乗算し、IF信号をベースバンド信号に変換する。BB信号用局部発振器104が出力する局部発振信号は、複数の受信回路110−1〜110−Nに分配され、各受信回路110の乗算器117に入力される。乗算器117に入力されるIF信号はデジタル信号であるため、BB信号用局部発振器104及び乗算器117は、デジタル回路として実装される。BB信号用局部発振器104及び乗算器117は、ベースバンド変換手段を構成する。   Multiplier 117 multiplies the IF signal converted into a digital signal by the local oscillation signal output from local oscillator 104 for BB signal, and converts the IF signal into a baseband signal. The local oscillation signal output from the BB signal local oscillator 104 is distributed to the plurality of receiving circuits 110-1 to 110 -N, and is input to the multiplier 117 of each receiving circuit 110. Since the IF signal input to the multiplier 117 is a digital signal, the local oscillator for BB signal 104 and the multiplier 117 are implemented as digital circuits. The local oscillator for BB signal 104 and the multiplier 117 constitute a baseband conversion unit.

各受信回路110の乗算器117で変換されたベースバンド信号は2つに分配され、一方はLPF105に入力され、他方はLPF118に入力される。LPF105は、各受信回路110に対応して配置される。LPF105は、ベースバンド信号の所定周波数以下の信号成分を通過させ、所定周波数よりも高い周波数の信号成分を抑制することで、ベースバンド信号に含まれる補正用信号を抽出する。一方、各受信回路110のLPF118は、ベースバンド信号の所定周波数以下の信号成分を通過させ、所定周波数よりも高い周波数の信号成分を抑制することで、ベースバンド信号から不要信号を除去する。LPF105は、図1の補正用信号抽出手段22に対応する。   The baseband signal converted by the multiplier 117 of each receiving circuit 110 is divided into two, and one is input to the LPF 105 and the other is input to the LPF 118. LPF 105 is arranged corresponding to each receiving circuit 110. The LPF 105 passes a signal component having a frequency equal to or lower than a predetermined frequency of the baseband signal and suppresses a signal component having a frequency higher than the predetermined frequency, thereby extracting a correction signal included in the baseband signal. On the other hand, the LPF 118 of each receiving circuit 110 removes an unnecessary signal from the baseband signal by passing a signal component having a frequency lower than a predetermined frequency of the baseband signal and suppressing a signal component having a frequency higher than the predetermined frequency. The LPF 105 corresponds to the correction signal extracting unit 22 in FIG.

図4は、LPF105及び118の通過特性を示す。図4において、横軸は周波数を表す。図3に示される受信信号における搬送波周波数の位置は、ベースバンド信号における周波数位置「0」に対応する。LPF105は、ベースバンド信号におけるDC(Direct Current)成分のみを抽出するような狭い通過帯域Aを持つ。LPF105の通過帯域幅は、例えばサブキャリア1つ分の幅に設定される。このような通過帯域Aを持つLPF105を用いることで、ベースバンド信号から補正用信号を抽出できる。一方、LPF118は、ベースバンド信号の帯域幅に対応した広い通過帯域Bを持つ。このような通過帯域Bを持つLPF118を用いることで、ベースバンド信号から信号帯域外の不要波を除去することができる。   FIG. 4 shows the pass characteristics of the LPFs 105 and 118. In FIG. 4, the horizontal axis represents frequency. The position of the carrier frequency in the received signal shown in FIG. 3 corresponds to the frequency position “0” in the baseband signal. The LPF 105 has a narrow passband A that extracts only a DC (Direct Current) component in a baseband signal. The pass bandwidth of the LPF 105 is set to, for example, a width of one subcarrier. By using the LPF 105 having such a pass band A, a correction signal can be extracted from a baseband signal. On the other hand, the LPF 118 has a wide passband B corresponding to the bandwidth of the baseband signal. By using the LPF 118 having such a pass band B, unnecessary waves outside the signal band can be removed from the baseband signal.

再び図2に戻り、LPF105は、抽出した補正用信号を補正パラメータ計算機106に出力する。補正パラメータ計算機106は、複数の受信回路110−1〜110−Nから、抽出された補正用信号を取得する。補正パラメータ計算機106は、各受信回路110から取得した補正用信号を比較し、各受信回路110のゲイン差と位相差とを計算する。補正パラメータ計算機106は、計算したゲイン差と位相差とに基づいて、各受信回路110の補正器120における補正パラメータを決定する。補正パラメータ計算機106は、図1の補正パラメータ算出手段30に対応する。   Returning to FIG. 2 again, the LPF 105 outputs the extracted correction signal to the correction parameter calculator 106. The correction parameter calculator 106 acquires the extracted correction signals from the plurality of receiving circuits 110-1 to 110-N. The correction parameter calculator 106 compares the correction signals obtained from each of the receiving circuits 110 and calculates a gain difference and a phase difference of each of the receiving circuits 110. The correction parameter calculator 106 determines a correction parameter in the corrector 120 of each receiving circuit 110 based on the calculated gain difference and phase difference. The correction parameter calculator 106 corresponds to the correction parameter calculator 30 in FIG.

補正パラメータ計算機106は、例えばプロセッサとメモリとを含み、プロセッサがメモリから読み出したプログラムに従って処理を実行することで、補正用信号の比較及び補正パラメータの決定などを実行してもよい。あるいは、補正パラメータ計算機106の機能は、ASIC(Application Specific Integrated Circuit)などの半導体処理装置やFPGA(field-programmable gate array)などのプログラマブルデバイスを用いて実現されてもよい。   The correction parameter calculator 106 may include, for example, a processor and a memory, and may execute a process in accordance with a program read from the memory by the processor, thereby performing comparison of correction signals, determination of a correction parameter, and the like. Alternatively, the function of the correction parameter calculator 106 may be realized using a semiconductor processing device such as an ASIC (Application Specific Integrated Circuit) or a programmable device such as an FPGA (field-programmable gate array).

補正パラメータ計算機106は、各受信回路110の補正器120に、補正パラメータを通知する。補正器120は、LPF118が出力する不要信号が除去されたベースバンド信号の振幅と位相とを補正する。補正器120は、例えば可変増幅器と可変移相器とを含む。補正器120は、補正パラメータ計算機106から通知された補正パラメータに従って、可変増幅器の増幅率、及び可変移相器が与える位相回転量を制御する。補正器120は、図1の補正手段23に対応する。   The correction parameter calculator 106 notifies the corrector 120 of each receiving circuit 110 of the correction parameter. The corrector 120 corrects the amplitude and phase of the baseband signal from which the unnecessary signal output from the LPF 118 has been removed. The compensator 120 includes, for example, a variable amplifier and a variable phase shifter. The corrector 120 controls the gain of the variable amplifier and the amount of phase rotation given by the variable phase shifter according to the correction parameter notified from the correction parameter calculator 106. The corrector 120 corresponds to the correcting means 23 in FIG.

補正用信号除去部(補正用信号除去手段)121は、補正器120で補正されたベースバンド信号から、補正用信号を除去する。補正用信号除去部121は、LPF105で抽出された補正用信号と、補正パラメータ計算機106で決定された補正パラメータとに基づいて、ベースバンド信号から補正用信号を除去する。補正用信号の電力が、データ送信に用いられる各サブキャリアの電力に比べて十分に低いなど、補正用信号のデータ受信への影響が無視できる場合は、補正用信号除去部121は省略してもよい。   The correction signal removal unit (correction signal removal means) 121 removes the correction signal from the baseband signal corrected by the corrector 120. The correction signal removing unit 121 removes the correction signal from the baseband signal based on the correction signal extracted by the LPF 105 and the correction parameter determined by the correction parameter calculator 106. When the power of the correction signal is sufficiently low compared to the power of each subcarrier used for data transmission, and the influence of the correction signal on data reception can be ignored, the correction signal removing unit 121 is omitted. Is also good.

受信信号処理部107は、複数の受信回路110−1〜110−Nで受信された複数の受信信号に対して所定の信号処理を行う。受信信号処理部107が行う信号処理は、例えばビームフォーミングのための受信信号の合成処理を含む。各受信回路110において、補正器120を用いて複数の受信回路110−1〜110−N間のゲイン差及び位相差が補正されていることで、受信信号処理部107において、補正しない場合に比べて信号対雑音比の高い信号を得ることができる。   The reception signal processing unit 107 performs predetermined signal processing on a plurality of reception signals received by the plurality of reception circuits 110-1 to 110-N. The signal processing performed by the received signal processing unit 107 includes, for example, a process of combining received signals for beamforming. In each receiving circuit 110, the gain difference and the phase difference among the plurality of receiving circuits 110-1 to 110-N are corrected by using the corrector 120, so that the received signal processing unit 107 does not perform the correction. Thus, a signal having a high signal-to-noise ratio can be obtained.

なお、補正パラメータ計算機106は、補正パラメータの計算を常に行う必要はない。補正パラメータ計算機106は、例えば電源投入時や、環境温度などが大きく変化した場合に、補正パラメータの計算を行ってもよい。補正パラメータ計算機106において補正パラメータが計算されていない期間では、補正信号用局部発振器102は補正信号を出力しなくてもよい。その場合、補正パラメータが計算されていない期間において、補正用信号は受信信号に加算されない。補正器120は、補正パラメータ計算機106が補正パラメータを計算しない期間では、前回計算時の補正パラメータを使用して受信信号を補正すればよい。   It is not necessary for the correction parameter calculator 106 to always calculate the correction parameters. The correction parameter calculator 106 may calculate the correction parameter, for example, when the power is turned on or when the environmental temperature or the like changes greatly. During the period when the correction parameter is not calculated by the correction parameter calculator 106, the local oscillator for correction signal 102 may not output the correction signal. In that case, the correction signal is not added to the received signal during the period when the correction parameter is not calculated. In a period in which the correction parameter calculator 106 does not calculate the correction parameter, the corrector 120 may correct the received signal using the correction parameter obtained in the previous calculation.

以下、複数の受信回路110−1〜110−Nを代表して、n番目の受信回路110−nの動作を詳細に説明する。受信回路110−nは、アンテナ101−nを通じて無線信号を受信する。受信回路110−nにおいて、BPF111−nで不要波が除去された受信信号SRFn(t)は、理想的には下記式(1)で表される。

Figure 2020027966
上記式(1)において、SRXn(t)は、受信信号の変調成分を表す。本実施形態では、SRXn(t)は、中心サブキャリア(DCサブキャリア)が使用されていないOFDM信号を表す。また、上記式(1)において、fRFは搬送波周波数を表し、jは虚数を表し、tは時間を表す。 Hereinafter, the operation of the n-th receiving circuit 110-n will be described in detail on behalf of the plurality of receiving circuits 110-1 to 110-N. The receiving circuit 110-n receives a radio signal via the antenna 101-n. In the receiving circuit 110-n, the received signal S RFn (t) from which unnecessary waves have been removed by the BPF 111-n is ideally represented by the following equation (1).
Figure 2020027966
In the above equation (1), S RXn (t) represents a modulation component of the received signal. In the present embodiment, S RXn (t) represents an OFDM signal in which the center subcarrier (DC subcarrier) is not used. In the above formula (1), f RF represents a carrier frequency, j represents an imaginary number, and t represents time.

加算器112−nで、補正信号用局部発振器102が出力する補正用信号が加算された受信信号SRFn+CAL(t)は、下記の式(2)で表される。

Figure 2020027966
補正用信号は、周波数が受信信号の搬送波周波数と同じCW信号であり、上記式(2)において、右辺の第二項が補正用信号を表している。例えば、複数の受信回路110−1〜110−Nのそれぞれには、一定の振幅A及び位相θの補正用信号が供給される。補正用信号の振幅及び位相は、差が既知であるならば、複数の受信回路110−1〜110−N間で異なっていてもよい。補正用信号が加算された受信信号SRFn+CAL(t)は、上記式(1)と上記式(2)とを用いて、下記式(3)で表すことができる。
Figure 2020027966
The received signal S RFn + CAL (t) to which the correction signal output from the correction signal local oscillator 102 is added by the adder 112-n is represented by the following equation (2).
Figure 2020027966
The correction signal is a CW signal having the same frequency as the carrier frequency of the received signal, and in the above equation (2), the second term on the right side represents the correction signal. For example, a correction signal having a constant amplitude A and a constant phase θ is supplied to each of the plurality of receiving circuits 110-1 to 110-N. The amplitude and the phase of the correction signal may be different among the plurality of receiving circuits 110-1 to 110-N as long as the difference is known. The reception signal S RFn + CAL (t) to which the correction signal has been added can be expressed by the following equation (3) using the above equations (1) and (2).
Figure 2020027966

補正用信号が加算された受信信号SRFn+CAL(t)は、LNA113−nで増幅され、乗算器114−nでIF信号用局部発振器103が出力する局部発振信号と乗算されることで、中間周波数帯域のIF信号に変換される。BPF115−nで不要信号が除去されたIF信号SIFn(t)は、下記式(4)で表される。

Figure 2020027966
上記式(4)において、G及びφは、それぞれ受信回路110−nのゲイン及び位相である。fIFは、IF信号の周波数であり、fLOは、補正信号用局部発振器102が出力する補正用信号の周波数である。fIFとfLOとは、fIF=fRF−fLOの関係を持つ。 The received signal S RFn + CAL (t) to which the correction signal has been added is amplified by the LNA 113-n, and is multiplied by the local oscillation signal output from the IF signal local oscillator 103 by the multiplier 114-n, thereby obtaining an intermediate frequency. It is converted to an IF signal of the band. The IF signal S IFn (t) from which the unnecessary signal has been removed by the BPF 115-n is represented by the following equation (4).
Figure 2020027966
In the above equation (4), G n and φ n are the gain and phase of the receiving circuit 110-n, respectively. f IF is the frequency of the IF signal, and f LO is the frequency of the correction signal output by the correction signal local oscillator 102. f IF and f LO have a relationship of f IF = f RF −f LO .

IF信号SIFn(t)は、ADC116−nでデジタル信号に変換され、乗算器117−nでデジタル的にダウンコンバートされる。ダウンコンバートで得られたベースバンド信号SBBn(t)は、下記式(5)で表すことができる。

Figure 2020027966
上記式(5)において、e^(−j2πfIFt)は、BB信号用局部発振器104が出力する局部発振信号(CW信号)を表す。ベースバンド信号への変換処理はデジタル回路で実施されるため、ダウンコンバートにおける各受信回路110でのゲイン差、及び位相差は無視できる。仮に、ベースバンド信号へのダウンコンバートにおいてゲイン差、及び位相差があった場合でも、アナログ回路領域でのゲイン差及び位相差と共に、包括的に算出可能である。 The IF signal S IFn (t) is converted into a digital signal by the ADC 116-n, and is digitally down-converted by the multiplier 117-n. The baseband signal S BBn (t) obtained by down-conversion can be represented by the following equation (5).
Figure 2020027966
In the above equation (5), e ^ (− j2πf IF t) represents a local oscillation signal (CW signal) output from the local oscillator 104 for BB signal. Since the conversion process to the baseband signal is performed by the digital circuit, the gain difference and the phase difference in each receiving circuit 110 in the down-conversion can be ignored. Even if there is a gain difference and a phase difference in the down-conversion to the baseband signal, it can be comprehensively calculated together with the gain difference and the phase difference in the analog circuit area.

図5(a)及び(b)は、補正用信号が加算されていないベースバンド信号と補正用信号が加算されたベースバンド信号のスペクトルを示す。図5(a)及び(b)において、横軸は周波数を表し、縦軸はパワーを表す。図5(a)は、補正用信号が加算されていないベースバンド信号のスペクトルを示し、図5(b)は、補正用信号が加算されたベースバンド信号のスペクトルを示す。図5(a)及び(b)では、受信信号として、LTE DL(Down Link)用の帯域20MHzの信号が用いられている。   FIGS. 5A and 5B show spectra of the baseband signal to which the correction signal has not been added and the baseband signal to which the correction signal has been added. 5A and 5B, the horizontal axis represents frequency, and the vertical axis represents power. FIG. 5A shows the spectrum of the baseband signal to which the correction signal has not been added, and FIG. 5B shows the spectrum of the baseband signal to which the correction signal has been added. In FIGS. 5A and 5B, a signal having a band of 20 MHz for LTE DL (Down Link) is used as a received signal.

図5(a)を参照すると、補正用信号が加算されない場合、中心サブキャリアがデータ送信に使用されないため(図3も参照)、ベースバンド信号の周波数0MHz付近にスペクトルの低下が見られる。一方、補正用信号が加算されている場合、補正用信号は中心サブキャリアの周波数位置に加算されるため、図5(b)に示されるように、ベースバンド信号の周波数0MHz付近に補正用信号のスペクトルが現れる。補正用信号のパワーは任意であり、データ送信に使用されるサブキャリアのパワーより強くてもよいし、弱くてもよい。   Referring to FIG. 5 (a), when the correction signal is not added, the center subcarrier is not used for data transmission (see also FIG. 3), and therefore, a decrease in the spectrum is observed around the frequency of 0 MHz of the baseband signal. On the other hand, when the correction signal is added, the correction signal is added to the frequency position of the center subcarrier, and as shown in FIG. Spectrum appears. The power of the correction signal is arbitrary, and may be higher or lower than the power of the subcarrier used for data transmission.

上記ベースバンド信号SBBn(t)は、LPF105−nとLPF118−nとの2つに分配される。LPF105−nは、狭帯域な通過特性(図4も参照)を有しており、ベースバンド信号SBBn(t)から受信信号の変調成分SRXn(t)を除去する。LPF105−nを通じて補正パラメータ計算機106に入力される信号SCALn(t)は、下記式(6)で表すことができる。

Figure 2020027966
上記式(6)は、LPF105−nにおいて、変調成分SRXn(t)が完全に除去される理想的な場合を表している。補正パラメータ計算機106に入力される信号SCALn(t)には、補正パラメータの計算に影響を与えない範囲で、変調成分SRXn(t)の一部が含まれていてもよい。別の言い方をすると、LPF105−nの通過帯域は、中心サブキャリアの周波数成分のみを通過させる通過帯域である必要はなく、通過帯域に周辺のサブキャリアの一部が含まれていてもよい。 The baseband signal S BBn (t) is distributed to two LPFs 105-n and LPFs 118-n. The LPF 105-n has a narrow band pass characteristic (see also FIG. 4), and removes the modulation component S RXn (t) of the received signal from the baseband signal S BBn (t). The signal S CALn (t) input to the correction parameter calculator 106 through the LPF 105-n can be represented by the following equation (6).
Figure 2020027966
The above equation (6) represents an ideal case where the modulation component S RXn (t) is completely removed in the LPF 105-n. The signal S CALn (t) input to the correction parameter calculator 106 may include a part of the modulation component S RXn (t) within a range that does not affect the calculation of the correction parameter. In other words, the passband of the LPF 105-n does not need to be a passband that allows only the frequency component of the center subcarrier to pass, and the passband may include a part of the surrounding subcarriers.

補正パラメータ計算機106は、複数の受信回路110−1〜110−Nから、信号SCAL1(t)〜SCALN(t)を取得する。補正パラメータ計算機106は、信号SCAL1(t)〜SCALN(t)を比較することで、複数の受信回路110−1〜110−N間のゲイン差及び位相差を計算する。例えば、補正パラメータ計算機106は、受信回路110−1から入力される信号SCAL1(t)を基準とし、信号SCAL2(t)〜SCALN(t)と、信号SCAL1(t)との比を計算する。このようにすることで、基準である受信回路110−1と、受信回路110−2〜110−Nのそれぞれとのゲイン差や位相差を計算できる。例えば、受信回路110−1と受信回路110−nとの間のゲイン差及び位相差は、下記式(7)で計算できる。

Figure 2020027966
上記式(7)におけるG/Gは、受信回路110−1と受信回路110−nとのゲイン差を示す。また、φ−φは、受信回路110−1と受信回路110−nとの位相差を示す。 Correction parameter calculator 106, a plurality of reception circuits 110-1 to 110-N, to obtain a signal S CAL1 (t) ~S CALN ( t). Correction parameter calculator 106, by comparing the signal S CAL1 (t) ~S CALN ( t), calculates the gain difference and the phase difference between a plurality of reception circuits 110-1 to 110-N. For example, the ratio of the correction parameter calculator 106, a reference signal S CAL1 inputted from the receiving circuit 110-1 (t), the signal S CAL2 (t) to S CALN (t), signal S CAL1 and (t) Is calculated. In this manner, the gain difference and the phase difference between the reference receiving circuit 110-1 and each of the receiving circuits 110-2 to 110-N can be calculated. For example, the gain difference and the phase difference between the receiving circuit 110-1 and the receiving circuit 110-n can be calculated by the following equation (7).
Figure 2020027966
G n / G 1 in the above equation (7) indicates a gain difference between the receiving circuit 110-1 and the receiving circuit 110-n. Φ n −φ 1 indicates a phase difference between the receiving circuit 110-1 and the receiving circuit 110-n.

一方、分配された他方のベースバンド信号SBBn(t)は、LPF118−nに入力される。LPF118−nは、ベースバンド信号SBBn(t)から信号帯域外の不要信号を除去する。補正器120−nには、補正パラメータ計算機106から、振幅及び位相の補正パラメータが入力される。補正器120は、補正パラメータに従ってベースバンド信号SBBn(t)の振幅及び位相を補正する。補正後のベースバンド信号S’BBn(t)は、下記式(8)で表すことができる。

Figure 2020027966
上記したようにベースバンド信号SBBn(t)を補正することで、n番目の受信回路110−nのゲインG及び位相φを、それぞれ、基準とした1番目の受信回路110−1のゲインG及び位相φに合わせることができる。 On the other hand, the other distributed baseband signal S BBn (t) is input to the LPF 118-n. The LPF 118-n removes unnecessary signals outside the signal band from the baseband signal S BBn (t). Correction parameters for amplitude and phase are input from the correction parameter calculator 106 to the corrector 120-n. The corrector 120 corrects the amplitude and phase of the baseband signal S BBn (t) according to the correction parameters. The corrected baseband signal S ′ BBn (t) can be expressed by the following equation (8).
Figure 2020027966
By correcting the baseband signal S BBn (t) as described above, the gain G n and the phase φ n of the n -th receiving circuit 110-n are respectively used as the reference for the first receiving circuit 110-1. it can be adjusted to gain G 1 and the phase phi 1.

ここで、上記式(8)を参照すると、補正後のベースバンド信号S’BBn(t)には、補正用信号の成分Ae^jθ・Ge^jφが残存していることが分かる。この成分は、1番目の受信回路110−1について上記式(6)と同様に求められた補正用信号SCAL1(t)と等しい。補正用信号除去部121−nは、補正後のベースバンド信号S’BBn(t)から、補正用信号SCAL1(t)を差し引くことで、ベースバンド信号から補正用信号を除去する。補正用信号除去部121−nで補正用信号が除去されたベースバンド信号S”BBn(t)は、下記式(9)で表すことができる。

Figure 2020027966
複数の受信回路110−1〜110−Nにおいて、上記した処理を行うことで、各受信回路110から、1番目の受信回路110−1と等しいゲイン及び位相の信号を得ることができる。 Referring now to the equation (8), the baseband signal S 'BBn corrected (t) is found to component Ae ^ jθ · G 1 e ^ jφ 1 of the correction signal remains . This component is equal to the correction signal S CAL1 (t) obtained for the first receiving circuit 110-1 in the same manner as in the above equation (6). Correction signal removing unit 121-n from the baseband signal S 'BBn corrected (t), by subtracting the correction signal S CAL1 (t), removing the compensation signal from the baseband signal. The baseband signal S ″ BBn (t) from which the correction signal has been removed by the correction signal removal unit 121-n can be expressed by the following equation (9).
Figure 2020027966
By performing the above-described processing in the plurality of receiving circuits 110-1 to 110-N, signals having the same gain and phase as those of the first receiving circuit 110-1 can be obtained from each of the receiving circuits 110.

本実施形態では、各受信回路110において、受信信号に補正用信号を加算する。補正用信号が加算された受信信号は、乗算器114でIF信号にダウンコンバートされ、ADC116でデジタル信号に変換され、乗算器117でベースバンド信号に変換される。LPF105は、変換されたベースバンド信号から補正用信号を抽出し、抽出した補正用信号を補正パラメータ計算機106に出力する。補正パラメータ計算機106にて、各受信回路110で抽出された補正用信号を比較することで、各受信回路110のゲインや位相の特性を取得することができ、複数の受信回路間のゲイン差及び位相差を補正するための補正パラメータが得られる。   In the present embodiment, each receiving circuit 110 adds a correction signal to a received signal. The received signal to which the correction signal has been added is down-converted to an IF signal by a multiplier 114, converted to a digital signal by an ADC 116, and converted to a baseband signal by a multiplier 117. LPF 105 extracts a correction signal from the converted baseband signal, and outputs the extracted correction signal to correction parameter calculator 106. By comparing the correction signals extracted by the respective receiving circuits 110 with the correction parameter calculator 106, the gain and phase characteristics of each of the receiving circuits 110 can be obtained, and the gain difference between the plurality of receiving circuits and A correction parameter for correcting the phase difference is obtained.

本実施形態では、各受信回路110の補正器120は、補正パラメータ計算機106で得られた補正パラメータに従って、受信信号を補正する。このようにすることで、複数の受信回路110−1〜110−Nでゲイン及び位相を合わせることができ、受信装置全体としての受信信号の精度を向上させることができる。例えば、受信信号処理部107において行うビームフォーミングにおいて、正確な受信ビームフォーミングを実現できる。   In the present embodiment, the corrector 120 of each receiving circuit 110 corrects the received signal according to the correction parameters obtained by the correction parameter calculator 106. By doing so, the gain and the phase can be matched by the plurality of receiving circuits 110-1 to 110-N, and the accuracy of the received signal as the whole receiving device can be improved. For example, in the beamforming performed in the reception signal processing unit 107, accurate reception beamforming can be realized.

近年、移動体通信で一般的に使用されている直交周波数分割多重方式では、信号の中心周波数に位置するサブキャリアは使用されていない。本実施形態では、一般的に使用されていない変調波の中心サブキャリアの周波数位置に補正用信号を加算している。このようにすることで、変調精度に大きな影響を与えずに、受信信号の補正を行うことができ、装置の運用中にも、ゲイン及び位相の校正を実施できる。従って、本実施形態では、温度変化や経年変化に伴って各受信回路110のゲインや移送が変化した場合でも、高い精度の受信信号を得ることができる。   In recent years, in an orthogonal frequency division multiplexing system generally used in mobile communication, a subcarrier located at a center frequency of a signal is not used. In the present embodiment, the correction signal is added to the frequency position of the center subcarrier of the modulation wave that is not generally used. By doing so, the received signal can be corrected without significantly affecting the modulation accuracy, and the gain and phase can be calibrated even during operation of the device. Therefore, in the present embodiment, a highly accurate received signal can be obtained even when the gain or transfer of each receiving circuit 110 changes due to a temperature change or an aging change.

本実施形態では、実装にあたり、アナログ回路で必要となる回路は、補正信号用局部発振器102と、それを分配して各受信回路110において受信信号に加算する部分のみである。また、デジタル回路部分で必要となる機能は、LPF105と補正パラメータ計算機106である。各受信回路110において、ゲイン及び位相の時間変化は比較的緩やかであると考えられ、従って、補正パラメータ計算機106には高速に計算する能力は求められない。このように、本実施形態に係る無線通信装置は、比較的小さな回路基部で実現でき、低コストで受信信号を補正することができる。   In the present embodiment, the only circuits required in the analog circuit for mounting are the correction signal local oscillator 102 and the portion that distributes the local oscillator 102 and adds it to the received signal in each receiving circuit 110. The functions required in the digital circuit are the LPF 105 and the correction parameter calculator 106. In each receiving circuit 110, the time change of the gain and the phase is considered to be relatively gradual, and therefore, the correction parameter calculator 106 is not required to have the ability to calculate at high speed. As described above, the wireless communication device according to the present embodiment can be realized with a relatively small circuit base, and can correct a received signal at low cost.

特許文献1との比較では、特許文献1では信号帯域外のパイロット信号が受信信号に加算されるため、受信回路110におけるBPF111に相当するアンテナ直後のフィルタを除いて、狭帯域なフィルタを使用することができない。これに対し、本実施形態では、信号帯域内の補正用信号が使用されるため、補正用信号の加算から抽出までの部分に狭帯域なフィルタを使用することができる。従って、本実施形態では、帯域外妨害波の影響を低減でき、受信性能の劣化を抑制できる。また、特許文献1では、帯域外妨害波をBPF111に相当するフィルタのみで除去する必要があり、そのようなフィルタは基本的に高価で、かつサイズも大きい。本実施形態では、そのような高価で、かつサイズが大きいフィルタを用いる必要がないという利点もある。   In comparison with Patent Document 1, in Patent Document 1, since a pilot signal outside the signal band is added to the received signal, a narrow band filter is used except for a filter immediately after the antenna corresponding to the BPF 111 in the receiving circuit 110. Can not do. On the other hand, in the present embodiment, since the correction signal in the signal band is used, a narrow band filter can be used in a portion from addition to extraction of the correction signal. Therefore, in the present embodiment, the influence of the out-of-band interference wave can be reduced, and the deterioration of the reception performance can be suppressed. In Patent Document 1, it is necessary to remove out-of-band interference waves only with a filter corresponding to the BPF 111, and such a filter is basically expensive and large in size. The present embodiment also has an advantage that it is not necessary to use such an expensive and large-sized filter.

次いで、第2実施形態を説明する。図6は、本開示の第2実施形態に係る無線通信装置を示す。本実施形態に係る無線通信装置100aは、アンテナ101−1〜101−N、受信回路110−1〜110−N、送信回路130−1〜130−N、及び送受切替えスイッチ125−1〜125−Nを含む。本実施形態において、無線通信装置100aは、TDD(Time Division Duplex)方式で送信と受信とを交互に切り替える装置(TDD装置)として構成される。   Next, a second embodiment will be described. FIG. 6 illustrates a wireless communication device according to the second embodiment of the present disclosure. The wireless communication device 100a according to the present embodiment includes antennas 101-1 to 101-N, reception circuits 110-1 to 110-N, transmission circuits 130-1 to 130-N, and transmission / reception switches 125-1 to 125-N. N. In the present embodiment, the wireless communication device 100a is configured as a device (TDD device) that alternately switches between transmission and reception by a TDD (Time Division Duplex) method.

なお、図6においては、図2の示される受信回路110の構成要素の一部は図示が省略されている。具体的には、図6において、乗算器117、LPF118、補正器120、補正用信号除去部121などの図示が省略されている。また、図6には、図2に示されるIF信号用局部発振器103、BB信号用局部発振器104、LPF105、補正パラメータ計算機106、及び受信信号処理部107などについても、図示が省略されている。   In FIG. 6, some of the components of the receiving circuit 110 shown in FIG. 2 are not shown. Specifically, in FIG. 6, the illustration of the multiplier 117, the LPF 118, the corrector 120, the correction signal removing unit 121, and the like is omitted. 6 does not show the local oscillator 103 for the IF signal, the local oscillator 104 for the BB signal, the LPF 105, the correction parameter calculator 106, the received signal processing unit 107, and the like shown in FIG.

nを1以上N以下の整数として、送信回路130−nは、DAC(Digital to Analog Converter)131−n、乗算器132−n、BPF133−n、及び高出力増幅器134−nを有する。各送信回路130は、図示しない変調装置などが出力するIF信号を無線信号(送信信号)に変換し、無線信号をアンテナ101から送信する。各送信回路130の構成は、通常のIFコンバージョン方式の送信回路の構成と同様でよい。   The transmission circuit 130-n has a DAC (Digital to Analog Converter) 131-n, a multiplier 132-n, a BPF 133-n, and a high output amplifier 134-n, where n is an integer of 1 or more and N or less. Each transmission circuit 130 converts an IF signal output from a modulation device (not shown) or the like into a radio signal (transmission signal), and transmits the radio signal from antenna 101. The configuration of each transmission circuit 130 may be similar to the configuration of a normal IF conversion type transmission circuit.

送受切替えスイッチ125は、アンテナ101の接続先を、受信回路110と送信回路130との間で切り替える。送受切替えスイッチ125は、受信時は、アンテナ101と受信回路110とを接続する。この場合、アンテナ101で受信された無線信号は、BPF111を介して受信回路110に入力される。送受切替えスイッチ125は、送信時は、アンテナ101と接続先を送信回路130とを接続する。この場合、アンテナ101には、BPF111を介して、送信回路130の高出力増幅器134が出力する無線信号が供給される。   The transmission / reception switch 125 switches the connection destination of the antenna 101 between the reception circuit 110 and the transmission circuit 130. The transmission / reception switch 125 connects the antenna 101 and the reception circuit 110 during reception. In this case, the radio signal received by the antenna 101 is input to the receiving circuit 110 via the BPF 111. During transmission, the transmission / reception switch 125 connects the antenna 101 to the transmission circuit 130 at the connection destination. In this case, a radio signal output from the high-output amplifier 134 of the transmission circuit 130 is supplied to the antenna 101 via the BPF 111.

通常のTDD装置では、受信時に送受切替えスイッチ125が受信回路110を選択しているとき、送信回路130は信号を出力しない。本実施形態において、複数の送信回路130のうちの一部、例えば送信回路130−1は、受信時に補正用信号を生成する。送信回路130−1が生成する補正用信号は、高出力増幅器134−1の前段で複数の受信回路110−1〜110−Nに分配される。受信時、高出力増幅器134は増幅動作を停止する。   In a normal TDD device, the transmission circuit 130 does not output a signal when the transmission / reception switch 125 selects the reception circuit 110 during reception. In the present embodiment, a part of the plurality of transmission circuits 130, for example, the transmission circuit 130-1 generates a correction signal at the time of reception. The correction signal generated by the transmission circuit 130-1 is distributed to the plurality of reception circuits 110-1 to 110-N at a stage prior to the high power amplifier 134-1. During reception, the high power amplifier 134 stops the amplification operation.

図7(a)は、送信時に各送信回路130が生成する送信信号のスペクトルを示し、(b)は、受信時に送信回路130−1が生成する補正用信号のスペクトルを示す。図7(a)及び(b)において、横軸は周波数を表す。各送信回路130は、送信時は、複数のサブキャリアを含むOFDM信号を生成する(図7(a)を参照)。OFDM信号において、搬送波周波数の周波数位置のサブキャリア(中心サブキャリア)は、データ送信には使用されない。OFDM信号の搬送波周波数は、受信信号(図3を参照)の搬送波周波数と同じ周波数である。OFDM信号は、高出力増幅器134で無線送信出力まで増幅され、アンテナ101から無線送信される。   FIG. 7A shows a spectrum of a transmission signal generated by each transmission circuit 130 at the time of transmission, and FIG. 7B shows a spectrum of a correction signal generated by transmission circuit 130-1 at the time of reception. 7A and 7B, the horizontal axis represents frequency. When transmitting, each transmission circuit 130 generates an OFDM signal including a plurality of subcarriers (see FIG. 7A). In the OFDM signal, the subcarrier (center subcarrier) at the frequency position of the carrier frequency is not used for data transmission. The carrier frequency of the OFDM signal is the same as the carrier frequency of the received signal (see FIG. 3). The OFDM signal is amplified to a wireless transmission output by the high-power amplifier 134, and wirelessly transmitted from the antenna 101.

送信回路130−1は、受信時は、OFDM信号ではなく、搬送波周波数と同じ周波数のCW信号(補正用信号)を生成する(図7(b)を参照)。受信時に送信回路130−1が生成する搬送波周波数のCW信号は、各受信回路110に分配され、各受信回路110の加算器112に入力される。補正用信号を用いた複数の受信回路110−1〜110−N間のゲイン差及び位相差の補正は、第1実施形態で説明したものと同様でよい。   At the time of reception, transmission circuit 130-1 generates a CW signal (correction signal) having the same frequency as the carrier frequency instead of an OFDM signal (see FIG. 7B). The CW signal of the carrier frequency generated by the transmission circuit 130-1 at the time of reception is distributed to each reception circuit 110 and input to the adder 112 of each reception circuit 110. The correction of the gain difference and the phase difference between the plurality of receiving circuits 110-1 to 110-N using the correction signal may be the same as that described in the first embodiment.

本実施形態では、無線通信装置100aは、TDD装置として構成される。一般に、TDD装置は、送信信号帯域と受信信号帯域とが等しい。本実施形態では、受信時に送信回路130−1が生成する搬送波周波数のCW信号が、補正用信号として用いられる。本実施形態では、送信回路130−1で補正用信号を生成するため、無線通信装置100aは、補正信号用の局部発振器を有している必要がない。このように、本実施形態では、補正用信号を生成するための専用の発振器を用いなくても、受信回路の校正を行うことができる。   In the present embodiment, the wireless communication device 100a is configured as a TDD device. In general, a TDD device has a transmission signal band equal to a reception signal band. In the present embodiment, the CW signal of the carrier frequency generated by the transmission circuit 130-1 at the time of reception is used as a correction signal. In the present embodiment, since the correction signal is generated by the transmission circuit 130-1, the wireless communication device 100a does not need to have a local oscillator for the correction signal. As described above, in the present embodiment, the calibration of the receiving circuit can be performed without using the dedicated oscillator for generating the correction signal.

なお、上記各実施形態では、受信信号の搬送波周波数と同じ周波数の信号を補正用信号として用いる例を説明したが、これには限定されない。例えば、複数のサブキャリアが、搬送波周波数の周波数位置とは異なる周波数位置にデータ送信に使用されないサブキャリアを含む場合、その使用されないサブキャリアに相当する周波数成分を持つ信号を、補正用信号として用いてもよい。その場合において、使用されないサブキャリアの周波数位置が時間経過と共に変化する場合は、補正信号用局部発振器102(図2を参照)の発振周波数を使用されないサブキャリアの周波数の変化に合わせて変化させてもよい。   In each of the above embodiments, an example has been described in which a signal having the same frequency as the carrier frequency of the received signal is used as the correction signal, but the present invention is not limited to this. For example, when a plurality of subcarriers include subcarriers not used for data transmission at a frequency position different from the frequency position of the carrier frequency, a signal having a frequency component corresponding to the unused subcarrier is used as a correction signal. You may. In this case, if the frequency position of the unused subcarrier changes over time, the oscillation frequency of the correction signal local oscillator 102 (see FIG. 2) is changed according to the change of the frequency of the unused subcarrier. Is also good.

例えば、受信信号の搬送波周波数とは異なる周波数の補正用信号が用いられる場合、補正用信号の抽出には、LPF105(図2を参照)に代えて、補正用信号が加算されるサブキャリアの周波数成分を通過させるBPFなどを用いればよい。あるいは、乗算器117からLPF105への経路の途中に別の乗算器を配置し、その乗算器を用いて補正用信号の周波数位置が0となるように、ベースバンド信号の周波数をシフトさせてもよい。   For example, when a correction signal having a frequency different from the carrier frequency of the received signal is used, instead of the LPF 105 (see FIG. 2), the frequency of the subcarrier to which the correction signal is added is used to extract the correction signal. BPF that allows the components to pass through may be used. Alternatively, another multiplier may be arranged in the middle of the path from the multiplier 117 to the LPF 105, and the frequency of the baseband signal may be shifted using the multiplier so that the frequency position of the correction signal becomes zero. Good.

また、図2に示される無線通信装置100及び図6に示される無線通信装置100aは、例えばDU(Distributed Unit)として構成され、ベースバンド信号処理を行うCU(Central Unit)と接続されていてもよい。一般に、CUは屋内に設置され、光ケーブルなどの通信線を介してDUに接続される。DUとして構成される無線通信装置100は、例えば、CUから使用されないサブキャリア位置についての情報を取得し、そのサブキャリア位置の周波数の補正用信号を生成してもよい。   The wireless communication device 100 illustrated in FIG. 2 and the wireless communication device 100a illustrated in FIG. 6 are configured as, for example, DUs (Distributed Units) and may be connected to a CU (Central Unit) that performs baseband signal processing. Good. Generally, a CU is installed indoors and connected to a DU via a communication line such as an optical cable. The wireless communication device 100 configured as a DU may acquire information on a subcarrier position that is not used from a CU, for example, and generate a signal for correcting the frequency of the subcarrier position.

更に、無線通信装置100は、複数の周波数の補正用信号を生成し、複数のサブキャリア位置を利用して、各受信回路におけるゲイン及び位相の周波数特性を補正してもよい。例えば、データ送信に使用されないサブキャリアが複数ある場合、無線通信装置100は、それら複数のサブキャリアの周波数位置にそれぞれ補正用信号を同時に加算し、各周波数位置でのゲイン差及び位相差を算出してもよい。あるいは、無線通信装置100は、補正用信号が加算されるサブキャリアを変化させつつ、ゲイン差及び位相差の算出を複数回行い、複数の周波数位置でのゲイン差及び位相差を算出してもよい。   Furthermore, the wireless communication device 100 may generate a correction signal of a plurality of frequencies and correct the gain and phase frequency characteristics of each receiving circuit using the plurality of subcarrier positions. For example, when there are a plurality of subcarriers not used for data transmission, wireless communication apparatus 100 simultaneously adds a correction signal to each of the frequency positions of the plurality of subcarriers, and calculates a gain difference and a phase difference at each frequency position. May be. Alternatively, the wireless communication apparatus 100 may calculate the gain difference and the phase difference a plurality of times while changing the subcarrier to which the correction signal is added, and calculate the gain difference and the phase difference at a plurality of frequency positions. Good.

補正パラメータ計算機106は、複数の周波数位置において、複数の受信回路110間のゲイン差及び位相差を計算する。補正パラメータ計算機106は、複数の周波数位置でのゲイン差及び位相差から、直線内挿などを用いて、信号帯域全体におけるゲイン差及び位相差の周波数特性を推定してもよい。補正器120は、推定された周波数特性の逆特性でベースバンド信号の振幅及び位相を補正する。このようにすることで、ゲイン差及び位相差の周波数特性を補正可能である。補正器120における具体的な処理は、FIR(Finite Impulse Response)フィルタを適用する場合と同様である。推定した周波数特性の逆特性からインパルス応答を求め、求めたインパルス応答をタップ係数として、畳み込み演算を行うことで、周波数特性の補正が可能である。   The correction parameter calculator 106 calculates a gain difference and a phase difference between the plurality of receiving circuits 110 at a plurality of frequency positions. The correction parameter calculator 106 may estimate the frequency characteristics of the gain difference and the phase difference over the entire signal band from the gain difference and the phase difference at a plurality of frequency positions using linear interpolation or the like. The corrector 120 corrects the amplitude and phase of the baseband signal using the inverse characteristic of the estimated frequency characteristic. By doing so, the frequency characteristics of the gain difference and the phase difference can be corrected. The specific processing in the corrector 120 is the same as the case where a FIR (Finite Impulse Response) filter is applied. The frequency characteristic can be corrected by obtaining an impulse response from the inverse characteristic of the estimated frequency characteristic and performing a convolution operation using the obtained impulse response as a tap coefficient.

上記各実施形態では、BPF111とLNA113との間に加算器112を配置し、補正用信号をLNA113の直前で加算する例を説明したが、本開示はこれには限定されない。補正用信号は、ゲイン差及び位相差の校正を行う範囲に応じて、適切な位置で加算されていればよい。例えば、LNA113の部分の校正が必要ない場合は、加算器112をLNA113と乗算器114との間に配置し、IF信号への変換の直前の位置で、受信信号に補正用信号を加算すればよい。   In each of the above embodiments, an example has been described in which the adder 112 is disposed between the BPF 111 and the LNA 113 and the correction signal is added immediately before the LNA 113. However, the present disclosure is not limited to this. The correction signal only needs to be added at an appropriate position according to the range in which the gain difference and the phase difference are calibrated. For example, when the calibration of the LNA 113 is not necessary, the adder 112 is disposed between the LNA 113 and the multiplier 114, and the correction signal is added to the received signal at a position immediately before the conversion into the IF signal. Good.

上記各実施形態では、受信回路110がIFコンバージョン方式の受信回路として構成される例を説明したが、本開示はこれには限定されない。受信回路110は、ZeroIF方式や、ダイレクトRF方式の受信回路として構成されていてもよい。受信回路110がZeroIF方式の受信回路として構成される場合、受信信号はいったんIF信号に変換されることなく、アナログ信号のままベースバンド信号に変換され、その後、ADCにてデジタル信号に変換される。受信回路110がダイレクトRF方式の受信回路として構成される場合、RF信号はダウンコンバートされることなく、RF帯域の受信信号のまま、ADCにてデジタル信号に変換される。   In each of the above embodiments, an example has been described in which the receiving circuit 110 is configured as an IF conversion type receiving circuit, but the present disclosure is not limited to this. The receiving circuit 110 may be configured as a ZeroIF system or a direct RF system receiving circuit. When the receiving circuit 110 is configured as a ZeroIF receiving circuit, the received signal is not converted into an IF signal but is converted into a baseband signal as an analog signal, and then converted into a digital signal by an ADC. . When the receiving circuit 110 is configured as a receiving circuit of the direct RF system, the RF signal is converted into a digital signal by the ADC without being down-converted and as a received signal in the RF band.

IFコンバージョン方式とZeroIF方式とを比較すると、ZeroIF方式ではDCリークが発生する可能性がある。DCリークが発生した場合、中心サブキャリアの周波数位置に補正用信号が加算されたベースバンド信号から補正用信号を正確に抽出できない可能性がある。従って、補正用信号の抽出を正確に行うという観点では、IFコンバージョン方式が適していると言える。ダイレクトRF方式についても、DCリークが発生しないため、IFコンバージョン方式と同様に、補正用信号の抽出を正確に行えると考えられる。   Comparing the IF conversion method and the ZeroIF method, DC leakage may occur in the ZeroIF method. When the DC leak occurs, the correction signal may not be accurately extracted from the baseband signal obtained by adding the correction signal to the frequency position of the center subcarrier. Therefore, it can be said that the IF conversion method is suitable from the viewpoint of accurately extracting the correction signal. Also in the direct RF system, since no DC leakage occurs, it is considered that the correction signal can be accurately extracted as in the case of the IF conversion system.

上記各実施形態では、無線信号が特定のサブキャリアがデータ送信に使用されない変調方式で変調されている例を説明したが、本開示はこれには限定されない。補正用信号は、必ずしもデータ送信に使用されないサブキャリアの周波数位置に加算される必要はなく、データ送信に使用されるサブキャリアの周波数位置に加算されてもよい。別の言い方をすると、補正用信号の周波数は、データ送信に使用されるサブキャリアの周波数と同じでもよい。ただし、データ送信に使用されるサブキャリアに補正用信号が加算されると、変調精度の劣化が起こりやすくなる。変調精度の劣化を防ぐためには、補正用信号除去部121において、正確に補正用信号を除去すればよい。あるいは、補正用信号の加算を変調精度の劣化が許容できる十分に信号対雑音比の高い時間帯に実施し、又は補正用信号の信号電力を低く設定するなど、適切な運用を行うことで、受信性能劣化への影響を低減してもよい。   In each of the above embodiments, an example has been described in which a wireless signal is modulated by a modulation method in which a specific subcarrier is not used for data transmission, but the present disclosure is not limited to this. The correction signal does not necessarily need to be added to the frequency position of a subcarrier not used for data transmission, but may be added to the frequency position of a subcarrier used for data transmission. Stated another way, the frequency of the correction signal may be the same as the frequency of the subcarrier used for data transmission. However, when a correction signal is added to a subcarrier used for data transmission, deterioration of modulation accuracy is likely to occur. In order to prevent the modulation accuracy from deteriorating, the correction signal removing section 121 may accurately remove the correction signal. Alternatively, the addition of the correction signal is performed during a time period when the signal-to-noise ratio is high enough to allow the deterioration of the modulation accuracy, or the signal power of the correction signal is set to be low, and appropriate operation is performed. The effect on reception performance degradation may be reduced.

以上、本開示の実施形態を詳細に説明したが、本開示は、上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で上記実施形態に対して変更や修正を加えたものも、本開示に含まれる。   As described above, the embodiments of the present disclosure have been described in detail. However, the present disclosure is not limited to the above-described embodiments, and changes and modifications may be made to the above-described embodiments without departing from the spirit of the present disclosure. Are included in the present disclosure.

例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。   For example, some or all of the embodiments described above can be described as in the following supplementary notes, but are not limited thereto.

[付記1]
それぞれが、対応するアンテナを通じて無線信号を受信する複数の受信回路と、
前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成する補正パラメータ算出手段とを備え、
前記複数の受信回路は、それぞれ、
受信信号に、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算する補正用信号加算手段と、
前記補正用信号が加算された受信信号から前記補正用信号を抽出して前記補正パラメータ算出手段に出力する補正用信号抽出手段と、
前記補正パラメータ算出手段が算出した補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する補正手段とを含み、
前記補正パラメータ算出手段は、前記補正用信号抽出手段を通じて各受信回路から入力される補正用信号に基づいて前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出する無線通信装置。
[Appendix 1]
A plurality of receiving circuits, each receiving a radio signal through a corresponding antenna,
Compensation means for calculating at least one of the gain and the phase shift between the plurality of receiving circuits, and a correction parameter calculating means for generating a correction parameter of the received signal in each receiving circuit based on the calculated shift,
The plurality of receiving circuits, respectively,
Correction signal addition means for adding a correction signal of a predetermined frequency within the frequency band of the reception signal to the reception signal,
Correction signal extraction means for extracting the correction signal from the received signal to which the correction signal has been added and outputting the signal to the correction parameter calculation means,
Correction means for correcting at least one of the amplitude and phase of the received signal according to the correction parameter calculated by the correction parameter calculation means,
The wireless communication device, wherein the correction parameter calculation means calculates at least one of a gain and a phase shift between the plurality of reception circuits based on the correction signals input from the reception circuits through the correction signal extraction means.

[付記2]
前記受信信号は複数のサブキャリアを含み、
前記補正用信号は、データ送信に使用されないサブキャリアの周波数と等しい周波数の信号である付記1に記載の無線通信装置。
[Appendix 2]
The received signal includes a plurality of subcarriers,
The wireless communication device according to claim 1, wherein the correction signal is a signal having a frequency equal to a frequency of a subcarrier not used for data transmission.

[付記3]
前記複数のサブキャリアのうち、前記受信信号の搬送波周波数の周波数位置に対応するサブサブキャリアはデータ送信に使用されず、
前記補正用信号は前記搬送波周波数と等しい周波数の信号である付記2に記載の無線通信装置。
[Appendix 3]
Of the plurality of subcarriers, subsubcarriers corresponding to the frequency position of the carrier frequency of the received signal are not used for data transmission,
3. The wireless communication device according to claim 2, wherein the correction signal is a signal having a frequency equal to the carrier frequency.

[付記4]
前記受信信号は直交周波数分割多重方式で変調された信号である付記1から3何れか1つに記載の無線通信装置。
[Appendix 4]
The wireless communication device according to any one of supplementary notes 1 to 3, wherein the received signal is a signal modulated by an orthogonal frequency division multiplexing method.

[付記5]
前記補正用信号として、周波数が異なる複数の信号が用いられ、
前記補正パラメータ算出手段は、複数の周波数位置において前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、前記ゲイン及び位相の少なくとも一方のずれの周波数特性を算出する付記1から4何れか1つに記載の無線通信装置。
[Appendix 5]
A plurality of signals having different frequencies are used as the correction signal,
The correction parameter calculating means calculates at least one of a gain and a phase shift between the plurality of receiving circuits at a plurality of frequency positions, and calculates a frequency characteristic of at least one of the gain and phase shifts. The wireless communication device according to any one of the above.

[付記6]
前記補正手段は、前記ゲイン及び位相の少なくとも一方のずれの周波数特性の逆特性で前記受信信号の振幅及び位相の少なくとも一方を補正する付記5に記載の無線通信装置。
[Appendix 6]
6. The wireless communication apparatus according to claim 5, wherein the correction unit corrects at least one of the amplitude and the phase of the received signal using a reverse characteristic of a frequency characteristic of at least one of the gain and the phase.

[付記7]
前記補正用信号を生成する補正信号用局部発振器を更に有する付記1から6何れか1つに記載の無線通信装置。
[Appendix 7]
7. The wireless communication device according to any one of supplementary notes 1 to 6, further comprising a correction signal local oscillator that generates the correction signal.

[付記8]
それぞれが、前記受信信号の搬送波周波数と同じ周波数の送信信号を生成する、前記受信回路の数と同数の複数の送信回路と、
それぞれが、前記アンテナの接続先を、前記受信回路と、前記送信回路との間で切り替える複数の送受切替えスイッチとを更に有し、
前記無線信号の送信と前記無線信号の受信とは、交互に切り替えて実施され、
前記複数の送受切替えスイッチは、それぞれ、前記無線信号の送信時は前記アンテナと前記送信回路とを接続し、前記無線信号の受信時は前記アンテナと前記受信回路とを接続し、
前記複数の送信回路の少なくとも1つは、前記無線信号の受信時に前記補正用信号を生成して前記複数の受信回路に出力する付記1から6何れか1つに記載の無線通信装置。
[Appendix 8]
Each of which generates a transmission signal having the same frequency as the carrier frequency of the reception signal, a plurality of transmission circuits as many as the number of the reception circuits,
Each has a connection destination of the antenna, the receiving circuit, further comprising a plurality of transmission and reception changeover switch to switch between the transmission circuit,
The transmission of the wireless signal and the reception of the wireless signal are performed by switching alternately,
The plurality of transmission / reception changeover switches, respectively, connects the antenna and the transmission circuit when transmitting the radio signal, and connects the antenna and the reception circuit when receiving the radio signal,
The wireless communication device according to any one of supplementary notes 1 to 6, wherein at least one of the plurality of transmission circuits generates the correction signal when receiving the wireless signal and outputs the signal to the plurality of reception circuits.

[付記9]
前記複数の受信回路は、それぞれ、前記補正用信号が加算された受信信号をベースバンド信号に変換するベースバンド信号変換手段を更に有する付記1から8何れか1つに記載の無線通信装置。
[Appendix 9]
The wireless communication device according to any one of supplementary notes 1 to 8, wherein each of the plurality of receiving circuits further includes a baseband signal conversion unit configured to convert a received signal to which the correction signal is added into a baseband signal.

[付記10]
前記複数の受信回路は、それぞれ、前記補正用信号が加算された受信信号を中間周波数信号に変換する中間周波数信号変換手段を更に有し、
前記ベースバンド信号変換手段は、前記中間周波数信号を前記ベースバンド信号に変換する付記9に記載の無線通信装置。
[Appendix 10]
The plurality of receiving circuits each further include an intermediate frequency signal converting unit that converts the received signal to which the correction signal has been added into an intermediate frequency signal,
The wireless communication device according to claim 9, wherein the baseband signal conversion unit converts the intermediate frequency signal into the baseband signal.

[付記11]
前記補正用信号抽出手段は、前記ベースバンド信号から前記補正用信号を抽出する付記9又は10に記載の無線通信装置。
[Appendix 11]
The wireless communication device according to supplementary note 9 or 10, wherein the correction signal extracting unit extracts the correction signal from the baseband signal.

[付記12]
前記補正パラメータ算出手段は、前記複数の受信回路の前記補正用信号抽出手段が抽出した補正用信号のうちの1つを基準の補正用信号とし、各受信回路の前記補正用信号抽出手段が抽出した補正用信号と前記基準の補正用信号との比を算出することで、前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出する付記1から11何れか1つに記載の無線通信装置。
[Supplementary Note 12]
The correction parameter calculation means sets one of the correction signals extracted by the correction signal extraction means of the plurality of reception circuits as a reference correction signal, and the correction signal extraction means of each reception circuit extracts the correction signal. The radio according to any one of supplementary notes 1 to 11, wherein a ratio between the corrected correction signal and the reference correction signal is calculated to calculate at least one of a gain and a phase shift between the plurality of receiving circuits. Communication device.

[付記13]
前記補正手段が振幅及び位相の少なくとも一方を補正した受信信号から、前記補正用信号の成分を除去する補正用信号除去手段を更に有する付記1から12何れか1つに記載の無線通信装置。
[Appendix 13]
13. The wireless communication apparatus according to claim 1, further comprising a correction signal removing unit configured to remove a component of the correction signal from a received signal in which at least one of an amplitude and a phase is corrected by the correction unit.

[付記14]
前記補正用信号が加算された受信信号を帯域制限するアナログフィルタと、
前記帯域制限された受信信号をデジタル信号に変換するアナログデジタル変換器とを更に有し、
前記補正用信号抽出手段は、デジタル信号に変換された受信信号から前記補正用信号を抽出する付記1から13何れか1つに記載の無線通信装置。
[Appendix 14]
An analog filter for band-limiting the received signal to which the correction signal has been added,
An analog-to-digital converter that converts the band-limited received signal to a digital signal,
14. The wireless communication device according to any one of supplementary notes 1 to 13, wherein the correction signal extracting unit extracts the correction signal from a received signal converted into a digital signal.

[付記15]
複数のアンテナを通じて、複数の無線信号を受信し、
受信された複数の受信信号のそれぞれに、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算し、
前記補正用信号が加算された複数の受信信号のそれぞれから前記補正用信号を抽出し、
前記複数の受信信号から抽出された補正用信号に基づいて、前記複数の無線信号を受信する複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成し、
前記算出された補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する受信信号補正方法。
[Appendix 15]
Receive multiple radio signals through multiple antennas,
To each of the plurality of received signals received, add a correction signal of a predetermined frequency in the frequency band of the received signal,
Extracting the correction signal from each of the plurality of received signals to which the correction signal has been added,
Based on the correction signals extracted from the plurality of reception signals, at least one of a gain and a phase shift between the plurality of receiving circuits that receive the plurality of wireless signals is calculated, and based on the calculated shifts, Generating a correction parameter of the received signal in the receiving circuit,
A received signal correction method for correcting at least one of an amplitude and a phase of the received signal according to the calculated correction parameter.

10:無線通信装置
20:受信回路
21:補正用信号加算手段
22:補正用信号抽出手段
23:補正手段
30:補正パラメータ算出手段
40:アンテナ
100:無線通信装置
101:アンテナ
102:補正信号用局部発振器
103:IF信号用局部発振器
104:BB信号用局部発振器
105、118:LPF
106:補正パラメータ計算機
107:受信信号処理部
110:受信回路
111、115:BPF
112:加算器
113:LNA
114、117:乗算器
116:ADC
120:補正器
121:補正用信号除去部
125:送受切替えスイッチ
130:送信回路
131:DAC
132:乗算器
133:BPF
134:高出力増幅器
10: Wireless communication device 20: Receiving circuit 21: Correction signal adding unit 22: Correction signal extraction unit 23: Correction unit 30: Correction parameter calculation unit 40: Antenna 100: Wireless communication device 101: Antenna 102: Localization for correction signal Oscillator 103: IF signal local oscillator 104: BB signal local oscillator 105, 118: LPF
106: correction parameter calculator 107: reception signal processing unit 110: reception circuits 111 and 115: BPF
112: Adder 113: LNA
114, 117: multiplier 116: ADC
120: Corrector 121: Correction signal remover 125: Transmission / reception switch 130: Transmission circuit 131: DAC
132: Multiplier 133: BPF
134: High power amplifier

Claims (10)

それぞれが、対応するアンテナを通じて無線信号を受信する複数の受信回路と、
前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成する補正パラメータ算出手段とを備え、
前記複数の受信回路は、それぞれ、
受信信号に、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算する補正用信号加算手段と、
前記補正用信号が加算された受信信号から前記補正用信号を抽出して前記補正パラメータ算出手段に出力する補正用信号抽出手段と、
前記補正パラメータ算出手段が算出した補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する補正手段とを含み、
前記補正パラメータ算出手段は、前記補正用信号抽出手段を通じて各受信回路から入力される補正用信号に基づいて前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出する無線通信装置。
A plurality of receiving circuits, each receiving a radio signal through a corresponding antenna,
Compensation means for calculating at least one of the gain and the phase shift between the plurality of receiving circuits, and a correction parameter calculating means for generating a correction parameter of the received signal in each receiving circuit based on the calculated shift,
The plurality of receiving circuits, respectively,
Correction signal addition means for adding a correction signal of a predetermined frequency within the frequency band of the reception signal to the reception signal,
Correction signal extraction means for extracting the correction signal from the reception signal to which the correction signal has been added and outputting the signal to the correction parameter calculation means,
Correction means for correcting at least one of the amplitude and phase of the received signal according to the correction parameter calculated by the correction parameter calculation means,
The wireless communication device, wherein the correction parameter calculation means calculates at least one of a gain and a phase shift between the plurality of reception circuits based on the correction signals input from the reception circuits through the correction signal extraction means.
前記受信信号は複数のサブキャリアを含み、
前記補正用信号は、データ送信に使用されないサブキャリアの周波数と等しい周波数の信号である請求項1に記載の無線通信装置。
The received signal includes a plurality of subcarriers,
The wireless communication device according to claim 1, wherein the correction signal is a signal having a frequency equal to a frequency of a subcarrier not used for data transmission.
前記複数のサブキャリアのうち、前記受信信号の搬送波周波数の周波数位置に対応するサブサブキャリアはデータ送信に使用されず、
前記補正用信号は前記搬送波周波数と等しい周波数の信号である請求項2に記載の無線通信装置。
Of the plurality of subcarriers, subsubcarriers corresponding to the frequency position of the carrier frequency of the received signal are not used for data transmission,
The wireless communication device according to claim 2, wherein the correction signal is a signal having a frequency equal to the carrier frequency.
前記補正用信号として、周波数が異なる複数の信号が用いられ、
前記補正パラメータ算出手段は、複数の周波数位置において前記複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、前記ゲイン及び位相の少なくとも一方のずれの周波数特性を算出する請求項1から3何れか1項に記載の無線通信装置。
A plurality of signals having different frequencies are used as the correction signal,
The correction parameter calculation unit calculates at least one of a gain and a phase shift between the plurality of receiving circuits at a plurality of frequency positions, and calculates a frequency characteristic of at least one of the gain and phase shifts. 3. The wireless communication device according to claim 3.
前記補正手段は、前記ゲイン及び位相の少なくとも一方のずれの周波数特性の逆特性で前記受信信号の振幅及び位相の少なくとも一方を補正する請求項4に記載の無線通信装置。   The wireless communication apparatus according to claim 4, wherein the correction unit corrects at least one of the amplitude and the phase of the received signal using an inverse characteristic of a frequency characteristic of at least one of the gain and the phase. 前記補正用信号を生成する補正信号用局部発振器を更に有する請求項1から5何れか1項に記載の無線通信装置。   The wireless communication device according to claim 1, further comprising a correction signal local oscillator that generates the correction signal. それぞれが、前記受信信号の搬送波周波数と同じ周波数の送信信号を生成する、前記受信回路の数と同数の複数の送信回路と、
それぞれが、前記アンテナの接続先を、前記受信回路と、前記送信回路との間で切り替える複数の送受切替えスイッチとを更に有し、
前記無線信号の送信と前記無線信号の受信とは、交互に切り替えて実施され、
前記複数の送受切替えスイッチは、それぞれ、前記無線信号の送信時は前記アンテナと前記送信回路とを接続し、前記無線信号の受信時は前記アンテナと前記受信回路とを接続し、
前記複数の送信回路の少なくとも1つは、前記無線信号の受信時に前記補正用信号を生成して前記複数の受信回路に出力する請求項1から5何れか1項に記載の無線通信装置。
Each of which generates a transmission signal having the same frequency as the carrier frequency of the reception signal, a plurality of transmission circuits as many as the number of the reception circuits,
Each has a connection destination of the antenna, the receiving circuit, further comprising a plurality of transmission and reception changeover switch to switch between the transmission circuit,
The transmission of the wireless signal and the reception of the wireless signal are performed by switching alternately,
The plurality of transmission / reception changeover switches, respectively, connects the antenna and the transmission circuit when transmitting the radio signal, and connects the antenna and the reception circuit when receiving the radio signal,
The wireless communication device according to claim 1, wherein at least one of the plurality of transmission circuits generates the correction signal when receiving the wireless signal and outputs the signal to the plurality of reception circuits.
前記補正手段が振幅及び位相の少なくとも一方を補正した受信信号から、前記補正用信号の成分を除去する補正用信号除去手段を更に有する請求項1から7何れか1項に記載の無線通信装置。   8. The wireless communication apparatus according to claim 1, further comprising a correction signal removing unit configured to remove a component of the correction signal from a received signal in which the correction unit corrects at least one of an amplitude and a phase. 9. 前記補正用信号が加算された受信信号を帯域制限するアナログフィルタと、
前記帯域制限された受信信号をデジタル信号に変換するアナログデジタル変換器とを更に有し、
前記補正用信号抽出手段は、デジタル信号に変換された受信信号から前記補正用信号を抽出する請求項1から8何れか1項に記載の無線通信装置。
An analog filter for band-limiting the received signal to which the correction signal has been added,
An analog-to-digital converter that converts the band-limited received signal to a digital signal,
9. The wireless communication apparatus according to claim 1, wherein the correction signal extracting unit extracts the correction signal from a received signal converted into a digital signal. 10.
複数のアンテナを通じて、複数の無線信号を受信し、
受信された複数の受信信号のそれぞれに、前記受信信号の周波数帯域内の所定周波数の補正用信号を加算し、
前記補正用信号が加算された複数の受信信号のそれぞれから前記補正用信号を抽出し、
前記複数の受信信号から抽出された補正用信号に基づいて、前記複数の無線信号を受信する複数の受信回路間のゲイン及び位相の少なくとも一方のずれを算出し、該算出したずれに基づいて各受信回路における受信信号の補正パラメータを生成し、
前記算出された補正パラメータに従って前記受信信号の振幅及び位相の少なくとも一方を補正する受信信号補正方法。
Receive multiple radio signals through multiple antennas,
To each of the plurality of received signals received, add a correction signal of a predetermined frequency in the frequency band of the received signal,
Extracting the correction signal from each of the plurality of received signals to which the correction signal has been added,
Based on the correction signals extracted from the plurality of reception signals, at least one of a gain and a phase shift between the plurality of receiving circuits that receive the plurality of wireless signals is calculated, and based on the calculated shifts, Generating a correction parameter of the received signal in the receiving circuit,
A received signal correction method for correcting at least one of an amplitude and a phase of the received signal according to the calculated correction parameter.
JP2018150421A 2018-08-09 2018-08-09 Wireless communication device and received signal correction method Active JP7147350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018150421A JP7147350B2 (en) 2018-08-09 2018-08-09 Wireless communication device and received signal correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150421A JP7147350B2 (en) 2018-08-09 2018-08-09 Wireless communication device and received signal correction method

Publications (2)

Publication Number Publication Date
JP2020027966A true JP2020027966A (en) 2020-02-20
JP7147350B2 JP7147350B2 (en) 2022-10-05

Family

ID=69620390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150421A Active JP7147350B2 (en) 2018-08-09 2018-08-09 Wireless communication device and received signal correction method

Country Status (1)

Country Link
JP (1) JP7147350B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319412A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Wireless receiver and wireless transmitter
JP2008263585A (en) * 2007-03-19 2008-10-30 Hitachi Kokusai Electric Inc Receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319412A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Wireless receiver and wireless transmitter
JP2008263585A (en) * 2007-03-19 2008-10-30 Hitachi Kokusai Electric Inc Receiver

Also Published As

Publication number Publication date
JP7147350B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US9231715B2 (en) I/Q mismatch compensation method and apparatus
RU2664392C2 (en) Method and device for interference suppression
CN106464617B (en) interference elimination device and method
US10355769B2 (en) Narrowband signal transport sub-system for distributed antenna system
JP5608939B2 (en) Receiver, transmitter, feedback device, transceiver, and signal processing method
JP4983365B2 (en) Wireless communication device
US9712369B2 (en) Method and apparatus for low-complexity frequency dependent IQ imbalance compensation
US20110051790A1 (en) Radio communication device and method
US20080039024A1 (en) Amplifying Circuit, Radio Communication Circuit, Radio Base Station Device and Radio Terminal Device
US9577689B2 (en) Apparatus and methods for wide bandwidth analog-to-digital conversion of quadrature receive signals
US20110026509A1 (en) Wireless communication apparatus
KR101127467B1 (en) Receiver capable of estimating and compensating iq mismatch
EP2754239A1 (en) Linearization for a single power amplifier in a multi-band transmitter
CN111865353A (en) RF front end with reduced receiver desensitization
US11539570B2 (en) I/Q imbalance compensation
JP5766369B2 (en) Diversity receiving apparatus and diversity receiving method
US20220416447A1 (en) MRC Combined Distributed Phased Antenna Arrays
WO2013080451A1 (en) Wireless reception device and wireless reception method in wireless communication system
JP2005348236A (en) Array antenna transmitter and receiver, and calibration method
JP2007295331A (en) Radio base station device
JP7147350B2 (en) Wireless communication device and received signal correction method
US9991994B1 (en) Method and terminal device for reducing image distortion
US11456762B2 (en) Control device and radio communication device
Chen et al. Experimental demonstration of RF-pilot-based phase noise mitigation for millimeter-wave systems
US10142041B2 (en) Homodyne receiver calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151