JP2008262979A - 薄膜トランジスタ素子およびその製造方法 - Google Patents

薄膜トランジスタ素子およびその製造方法 Download PDF

Info

Publication number
JP2008262979A
JP2008262979A JP2007102954A JP2007102954A JP2008262979A JP 2008262979 A JP2008262979 A JP 2008262979A JP 2007102954 A JP2007102954 A JP 2007102954A JP 2007102954 A JP2007102954 A JP 2007102954A JP 2008262979 A JP2008262979 A JP 2008262979A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
semiconductor layer
protective mask
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007102954A
Other languages
English (en)
Inventor
Tsuneo Nakamura
恒夫 中村
Masaya Okamoto
昌也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007102954A priority Critical patent/JP2008262979A/ja
Publication of JP2008262979A publication Critical patent/JP2008262979A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】薄膜トランジスタ素子を、フォトリソ工程の回数を少なくして製造することができるようにする。
【解決手段】薄膜トランジスタ素子は、基板の主表面1aに配置されたゲート電極層と、ゲート絶縁層と、第1の半導体層4と、これを覆うように配置される第2の半導体層と、上記ゲート絶縁層、第1の半導体層4および上記第2の半導体層を介して上記ゲート電極層の上側にそれぞれ配置されるソース電極層6aおよびドレイン電極層6bとを備える。ソース電極層6aおよびドレイン電極層6bは平面的に見てチャネル領域12を挟んで互いに対向している。ソース電極層6aとドレイン電極層6bとを結ぶ直線の方向71に垂直な方向をチャネル幅方向72としたとき、チャネル幅方向72に関するソース電極層6aとドレイン電極層6bとの対向する区間の幅は、チャネル領域12のチャネル幅方向の寸法Wchよりも長い。
【選択図】図1

Description

本発明は、薄膜トランジスタ素子およびその製造方法に関するものである。
薄膜トランジスタ素子を有するTFT表示用パネルは液晶テレビなどに用いられ、近年、その需要は大きくなってきている。一方、製造コストの削減も大きな課題となっている。
そのような表示装置における薄膜トランジスタ素子(以下「TFT」という。)の平面図を図19に示す。ソース配線30とゲート配線20との交差部の近傍にTFTが構成されている。このTFTは、ゲート配線20から分岐して延在するゲート電極2と、このゲート電極2の上に部分的に覆い被さるように配置されたソース電極層6aとドレイン電極層6bとを備えている。ソース電極層6aはソース配線30から分岐したものである。図19におけるXX−XX線に関する矢視断面図を図20に示す。
図21〜図25および図20を参照してこのTFTの製造方法の一例について説明する。まず、図21に示すように、ガラス基板1の上にアルミニウム(Al)などの材料からなるゲート電極層2が所定形状に形成される。次に、図22に示すように、ゲート絶縁層3としてチッ化珪素(SiNx)、第1の半導体層4としてa−Si層、および、第2の半導体層5としてn+Si層がプラズマCVD(plasma-enhanced chemical vapor deposition)法などにより重ねて形成される。
次いで、第1の半導体層4および第2の半導体層5に関しては、「Siアイランド」と称されるTFT中央部を構成する所定形状の部分のみを残すための保護マスク(図示せず)を上側に形成する。この後、CF4などのF系の半導体ガスを用いたドライエッチング法などにより保護マスクで被覆された領域以外の領域にある第2の半導体層5および第1の半導体層4を除去する。こうして、図23に示す構造となる。その後、ITO膜などで構成される画素電極層(図示せず)の形成などの工程を経て、スパッタ法などにより、ソース電極層6a、ドレイン電極層6bの材料となるAlなどからなる導電層6を、図24に示すように形成する。さらに、図25に示すように、導電層6を所定形状のソース電極層6aおよびドレイン電極層6bに加工するための保護マスク10を形成する。その後、保護マスク10をマスクとして反応性ドライエッチング法などにより導電層6を加工することによって、図20に示すようにソース電極層6aおよびドレイン電極層6bを得る。このとき、TFTのチャネル領域12を覆っていた第2の半導体層5を除去しているが、これは導電層6の加工時間を少し延ばすことにより、連続処理で達成している。このようにして、表示装置の構成要素としてのTFTが形成される。
図21〜図25および図20に示した従来技術に基づくTFTの製造方法では、第1および第2の半導体層4,5のパターニング加工で1回、そして、導電層6からソース電極層6aおよびドレイン電極層6bを得るためのパターニング加工のために1回で、合計2回の保護マスク形成工程を経ている。他にもゲート電極層2(図21参照)や画素電極層(図示せず)の加工にも保護マスク形成工程を経ている。
ここで、図25に示した保護マスク10は、通常、フォトレジスト(以下、単に「レジスト」という。)を用いた、いわゆる、フォトリソグラフィ工程(以後、「フォトリソ工程」という。)により形成される。フォトリソ工程は、基板の前処理工程、レジスト塗付工程、レジスト乾燥工程(プリベーク工程)、露光工程、現像工程、レジスト焼成工程(ポストベーク工程)と多くの工程を必要とする。さらに、被加工層を所定形状に加工した後にもレジスト剥離工程、洗浄工程などの工程も必要である。工程数が問題となるのみでなく、露光機は非常に高価な装置であり、その他の必要な周辺機器も多く、設備費の負担も大きなものとなっている。また、機能性材料であるレジスト材料や現像液、剥離液なども高価である。したがって、フォトリソ工程は、製品の製造原価の中で大きなウエイトを占める工程となっている。そのため、フォトリソ工程の回数を減らすための開発が活発に試みられている。
特開2000−206571号公報(特許文献1)には、フォトリソ工程の回数を減らす製造方法が開示されている。特許文献1の製造方法では、図21に示すようにガラス基板1上にゲート電極層2を形成した後、ゲート絶縁層3、第1の半導体層4、第2の半導体層5、および、導電層6を順次積層して形成し、その後、図26に示すように、第1の半導体層4、第2の半導体層5、および、導電層6を加工するための保護マスク11を形成する。この際、この保護マスク11の膜厚は一様ではなく、TFTのチャネル領域に相当する部分11aは、図25に示した保護マスク10のように完全に開口しているのではなく、図26に示すように、他の部分より薄くなるものの開口はしないように形成されている。このような形状の保護マスク11を形成しておくことで、部分11aにある中間膜厚のレジストが無くなるまでの時間が、チャネル領域における第1,第2の半導体層4,5に対するエッチング時間の差となる。その結果、チャネル領域以外では第1,第2の半導体層4,5が全てエッチングされても、チャネル領域においては第2の半導体層5はエッチングされるが第1の半導体層4はほとんどエッチングされないようにすることができる。このように、特許文献1では、従来、少なくとも2回のフォトリソ工程が必要であった半導体層加工および導電層加工を1回のフォトリソ工程で済ませられる製造方法を開示している。
また、近年、カラーフィルタ(CF)製造などにインクジェット法を用いた生産方法が開発され、フォトリソ工程を行なわず、直接、所望パターンを描画する生産技術として注目されている。特開2006−208750号公報(特許文献2)には、インクジェット法に適した表示装置用基板とその製造方法などの技術が開示されている。
特開2000−206571号公報 特開2006−208750号公報
特許文献1に記載されている製造方法では、中間膜厚のレジストが無くなるまでの時間が、チャネル領域における第1,第2の半導体層4,5のエッチング時間の差となることを前提にTFTの加工を行なっているが、これは生産管理上、非常に厳しいものとなっている。具体的には、導電層6、第2の半導体層5、および、第1の半導体層4の厚さは、それぞれ、100〜500nm、10〜100nm、100〜200nmと非常に薄い。また、1枚の基板内での各層の膜厚分布は数%〜10%あり、1枚の基板内でのエッチング速度分布は数%〜10%ある。さらに、2段階の膜厚を有する保護マスク11の形成は、レジストに対して照射する光の量で制御している。特に、レジストを薄く残存させる部分での膜厚を所望の値にするためには、完全には現像されないレベルでの光量を精密に制御する必要があり、非常に管理が困難な工程である。したがって、膜厚分布、エッチング速度分布、および、レジスト残存膜厚分布の僅かな管理不良によるだけでも、第1の半導体層4の膜厚が大きく変わってしまい、場合によっては完全に無くなってしまうこともありうる。逆に、第2の半導体層5が残存してしまうこともありうる。特許文献1に開示された技術には、このような問題があり、TFTの歩留まりに影響を与えていた。
また、特許文献2は、インクジェット法による配線パターン形成に適したTFT構造やその製造方法を開示しているが、Siアイランドやソース層、ドレイン層の形成加工に適したTFT構造やその製造方法に関する技術は教示されていない。
そこで、本発明は、フォトリソ工程の回数を少なくして製造することができる薄膜トランジスタ素子およびその製造方法を提供することを目的とする。
上記目的を達成するため、本発明に基づく薄膜トランジスタ素子は、主表面を有する基板と、上記主表面に配置されたゲート電極層と、上記ゲート電極層を覆うように上記主表面上に配置されるゲート絶縁層と、上記ゲート絶縁層の上側に配置される第1の半導体層と、上記第1の半導体層を覆うように配置される第2の半導体層と、上記ゲート絶縁層、上記第1の半導体層および上記第2の半導体層を介して上記ゲート電極層の上側にそれぞれ配置されるソース電極層およびドレイン電極層とを備える。上記ソース電極層および上記ドレイン電極層は平面的に見てチャネル領域を挟んで互いに対向している。上記ソース電極層と上記ドレイン電極層とを結ぶ直線の方向に垂直な方向をチャネル幅方向としたとき、チャネル幅方向に関する上記ソース電極層と上記ドレイン電極層との対向する区間の幅は、上記チャネル領域のチャネル幅方向の寸法よりも長い。
上記目的を達成するため、本発明に基づく薄膜トランジスタ素子の製造方法は、基板の主表面にゲート電極層を形成する工程と、上記ゲート電極層を覆うように上記主表面上にゲート絶縁層を形成する工程と、上記ゲート絶縁層の上側に第1の半導体層を形成する工程と、上記第1の半導体層の上側に第2の半導体層を形成する工程と、上記第2の半導体層の上側に導電体層を形成する工程と、上記導電体層上に、チャネル領域を挟んで互いに対向するソース電極層およびドレイン電極層のパターンに対応する第1の保護マスクを形成する工程と、上記第1の保護マスクをマスクとして上記導電体層、上記第2の半導体層を除去加工する工程と、上記第1の保護マスクの上記チャネル領域の少なくとも一部を含む領域を被覆するように第2の保護マスクを形成する工程と、上記第1および第2の保護マスクをマスクとして上記第1の半導体層を除去加工する工程とを含む。このうち、上記第1の保護マスクを形成する工程において、上記ソース電極層と上記ドレイン電極層とを結ぶ直線の方向に垂直な方向をチャネル幅方向としたとき、上記チャネル幅方向に関する上記ソース電極層と上記ドレイン電極層との対向する区間の幅は、上記チャネル領域のチャネル幅方向の寸法よりも長い。
本発明によれば、TFTは、対向幅をチャネル幅よりも広くしているので、フォトリソグラフィ工程を削減して製造することに適した構造となる。この構造のTFTであれば、上述のTFTの製造方法によって、安価で特性の安定した製品を歩留まり良く製造することができる。
(実施の形態1)
(構成)
図1、図2を参照して、本発明に基づく実施の形態1における薄膜トランジスタ素子(TFT)について説明する。このTFTの平面図を図1に示す。図1におけるII−II線に関する矢視断面図を図2に示す。このTFT101は、主表面1aを有する基板1と、主表面1aに配置されたゲート電極層2と、ゲート電極層2を覆うように主表面1a上に配置されるゲート絶縁層3と、ゲート絶縁層3の上側に配置される第1の半導体層4と、第1の半導体層4を覆うように配置される第2の半導体層5と、ゲート絶縁層3、第1の半導体層4および第2の半導体層5を介してゲート電極層2の上側にそれぞれ配置されるソース電極層6aおよびドレイン電極層6bとを備える。ソース電極層6aおよびドレイン電極層6bは平面的に見てチャネル領域12を挟んで互いに対向している。ソース電極層6aとドレイン電極層6bとを結ぶ直線の方向71に垂直な方向をチャネル幅方向72としたとき、チャネル幅方向72に関するソース電極層6aとドレイン電極層6bとの対向する区間の幅(以下「対向幅」という。)は、チャネル領域12のチャネル幅方向72の寸法Wch(以下「チャネル幅」という。)よりも長くなっている。
図1において「チャネル領域12」とは、ソース電極層6aとドレイン電極層6bとの間でなおかつ第1の半導体層4が露出している領域である。図1の例では、ソース電極層6aの長さWsとドレイン電極層6bの長さWdとは等しいので、対向幅はソース電極層6aの幅(以下「ソース電極幅」という。)Wsともドレイン電極層6bの幅(以下「ドレイン電極幅」という。)Wdとも等しい。
(作用・効果)
従来の製造方法において理想的とされていた形状は、図3に示すように、対向幅Wと第1の半導体層4の幅とが等しい形状であるが、実際には保護マスクの位置合わせの都合により、図4に示すように対向幅Wより第1の半導体層4の幅Wiの方が広い構造となっていた。したがって、チャネル幅はソース電極幅またはドレイン電極幅に等しくなっていた。このように、従来の製造方法では、TFTのチャネル幅は、ソース電極幅またはドレイン電極幅で決まるか、あるいは、ソース電極幅およびドレイン電極幅と同一幅を有する第1の半導体層の幅によって決まっており、本発明に基づくTFTにおけるように、対向幅をTFTのチャネル幅より広くするという発想が無かった。
本発明に基づくTFTでは、対向幅をチャネル幅よりも広くしている。このような構造は、次に説明する、フォトリソ工程を削減したTFTの製造方法に適した構造であり、安価で特性の安定したTFTを歩留まり良く製造することができる。
本発明に基づくTFTでは、対向幅がチャネル幅より大きくなっているので、チャネル幅は第1の半導体層の幅によって決まる。図1に示したTFT101では、チャネル領域12のチャネル幅方向の寸法は、第1の半導体層4の幅と等しい。すなわち、露出する第1の半導体層4の幅の全体がチャネル領域12となっている。このようになっていれば、第1の半導体層4の無駄を少なくし、チャネル領域12としてよく活用することができるので、好ましい。
(変形例)
図1では、ソース電極幅Wsとドレイン電極幅Wdとが同一となっているが、大小関係はこれに限らず、図5に示すTFT102のようにチャネル幅Wch<ソース電極幅Ws<ドレイン電極幅Wdであってもよい。この場合、対向幅はWsに等しい。あるいは、図6に示すTFT103のようにチャネル幅Wch<ドレイン電極幅Wd<ソース電極幅Wsであってもよい。この場合、対向幅はWdに等しい。
さらに、図7に示すTFT104のように、パターニング後に残存させる第1の半導体層4がソース電極層6aやドレイン電極層6bの両方またはいずれか一方のチャネル領域12と反対の側から外にはみ出す形状であってもよい。
(製造方法)
図8〜図12および図2を参照して、本実施の形態におけるTFTの製造方法について説明する。本実施の形態におけるTFTの製造方法は、基板の主表面にゲート電極層を形成する工程と、前記ゲート電極層を覆うように前記主表面上にゲート絶縁層を形成する工程と、前記ゲート絶縁層の上側に第1の半導体層を形成する工程と、前記第1の半導体層の上側に第2の半導体層を形成する工程と、前記第2の半導体層の上側に導電体層を形成する工程と、前記導電体層上に、チャネル領域を挟んで互いに対向するソース電極層およびドレイン電極層のパターンに対応する第1の保護マスクを形成する工程と、前記第1の保護マスクをマスクとして前記導電体層、前記第2の半導体層を除去加工する工程と、前記第1の保護マスクの前記チャネル領域の少なくとも一部を含む領域を被覆するように第2の保護マスクを形成する工程と、前記第1および第2の保護マスクをマスクとして前記第1の半導体層を除去加工する工程とを含み、前記第1の保護マスクを形成する工程において、前記ソース電極層と前記ドレイン電極層とを結ぶ直線の方向に垂直な方向をチャネル幅方向としたとき、前記チャネル幅方向に関する前記ソース電極層と前記ドレイン電極層との対向する区間の幅は、前記チャネル領域のチャネル幅方向の寸法よりも長い。
この製造方法について、以下図面を参照しながらより詳しく説明する。
用いる基板はガラス、プラスチックなどからなるものであってよいが、ここでは一例としてガラス基板1を用いる。図8に示すようにガラス基板1の主表面1aにアルミニウム(Al)などの材料からなるゲート電極層2を形成する。次いで図9に示すように、層間絶縁膜3としてSiNxを200〜500nm、第1の半導体層4として、ドーパントをドープしていないSi層を100〜200nm、第2の半導体層5として、n型のドーパントであるリン(P)などをドープしたn+Si層を30〜100nm、プラズマCVD法により連続して重ねるように形成する。さらにその上側に、図9に示すようにアルミニウムなどからなる導電層6をスパッタ法などで、200〜500nm形成する。次に、レジストを塗布することにより図10に示すように第1の保護マスク10を形成する。
その後、ドライエッチング法により導電層6および第2の半導体層5を連続して加工することによって、図11に示す構造とする。この場合、オーバーエッチングにより第1の半導体層4の一部までが除去加工されるのが通常である。導電層6であるAl層の除去加工には、Cl2、BCl3、CCl4などの塩素系ガスを用いる。第2の半導体層5であるSi層のエッチングには、CF4やNF3などのF系(フッ素系)のガスを用いる。また、CF4を用いた場合には、O2ガスを添加することで、Si表面などにポリマーが発生せず、平滑な表面性状が高速で得られるのでより好ましい。また、Al層をNHO3とH3PO4との混酸により加工して、Si層をドライエッチングする。もしくは、Si層もHNO3とNFとの混酸、もしくは、NaOHなどのアルカリでウェット処理することも可能である。
こうして図11に示す構造に至った後、チャネル領域を形成する第1の半導体層4aに向けてマスク材料をインクジェット法により塗布し、乾燥させ、焼成することによって、図12に示すように第2の保護マスク13を形成する。その後、第1の保護マスク10および第2の保護マスク13をマスクとして、第1の半導体層4をドライエッチング法などにより加工する。さらに第1の保護マスク10を除去することで図2に示したTFT101を得ることができる。その後、画素電極層(図示せず)の形成などの工程を経て、TFTを備えた表示装置用の基板、すなわちいわゆるTFT基板(「TFTパネル」ともいう。)が得られる。
(インクジェット法)
ここでは第2の保護マスク13の形成にインクジェット法を用いた。インクジェット法によってマスク材料をインクとして吐出して塗布する方法によれば、安価な装置で簡便に所望のパターンを形成することができる。本実施の形態におけるTFTの製造方法としては、前記第2の保護マスクを形成する工程は、インクジェット法によって、前記第2の保護マスクの材料を吐出ヘッドから前記基板に向けて吐出させることによって行なわれることが好ましい。
ただし、インクジェット法による保護マスクの形成には、問題点もあるので、その問題点および対処法について以下に説明する。
図13に平面図で示すように、基板の主表面上に広く形成された第1の半導体層4の上側に狭い領域のみを覆うソース電極層6aおよびドレイン電極層6bが載せられた構造がある場合を想定する。インクジェット法によってマスク材料を図14に示すように正確にチャネル領域となるべき対向部分に着弾させることができれば、こうして形成される第2の保護マスク13を利用して第1の半導体層4を加工して、その結果、図15に示すように正確なチャネル領域12を形成することができる。図15では第1の半導体層4が露出しているのはチャネル領域12のみとなっており、主表面1aのうち第1の半導体層4がない部分ではゲート絶縁層3が最上面として露出している。
しかし、実際には、TFT基板には多数のTFTが配列されるのであって、基板全体にわたって、各TFTの電極同士の対向部分に高速で均一かつ正確にマスク材料を着弾させることは困難である。着弾位置がずれた一例を図16に示す。第2の保護マスク13がこのようにずれて形成された場合、この第2の保護マスク13をマスクとして第1の半導体層4を加工した結果、図17に示すようにソース電極層6aとドレイン電極層6bとが対向している区間(以下「対向区間」という。)の一部にしか第1の半導体層4が露出していない形となる。したがって、対向区間の全部がチャネル領域となるのではなく、対向区間の一部のみがチャネル領域12となっている。このため、チャネル領域12のチャネル幅W′は本来予定していた幅Wより短くなる。このように、現実に得られるチャネル幅は着弾位置のずれ量に依存してその都度ばらつくこととなってしまう。
そこで、着弾位置のずれによってチャネル幅が影響を受けないようにすることが好ましい。着弾位置のずれは、インクジェットヘッドまたは基板の移動方向の慣性力により移動方向に平行に生じ易い。あるいは、装置構成によっては特有の方向にずれ易い場合もある。本発明では、対向幅の方が予定しているチャネル幅よりも長くなっているので、与えられた対向幅の中のいずれかの部分にチャネル領域が収まればよい。そこで、図18に示すように、インクジェット方式で着弾位置がずれ易い方向73にチャネル方向72を合わせ、対向幅を通常生じるずれ量より長くしておけば、着弾位置がずれたとしても対向区間の中のどの部分にチャネル領域が形成されるかが変動するだけであって、チャネル幅Wch自体は一定とすることができる。チャネル幅Wchは、吐出されるマスク材料の液滴サイズまたは着弾後に広がるサイズによって規定されることになる。すなわち、前記第2の保護マスクを形成する工程は、前記チャネル幅方向と前記基板が前記吐出ヘッドに対して相対移動する方向とを一致させて行なわれることが好ましい。
したがって、個々のTFTで形成されるチャネル幅は均一なものとなり、TFT特性も均一となる。第2の保護マスク13をインクジェット法により形成することによって、複雑なフォトリソ工程を1回にすることができる。したがって、保護マスクとしてのレジストを剥離する工程を1回にすることができる。その結果、製造工程を短縮し、製造コストを低減することができる。
ここで、ゲート電極層2は、Al層に限らず、Al/Tiの積層構造や、Ti/Al/Tiの3層構造、もしくは、Taなどの金属層であってもよい。ゲート電極層2の材料としては、通常のTFTで用いられる材料が使用可能である。同様に成膜方法もスパッタ法に限らず、蒸着法なども採用可能である。その他の層間絶縁膜、ソース電極層、ドレイン電極層を形成する導電体材料およびその製造方法も上述した材料、製造方法に限定されず、通常のTFTで用いられる材料および製造方法が適用可能である。
また、第2の保護マスク13を形成するマスク材料もフォトレジストに限らず、その他の有機物でも無機物でもよく、次工程で行なう除去加工のマスクとしてのプロセス耐性がありさえすれば採用可能である。インクジェット法で形成する場合は、そのマスク材料は、インクジェット法で吐出可能な程度の粘度、表面張力にする必要がある。使用する材料によっては、物性値を調整する添加剤などを入れる必要がある。いずれにしても、これらの条件、材料などは本発明に基づくTFTの構造および製造方法に影響を及ぼすものではない。
(濡れ性)
なお、上述の製造方法の説明では、図10、図11に示すように第1の保護マスク10を用いて導電層6および第2の半導体層5を加工した後、特別な処理をせずに引き続き第2の保護マスク13を形成する例(図12参照)を示したが、第2の保護マスク13を安定して形成するという観点からは、第2の保護マスク13を形成する前に、第2の保護マスク13のマスク材料の、第1の保護マスク10に対する濡れ性を低下させるか、あるいは、第1の半導体層4に対する濡れ性を上げるための表面処理を実施した方がより好ましい。濡れ性に関するこれら両方の操作を実現できれば好ましいが、一方だけの実現であっても好ましい。すなわち、第1の保護マスク10は第2の保護マスク13のマスク材料をはじくようにしておくことが好ましく、第1の半導体層4は第2の保護マスク13のマスク材料に濡れ易くしておくことが好ましい。こうしておけば、第2の保護マスク13の形成のために着弾させるマスク材料を以って有効に第1の半導体層4を被覆することが容易となる。すなわち、本実施の形態におけるTFTの製造方法としては、前記第2の保護マスクを形成する工程の前に、前記第2の保護マスクに関する前記第1の保護マスクの濡れ性を低下させる表面処理工程を含むことが好ましい。
第2の半導体層5のエッチングをウェット処理やCF4にO2を添加したガスで行なった場合、第2の保護マスク13として用いるレジストは、同質の第1の保護膜に対して濡れ易くなり、接触角10°以下となる。すなわち、濡れ性が上がる。同時に、第2の半導体層に対しては、中間の濡れ性(接触角25〜40°程度)を示す。これらのことから、第2の保護マスクを形成するために着弾したレジストが、第1の保護マスク上に濡れ拡がってしまい、第1の半導体層を有効に被覆しない、あるいは、有効に被覆しにくいという現象が起こることがある。それに対して、酸素を添加しないCF4のF系ガスで10秒から90秒程度プラズマ処理を実施することで、第2の保護マスク13の材料としてのレジストの第1の半導体層に対する濡れ性はあまり変化しないが、第1の保護マスクに対する濡れ性は、低下する。すなわち、撥液性を増す方向に変化する。これは、処理時間に依存し、接触角40〜70°という撥液性をもたせることができる。したがって、第2の保護マスク13の形成前には、酸素を添加しないCF4のF系ガスのプラズマ処理を10〜90秒実施することで、第1の保護マスク10上での濡れ拡がりを抑制することができ、第2の保護マスク13を第1の半導体層4上に有効に配置することができる。したがって、本実施の形態におけるTFTの製造方法としては、前記表面処理工程は、酸素を含有せずフッ素を含有するガスによるプラズマ処理によって行なうことが好ましい。
あるいは、上述したように第1の半導体層4は第2の保護マスク13のマスク材料に濡れ易くしておくことが好ましいのだから、本実施の形態におけるTFTの製造方法としては、前記第2の保護マスクを形成する工程の前に、前記第2の保護マスクに関する前記第1の半導体層の濡れ性を増大させる表面処理工程を含むことが好ましい。
第2の半導体層5の加工をCF4とO2との混合ガスで行ない、終了前に混合ガスのうちのO2の方の供給を止めてCF4のみで処理を行なうという連続処理を行なうことが基板汚染の防止や工程短縮などの観点からより好ましい。大気圧プラズマによるインライン連続処理も生産性が良いので、好ましい。
(実施の形態2)
(製造方法)
本発明に基づく実施の形態2におけるTFTの製造方法について説明する。第1の保護マスクを用いて導電体層6および第2の半導体層5を加工することによって図11に示した構成に到達するまでは、実施の形態1で説明した製造方法と同じである。しかし、本実施の形態では、この後の第2の保護マスク13をインクジェット法で形成するのではなく、印刷法で形成する。すなわち、前記第2の保護マスクを形成する工程は、印刷法によって行なわれる。
ここでいう「印刷法」としては、グラビアオフセット印刷法や、反転印刷法などの印刷法が採用可能である。ここでいう「反転印刷法」とは、光村印刷株式会社が開発した技術であり、1種類以上のインクによる複数パターンをブランケット胴に乗せ、基板に一括して転移させることによってパターン形成を行なうものである。
これらの印刷法も印刷方向に関しては転写ローラーのひずみやスリップなどの要因による位置ずれが生じ易いが、安価な設備で高速に処理できるため製造コストを低減できる。印刷方向をチャネル幅方向に合わせることで、実施の形態1における着弾位置のずれへの対処と同様に、印刷位置ずれにも対処することができる。したがって、印刷法の欠点を解消することができ、本発明に基づくTFTの構成を有効に機能させることができる。
なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
本発明に基づく実施の形態1における薄膜トランジスタ素子の平面図である。 図1におけるII−II線に関する矢視断面図である。 従来の製造方法によるTFTの理想的な構成の平面図である。 従来の製造方法によるTFTの実際の構成の平面図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の第1の変形例の平面図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の第2の変形例の平面図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の第3の変形例の平面図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の製造方法の第1の工程の説明図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態1における薄膜トランジスタ素子の製造方法の第5の工程の説明図である。 インクジェット法による保護マスクの形成についての第1の説明図である。 インクジェット法による保護マスクの形成についての第2の説明図である。 図14に示した保護マスクによって得られるチャネル領域の説明図である。 インクジェット法による保護マスクの形成についての第3の説明図である。 図16に示した保護マスクによって得られるチャネル領域の説明図である。 インクジェット法による保護マスクの形成についての第4の説明図である。 従来技術に基づく表示装置における薄膜トランジスタ素子の平面図である。 図19におけるXX−XX線に関する矢視断面図である。 従来技術に基づく薄膜トランジスタ素子の製造方法の第1の工程の説明図である。 従来技術に基づく薄膜トランジスタ素子の製造方法の第2の工程の説明図である。 従来技術に基づく薄膜トランジスタ素子の製造方法の第3の工程の説明図である。 従来技術に基づく薄膜トランジスタ素子の製造方法の第4の工程の説明図である。 従来技術に基づく薄膜トランジスタ素子の製造方法の第5の工程の説明図である。 従来技術に基づく薄膜トランジスタ素子の製造方法のさらなる工程の説明図である。
符号の説明
1 ガラス基板、2 ゲート電極層、3 ゲート絶縁層、4 第1の半導体層、5 第2の半導体層、6 導電層、6a ソース電極層、6b ドレイン電極層、10 保護マスク(第1の保護マスク)、11 保護マスク、11a (チャネル領域に相当する)部分、12 チャネル領域、13 第2の保護マスク、20 ゲート配線、30 ソース配線、71 方向、72 チャネル方向、73 ずれ易い方向、101,102,103,104 TFT。

Claims (9)

  1. 主表面を有する基板と、
    前記主表面に配置されたゲート電極層と、
    前記ゲート電極層を覆うように前記主表面上に配置されるゲート絶縁層と、
    前記ゲート絶縁層の上側に配置される第1の半導体層と、
    前記第1の半導体層を覆うように配置される第2の半導体層と、
    前記ゲート絶縁層、前記第1の半導体層および前記第2の半導体層を介して前記ゲート電極層の上側にそれぞれ配置されるソース電極層およびドレイン電極層とを備え、
    前記ソース電極層および前記ドレイン電極層は平面的に見てチャネル領域を挟んで互いに対向しており、前記ソース電極層と前記ドレイン電極層とを結ぶ直線の方向に垂直な方向をチャネル幅方向としたとき、チャネル幅方向に関する前記ソース電極層と前記ドレイン電極層との対向する区間の幅は、前記チャネル領域のチャネル幅方向の寸法よりも長い、薄膜トランジスタ素子。
  2. 前記チャネル領域の前記チャネル幅方向の寸法は、前記第1の半導体層の幅と等しい、請求項1に記載の薄膜トランジスタ素子。
  3. 基板の主表面にゲート電極層を形成する工程と、
    前記ゲート電極層を覆うように前記主表面上にゲート絶縁層を形成する工程と、
    前記ゲート絶縁層の上側に第1の半導体層を形成する工程と、
    前記第1の半導体層の上側に第2の半導体層を形成する工程と、
    前記第2の半導体層の上側に導電体層を形成する工程と、
    前記導電体層上に、チャネル領域を挟んで互いに対向するソース電極層およびドレイン電極層のパターンに対応する第1の保護マスクを形成する工程と、
    前記第1の保護マスクをマスクとして前記導電体層、前記第2の半導体層を除去加工する工程と、
    前記第1の保護マスクの前記チャネル領域の少なくとも一部を含む領域を被覆するように第2の保護マスクを形成する工程と、
    前記第1および第2の保護マスクをマスクとして前記第1の半導体層を除去加工する工程とを含み、
    前記第1の保護マスクを形成する工程において、前記ソース電極層と前記ドレイン電極層とを結ぶ直線の方向に垂直な方向をチャネル幅方向としたとき、前記チャネル幅方向に関する前記ソース電極層と前記ドレイン電極層との対向する区間の幅は、前記チャネル領域のチャネル幅方向の寸法よりも長い、薄膜トランジスタ素子の製造方法。
  4. 前記第2の保護マスクを形成する工程の前に、前記第2の保護マスクに関する前記第1の保護マスクの濡れ性を低下させる表面処理工程を含む、請求項3に記載の薄膜トランジスタ素子の製造方法。
  5. 前記表面処理工程は、酸素を含有せずフッ素を含有するガスによるプラズマ処理によって行なう、請求項4に記載の薄膜トランジスタ素子の製造方法。
  6. 前記第2の保護マスクを形成する工程の前に、前記第2の保護マスクに関する前記第1の半導体層の濡れ性を増大させる表面処理工程を含む、請求項3から5のいずれかに記載の薄膜トランジスタ素子の製造方法。
  7. 前記第2の保護マスクを形成する工程は、インクジェット法によって、前記第2の保護マスクの材料を吐出ヘッドから前記基板に向けて吐出させることによって行なわれる、請求項3から6のいずれかに記載の薄膜トランジスタ素子の製造方法。
  8. 前記第2の保護マスクを形成する工程は、前記チャネル幅方向と前記基板が前記吐出ヘッドに対して相対移動する方向とを一致させて行なわれる、請求項7に記載の薄膜トランジスタ素子の製造方法。
  9. 前記第2の保護マスクを形成する工程は、印刷法によって行なわれる、請求項3から6のいずれかに記載の薄膜トランジスタ素子の製造方法。
JP2007102954A 2007-04-10 2007-04-10 薄膜トランジスタ素子およびその製造方法 Withdrawn JP2008262979A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102954A JP2008262979A (ja) 2007-04-10 2007-04-10 薄膜トランジスタ素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102954A JP2008262979A (ja) 2007-04-10 2007-04-10 薄膜トランジスタ素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008262979A true JP2008262979A (ja) 2008-10-30

Family

ID=39985252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102954A Withdrawn JP2008262979A (ja) 2007-04-10 2007-04-10 薄膜トランジスタ素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008262979A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074178A (ja) * 2012-07-03 2018-05-10 アイメック・ヴェーゼットウェーImec Vzw 薄膜トランジスタの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074178A (ja) * 2012-07-03 2018-05-10 アイメック・ヴェーゼットウェーImec Vzw 薄膜トランジスタの製造方法

Similar Documents

Publication Publication Date Title
EP3171411B1 (en) Thin film transistor and preparation method therefor, array substrate, and display apparatus
KR100942078B1 (ko) 반도체 소자의 미세 패턴 형성 방법
JP2008166765A (ja) Tftアレイ構造及びその製造方法
US20140131310A1 (en) Display Panel With Pixel Define Layer, Manufacturing Method Of Pixel Define Layer Of Display Panel, And Display Device
US9704896B2 (en) Display device and manufacturing method thereof
WO2018006446A1 (zh) 薄膜晶体管阵列基板及其制造方法
JP2008142956A (ja) 印刷版及びその製造方法並びに液晶表示装置
US20070235410A1 (en) Method of forming a darkfield etch mask
CN104392928A (zh) 薄膜晶体管的制造方法
JP2005346043A5 (ja)
KR20100112471A (ko) 박막트랜지스터 기판의 제조 방법과 이에 의한 박막트랜지스터 기판
JP2006295121A (ja) 薄膜トランジスタを用いた液晶表示装置及びその製造方法
JP2008098642A (ja) 薄膜トランジスタ基板の製造方法
JP2008262979A (ja) 薄膜トランジスタ素子およびその製造方法
US7811638B2 (en) Multi-printed etch mask process to pattern features
JP4675730B2 (ja) 膜パターン形成用基板ならびに膜パターン形成基板、薄膜トランジスタ形成基板、液晶表示素子とその製造方法
US10411132B2 (en) Thin film transistor and method for manufacturing the same
KR100532085B1 (ko) 감광막 인쇄장치 및 이를 이용한 액정표시소자의 제조방법
US8652964B2 (en) Method and apparatus for the formation of an electronic device
JP4341054B2 (ja) 液晶表示装置及びその製造方法
KR100611753B1 (ko) 박막 트랜지스터의 제조방법
JP4652718B2 (ja) 液晶ディスプレイの製造方法
JP5422972B2 (ja) 有機薄膜トランジスタアレイの製造方法、及び有機薄膜トランジスタアレイ
WO2006117907A1 (ja) 半導体素子及び回路基板の製造方法、並びに、半導体素子及び回路基板
JP5200408B2 (ja) 薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706