JP2008258289A - Semiconductor-chip supporter and manufacturing method for semiconductor device using the same - Google Patents

Semiconductor-chip supporter and manufacturing method for semiconductor device using the same Download PDF

Info

Publication number
JP2008258289A
JP2008258289A JP2007096960A JP2007096960A JP2008258289A JP 2008258289 A JP2008258289 A JP 2008258289A JP 2007096960 A JP2007096960 A JP 2007096960A JP 2007096960 A JP2007096960 A JP 2007096960A JP 2008258289 A JP2008258289 A JP 2008258289A
Authority
JP
Japan
Prior art keywords
region
cut
semiconductor chip
lead
lead portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007096960A
Other languages
Japanese (ja)
Inventor
Masahiro Iitaka
正裕 飯高
Katsuki Uchiumi
勝喜 内海
Shinya Tsujimoto
晋也 辻本
Takashi Takada
隆 高田
Toshiyuki Fukuda
敏行 福田
Hiroharu Omori
弘治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007096960A priority Critical patent/JP2008258289A/en
Publication of JP2008258289A publication Critical patent/JP2008258289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a lead sag generated in a process separating a plurality of collectively resin-sealed semiconductor devices, to prevent short-circuit while suppressing an increase in an electric resistance and to provide visually observed control for the lead sag. <P>SOLUTION: A plurality of wirings 3 (lead sections) for device regions 4 are formed so that their widths are narrowed gradually with approaches to a region 5 to be cut from the adjacent section of the region 5 to be cut mutually connecting the device regions 4. That is, the presence of generation of sags and the quantity of sags can be determined by comparing the sectional shapes computed from the sizes of the external-shapes of the extended sections of the wirings 3 and the shapes of the cut surfaces (that is, cut surfaces of the narrow width sections 3a) of wirings after dicing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体チップ支持体およびそれを用いた半導体装置の製造方法に関する。   The present invention relates to a semiconductor chip support and a method for manufacturing a semiconductor device using the same.

近年、電子機器の小型化及び高機能化に対応するために、半導体部品(装置)の高密度実装がますます強く要求されるようになってきている。そのため半導体部品について、小型化及び薄型化が急速に進展しつつあり、生産性向上を図る種々の工夫がなされている(特許文献1、2、3)。   In recent years, high-density mounting of semiconductor components (devices) has been increasingly demanded in order to cope with downsizing and high functionality of electronic devices. For this reason, semiconductor components are rapidly becoming smaller and thinner, and various devices for improving productivity have been made (Patent Documents 1, 2, and 3).

たとえば、複数の装置領域(デバイス領域)を設けたリードフレームを用い、各装置領域に半導体チップを搭載し、電気的に接続した後、前記複数の装置領域を一括に樹脂封止し、ダイシングによって個片に切断することにより、QFN(Quad Flat Non leaded package)形態の半導体装置が製造されている。リードフレームでなく、回路形成された基板(配線基板)を用いて形成されるBGAなどの半導体装置もある。   For example, a lead frame provided with a plurality of device regions (device regions) is used, a semiconductor chip is mounted in each device region, and after electrically connecting, the plurality of device regions are collectively sealed with resin, and dicing is performed. A semiconductor device of QFN (Quad Flat Non leaded package) type is manufactured by cutting into individual pieces. There is also a semiconductor device such as a BGA formed by using a circuit-formed substrate (wiring substrate) instead of a lead frame.

上記のタイプの半導体装置では、リード部の切断面が装置側面に露出することとなる。
ところが、ダイシング工程では、金属よりなるリード部と封止樹脂等との一体化物をダイシングブレードなどで切断するので、切断時の摩擦(ダイシング応力)によって、リード部の切断面の外周にその金属成分がこびりつくダレと呼ばれる現象が発生する(以下、リードダレと言う)。このリードダレは、リードの材料に、低硬度の銅または銅合金を用いた場合により顕著に現れる。
In the semiconductor device of the above type, the cut surface of the lead portion is exposed on the side surface of the device.
However, in the dicing process, an integrated product of the lead portion made of metal and the sealing resin is cut with a dicing blade or the like, so that the metal component is formed on the outer periphery of the cut surface of the lead portion by friction during cutting (dicing stress). A phenomenon called “sagging” occurs (hereinafter referred to as “leading sagging”). This lead sagging appears more prominently when low hardness copper or copper alloy is used as the lead material.

QFNにおいてリードダレが実装面から突出すると、リード自体の実装面の平坦度が悪化して、実装基板への接続強度が低下し、基板実装性が不安定になってしまう。半田めっきが施されている場合にはめっき膜はダレをより起こしやすい。QFN、BGAとも、リードダレによって短絡が起こることもある。   When the lead sagging protrudes from the mounting surface in QFN, the flatness of the mounting surface of the lead itself deteriorates, the connection strength to the mounting substrate decreases, and the substrate mounting property becomes unstable. When solder plating is applied, the plating film is more likely to sag. Both QFN and BGA may be short-circuited due to read sagging.

これに対処するべく、ダイシングにより切断されるリード部の切断部分の厚みを他の部分よりも薄くすることにより、切断面の面積を小さくして、リードダレの絶対量を低減し、短絡を防ぐようにしたものもある。
特開2002−246530公報 特開2003−23134公報 特開2005−57067公報
In order to cope with this, the thickness of the cut portion of the lead portion cut by dicing is made thinner than other portions, thereby reducing the area of the cut surface, reducing the absolute amount of lead sag, and preventing short circuit Some of them are
JP 2002-246530 A JP 2003-23134 A JP-A-2005-57067

しかし、上記したようにリード部の切断部分の厚みを他の部分よりも薄くすると、リードダレの発生を抑え、短絡を防止できるものの、電気抵抗が増大するという問題がある。
一方、リード部の切断面とリードダレとはほぼ同一平面をなすため、リードダレを目視的に認識して管理することは困難であるという問題がある。
However, if the thickness of the cut portion of the lead portion is made thinner than the other portions as described above, the occurrence of lead sagging can be suppressed and a short circuit can be prevented, but the electrical resistance increases.
On the other hand, since the cut surface of the lead portion and the lead sag are substantially on the same plane, there is a problem that it is difficult to visually recognize and manage the lead sag.

本発明は、リードダレを抑え、電気抵抗の増大も抑えることを目的とする。またリードダレを目視的に管理できるようにすることを目的とする。   An object of the present invention is to suppress lead sagging and to suppress an increase in electrical resistance. It is another object of the present invention to make it possible to visually manage lead sagging.

上記課題を解決するために、本発明の半導体チップ支持体は、半導体チップを搭載するためのチップ搭載部とその外周側に少なくとも配置された複数のリード部とを有するデバイス領域を複数、被切断領域で連結して配列した半導体チップ支持体であって、前記デバイス領域の複数のリード部は前記被切断領域内まで延びるとともに、前記被切断領域の近傍部から前記被切断領域に近づくにしたがって徐々に幅が狭まっていることを特徴とする。これによれば、リード部の幅を狭めることで切断面の面積が小さくなり、リードダレを抑えられるだけでなく、そのリード部の幅を被切断領域の近傍でのみしかも徐々に狭めているため、電気抵抗の増大を抑えることができる。   In order to solve the above problems, a semiconductor chip support according to the present invention includes a plurality of device regions each having a chip mounting portion for mounting a semiconductor chip and a plurality of lead portions arranged at least on the outer peripheral side thereof. A semiconductor chip support connected and arranged in a region, wherein the plurality of lead portions of the device region extend into the cut region and gradually approach the cut region from the vicinity of the cut region. The width is narrowed. According to this, by reducing the width of the lead portion, the area of the cut surface is reduced and not only the lead sagging can be suppressed, but also the width of the lead portion is gradually reduced in the vicinity of the region to be cut, An increase in electrical resistance can be suppressed.

複数のデバイス領域および被切断領域は基板に設けられており、各デバイス領域の複数のリード部はチップ搭載部内あるいはチップ搭載部外に半導体チップのための接続端子を有するように配置されている、いわゆる配線基板であってよい。   The plurality of device regions and the region to be cut are provided on the substrate, and the plurality of lead portions of each device region are arranged so as to have connection terminals for the semiconductor chip in the chip mounting portion or outside the chip mounting portion. It may be a so-called wiring board.

被切断領域は、各デバイス領域のチップ搭載部と複数のリード部とを外枠部に対して連結する連結部を有しており、各デバイス領域の複数のリード部はチップ搭載部に一端が対向するように配置されている、いわゆるリードフレームであってよい。   The to-be-cut region has a connecting portion that connects the chip mounting portion of each device region and the plurality of lead portions to the outer frame portion, and the plurality of lead portions of each device region have one end on the chip mounting portion. It may be a so-called lead frame disposed so as to face each other.

各デバイス領域の複数のリード部は被切断領域との境界部において千鳥配置となるように形成されているのが好ましい。また各デバイス領域の複数のリード部は、その厚み方向に沿って次第に幅狭まる断面形状を有し、その幅狭部が隣り合うリード部間で互いに逆向きになるように形成されているのが好ましい。また各デバイス領域の複数のリード部は、その一部に広幅部があるときに、被切断領域との境界部での互いの間隔が均等になるように屈曲されているのが好ましい。   The plurality of lead portions in each device region are preferably formed in a staggered arrangement at the boundary with the region to be cut. The plurality of lead portions in each device region have a cross-sectional shape that gradually narrows along the thickness direction, and the narrow portions are formed so as to be opposite to each other between adjacent lead portions. preferable. In addition, it is preferable that the plurality of lead portions of each device region be bent so that the intervals between the plurality of lead portions at the boundary with the region to be cut are equal when there are wide portions.

配線基板にあっては、被切断領域に、デバイス領域から延びた複数のリード部が連続するバス配線が形成されており、前記バス配線が、デバイス領域内の複数のリード部と同等あるいはより狭い配線幅を有するのが好ましい。   In the wiring board, a bus wiring in which a plurality of lead portions extending from the device region are continuous is formed in the cut region, and the bus wiring is equal to or narrower than the plurality of lead portions in the device region. It is preferable to have a wiring width.

また、複数のデバイス領域のリード部の接続端子を露出させて基板面を覆う保護膜が形成されており、前記複数のデバイス領域を囲んだ最外周の被切断領域のさらに外周の端材領域に、デバイス領域のリード部が前記被切断領域との境界部におけるのと同一の形状で延出されるとともに、延出されたリード部の上面および両側面を露出させる凹部が前記保護膜に形成されているのが好ましい。   Further, a protective film is formed to cover the substrate surface by exposing the connection terminals of the lead portions of the plurality of device regions, and further to the outer peripheral end material region of the outermost cut region surrounding the plurality of device regions. The lead portion of the device region extends in the same shape as that at the boundary with the region to be cut, and a recess that exposes the upper surface and both side surfaces of the extended lead portion is formed in the protective film. It is preferable.

本発明の半導体装置の製造方法は、上記の半導体チップ支持体を準備する工程と、前記半導体チップ支持体の複数のデバイス領域のそれぞれに半導体チップを搭載するとともに、各デバイス領域の複数のリード部と半導体チップに形成された複数の電極とを電気的に接続する工程と、前記半導体チップが搭載された複数のデバイス領域と被切断領域とを封止樹脂によって一括で封止する工程と、樹脂封止後の半導体チップ支持体の被切断領域を切除して前記デバイス領域ごとに形成された半導体装置に分割する工程とを有することを特徴とする。   A method of manufacturing a semiconductor device according to the present invention includes a step of preparing the semiconductor chip support, and mounting a semiconductor chip in each of a plurality of device regions of the semiconductor chip support, and a plurality of lead portions in each device region Electrically connecting a plurality of electrodes formed on the semiconductor chip, a step of collectively sealing a plurality of device regions on which the semiconductor chip is mounted and a region to be cut with a sealing resin, and a resin And cutting the region to be cut of the semiconductor chip support after sealing to divide it into semiconductor devices formed for each device region.

端材領域にリード部が延出され、そのリード部の上面および両側面を露出させる凹部が形成されている半導体チップ支持体を準備する場合は、前記端材領域の凹部内で露出しているリード部の外形を計測する工程と、前記リード部の計測値を基に、分割された半導体装置の側面に露出したリード部の切断面を評価する工程とをさらに有することを特徴とする。   When preparing a semiconductor chip support in which a lead portion is extended to the end material region and a recess is formed to expose the upper surface and both side surfaces of the lead portion, the lead portion is exposed in the recess of the end material region. The method further includes the step of measuring the outer shape of the lead portion and the step of evaluating the cut surface of the lead portion exposed on the side surface of the divided semiconductor device based on the measurement value of the lead portion.

本発明の半導体チップ支持体は、リード部の幅を被切断領域の近傍でのみしかも徐々に狭めたことにより、リードダレを抑え、ショートを確実に防止し、歩留まりを向上できるだけでなく、電気抵抗の増大を抑え、断線を防止することが可能となる。   The semiconductor chip support of the present invention not only reduces the lead sagging by reliably reducing the width of the lead portion in the vicinity of the region to be cut, but also prevents short-circuits, improves the yield, and improves the electrical resistance. The increase can be suppressed and disconnection can be prevented.

また、切り離される端材領域に、リード部を延出し、そのリード部の上面および両側面を露出させる凹部を形成したことにより、ダレ量を容易に目視的に観察して管理することが可能となる。   In addition, it is possible to easily observe and manage the amount of sagging by forming a lead part in the end material region to be separated and forming a recess that exposes the upper surface and both side surfaces of the lead part. Become.

本発明の実施の形態について、以下、図面を参照しながら説明する。
まず、本発明の一実施形態の半導体チップ支持体である配線基板を用いて樹脂封止型半導体装置を製造する方法について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
First, a method for manufacturing a resin-encapsulated semiconductor device using a wiring substrate which is a semiconductor chip support according to an embodiment of the present invention will be described.

図1(a)に示す配線基板1を準備する。配線基板1は、半導体素子を搭載するためのダイパッド2と、半導体チップと電気的導通をとるための複数の配線3(リード部)とを有するデバイス領域4を複数、被切断領域5で連結して配列している。被切断領域5は、複数のデバイス領域4の各々および全体を囲む格子状である。   A wiring board 1 shown in FIG. The wiring substrate 1 includes a plurality of device regions 4 each having a die pad 2 for mounting a semiconductor element and a plurality of wirings 3 (lead portions) for electrical conduction with a semiconductor chip, which are connected by a region to be cut 5. Are arranged. The to-be-cut | disconnected area | region 5 is the grid | lattice form surrounding each of the several device area | region 4 and the whole.

配線3は、ダイパッド2の周囲に内部接続端子(電極パッド;図示せず)を有し、外部接続端子(図示せず)を基板裏面に有するもので、ここでは積層構造としている。基板両面には、配線3の内部接続端子および外部接続端子を露出させて覆う保護膜6を形成している。配線基板1については後段で詳述する。   The wiring 3 has an internal connection terminal (electrode pad; not shown) around the die pad 2 and an external connection terminal (not shown) on the back surface of the substrate, and has a laminated structure here. A protective film 6 is formed on both sides of the substrate to expose and cover the internal connection terminals and external connection terminals of the wiring 3. The wiring board 1 will be described in detail later.

この配線基板1について、図1(b)に示すように各デバイス領域4のダイパッド2に銀ペースト7などの固着材を配置し、その上に、図1(c)に示すように半導体チップ8を搭載し、次に、図1(d)に示すように各デバイス領域4の半導体チップ8の複数の電極と内部接続端子とを金属細線9により電気的に接続する。   With respect to the wiring substrate 1, a fixing material such as a silver paste 7 is disposed on the die pad 2 in each device region 4 as shown in FIG. 1B, and a semiconductor chip 8 is provided thereon as shown in FIG. 1C. Next, as shown in FIG. 1 (d), the plurality of electrodes of the semiconductor chip 8 in each device region 4 and the internal connection terminals are electrically connected by the thin metal wires 9.

その後に、図2(a)に示すように、複数のデバイス領域4よりも一回り大きい封止領域を、モールド金型の1つのキャビティで覆ってモールドする一括成型法にて樹脂封止部10を形成して封止し、図2(b)に示すように、基板裏面の電極端子上に半田ボール11などの外部接続用電極を搭載する。   Thereafter, as shown in FIG. 2A, the resin sealing portion 10 is formed by a batch molding method in which a sealing region that is slightly larger than the plurality of device regions 4 is covered with one cavity of a mold and molded. As shown in FIG. 2B, external connection electrodes such as solder balls 11 are mounted on the electrode terminals on the back surface of the substrate.

この半田ボール11を搭載した樹脂封止体を、図2(c)に示すように、樹脂面をダイシングテープ12に貼付けて固定したうえで、基板裏面側から被切断領域5にダイシングブレード13をあててダイシングすることにより、被切断領域5を切除して、図2(d)に示すような、個片の半導体装置14に分割する。   As shown in FIG. 2 (c), the resin sealing body on which the solder balls 11 are mounted is fixed by adhering the resin surface to the dicing tape 12, and then the dicing blade 13 is placed on the cut region 5 from the back side of the substrate. By applying and dicing, the to-be-cut region 5 is cut out and divided into individual semiconductor devices 14 as shown in FIG.

図3に上述の配線基板1の一部、すなわち、積層構造の配線層の1層の一部を拡大図示する。被切断領域5に、デバイス領域4どうしを分離する方向に延びる共通母線、いわゆるバスライン16が形成されている。バスライン16はたとえば、上述の内部接続端子および外部接続端子にメッキを施すために使用される。   FIG. 3 is an enlarged view of a part of the above-described wiring substrate 1, that is, a part of one layer of the wiring layer having a laminated structure. A common bus bar, so-called bus line 16, extending in a direction separating the device regions 4 from each other is formed in the cut region 5. The bus line 16 is used, for example, for plating the above-described internal connection terminal and external connection terminal.

デバイス領域4の複数の配線3は、このバスライン16に連続するように被切断領域5内まで延出されている。複数の配線3にはそれぞれ、被切断領域5の近傍部から連結領域まで、徐々に幅が狭まる狭幅部3aが設けられており、被切断領域5内の延出部は一定幅である。   The plurality of wirings 3 in the device region 4 are extended into the cut region 5 so as to be continuous with the bus line 16. Each of the plurality of wirings 3 is provided with a narrow width portion 3a whose width gradually decreases from the vicinity of the cut region 5 to the connection region, and the extending portion in the cut region 5 has a constant width.

被切断領域5はたとえば幅100〜900μmであり、バスライン16はたとえば幅30〜80μmである。配線3はたとえば幅30〜60μmであり、互いの間隔は45〜150μmであり、狭幅部3aの端部(最も幅狭い部分)は幅10〜30μm程度である。   The to-be-cut area | region 5 is 100-900 micrometers in width, for example, and the bus line 16 is 30-80 micrometers in width, for example. The wiring 3 has, for example, a width of 30 to 60 μm, a mutual interval of 45 to 150 μm, and an end portion (the narrowest portion) of the narrow width portion 3a has a width of about 10 to 30 μm.

配線3、バスライン16の材料としては、樹脂を基材とする場合は主に銅(端子部分にNi/Auめっき)が用いられ、セラミックを基材とする場合はTaが主に用いられる。以下に述べる本発明の効果は銅を主体とする場合に特に大きい。   As a material for the wiring 3 and the bus line 16, copper (Ni / Au plating on the terminal portion) is mainly used when a resin is used as a base material, and Ta is mainly used when a ceramic is used as a base material. The effects of the present invention described below are particularly great when copper is the main component.

ダイシングの際には、バスライン16上を上述のダイシングブレード13が通り、被切断領域5は切除され、配線3も切断ライン17で、つまり狭幅部3aの端部で切断されることとなる。このため、配線3が被切断領域5内まで一定幅の場合に比べて、ダイシングブレード13との接触面積は小さく、摩擦により発生するダレ(リードダレ)は抑制される。   When dicing, the above-mentioned dicing blade 13 passes on the bus line 16, the cut region 5 is cut off, and the wiring 3 is cut along the cutting line 17, that is, at the end of the narrow width portion 3a. . For this reason, the contact area with the dicing blade 13 is small as compared with the case where the wiring 3 has a constant width up to the area to be cut 5, and sagging (leading sagging) caused by friction is suppressed.

図4は個片化された半導体装置の斜視図である。
上述のバスライン16およびそれに連続する複数の配線3が1層の配線層にのみ形成された配線基板1、たとえば図1(a)における上から第1層の配線層にのみ形成された配線基板1を用いて製造された半導体装置を示している。
FIG. 4 is a perspective view of the separated semiconductor device.
A wiring board 1 in which the above-described bus line 16 and a plurality of wirings 3 continuous therewith are formed only in one wiring layer, for example, a wiring board formed only in the first wiring layer from the top in FIG. 1 shows a semiconductor device manufactured using 1.

ダイシングの際に切断された配線3の切断面は、装置側面に、実装面の端辺に沿う方向に一列に並んで露出している。配線3の切断面、つまり狭幅部3aの切断面の形状は四角形である。   The cut surfaces of the wiring 3 cut at the time of dicing are exposed in a line along the edge of the mounting surface on the side surface of the device. The shape of the cut surface of the wiring 3, that is, the cut surface of the narrow width portion 3a is a quadrangle.

上述のように配線3が狭幅部3aの端部で切断されることから、図示するようにダレ18が発生したとしても絶対量は抑えられ、10〜20μm程度であったとしても、上述の例では狭幅部3aの切断面間の距離が最大で約90μmと十分であるため、ダレ18に起因するショートを防ぐことができる。   Since the wiring 3 is cut at the end of the narrow width portion 3a as described above, even if the sag 18 is generated as shown in the figure, the absolute amount can be suppressed, and even if it is about 10 to 20 μm, In the example, since the distance between the cut surfaces of the narrow width portion 3a is sufficient at about 90 μm at the maximum, a short circuit due to the sag 18 can be prevented.

また、狭幅部3aは被切断領域5の近傍部分のみとしているので、配線3の電気抵抗増大は最小限に抑えることができ、半導体装置の信頼性を損なわない。さらに、幅狭部3aは被切断領域5に近づくにつれ徐々に狭まる形状であるため、階段状に狭まる形状と比べても、配線3の電気抵抗増大をより抑えられるだけでなく、ダイシングブレードに対する応力に耐性を持つこととなり、断線などの不良を抑制することができる。   Further, since the narrow width portion 3a is only in the vicinity of the region to be cut 5, an increase in the electrical resistance of the wiring 3 can be minimized, and the reliability of the semiconductor device is not impaired. Furthermore, since the narrow portion 3a has a shape that gradually narrows as it approaches the region to be cut 5, not only can the increase in electrical resistance of the wiring 3 be suppressed, but also the stress on the dicing blade as compared with the shape that narrows in a step shape. It is possible to suppress defects such as disconnection.

よって、半導体装置の信頼性、品質が向上するとともに、ショート不良が無くなる分、生産性が向上する。
図5は個片化された他の半導体装置の斜視図である。
Therefore, the reliability and quality of the semiconductor device are improved, and the productivity is improved by eliminating the short-circuit defect.
FIG. 5 is a perspective view of another semiconductor device separated into pieces.

上述のバスライン16およびそれに連続する複数の配線3が2層の配線層に形成された配線基板1、たとえば図1(a)における上から第1層と第2層の配線層に形成された配線基板1を用いて製造された半導体装置を示している。   The above-described bus line 16 and a plurality of wirings 3 continuous therewith are formed in a wiring substrate 1 formed in two wiring layers, for example, in the first and second wiring layers from the top in FIG. The semiconductor device manufactured using the wiring board 1 is shown.

ダイシングの際に切断された配線3の切断面は装置側面に千鳥配置となって露出している。言い換えると、このような配置となるように各層の配線3が形成されている。切断された複数の配線3にそれぞれ、被切断領域5の近傍部から徐々に幅が狭まる狭幅部3aが設けられているのは同様である。配線3の切断面、つまり狭幅部3aの切断面の形状は四角形である。   The cut surface of the wiring 3 cut at the time of dicing is exposed in a staggered arrangement on the side surface of the apparatus. In other words, the wiring 3 of each layer is formed so as to have such an arrangement. Similarly, each of the plurality of cut wirings 3 is provided with a narrow width portion 3a whose width gradually decreases from the vicinity of the cut region 5. The shape of the cut surface of the wiring 3, that is, the cut surface of the narrow width portion 3a is a quadrangle.

千鳥配置としたことで、図4に示した半導体装置に比べて、実装面の端辺に沿う方向の配線間距離が同一であれば、実際の切断面間距離をより広げられ、ダレ18量がより多い場合も短絡を確実に防止できる。基板部の厚さはおよそ0.2mm〜0.45mmとし、上下の配線距離が0.1mmの距離を確保できる。配線3をそのままの幅で適用すれば、電気抵抗を増大させることはない。   With the staggered arrangement, compared to the semiconductor device shown in FIG. 4, if the distance between the wirings in the direction along the edge of the mounting surface is the same, the actual distance between the cut surfaces can be further increased and the amount of sagging 18 Even when there is more, it is possible to reliably prevent a short circuit. The thickness of the substrate portion is approximately 0.2 mm to 0.45 mm, and a distance between the upper and lower wiring distances of 0.1 mm can be secured. If the wiring 3 is applied as it is, the electrical resistance will not be increased.

図6は個片化された更に他の半導体装置の斜視図である。
上述のバスライン16およびそれに連続する複数の配線3が1層の配線層にのみ形成された配線基板1、たとえば図1(a)における上から第1層の配線層にのみ形成された配線基板1を用いて製造された半導体装置を示している。
FIG. 6 is a perspective view of still another semiconductor device separated into pieces.
A wiring board 1 in which the above-described bus line 16 and a plurality of wirings 3 continuous therewith are formed only in one wiring layer, for example, a wiring board formed only in the first wiring layer from the top in FIG. 1 shows a semiconductor device manufactured using 1.

ダイシングの際に切断された配線3の切断面は、装置側面に、実装面の端辺に沿う方向に一列に並んで露出している。切断された複数の配線3にそれぞれ、被切断領域5の近傍部から連結領域まで、徐々に幅が狭まる狭幅部3aが設けられているのは同様である。   The cut surfaces of the wiring 3 cut at the time of dicing are exposed in a line along the edge of the mounting surface on the side surface of the device. Similarly, each of the plurality of cut wirings 3 is provided with a narrow width portion 3a that gradually decreases in width from the vicinity of the cut region 5 to the connection region.

この半導体装置の特徴は、配線3の切断面、つまり狭幅部3aの切断面の形状が三角形である点である。厚み方向(実装面と交わる方向、図中の上下方向)に沿って次第に幅狭まる三角形であり、かつ、その頂部が隣り合う切断面で互いに逆向き(上向き、下向き)である。   The feature of this semiconductor device is that the shape of the cut surface of the wiring 3, that is, the cut surface of the narrow width portion 3a, is a triangle. The triangles gradually narrow along the thickness direction (the direction intersecting the mounting surface, the vertical direction in the figure), and the apexes thereof are opposite to each other (upward and downward) on adjacent cut surfaces.

このような三角形の断面を持つようにしたことで、四角形の断面を持つ図4の半導体装置に比べて、実装面の端辺に沿う方向の配線間距離が同一であれば、実際の切断面間距離をより広げられ、したがってダレ18量がより多い場合も短絡を確実に防止できる。   By having such a triangular cross section, if the distance between wirings in the direction along the edge of the mounting surface is the same as that of the semiconductor device of FIG. Therefore, even when the distance 18 is larger, it is possible to reliably prevent a short circuit.

頂角が60度以下の二等辺三角形とすれば、切断面間距離をより広く確保できる。しかし厚み方向に沿って次第に幅が狭まる形状であれば、三角形に限らず、台形等であってもよい。このような形状はエッチングによって容易に得られる。   If the apex angle is an isosceles triangle having an angle of 60 degrees or less, a wider distance between cut surfaces can be secured. However, as long as the width gradually decreases along the thickness direction, the shape is not limited to a triangle, and may be a trapezoid or the like. Such a shape can be easily obtained by etching.

次に、本発明の他の実施形態の半導体チップ支持体であるリードフレームを用いて樹脂封止型半導体装置を製造する方法について説明する。
図7(a)に示すリードフレーム21を準備する。リードフレーム21は、銅を主体とする金属板より打ち抜かれていて、半導体素子を搭載するためのダイパッド22と、ダイパッド22に一端が対向するように配置された複数のリード部23と、ダイパッド22を支持するための吊りリード部23′とを有するデバイス領域24を複数、被切断領域25(斜線を付して示している)により外枠部26に対して連結して配列している。多数個取りのリードフレームと呼ばれるものである。
Next, a method for manufacturing a resin-encapsulated semiconductor device using a lead frame that is a semiconductor chip support according to another embodiment of the present invention will be described.
A lead frame 21 shown in FIG. 7A is prepared. The lead frame 21 is punched from a metal plate mainly made of copper, and includes a die pad 22 for mounting a semiconductor element, a plurality of lead portions 23 arranged so that one end faces the die pad 22, and the die pad 22. A plurality of device regions 24 having suspension lead portions 23 ′ for supporting the outer frame portion 26 are connected to the outer frame portion 26 by a region to be cut 25 (shown by hatching). This is called a multiple lead frame.

被切断領域25には、デバイス領域24どうしを分離する方向に延びる連結部28があり、デバイス領域24の複数のリード部23は、この連結部28に連続するように被切断領域25内まで延びている。複数のリード部23にはそれぞれ、被切断領域25の近傍部から被切断領域25まで、徐々に幅が狭まる狭幅部23aが設けられており、被切断領域25内の延出部は一定幅である。リード部23はたとえば幅300〜600μmであり、互いの間隔は350〜500μmであり、狭幅部23aの端部(最も幅狭い部分)は幅100〜300μm程度である。   The cut region 25 has a connecting portion 28 extending in a direction for separating the device regions 24 from each other, and the plurality of lead portions 23 of the device region 24 extend into the cut region 25 so as to be continuous with the connecting portion 28. ing. Each of the plurality of lead portions 23 is provided with a narrow width portion 23a whose width gradually decreases from the vicinity of the cut region 25 to the cut region 25, and the extending portion in the cut region 25 has a constant width. It is. For example, the lead portion 23 has a width of 300 to 600 μm, a mutual interval of 350 to 500 μm, and an end portion (the narrowest portion) of the narrow width portion 23a has a width of about 100 to 300 μm.

このリードフレーム21について、先に配線基板について説明したのと同様に、図7(b)に示すように各デバイス領域24のダイパッド22に銀ペーストなどの固着材(図示せず)を介して半導体チップ8を固着し、各デバイス領域24の半導体チップ8の複数の電極とリード部23の内部接続端子とを金属細線9により電気的に接続し、複数のデバイス領域24よりも一回り大きい封止領域をモールド金型の1つのキャビティで覆ってモールドする一括成型法にて樹脂封止部10を形成して封止する。   As for the lead frame 21, as described for the wiring board, a semiconductor is attached to the die pad 22 in each device region 24 via an adhesive (not shown) such as silver paste as shown in FIG. 7B. The chip 8 is fixed, the plurality of electrodes of the semiconductor chip 8 in each device region 24 and the internal connection terminals of the lead portion 23 are electrically connected by the thin metal wires 9, and the sealing is slightly larger than the plurality of device regions 24. The resin sealing portion 10 is formed and sealed by a batch molding method in which the region is covered with one cavity of the mold and molded.

この樹脂封止体を、図2(c)に示すように、樹脂面をダイシングテープ12に貼付けて固定したうえで、基板裏面側から被切断領域25にダイシングブレード13をあててダイシングすることにより、被切断領域25を切除して、図2(d)に示すような、個片の半導体装置27に分割する。   As shown in FIG. 2 (c), this resin sealing body is fixed by adhering the resin surface to the dicing tape 12, and then dicing by applying the dicing blade 13 to the cut region 25 from the back side of the substrate. Then, the to-be-cut region 25 is cut and divided into individual semiconductor devices 27 as shown in FIG.

ダイシングの際には、上述の連結部28上をダイシングブレード13が通り、被切断領域25は切除され、リード部23も切断ライン29で、つまり狭幅部23aの端部で切断されることとなる。このため、リード部23が全体に一定幅の場合に比べて、ダイシングブレード13との接触面積は小さく、摩擦により発生するリードダレは抑制される。   At the time of dicing, the dicing blade 13 passes over the connecting portion 28 described above, the cut region 25 is cut off, and the lead portion 23 is cut along the cutting line 29, that is, at the end of the narrow width portion 23a. Become. For this reason, the contact area with the dicing blade 13 is small compared to the case where the lead portion 23 has a constant width as a whole, and lead sagging caused by friction is suppressed.

図8(a)(b)は個片化された半導体装置の斜視図およびその一部拡大図である。
樹脂封止形で、かつ面実装形の小形半導体パッケージ、いわゆるQFN(Quad Flat Non-leaded Package)である。
FIGS. 8A and 8B are a perspective view and a partially enlarged view of a semiconductor device separated into individual pieces.
It is a resin-sealed and surface-mounted small semiconductor package, so-called QFN (Quad Flat Non-leaded Package).

複数のリード部23の裏面が樹脂モールドによって形成された樹脂封止部10の実装面の周縁部に並んで露出するとともに(ペリフェラル形)、ダイシングの際に切断されたリード部23の切断面が、装置側面、つまり樹脂封止部10の側面に、実装面の端辺に沿う方向に一列に並んで露出している。リード部23の切断面、つまり狭幅部23aの切断面の形状は四角形である。   The back surfaces of the plurality of lead portions 23 are exposed side by side along the peripheral edge of the mounting surface of the resin sealing portion 10 formed by a resin mold (peripheral type), and the cut surfaces of the lead portions 23 cut during dicing are In the side surface of the device, that is, the side surface of the resin sealing portion 10, it is exposed in a line along the end side of the mounting surface. The shape of the cut surface of the lead portion 23, that is, the cut surface of the narrow width portion 23a is a quadrangle.

この半導体装置27でも、先に図4の半導体装置について説明したのと同様の効果が得られる。すなわち、図示するように狭幅部23aの切断面でダレ18が発生したとしても絶対量は抑えられ、またその狭幅部23aの切断面間の距離が十分であるため、ダレ18に起因するショートを防ぐことができる。   Also in this semiconductor device 27, the same effect as described in the semiconductor device of FIG. 4 can be obtained. That is, even if the sag 18 occurs on the cut surface of the narrow width portion 23a as shown in the drawing, the absolute amount can be suppressed, and the distance between the cut surfaces of the narrow width portion 23a is sufficient. Short circuit can be prevented.

また、狭幅部23aは被切断領域25の近傍部分のみとしたため、電気抵抗増大は最小限に抑えることができ、半導体装置の信頼性を損なわない。さらに、幅狭部23aは被切断領域5に近づくにつれ徐々に狭まる形状であるため、階段状に狭まる形状と比べても、電気抵抗増大をより抑えられる。   Further, since the narrow width portion 23a is only in the vicinity of the region to be cut 25, an increase in electric resistance can be suppressed to a minimum, and the reliability of the semiconductor device is not impaired. Furthermore, since the narrow portion 23a has a shape that gradually narrows as it approaches the region to be cut 5, an increase in electrical resistance can be further suppressed as compared with a shape that narrows in a staircase shape.

よって、半導体装置の信頼性、品質が向上するとともに、ショート不良が無くなる分、生産性が向上する。
図9(a)(b)は個片化された半導体装置の斜視図およびその一部拡大図である。
Therefore, the reliability and quality of the semiconductor device are improved, and the productivity is improved by eliminating the short-circuit defect.
FIGS. 9A and 9B are a perspective view and a partially enlarged view of the separated semiconductor device.

複数のリード部23の裏面が樹脂モールドによって形成された樹脂封止部10の実装面の周縁部に並んで露出するとともに、ダイシングの際に切断されたリード部23の切断面が、装置側面、つまり樹脂封止部10の側面に、千鳥配置となって露出している。リード部23の切断面、つまり狭幅部23aの切断面の形状は四角形である。   The back surfaces of the plurality of lead portions 23 are exposed side by side along the peripheral edge of the mounting surface of the resin sealing portion 10 formed by resin molding, and the cut surfaces of the lead portions 23 cut during dicing are the side surfaces of the device, That is, it is exposed on the side surface of the resin sealing portion 10 in a staggered arrangement. The shape of the cut surface of the lead portion 23, that is, the cut surface of the narrow width portion 23a is a quadrangle.

これは、図示したように、隣り合う一方のリード部23にはその厚み方向における下部に幅狭部23aを配置し、もう一方のリード部23にはその厚み方向における上部に幅狭部23aを配置することで、実現している。   As shown in the drawing, a narrow portion 23a is disposed at the lower portion in the thickness direction of one adjacent lead portion 23, and a narrow portion 23a is disposed at the upper portion in the thickness direction of the other lead portion 23. It is realized by arranging.

千鳥配置としたことで、図8に示した半導体装置に比べて、実装面の端辺に沿う方向のリード部間距離が同一であれば、実際の切断面間距離をより広げられ、したがってダレ18量がより多い場合も短絡を確実に防止できる。   By adopting the staggered arrangement, compared to the semiconductor device shown in FIG. 8, if the distance between the lead portions in the direction along the edge of the mounting surface is the same, the actual distance between the cut surfaces can be further increased. A short circuit can be reliably prevented even when the amount is larger.

図10(a)(b)は個片化された半導体装置の斜視図およびその一部拡大図である。
複数のリード部23の裏面が樹脂モールドによって形成された樹脂封止部10の実装面の周縁部に並んで露出するとともに、ダイシングの際に切断されたリード部23の切断面が、装置側面、つまり樹脂封止部10の側面に、実装面の端辺に沿う方向に一列に並んで露出している。
10A and 10B are a perspective view and a partially enlarged view of an individual semiconductor device.
The back surfaces of the plurality of lead portions 23 are exposed side by side along the peripheral edge of the mounting surface of the resin sealing portion 10 formed by resin molding, and the cut surfaces of the lead portions 23 cut during dicing are the side surfaces of the device, That is, the resin sealing portion 10 is exposed in a row in a direction along the end side of the mounting surface.

先に図6を用いて説明した半導体装置と同様に、リード部23の切断面、つまり狭幅部23aの切断面の形状は三角形である。リード部23の厚み方向(実装面と交わる方向、図中の上下方向)に沿って次第に幅狭まる三角形であり、かつ、その頂部が隣り合う切断面で互いに逆向き(上向き、下向き)である。   Similar to the semiconductor device described above with reference to FIG. 6, the shape of the cut surface of the lead portion 23, that is, the cut surface of the narrow width portion 23a, is a triangle. The lead portion 23 is a triangle that gradually narrows along the thickness direction (the direction intersecting the mounting surface, the vertical direction in the drawing), and the top portions thereof are opposite to each other (upward and downward) on adjacent cut surfaces.

このような三角形の断面を持つようにしたことで、四角形の切断面を持つ図8の半導体装置と比べて、実装面の端辺に沿う方向のリード部間距離が同一であれば、実際の切断面間距離をより広げられ、したがってダレ18量がより多い場合も短絡を確実に防止できる。   By having such a triangular cross section, if the distance between the lead portions in the direction along the edge of the mounting surface is the same as that of the semiconductor device of FIG. The distance between the cut surfaces can be further increased. Therefore, even when the amount of sagging 18 is larger, a short circuit can be reliably prevented.

図11(a)は、配線基板1の変形例を示す一部拡大平面図である。
隣り合うデバイス領域4どうしを分離する方向に延びたバスライン16は、配線3の幅(幅狭部3aの幅)よりも細い幅、もしくは同等の幅となるように形成されている。
FIG. 11A is a partially enlarged plan view showing a modified example of the wiring board 1.
The bus line 16 extending in the direction separating the adjacent device regions 4 is formed to have a width narrower than or equal to the width of the wiring 3 (the width of the narrow portion 3a).

これは、図11(b)に誇張して図示したように、各配線3のバスライン16への接続部分は丸みを帯びるとともに、バスライン16に近づくほど広がることが多いためである。バスライン16が広いと、切断ライン17に近い部位では配線幅が不安定となり、配線間距離(切断面間距離)が狭くなってしまう。   This is because, as exaggeratedly illustrated in FIG. 11B, the connection portion of each wiring 3 to the bus line 16 is rounded and often spreads toward the bus line 16. If the bus line 16 is wide, the wiring width becomes unstable near the cutting line 17 and the distance between wirings (distance between the cutting surfaces) becomes narrow.

バスライン16を上述の幅とすることにより、配線3を配線幅が安定した領域で切断すること、配線間距離(切断面間距離)を一定とすることが可能となる。これにより、ダレが発生した場合もショートを防ぐことができる。バスライン16が狭いことで、当然ながら、導体材料が低減できる。   By setting the bus line 16 to the above-described width, it is possible to cut the wiring 3 in a region where the wiring width is stable, and to make the distance between wirings (distance between cut surfaces) constant. As a result, even when sagging occurs, a short circuit can be prevented. Since the bus line 16 is narrow, naturally, the conductor material can be reduced.

図12は、配線基板1の他の変形例を示す一部拡大平面図である。
デバイス領域4の複数の配線3の一部にランド部30のような広幅部があるときに、隣の配線3をランド部30に沿うように屈曲させることで、切断ライン17での配線間隔をほぼ均等にしている。配線3をランド部30との間も均等間隔となるように形成すると、切断ライン17での配線間距離(切断面間距離)が極端に狭い部分ができてしまうので、それを回避している。このように配線間距離を一定にすることで、ダレが発生した場合も、ショートを確実に防ぐことができる。
FIG. 12 is a partially enlarged plan view showing another modified example of the wiring board 1.
When a part of the plurality of wirings 3 in the device region 4 has a wide part such as the land part 30, the adjacent wiring 3 is bent along the land part 30, thereby reducing the wiring interval at the cutting line 17. Almost equal. If the wiring 3 is formed so as to be evenly spaced from the land portion 30, a portion having an extremely narrow distance between wires (distance between cut surfaces) in the cutting line 17 is formed, which is avoided. . By making the distance between the wirings constant in this way, it is possible to reliably prevent a short circuit even when sagging occurs.

図13は、配線基板1の他の変形例を示す一部拡大斜視図である。
複数のデバイス領域4を囲んだ最外周の被切断領域5のさらに外周に位置する端材領域(周縁部)に、デバイス領域4の複数の配線3を、被切断領域5との境界部におけるのと同一の形状で延出するとともに、配線3の延出部3bの上面および両側面を露出させる凹部31を保護膜6に形成している。この凹部31は、露出した配線3の延出部3bが目視的に観察できるように、たとえば90μm□で、延出部3bの両側が窪むように設ける。
FIG. 13 is a partially enlarged perspective view showing another modified example of the wiring board 1.
A plurality of wirings 3 of the device region 4 are arranged at the boundary with the region to be cut 5 on an end material region (peripheral portion) positioned further on the outer periphery of the outermost region to be cut 5 surrounding the plurality of device regions 4. And a recess 31 is formed in the protective film 6 so as to expose the upper surface and both side surfaces of the extended portion 3 b of the wiring 3. The recessed portion 31 is provided with, for example, 90 μm □ so that both sides of the extending portion 3b are recessed so that the extending portion 3b of the exposed wiring 3 can be visually observed.

これにより、凹部31内で露出している配線3の延出部3bのメージャースコープで外形寸法を計測し、その計測値を基に、分割後の半導体装置の側面、つまり切断ライン17での切断面に露出した配線3の切断面を評価することができる。   As a result, the external dimensions are measured with the major scope of the extension 3b of the wiring 3 exposed in the recess 31, and the side surface of the divided semiconductor device, that is, the cutting at the cutting line 17 is performed based on the measured value. The cut surface of the wiring 3 exposed on the surface can be evaluated.

つまり、配線3の延出部3bの外形寸法から算出される断面形状と、ダイシング後の配線3の切断面(つまり狭幅部3aの切断面)の形状とを比較することで、ダレ18の発生の有無、ダレ量を把握することができる。そしてそれより配線ショート等の不良を短時間で抽出することができる。評価結果に応じて、不良品の除去、ダイシングスピードの調整等を行なうことになる。   That is, by comparing the cross-sectional shape calculated from the external dimensions of the extension 3b of the wiring 3 and the shape of the cut surface of the wiring 3 after dicing (that is, the cut surface of the narrow width portion 3a), The presence or absence of occurrence and the amount of sag can be ascertained. Then, defects such as wiring shorts can be extracted in a short time. Depending on the evaluation result, defective products are removed, dicing speed is adjusted, and the like.

切り離される端材領域に、凹部31、配線3の延出部3bを設けることで、半導体装置(製品)の側面の配線3のダレ18を容易に管理できるもので、不良の早期発見、歩留向上に極めて有効である。   By providing the recess 31 and the extended portion 3b of the wiring 3 in the end material region to be separated, the sagging 18 of the wiring 3 on the side surface of the semiconductor device (product) can be easily managed. It is extremely effective for improvement.

なお、以上の実施形態では、配線3,リード部23の狭幅部3a,23aは、被切断領域5,25の近傍部から連結領域まで徐々に幅が狭まるものとして説明したが、被切断領域5,25の近傍部で階段状に狭まるもの、つまり文字通り凸形に狭まるものであっても、リードダレの発生を抑えられることは理解されよう。   In the above embodiment, the narrow width portions 3a and 23a of the wiring 3 and the lead portion 23 have been described as being gradually narrowed from the vicinity of the cut regions 5 and 25 to the connection region. It will be understood that the occurrence of lead sagging can be suppressed even if the portion narrows in a stepped manner in the vicinity of 5 and 25, that is, literally narrows in a convex shape.

また、半導体チップ8を配線基板1あるいはリードフレーム21の配線3,リード部23に対して金属細線9で接続するとして説明したが、フリップチップ接続用の配線基板に上記の構造を適用しても同様の効果が得られる。配線基板を用いる場合は半導体チップ8を搭載できる領域があればよいのであって、ダイパッドは必須ではない。   Further, the semiconductor chip 8 has been described as being connected to the wiring 3 or the lead portion 23 of the wiring substrate 1 or the lead frame 21 with the metal thin wire 9, but the above structure can be applied to the wiring substrate for flip chip connection. Similar effects can be obtained. When the wiring board is used, it is sufficient if there is a region where the semiconductor chip 8 can be mounted, and the die pad is not essential.

本発明は、一括樹脂封止した複数の半導体装置を個片化する工程で発生するリードダレを抑え、それに起因するショートを防ぎ、安定供給することができ、断線等の不良も防止できるので、かかる半導体装置を用いる携帯電話・PDA等の電子機器の小型化薄型化に寄与する。   The present invention suppresses lead sagging that occurs in the process of separating a plurality of semiconductor devices that are encapsulated in a single resin, prevents short circuit caused by the process, can be stably supplied, and can prevent defects such as disconnection. This contributes to reducing the size and thickness of electronic devices such as mobile phones and PDAs that use semiconductor devices.

本発明の一実施形態の半導体チップ支持体である配線基板を用いて樹脂封止型の半導体装置を製造する前半工程を説明する断面図Sectional drawing explaining the first half process of manufacturing a resin sealing type semiconductor device using the wiring board which is a semiconductor chip support body of one Embodiment of this invention. 本発明の一実施形態の半導体チップ支持体である配線基板を用いて樹脂封止型半導体装置を製造する後半工程を説明する断面図Sectional drawing explaining the latter half process which manufactures a resin-sealed semiconductor device using the wiring board which is a semiconductor chip support body of one Embodiment of this invention. 上述の配線基板の一部拡大図Partial enlarged view of the above wiring board 図1および図2の方法で製造された半導体装置の一例の斜視図1 is a perspective view of an example of a semiconductor device manufactured by the method of FIGS. 図1および図2の方法で製造された半導体装置の他の例の斜視図The perspective view of the other example of the semiconductor device manufactured by the method of FIG. 1 and FIG. 図1および図2の方法で製造された半導体装置のさらに他の例の斜視図1 is a perspective view of still another example of a semiconductor device manufactured by the method of FIGS. 本発明の他の実施形態の半導体チップ支持体であるリードフレームを用いて樹脂封止型の半導体装置を製造する工程を説明する平面図および断面図The top view and sectional drawing explaining the process of manufacturing a resin-sealed semiconductor device using the lead frame which is the semiconductor chip support body of other embodiment of this invention 図7の方法で製造された半導体装置の一例の斜視図The perspective view of an example of the semiconductor device manufactured by the method of FIG. 図7の方法で製造された半導体装置の他の例の斜視図The perspective view of the other example of the semiconductor device manufactured by the method of FIG. 図7の方法で製造された半導体装置のさらに他の例の斜視図FIG. 7 is a perspective view of still another example of the semiconductor device manufactured by the method of FIG. 本発明の配線基板の変形例を示す一部拡大平面図The partially expanded plan view which shows the modification of the wiring board of this invention 本発明の配線基板の他の変形例を示す一部拡大平面図The partially expanded plan view which shows the other modification of the wiring board of this invention 本発明の配線基板のさらに他の変形例を示す一部拡大斜視図The partially expanded perspective view which shows the other modification of the wiring board of this invention

符号の説明Explanation of symbols

1 配線基板
2 ダイパッド
3 配線
4 デバイス領域
5 被切断領域
6 保護膜
8 半導体チップ
9 金属細線
10 封止樹脂or樹脂封止部
13 ダイシングブレード
14 半導体装置
16 バスライン
17 切断ライン
18 ダレ
21 リードフレーム
22 ダイパッド
23 リード部
24 デバイス領域
25 被切断領域
26 外枠部
27 半導体装置
28 連結部
29 切断ライン
30 ランド部
31 凹部
DESCRIPTION OF SYMBOLS 1 Wiring board 2 Die pad 3 Wiring 4 Device area 5 Area to be cut 6 Protective film 8 Semiconductor chip 9 Metal fine wire
10 Sealing resin or resin sealing part
13 Dicing blade
14 Semiconductor devices
16 bus lines
17 Cutting line
18 Dare
21 Lead frame
22 Die pad
23 Lead
24 Device area
25 Cut area
26 Outer frame
27 Semiconductor devices
28 Connecting part
29 cutting line
30 Land
31 recess

Claims (10)

半導体チップを搭載するためのチップ搭載部とその外周側に少なくとも配置された複数のリード部とを有するデバイス領域を複数、被切断領域で連結して配列した半導体チップ支持体であって、前記デバイス領域の複数のリード部は前記被切断領域内まで延びるとともに、前記被切断領域の近傍部から前記被切断領域に近づくにしたがって徐々に幅が狭まっている半導体チップ支持体。   A semiconductor chip support in which a plurality of device regions each having a chip mounting portion for mounting a semiconductor chip and a plurality of lead portions arranged at least on the outer periphery thereof are connected and arranged at a region to be cut. A plurality of lead portions in a region extend into the region to be cut, and the width of the semiconductor chip support gradually decreases from the vicinity of the region to be cut toward the region to be cut. 複数のデバイス領域および被切断領域は基板に設けられており、各デバイス領域の複数のリード部はチップ搭載部内あるいはチップ搭載部外に半導体チップのための接続端子を有するように配置されている請求項1記載の半導体チップ支持体。   A plurality of device regions and a region to be cut are provided on the substrate, and a plurality of lead portions of each device region are arranged so as to have a connection terminal for a semiconductor chip inside or outside the chip mounting portion. Item 14. A semiconductor chip support according to Item 1. 被切断領域は、各デバイス領域のチップ搭載部と複数のリード部とを外枠部に対して連結する連結部を有しており、各デバイス領域の複数のリード部はチップ搭載部に一端が対向するように配置されている請求項1記載の半導体チップ支持体。   The to-be-cut region has a connecting portion that connects the chip mounting portion of each device region and the plurality of lead portions to the outer frame portion, and the plurality of lead portions of each device region have one end on the chip mounting portion. 2. The semiconductor chip support according to claim 1, which is disposed so as to face each other. 各デバイス領域の複数のリード部は被切断領域との境界部において千鳥配置となるように形成されている請求項1から請求項3のいずれかに記載の半導体チップ支持体。   4. The semiconductor chip support according to claim 1, wherein a plurality of lead portions of each device region are formed in a staggered arrangement at a boundary portion with a region to be cut. 5. 各デバイス領域の複数のリード部は、その厚み方向に沿って次第に幅狭まる断面形状を有し、その幅狭部が隣り合うリード部間で互いに逆向きになるように形成されている請求項1から請求項3のいずれかに記載の半導体チップ支持体。   The plurality of lead portions of each device region have a cross-sectional shape that gradually narrows along the thickness direction, and the narrow portions are formed so as to be opposite to each other between adjacent lead portions. A semiconductor chip support according to claim 3. 各デバイス領域の複数のリード部は、その一部に広幅部があるときに、被切断領域との境界部での互いの間隔が均等になるように屈曲されている請求項1から請求項3のいずれかに記載の半導体チップ支持体。   The plurality of lead portions of each device region are bent so that the distances between them at the boundary with the region to be cut are equal when there is a wide portion in a part thereof. A semiconductor chip support according to any one of the above. 被切断領域に、デバイス領域から延びた複数のリード部が連続するバス配線が形成されており、前記バス配線は、デバイス領域内の複数のリード部と同等あるいはより狭い配線幅を有する請求項2記載の半導体チップ支持体。   3. A bus wiring in which a plurality of lead portions extending from the device region are continuous is formed in the cut region, and the bus wiring has a wiring width equal to or narrower than the plurality of lead portions in the device region. The semiconductor chip support according to the description. 複数のデバイス領域のリード部の接続端子を露出させて基板面を覆う保護膜が形成されており、前記複数のデバイス領域を囲んだ最外周の被切断領域のさらに外周の端材領域に、デバイス領域のリード部が前記被切断領域との境界部におけるのと同一の形状で延出されるとともに、延出されたリード部の上面および両側面を露出させる凹部が前記保護膜に形成されている請求項2記載の半導体チップ支持体。   A protective film that covers the substrate surface by exposing the connection terminals of the lead portions of the plurality of device regions is formed, and a device is formed on the outer peripheral end material region of the outermost peripheral region surrounding the plurality of device regions. The lead portion of the region is extended in the same shape as that at the boundary with the region to be cut, and the concave portion exposing the upper surface and both side surfaces of the extended lead portion is formed in the protective film. Item 3. A semiconductor chip support according to Item 2. 請求項1記載の半導体チップ支持体を準備する工程と、
前記半導体チップ支持体の複数のデバイス領域のそれぞれに半導体チップを搭載するとともに、各デバイス領域の複数のリード部と半導体チップに形成された複数の電極とを電気的に接続する工程と、
前記半導体チップが搭載された複数のデバイス領域と被切断領域とを封止樹脂によって一括で封止する工程と、
樹脂封止後の半導体チップ支持体の被切断領域を切除して前記デバイス領域ごとに形成された半導体装置に分割する工程とを有することを特徴とする半導体装置の製造方法。
Preparing a semiconductor chip support according to claim 1;
Mounting a semiconductor chip in each of a plurality of device regions of the semiconductor chip support, and electrically connecting a plurality of leads of each device region and a plurality of electrodes formed on the semiconductor chip;
A step of collectively sealing a plurality of device regions on which the semiconductor chip is mounted and a region to be cut with a sealing resin;
A method of manufacturing a semiconductor device, comprising: cutting a region to be cut of the semiconductor chip support after resin sealing and dividing it into semiconductor devices formed for each of the device regions.
請求項8記載の半導体チップ支持体を準備する工程と、
前記半導体チップ支持体の複数のデバイス領域のそれぞれに半導体チップを搭載するとともに、各デバイス領域の複数のリード部と半導体チップに形成された複数の電極とを電気的に接続する工程と、
前記半導体チップが搭載された複数のデバイス領域と被切断領域とを封止樹脂によって一括で封止する工程と、
樹脂封止後の半導体チップ支持体の被切断領域を切除して前記デバイス領域ごとに形成された半導体装置に分割する工程と、
前記半導体チップ支持体の端材領域の凹部内で露出しているリード部の外形を計測する工程と、
前記リード部の計測値を基に、分割された半導体装置の側面に露出したリード部の切断面を評価する工程とを有することを特徴とする半導体装置の製造方法。
Preparing a semiconductor chip support according to claim 8;
Mounting a semiconductor chip in each of a plurality of device regions of the semiconductor chip support, and electrically connecting a plurality of leads of each device region and a plurality of electrodes formed on the semiconductor chip;
A step of collectively sealing a plurality of device regions on which the semiconductor chip is mounted and a region to be cut with a sealing resin;
A step of cutting the cut region of the semiconductor chip support after resin sealing and dividing it into semiconductor devices formed for each of the device regions;
Measuring the outer shape of the lead portion exposed in the recess of the end material region of the semiconductor chip support; and
And a step of evaluating a cut surface of the lead portion exposed on the side surface of the divided semiconductor device based on the measurement value of the lead portion.
JP2007096960A 2007-04-03 2007-04-03 Semiconductor-chip supporter and manufacturing method for semiconductor device using the same Pending JP2008258289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096960A JP2008258289A (en) 2007-04-03 2007-04-03 Semiconductor-chip supporter and manufacturing method for semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096960A JP2008258289A (en) 2007-04-03 2007-04-03 Semiconductor-chip supporter and manufacturing method for semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2008258289A true JP2008258289A (en) 2008-10-23

Family

ID=39981588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096960A Pending JP2008258289A (en) 2007-04-03 2007-04-03 Semiconductor-chip supporter and manufacturing method for semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2008258289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105524A (en) * 2016-03-10 2016-06-09 大日本印刷株式会社 Lead frame and method of manufacturing lead frame
JP2017123479A (en) * 2017-03-07 2017-07-13 大日本印刷株式会社 Lead frame and method of manufacturing lead frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105524A (en) * 2016-03-10 2016-06-09 大日本印刷株式会社 Lead frame and method of manufacturing lead frame
JP2017123479A (en) * 2017-03-07 2017-07-13 大日本印刷株式会社 Lead frame and method of manufacturing lead frame

Similar Documents

Publication Publication Date Title
US7948068B2 (en) Semiconductor device having a chip mounting portion and a plurality of suspending leads supporting the chip mounting portion and each suspension lead having a bent portion
US9385072B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP5122835B2 (en) Semiconductor device, lead frame, and manufacturing method of semiconductor device
US7812429B2 (en) Semiconductor device and manufacturing method of the same
JP4091050B2 (en) Manufacturing method of semiconductor device
JP5232394B2 (en) Manufacturing method of semiconductor device
JP2005057067A (en) Semiconductor device and manufacturing method thereof
JP2003243600A (en) Semiconductor device and method of manufacturing the same
TWI634634B (en) Semiconductor device and method of manufacturing the same
JP2013239740A (en) Semiconductor device
JP2005026466A (en) Semiconductor device and lead frame
JP4243270B2 (en) Manufacturing method of semiconductor device
JP2008258289A (en) Semiconductor-chip supporter and manufacturing method for semiconductor device using the same
JP2017183417A (en) Semiconductor device
JP5587464B2 (en) Manufacturing method of semiconductor device
JP2008235557A (en) Lead frame and semiconductor device
JP4747188B2 (en) Manufacturing method of semiconductor device
JP2008227317A (en) Semiconductor device, wiring board therefor, sealing die and manufacturing method
TW202312405A (en) Lead frame, semiconductor device and examination method
JP2004200719A (en) Semiconductor device
JP2008244026A (en) Semiconductor device, manufacturing method thereof, and organic wiring board therefor
JP2014207471A (en) Manufacturing method of semiconductor device
JP2012124537A (en) Semiconductor device
JP2011044747A (en) Method of manufacturing semiconductor device
JPH0778930A (en) Semiconductor device and its outer lead