JP2008256413A - 断面形状測定装置および断面形状測定方法 - Google Patents

断面形状測定装置および断面形状測定方法 Download PDF

Info

Publication number
JP2008256413A
JP2008256413A JP2007096801A JP2007096801A JP2008256413A JP 2008256413 A JP2008256413 A JP 2008256413A JP 2007096801 A JP2007096801 A JP 2007096801A JP 2007096801 A JP2007096801 A JP 2007096801A JP 2008256413 A JP2008256413 A JP 2008256413A
Authority
JP
Japan
Prior art keywords
cross
sectional shape
measured
transparent body
measuring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007096801A
Other languages
English (en)
Inventor
Masayoshi Chokai
正義 鳥海
Kazuhito Fujikawa
一仁 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007096801A priority Critical patent/JP2008256413A/ja
Publication of JP2008256413A publication Critical patent/JP2008256413A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】被測定物の性質に関係なく、被測定物の断面形状を測定することができる断面形状測定装置および断面形状測定方法を提供する。
【解決手段】被測定物に押し当てることで該被測定物の形状に倣って変形可能な透明体220と、透明体220を介してスリット光を照射し、前記被測定物と接触する側の透明体220の端面220cで照射像Sを生じさせる照射手段250と、前記照射像を撮像して画像を得る撮像手段と、を有することを特徴とする断面形状測定装置。
【選択図】図4

Description

本発明は、断面形状測定装置および断面形状測定方法に関する。
スリット光を被測定物表面に照射し、その照射像を撮像することによって、被測定物の段差や隙間などの断面形状を測定する光切断型の測定装置が知られている(たとえば、特許文献1参照)。
しかしながら、従来の光切断型の測定装置では、被測定物の表面が透明または半透明のように光を透過する材料で形成されている場合には、その被測定物表面にスリット光による照射像が生じにくく、断面形状の測定が困難であった。また、被測定物の表面および内部で光が乱反射する場合も、被測定物表面に生じる照射像は光の乱反射の影響を受けるため、正確な断面形状の測定が困難であった。
これらの場合のように、従来の光切断型の測定装置では、被測定物の光学的性質によっては、正確な照射像が得られず、正確な断面形状の測定が難しいという問題があった。
特開2003−315020号公報
本発明は、上記問題点を解決し、被測定物表面上に被測定物の形状に倣って変形可能な透明体を押し当て、その透明体の被測定物と接触する側の前記透明体の端面でスリット光による照射像を生じさせることで、被測定物の光学的性質に関係なく、被測定物の断面形状を測定することができる断面形状測定装置および断面形状測定方法を提供することを目的とする。
本発明の上記目的は、下記の手段によって達成される。
本発明の断面形状測定装置は、被測定物に押し当てることで該被測定物の形状に倣って変形可能な透明体と、変形した前記透明体を介してスリット光を照射する照射手段と、前記被測定物と接触する側の前記透明体の端面で前記スリット光によって生じた照射像を撮像する撮像手段と、を有することを特徴とする。
本発明の断面形状測定方法は、被測定物に押し当てられて該被測定物の形状に倣って変形した透明体を介してスリット光を照射する照射段階と、前記被測定物と接触する側の前記透明体の端面で前記スリット光によって生じた照射像を撮像する撮像段階と、を有することを特徴とする。
以上のように構成された本発明にかかる断面形状測定装置および断面形状測定方法によれば、被測定物表面上に被測定物の形状に倣って変形可能な透明体を押し当て、前記透明体を介してスリット光を照射し、前記被測定物と接触する側の前記透明体の端面で生じた照射像を撮像して画像を得ることで、被測定物の光学的性質に関係なく、被測定物の断面形状を測定することができるようになる。
以下、図面を参照して、本発明の実施の形態を説明する。
本発明の実施の形態では、手持ち式の光切断型の断面形状測定装置を例にとって説明する。
図1は、本発明の一実施の形態である断面形状の測定用システムであり、図2は、センサヘッドの概略構成を示す図である。
本発明の一実施の形態である断面形状の測定用システムは、可撓性を有する透明体を被測定物に押し当てて変形させた状態で、透明体上からスリット光を照射し、透明体の端面に生じた照射像を撮像することに特徴を有するものである。
図1に示されるとおり、本実施の形態の測定用システム100は、センサヘッド200と、センサヘッド200に接続されるコンピュータ300(以下、「PC」と称する)とを備える。このセンサシステム100は、図1に示される被測定物400の隙間および段差(面差)を測定し、測定結果をPC300のディスプレイ310に画面出力するものである。ここで、被測定物400は、スリット光を透過する光学的性質を有するものである。被測定物400は、2つの部分400aと400bとに分かれており、本実施の形態において、「隙間」とは、図1に「d」で示されるとおり、被測定物の二つの部分400aと400bとを隔てる隙間である。一方、「段差」とは、図1に「h」で示されるとおり、この二つの部分400aと400bとの表面差の段差である。
図1および図2に示されるとおり、センサヘッド200は、手持ち式の光切断型の測定装置であり、利用者によって持ち運び可能な大きさをしている。センサヘッド200の筐体210の外側に、ゲルアダプタ220が支持板230を介して取り付けられ、接触子240も取り付けられている。センサヘッド200の筐体210の内部には、スリットレーザ光源250、CCDカメラ260、処理回路270、測定スイッチ280、およびインタフェース290が備えられ、測定スイッチ280およびインタフェース290は、センサヘッドの筐体210の外に露出される。また、センサヘッド200の筐体210の両側には、スリット光が被測定物400に幅広く照射されるように切り欠き部210aが設けられている。さらに、図2に示されるとおり、センサヘッド200には、利用者によるハンドリングのためのハンドル210bが備えられている。
ゲルアダプタ220は、被測定物400に押し当てることで被測定物400の形状に倣って変形可能な透明体であり、支持板230を介して筐体210に取り付けられている。本実施の形態の断面形状の測定用システム100は、この透明体であるゲルアダプタ220を被測定物400に押し当てて被測定物400の形状に倣って変形させた状態で、ゲルアダプタ220を介してスリット光を照射し、ゲルアダプタ220の端面220cに生じた照射像Sを撮像することに特徴を有するものである。このゲルアダプタ220の詳細は、後述する。
接触子240は、センサヘッド200の被測定物400に面する端部から被測定物側へ突出して設けられた脚部であって、ゲルアダプタ220の端面220cに生じた照射像Sの撮影の際に被測定物400の表面に当接するものである。より具体的には、変形前のゲルアダプタ220の先端が接触子240の先端よりも突出している。また、接触子240は、線状の照射像Sの伸延方向に沿ってセンサヘッド200の本体の両側に設けられた二対の接触子で構成されている。また、接触子240には、その長さを調整できる調整機構が設けられていてもよい。
スリットレーザ光源250は、ゲルアダプタ220を介してスリット光を照射し、被測定物400と接触する側のゲルアダプタ220の端面220cで照射像Sを生じさせる照射手段として機能する。ここで、スリット光とは、直線状に延びた照射領域を持つ光である。スリットレーザ光源250は、たとえば、半導体レーザ素子およびその他の光学系によって構成可能であり、その構成自体は、一般的なスリット光の発光器と同様であるので、詳しい説明を省略する。
CCDカメラ260は、スリット光によってゲルアダプタ220の端面220cに生じた照射像Sを撮像して画像を得る撮像手段として機能する。具体的には、CCDカメラ260は、CCD素子などの撮像素子とその他の光学系によって構成可能であり、その構成自体は、一般的な撮像手段と同様であるので、詳しい説明を省略する。
処理回路270は、たとえば、種々の演算および制御を行うためのプロセッサ、データを一時的に格納するとともに画像処理時のワーキングエリアとして機能するRAM、プログラムを格納するROM,および周辺回路から構成されている。処理回路270は、たとえば、CCDカメラ260によって得られた画像に基づいて被測定物の隙間および段差などの断面形状を算出する算出手段として機能する。
測定スイッチ280は、センサヘッド200による測定の開始および終了を指示する指示手段である。具体的には、利用者が測定スイッチ280を押圧することによって測定が開始され、利用者が測定スイッチ280から手を放すことによって測定が終了する。
インタフェース290は、処理回路270によって算出された隙間および段差の算出結果や画像をPC300へファイル出力し、および/または、PC300のディスプレイ310に画面出力するための出力手段として機能する。
ここで、図3を参照して、本実施の形態におけるゲルアダプタ220および支持板230について、詳細に説明する。
ゲルアダプタ220は、被測定物400に押し当てることで被測定物400の形状に倣って変形可能な透明体であって、具体的には流動性を失った分散系溶液であるゲル材を用いてなる。そして、ゲルアダプタ220のヤング率(圧縮弾性率)は、被測定物に押し当てた際に、被測定物400の形状に容易に変形可能な値である30kPa以下であることが望ましい。ゲルアダプタ220のヤング率が30kPa以上であると、ゲルアダプタ220を被測定部400に押し当て被測定物400の形状に倣って変形させるのに大きな力を要し、その大きな力がゲルアダプタ220を介して被測定物400にもかかることになり、被測定物400の形状が変わるおそれがある。なお、ゲルアダプタ220としては、たとえば、表1に示される特性を有するゲル材を用いることができる。
Figure 2008256413
ゲルアダプタ220は、被測定物400に向かって凸状に形成された先端部Eを有し、その先端部Eは、軸直交断面が三角形状である。ここで、軸直交断面とは、被測定物の隙間dに沿う方向を軸方向としたとき、その軸に直交するゲルアダプタ220の断面である。
ゲルアダプタ220の端面220cは、二つの端面221c,222cからなり、その二つの端面221c,222cが交差する角度θは、被測定物400の隙間dならびに段差hの大小によって最適な角度を選択する。なお、本実施形態とは異なり、ゲルアダプタ220の二つの端面221c,222cは平坦ではなく、被測定物の二つの部分400aと400bの形状に倣って変形しやすいように、たとえば、被測定物の二つの部分400aおよび400bそれぞれに向かって、凹状に形成されることもでき、この他にも被測定物の形状に合わせて多様な変形が可能である。
また、ゲルアダプタ220は、図3に示されるとおり、スリット光を透過する、いわゆる本体部220aと、本体部220aとは光学特性が異なる表面層220bとに分けることができる。
ゲルアダプタ220の表面層220bは、本体部220aの表面上の形状に沿って着色された着色層として形成される。表面層に付けられる色は、スリット光が照射されることによって照射像が生じる色、たとえば、白色などの有色である。なお、本実施形態とは異なり、着色層は、本体部220aの表面を直接着色させて形成した場合に限られず、有色の着色薄膜ゲルシートを本体部220aの表面上に接着させて形成してもよく、または、ゲルアダプタ220自体の端面220cが有色となるように製造段階で加工して形成することもできる。
支持板230は、ゲルアダプタ220を支持し、かつ、スリット光を透過する板である。具体的には、支持板230は、ガラス板やアクリル板などの透明素材の板である。ここで、支持板230の面積は、ゲルアダプタ220の支持板230と接着する面積よりも大きく、支持板230の1辺は、隙間dの幅より大きい。支持板230は、ゲルアダプタ220と接着されて一体となっている。また、支持板230は、センサヘッド200の筐体210に着脱可能に固定する固定手段(図示せず)が備えられる。たとえば、支持板230はセンサヘッド200の筐体210にネジ止めによって取り付けられる。したがって、被測定物400の形状に合わせた複数のゲルアダプタが用意されていれば、被測定物400に合ったゲルアダプタに、支持板ごと容易に交換できる。
以上のように構成される本実施の形態の断面形状測定装置は、以下のように処理を行う。
図4は、本実施の形態の断面形状測定装置を用いた断面形状測定方法を説明するためのゲルアダプタが被測定物に押し当てられた際の断面形状を示す概略図であり、図5は、本実施の形態の断面形状測定装置を用いた断面形状測定方法の処理内容の一例を示すフローチャートである。
ここで、本実施の形態に用いる被測定物400は、スリット光を透過する光学的性質を有するものとする。しかしながら、本実施の形態では、スリット光による照射像Sが被測定物400の表面上ではなく、ゲルアダプタ220の端面220cに生じるため、被測定物400の光学的性質に関係なく、被測定物400の断面形状を測定することができる。
まず、被測定物400の測定希望箇所をスリット光が切断するように、センサヘッド200のゲルアダプタ220を被測定物表面に押し当てる(ステップS100)。ここで、ゲルアダプタ220は、被測定物400に向かって凸状に形成された先端部Eを有することで、被測定物400の隙間dに入り込みやすく、センサヘッド200の位置決めが容易となる。
次に、支持板230の四隅に取り付けられた接触子240が被測定物400に接触するまでゲルアダプタ220を押し込む(ステップS101)。この結果、図4に示すとおり、ゲルアダプタ220は、被測定物の二つの部分400a,400bの形状に倣って変形される。四隅に取り付けられた接触子240が被測定物400に当接されることで、スリット光の照射角度およびCCDカメラ260による撮像角度が一定となり、安定した画像が得られる。ここで、ゲルアダプタ220の先端部Eの軸直交断面が三角形状であることで、ゲルアダプタ220を押し当てることによる被測定物400にかかる面圧が低減し、ゲルアダプタ220を押し当てる力による段差の変動、言い換えれば、被測定物の形状が変形した状態で測定することを回避できる。また、支持板230の面積は、ゲルアダプタ220の支持板230と接着する面積よりも大きい。したがって、センサヘッド200の筐体210に設けられた切り欠き部210aがあっても、ゲルアダプタ220は切り欠き部210aの方向に変形せず、ゲルアダプタ220の変形する方向を主に被測定物側に制限することができ、ゲルアダプタ220を素早く被測定物400の断面形状に追従させることができる。
次に、画像取込処理が実行される(ステップS102)。このとき、測定スイッチ280が押圧されることで、測定が開始し、スリット光源250からスリット光が照射され、ゲルアダプタ220の表面層220bに線状の照射像Sが生じる。そして、測定スイッチ280から手が放されることによって、ゲルアダプタの表面層220bに生じた照射像SをCCDカメラ260により撮像して画像を得る。そして、画像の取込が終了し、その手を放したときに取り込んだ画像に基づいて、次のステップ以降で隙間および段差が算出される。
次に、二次元座標算出処理が実行される(ステップS103)。このとき、ステップS102において、測定スイッチから手を放したときに取り込まれた画像に基づいて二次元断面座標を算出する。ここで、CCDカメラ260で撮像された画像から二次元断面座標を算出する処理自体は、従来の光切断型の測定用システムと同様であるので詳しい説明を省略する。簡単に説明すれば、ステップS102の画像取込処理において取り込まれた画像は、CCD上の画素に応じてX−Y平面上にマッピングされる。たとえば、図6は、256×256の画素に対応して、画像がX−Y平面上にマッピングされる場合を示しており、X座標値およびY座標値は、それぞれ0〜255の値をとる。撮像された画像は、被測定物の2つの部分400aおよび400bの各表面に対応して比較的長く続く直線状の部分を備える。撮像された画像は、この連続線の部分がX軸と平行な方向となるように、配置されている。なお、取り込んだ画像がある程度の分布幅(線の太さ)を持って存在している場合は、たとえば、その幅の中心のX座標値およびY座標値が選択される。
次に、ステップS103で算出された二次元断面座標をデータとして記憶する(ステップS104)。ここで、二次元断面座標のデータは、たとえば、処理回路270のRAMに記憶される。
次に、段差・隙間算出処理が実行される(ステップS105)。このとき、ステップS104で処理回路270のRAMに記憶された二次元断面座標のデータに基づいて、隙間dおよび段差hが算出される。この算出の際には、ディスプレイ310上に、算出に用いられる画像を表示し、計算中である旨を表示することもできる。
ここで、隙間および段差の算出処理自体は、従来の光切断型の測定用システムと同様であるので詳しい説明を省略する。簡単に説明すれば、ステップS103の二次元座標算出処理された結果のデータをみると、図6に示されるとおり、被測定物400に含まれる二つの部分400aと400bとに対応して2本の連続線に分かれる。この2本の連続線の隣接する端部相互間のX座標値の差が隙間に対応する。また、上記の2本の連続線には、被測定物の表面に対応して比較的長く延びる2本の直線状の部分が含まれている。この直線状の部分を仮想的に延長して得られた2本の線の相互間の距離(Y座標値の差)が段差に対応する。なお、具体的な段差の値は、従来の算出方法と同様に、この2本の線の相互間の距離と照射角度および撮像角度とから算出される。
次に、図4のステップS105で算出された段差・隙間の算出結果をデータとして記憶する(ステップS106)。ここで、段差・隙間の算出結果は、たとえば、処理回路270のRAMに記憶される。
次に、ステップS107では、算出された隙間および段差の値をディスプレイ310に表示するとともに、ファイル出力する。
以上のように、本実施の形態の断面形状装置および断面形状方法によれば、被測定物400がスリット光を透過してしまう物体であっても、被測定物の光学的性質に関係なく、被測定物400の断面形状を測定することができる。
また、ゲルアダプタ220の端面220cに着色層が形成されることで、スリット光の照射が弱くても、ゲルアダプタ220の端面220cに照射像が生じ、被測定物400の断面形状を測定できる。
さらに、ゲルアダプタ220は、透明な支持板230により支持されていることで、ゲル材の一面に均等に力が押し当てられ、ゲル材の変形する方向を主に被測定物側に制限し、素早く断面形状に追従させることができる。
さらに、ゲルアダプタ220と支持板230とが接着され、一体となっていることで、被測定物400の形状に合わせて、センサヘッド200の筐体210にゲルアダプタ220および支持板230を容易に取り替えることができる。
さらに、ゲルアダプタ220は、被測定物400に向かって凸状に形成された先端部Eを有することで、ゲルアダプタ220を被測定物400に押し当てる際の面圧が低減し、押し当てる力による被測定物400の段差の変動を回避できる。
さらに、被測定物400の表面に当接する接触子240を有し、変形前のゲルアダプタ220の先端が接触子240の先端よりも突出していることで、ゲルアダプタ220を押し当てる距離が定まり、正確な画像を得ることができる。
さらに、CCDカメラ260によって得られた画像に基づいて被測定物400の断面形状を算出する処理回路270を有し、処理回路270による断面形状の算出結果を出力するインタフェース290を有することで、たとえば、記録媒体を接続し、別途のPCで算出結果を参照ならびに利用することができる。
以上のように本発明の好適な実施形態について説明したが、本発明は、以上の実施形態に限定されるべきものではなく、特許請求の範囲に表現された思想および範囲を逸脱することなく、種々の変形、追加、および省略が当業者によって可能である。
たとえば、本実施の形態の変形例として、ゲルアダプタ220の表面層220bは、着色層ではなく、粉末状の物質を含む粉末層とすることもできる。表面層220bが粉末層である場合、スリット光の照射が弱くても、粉末層によってゲルアダプタ220の端面220cに照射像Sが生じ、被測定物400の断面形状を測定できる。粉末層は、被測定物の断面形状の測定前に、粉末状の物質を前記透明体の表面に付着してもよい。ゲル材は、一般的に、粘着性を有するため、他の物体と接触すると接着してはがれにくくなるが、粉末状の物質をゲルアダプタ220と被測定物400との間に介することによってゲルアダプタ220を被測定物400から剥離するのが容易になる。粉末状の物質としては、スリット光が照射されることによって生じる照射像Sを正確に認識可能な程度に粒子が小さいもの、たとえば、ナノ微粒子(ナノパウダー)が望ましい。なお、粉末状の物質を含む薄膜ゲルシートを本体部220aの表面上に接着させて形成することができ、また、ゲルアダプタ220自体の端面220cに粉末状の物質が含まれるように製造段階で加工して形成することもできる。
さらに、上記で説明したように、着色層または粉末層として表面層220bが形成されれば、弱いスリット光の照射でも、被測定物の断面形状測定が可能となるので、ゲルアダプタ220の本体部とは光学特性が異なる表面層220bを設けることが望ましいが、表面層が設けられていなくても、たとえば、ゲルアダプタ220と被測定物400との間で光の屈折率が異なることにより生じる照射像を撮像することもできる。
また、接触子240が支持板230の四隅に配置される場合について説明したが、本発明はこの場合に限られず、たとえば、線状の照射像Sの伸延方向に沿ってセンサヘッド200の本体の両側に設けられた一対の接触子で構成することもできる。この場合、一対の接触子は、CCDカメラ260による照射像Sの撮影の際に被測定物400に当接されて支点となり、この一対の接触子を支点としてセンサヘッド200を傾動することで、スリット光の照射角度およびCCDカメラ260による撮像角度を調節することができる。
さらに、本発明は、センサヘッド200に接触子240を設けなくても、たとえば、ゲルアダプタ220とのヤング率の関係から、ゲルアダプタ220を被測定物に押し当てる際にセンサヘッド200にかかる圧力を測定する圧力センサを支持板220に設けて、圧力センサによって測定された値が所定の設定値に達したときに、断面形状の測定をさせることができる。
さらに、上記の説明では、画像取込処理と隙間および段差の算出処理とをセンサヘッド200内で実行し、算出結果をインタフェース290によりPC300に出力する場合を説明したが、本発明はこの場合に限られず、たとえば、画像取込処理に含まれる画像処理と隙間および段差の算出処理とを、PC300内で実行することもできる。
さらに、簡易的なシステムでは、センサヘッド200自体に、隙間および段差の算出結果や画像を表示する小型ディスプレイを設けてもよい。この場合には、PC300は不要である。
さらに、本実施の形態では、被測定物としてスリット光を透過する透明体としたが、透明体に限られず、被測定物の表面および内部で光が乱反射する場合も、本発明の断面形状測定装置を用いることで、被測定物表面に生じる照射像は光の乱反射の影響を受けずに被測定物の断面形状の測定ができる。なお、被測定物が、スリット光を透過しない物体でも、本発明に係る断面形状測定装置を適用できることはもちろんである。
さらに、本実施の形態では、手持ち式の光切断型の断面形状測定装置について説明したが、本発明は手持ち式に限られず、多間接ロボットの先端にゲルアダプタ付センサヘッドを備えさせ、あらかじめ決められた測定ポイントを自動計測させることもできる。この場合、たとえば、ロボットの教示データによって、センサヘッドの位置決めがなされることにより接触子240を不要とすることもできる。
本発明の一実施の形態であるセンサヘッドの斜視図である。 図1のセンサヘッドの概略構成を示す図である。 ゲルアダプタ220の概略構成を示す図である。 ゲルアダプタ220が被測定物400に押し当てられた際の断面形状の概略図である。 図1に示される本実施の形態のセンサヘッドを用いた断面形状測定方法を説明するフローチャートである。 二次元座標算出処理をして得られた画像のデータの一例を示す図である。
符号の説明
200 センサヘッド、
210 センサヘッドの筐体、
220 ゲルアダプタ、
230 支持板、
240 接触子、
250 スリットレーザ光源、
260 CCDカメラ、
270 処理回路、
280 測定スイッチ、
290 インタフェース。

Claims (15)

  1. 被測定物に押し当てることで該被測定物の形状に倣って変形可能な透明体と、
    変形した前記透明体を介してスリット光を照射する照射手段と、
    前記被測定物と接触する側の前記透明体の端面で前記スリット光によって生じた照射像を撮像する撮像手段と、
    を有することを特徴とする断面形状測定装置。
  2. 前記透明体の端面には、前記透明体の他の透明部分とは光学特性が異なる表面層が形成されていることを特徴とする請求項1に記載の断面形状測定装置。
  3. 前記表面層は、着色層であることを特徴とする請求項2に記載の断面形状測定装置。
  4. 前記表面層は、粉末状の物質を含む粉末層であることを特徴とする請求項2に記載の断面形状測定装置。
  5. 前記粉末状の物質は、ナノ微粒子であることを特徴とする請求項4に記載の断面形状測定装置。
  6. 前記粉末層は、前記粉末状の物質を前記透明体の表面に付着してなることを特徴とする請求項4または5に記載の断面形状測定装置。
  7. 前記透明体は、透明な支持板により支持されていることを特徴とする請求項1に記載の断面形状測定装置。
  8. 前記支持板と前記透明体とは接着され、一体となっていることを特徴とする請求項7に記載の断面形状測定装置。
  9. 前記透明体は、被測定物に向かって凸状に形成された先端部を有することを特徴とする請求項1に記載の断面形状測定装置。
  10. 前記先端部は、軸直交断面が三角形状であることを特徴とする請求項9に記載の断面形状測定装置。
  11. さらに、前記被測定物の表面に当接する接触子を有し、
    変形前の前記透明体の先端が前記接触子の先端よりも突出していることを特徴とする請求項1に記載の断面形状測定装置。
  12. さらに、前記撮像手段によって得られた画像に基づいて被測定物の断面形状を算出する算出手段を有することを特徴とする請求項1に記載の断面形状測定装置。
  13. さらに、前記算出手段による断面形状の算出結果を出力する出力手段を有することを特徴とする請求項12に記載の断面形状測定装置。
  14. 前記透明体は、ゲル材で形成されることを特徴とする請求項1〜13に記載の断面形状測定装置。
  15. 被測定物に押し当てられて該被測定物の形状に倣って変形した透明体を介してスリット光を照射する照射段階と、
    前記被測定物と接触する側の前記透明体の端面で前記スリット光によって生じた照射像を撮像する撮像段階と、
    を有することを特徴とする断面形状測定方法。
JP2007096801A 2007-04-02 2007-04-02 断面形状測定装置および断面形状測定方法 Pending JP2008256413A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096801A JP2008256413A (ja) 2007-04-02 2007-04-02 断面形状測定装置および断面形状測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096801A JP2008256413A (ja) 2007-04-02 2007-04-02 断面形状測定装置および断面形状測定方法

Publications (1)

Publication Number Publication Date
JP2008256413A true JP2008256413A (ja) 2008-10-23

Family

ID=39980130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096801A Pending JP2008256413A (ja) 2007-04-02 2007-04-02 断面形状測定装置および断面形状測定方法

Country Status (1)

Country Link
JP (1) JP2008256413A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525284A (ja) * 2008-06-19 2011-09-15 マサチューセッツ インスティテュート オブ テクノロジー 弾性撮像を使用する接触センサ
US9127938B2 (en) 2011-07-28 2015-09-08 Massachusetts Institute Of Technology High-resolution surface measurement systems and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525284A (ja) * 2008-06-19 2011-09-15 マサチューセッツ インスティテュート オブ テクノロジー 弾性撮像を使用する接触センサ
US9127938B2 (en) 2011-07-28 2015-09-08 Massachusetts Institute Of Technology High-resolution surface measurement systems and methods

Similar Documents

Publication Publication Date Title
CN103954241B (zh) 一种基于结构光的ic引脚共面度测量系统及其测量方法
JP4872035B2 (ja) 撮像装置、撮像画像距離測定方法、撮像画像距離測定プログラム、及び記録媒体
EP1929239A1 (en) Polarizing multiplexer and method for intra-oral scanning
KR101278249B1 (ko) 유리기판 에지부의 결함유무 검출을 위한 장치 및 방법
JP5660531B2 (ja) 形状計測装置、及び形状計測方法
US8553076B2 (en) Contact measuring endoscope apparatus
JP2008281399A (ja) 三次元測定装置及び携帯型計測器
US20130204563A1 (en) Printing inspection apparatus, printing inspection system, statistical method for inspection data, program, and substrate manufacturing method
JP2008256413A (ja) 断面形状測定装置および断面形状測定方法
JP2015135254A (ja) 被膜性能測定装置
JP5849335B2 (ja) 接触状態検出装置、接触状態検出方法、接触状態検出用コンピュータプログラム、接触状態検出装置を備える電気伝導度測定システムおよび接触状態検出方法を含む電気伝導度測定方法
JP2009058459A (ja) 形状測定装置
CN112652060A (zh) 一种基于粒子图像测速法的多模态视触觉传感系统及方法
JP2008292303A (ja) 接続状態検査装置、接続状態検査方法および接続システム
KR100942235B1 (ko) 판유리 두께측정방법
JP5262070B2 (ja) 被検査物の真円度測定方法
US20220046838A1 (en) Mounting apparatus
KR20120115812A (ko) 휴대용 습도막 두께 측정장치
JP7314091B2 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
JP2012104543A (ja) Fpdモジュールに搭載される部材の端部検出装置、端部検出方法及びacf貼付け装置
KR101415980B1 (ko) 3차원 스캐너 장치
TWI559002B (zh) 檢查探針
JP6095000B2 (ja) 直角度測定装置
JP2005189194A (ja) 成形性評価方法
JP5540393B1 (ja) 鼻息検査装置