JP2008255351A - Anion exchange membrane for salt production and method for producing the same - Google Patents

Anion exchange membrane for salt production and method for producing the same Download PDF

Info

Publication number
JP2008255351A
JP2008255351A JP2008064720A JP2008064720A JP2008255351A JP 2008255351 A JP2008255351 A JP 2008255351A JP 2008064720 A JP2008064720 A JP 2008064720A JP 2008064720 A JP2008064720 A JP 2008064720A JP 2008255351 A JP2008255351 A JP 2008255351A
Authority
JP
Japan
Prior art keywords
anion exchange
monomer
exchange membrane
polymerizable
salt production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008064720A
Other languages
Japanese (ja)
Other versions
JP5050285B2 (en
Inventor
Takeshi Nagatani
剛 永谷
Naoto Yoshikawa
直人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Original Assignee
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLT INDUSTRY CT OF JAPAN, Salt Industry Center of Japan. filed Critical SOLT INDUSTRY CT OF JAPAN
Priority to JP2008064720A priority Critical patent/JP5050285B2/en
Publication of JP2008255351A publication Critical patent/JP2008255351A/en
Application granted granted Critical
Publication of JP5050285B2 publication Critical patent/JP5050285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an anion exchange membrane that is useful for salt production and improves concentration performance and mechanical strength without increasing electric resistance in comparison with a conventionally used membrane. <P>SOLUTION: The anion exchange membrane for salt production is obtained by irradiating an ultra high molecular weight polyethylene film with ionizing radiation to generate a radical in an ultra high molecular weight polyethylene and then carrying out graft polymerization using a polymerizable monomer alone containing a functional group into which a cation-exchange group is introduced or a polymerizable mixture of the polymerizable monomer and a crosslinkable monomer. When the graft polymerization is carried out by using the monomer alone or the polymerizable mixture of the polymerizable monomer and the crosslinking monomer, preferably a swelling solvent is used. The method for producing the anion exchange membrane for salt production is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製塩に用いられる陰イオン交換膜及びその製造方法に関する。   The present invention relates to an anion exchange membrane used for salt production and a method for producing the same.

イオン交換膜製塩法における海水濃縮工程には、陽及び陰イオン交換膜を利用した電気透析槽が用いられている。電気透析槽に利用するイオン交換膜の性能上求められているのは、膜の電気抵抗、濃縮性能、耐久性等であり、製造費低減のためには、膜の電気抵抗を増加させることなく、濃縮性能を向上させることが必要である。加えて耐久性、特に機械的強度を向上させることも必要となる。   An electrodialysis tank using positive and anion exchange membranes is used in the seawater concentration step in the ion exchange membrane salt production method. What is required in terms of the performance of ion exchange membranes used in electrodialysis tanks is membrane electrical resistance, concentration performance, durability, etc. To reduce manufacturing costs, without increasing membrane electrical resistance. It is necessary to improve the concentration performance. In addition, it is necessary to improve durability, particularly mechanical strength.

製塩用イオン交換膜の製法については従来から数多くの方法が提案されている(例えば特許文献1〜3参照)が、イオン交換基が導入可能な官能基又はイオン交換基を有するモノマー、架橋剤及び重合触媒を主たる成分として含有する混合物をポリ塩化ビニル製の織布などに塗布して重合した後、必要に応じてイオン交換基を導入する方法が広く知られている。   Many methods have been proposed for producing an ion exchange membrane for salt production (see, for example, Patent Documents 1 to 3). However, a monomer having a functional group or an ion exchange group into which an ion exchange group can be introduced, a crosslinking agent, and There is widely known a method in which a mixture containing a polymerization catalyst as a main component is applied to a woven fabric made of polyvinyl chloride and polymerized, and then ion exchange groups are introduced as necessary.

しかしながら、この方法により得られたイオン交換膜は、膜の電気抵抗を増加させることなく、濃縮性能を向上させることは困難であり、かつ機械的強度についても満足できる性質のものではなかった。   However, the ion exchange membrane obtained by this method is difficult to improve the concentration performance without increasing the electrical resistance of the membrane, and the mechanical strength is not satisfactory.

かかる問題点を解決するため、ポリプロピレン繊維基材等に重合性モノマーを含浸担持させた後、電離放射線でグラフト重合しイオン交換膜を得る方法や、オレフィン製基材等に重合性モノマーを含浸担持させた後、電離放射線で一部重合を行い、続いて重合開始剤の存在下で加熱することにより、重合を完結させてイオン交換膜を得る方法が提案されている(例えば特許文献4〜6参照)。   In order to solve this problem, after impregnating and supporting a polymerizable monomer on a polypropylene fiber base material, etc., a method of obtaining an ion exchange membrane by graft polymerization with ionizing radiation, or impregnating and supporting a polymerizable monomer on an olefin base material, etc. Then, partial polymerization is performed with ionizing radiation, followed by heating in the presence of a polymerization initiator to complete the polymerization and obtain an ion exchange membrane (for example, Patent Documents 4 to 6). reference).

しかし、いずれの方法も、膜の機械的強度を向上させることは可能であるが、膜の濃縮性能については満足のいく成果は見られなかった。
特公昭39−27861号公報 特公昭40−28951号公報 特公昭44−19253号公報 特開昭51−52489号公報 特開昭60−238327号公報 特開平6−271687号公報
However, although either method can improve the mechanical strength of the membrane, no satisfactory result has been found in the concentration performance of the membrane.
Japanese Examined Patent Publication No. 39-27861 Japanese Patent Publication No.40-28951 Japanese Patent Publication No. 44-19253 JP-A-51-52489 JP 60-238327 A JP-A-6-271687

本発明は、製塩に用いられる陰イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させ、且つ機械的強度を向上させることを目的とするものである。   An object of the present invention is to improve the concentration performance and mechanical strength of an anion exchange membrane used for salt production without increasing the electric resistance as compared with a conventionally used membrane. Is.

本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、超高分子量ポリエチレンフィルムに電離放射線を照射し、スチレン系モノマー等をグラフト重合した後、形成されるグラフト側鎖に陰イオン交換基を導入することにより、従来使用されている製塩用のイオン交換膜と比較し、電気抵抗を増加させずに、濃縮性能を増加させ、且つ機械的強度を向上させた膜を提供できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors irradiate an ultrahigh molecular weight polyethylene film with ionizing radiation, graft polymerize a styrene monomer, and then form an anion on a graft side chain formed. By introducing an exchange group, it is possible to provide a membrane having an increased concentration performance and an improved mechanical strength, without increasing the electrical resistance, as compared with conventionally used ion exchange membranes for salt production. I found it.

すなわち、本発明は、下記の構成とすることにより上記の目的を達成するに至った。
(1)超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことにより得られることを特徴とする製塩用陰イオン交換膜。
(2)前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用することを特徴とする前記(1)記載の製塩用陰イオン交換膜。
(3)前記陰イオン交換基を導入可能な官能基自体が陰イオン交換基でない場合には、グラフト重合後に、陰イオン交換基を付与できる化合物で処理するものである前記(1)又は(2)記載の製塩用陰イオン交換膜。
(4)超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことを特徴とする製塩用陰イオン交換膜の製造方法。
(5)前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用することを特徴とする前記(4)記載の製塩用陰イオン交換膜の製造方法。(6)前記陰イオン交換基を導入可能な官能基自体が陽イオン交換基でない場合には、グラフト重合後に、陰イオン交換基を付与できる化合物で処理するものである前記(4)又は(5)記載の製塩用陰イオン交換膜の製造法。
That is, the present invention has achieved the above object by adopting the following configuration.
(1) A polymerizable monomer having a functional group capable of introducing an anion exchange group alone after generating radicals in ultrahigh molecular weight polyethylene by irradiating ionizing radiation to the ultrahigh molecular weight polyethylene film, or An anion exchange membrane for salt production, which is obtained by performing graft polymerization using a polymerizable mixture of a polymerizable monomer and a crosslinkable monomer.
(2) The said (1) description characterized by using a swelling solvent when graft-polymerizing using the said monomer alone or the polymeric mixture of the said polymerizable monomer and a crosslinkable monomer. Anion exchange membrane for salt production.
(3) In the case where the functional group capable of introducing an anion exchange group is not an anion exchange group, the functional group is treated with a compound capable of providing an anion exchange group after the graft polymerization (1) or (2) ) The anion exchange membrane for salt production as described.
(4) A polymerizable monomer having a functional group capable of introducing an anion exchange group alone after generating radicals in ultrahigh molecular weight polyethylene by irradiating ionizing radiation to the ultrahigh molecular weight polyethylene film, or A method for producing an anion exchange membrane for salt production, wherein graft polymerization is carried out using a polymerizable mixture of a polymerizable monomer and a crosslinkable monomer.
(5) The above (4), wherein a swelling solvent is used when graft polymerization is performed using the monomer alone or a polymerizable mixture of the polymerizable monomer and the crosslinkable monomer. Of producing an anion exchange membrane for salt production. (6) When the functional group itself capable of introducing the anion exchange group is not a cation exchange group, it is treated with a compound capable of imparting an anion exchange group after the graft polymerization (4) or (5) ) A method for producing an anion exchange membrane for salt production as described in the above.

上記から明らかなように、本発明の骨子は、下記(a)及び(b)に存する。
(a)超高分子量ポリエチレンに電離放射線を照射することにより、ラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体、又は該重合性単量体及び架橋性単量体を含有する重合性混合物中でグラフト重合を行い、陰イオン交換基を導入する陰イオン交換膜の製造方法である。
(b)前記(1)に記載の方法で得た陰イオン交換膜である。
As is clear from the above, the gist of the present invention resides in the following (a) and (b).
(A) A polymerizable monomer having a functional group capable of introducing an anion exchange group after generating radicals by irradiating ultrahigh molecular weight polyethylene with ionizing radiation, or the polymerizable monomer and a crosslink It is a method for producing an anion exchange membrane in which an anion exchange group is introduced by graft polymerization in a polymerizable mixture containing an ionic monomer.
(B) An anion exchange membrane obtained by the method described in (1) above.

本発明により、現在製塩に用いられている陰イオン交換膜と比較して、電気抵抗を増加させずに、濃縮性能を増加させ、且つ機械的強度を向上させた陰イオン交換膜を提供できることから、製塩コスト低減に寄与できる。   According to the present invention, an anion exchange membrane having an increased concentration performance and an improved mechanical strength can be provided without increasing the electric resistance as compared with the anion exchange membrane currently used for salt production. , Can contribute to reducing salt production costs.

本発明の陰イオン交換膜製造方法は、超高分子量ポリエチレン製のフィルムに電離放射線を照射することにより、ラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体及び膨潤溶媒、又は該重合性単量体、架橋性単量体、及び膨潤溶媒を含有する重合性混合物中でグラフト重合を行い、前記重合性単量体の官能基を、トリメチルアミン等を用いて陰イオン交換基を導入することが特徴である。   The method for producing an anion exchange membrane of the present invention comprises a polymerizable monomer having a functional group capable of introducing an anion exchange group after generating radicals by irradiating a film made of ultrahigh molecular weight polyethylene with ionizing radiation. Body and swelling solvent, or graft polymerization in a polymerizable mixture containing the polymerizable monomer, the crosslinkable monomer, and the swelling solvent, and the functional group of the polymerizable monomer is trimethylamine or the like It is characterized by introducing an anion exchange group.

以下、本発明の実施の形態を詳細に説明する。
本発明で使用できる、高分子フィルム基材としては、得られるイオン交換膜の耐久性が向上し、膨潤性も抑制される、分子量が30万以上である超高分子量ポリエチレンを使用することができ、特に分子量が100万〜630万であり、厚みが20〜100μmのものを用いるのが好ましい。
高分子基材の形態は、製塩用のイオン交換膜としての利用面からの要請から、膜(フィルム)の形態であって、その大きさ、厚さは適宜決定することができる。
超高分子量ポリエチレンフィルムの製造法による種別は特に限定するものではなく、インフレーションフィルム、スカイブフィルム等いずれのフィルムも使用可能である。インフレーションフィルムとしては、例えば、作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名)などがあげられる。スカイブフィルムとしては、例えば作新工業株式会社製、Saxinニューライトフィルム(製品名)があげられる。
Hereinafter, embodiments of the present invention will be described in detail.
As the polymer film substrate that can be used in the present invention, ultrahigh molecular weight polyethylene having a molecular weight of 300,000 or more, which improves the durability of the obtained ion exchange membrane and suppresses swelling, can be used. In particular, it is preferable to use those having a molecular weight of 1,000,000 to 6,300,000 and a thickness of 20 to 100 μm.
The form of the polymer substrate is a form of a membrane (film) from the viewpoint of utilization as an ion exchange membrane for salt production, and its size and thickness can be appropriately determined.
The type of the ultrahigh molecular weight polyethylene film according to the production method is not particularly limited, and any film such as an inflation film or a skive film can be used. Examples of the inflation film include Saxin New Light Film Innovate (product name) manufactured by Sakushin Kogyo Co., Ltd. Examples of the skive film include Saxin New Light Film (product name) manufactured by Sakushin Kogyo Co., Ltd.

本発明において用いられる、陰イオン交換基を導入可能な官能基を有する重合性単量体としては、クロロメチルスチレンを用いるのが一般的であるが、従来公知である陰イオン交換樹脂や陰イオン交換膜の製造において用いられる単量体が特に制限されず使用される。具体的には、スチレン、ビニルトルエン、ビニルキシレン、α−メチルスチレン、アセナフチレン、ビニルナフタレン、α−ハロゲン化スチレン等、α,β,β’−トリハロゲン化スチレン、クロロスチレン、ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、ビニルイミダゾール、アミノスチレン、アルキルアミノスチレン、トリアルキルアミノスチレン、アクリル酸アミド、アクリルアミド、オキシウム等が用いられる。   As the polymerizable monomer having a functional group capable of introducing an anion exchange group used in the present invention, chloromethylstyrene is generally used, but conventionally known anion exchange resins and anions are known. Monomers used in the production of the exchange membrane are not particularly limited and are used. Specifically, styrene, vinyl toluene, vinyl xylene, α-methyl styrene, acenaphthylene, vinyl naphthalene, α-halogenated styrene, α, β, β'-trihalogenated styrene, chlorostyrene, vinyl pyridine, methyl vinyl Pyridine, ethyl vinyl pyridine, vinyl pyrrolidone, vinyl carbazole, vinyl imidazole, amino styrene, alkyl amino styrene, trialkyl amino styrene, acrylic amide, acrylamide, oxium, and the like are used.

本発明において使用することができる架橋性単量体としては、以下に列記する単量体が挙げられる。架橋構造を導入できる単量体。すなわちビニル基を少なくとも2個有するもの。例えばジビニルベンゼン(DVB)、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、エチレングリコールジメタクリレート。   Examples of the crosslinkable monomer that can be used in the present invention include the monomers listed below. A monomer capable of introducing a crosslinked structure. That is, one having at least two vinyl groups. For example, divinylbenzene (DVB), trivinylbenzene, divinyltoluene, divinylnaphthalene, ethylene glycol dimethacrylate.

本発明では、上記したイオン交換基を導入可能な官能基を有する重合性単量体、又は該重合性単量体及び架橋性単量体とともに、必要に応じてこれらの単量体と共重合可能な単量体を用いても良い。こうした他の単量体としては、例えばスチレン、アクリロニトリル、メチルスチレン、ビニルクロライド、アクロレイン、メチルビニルケトン、無水マレイン酸、マレイン酸、その塩またはエステル類、イタコン酸、その塩またはエステル類等が適宜用いられる。   In the present invention, the above-described polymerizable monomer having a functional group capable of introducing an ion exchange group, or the polymerizable monomer and the crosslinkable monomer are copolymerized with these monomers as necessary. Possible monomers may be used. Examples of such other monomers include styrene, acrylonitrile, methyl styrene, vinyl chloride, acrolein, methyl vinyl ketone, maleic anhydride, maleic acid, salts or esters thereof, itaconic acid, salts or esters thereof, and the like. Used.

また、本発明において使用することができる膨潤溶媒としては特に限定されないが、ベンゼン、キシレン、トルエン、ヘキサン等の炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルイソプロピルケトン、シクロヘキサン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、イソプロピルアミン、ジエタノールアミン、N−メチルホルムアミド、N,N−ジメチルホルムアミド等の含窒素化合物等の溶媒が挙げられ、これらを適宜、少なくとも1種以上選択して使用することができる。   Further, the swelling solvent that can be used in the present invention is not particularly limited, but hydrocarbons such as benzene, xylene, toluene and hexane, alcohols such as methanol, ethanol and isopropyl alcohol, acetone, methyl isopropyl ketone and cyclohexane. And solvents such as ketones such as dioxane and tetrahydrofuran, esters such as ethyl acetate and butyl acetate, nitrogen-containing compounds such as isopropylamine, diethanolamine, N-methylformamide and N, N-dimethylformamide. These can be used by appropriately selecting at least one or more of them.

高分子基材への上記モノマーのグラフト重合は、基材を電離放射線照射後、モノマーと重合反応させる、いわゆる前照射法か、又は基材とモノマーとに同時に照射し、重合反応させる、いわゆる同時照射法のいずれによっても行うことができる。高分子基材にグラフト重合しないホモポリマーの生成量が少ないことから、前照射法を使用することが好ましい。前照射法については2方法あり、高分子基材を不活性ガス中で照射するポリマーラジカル法と、基材を酸素の存在する雰囲気下で照射するパーオキサイド法があり、いずれも本発明において使用することができる。   Graft polymerization of the above-mentioned monomer onto the polymer substrate is a so-called pre-irradiation method in which the substrate is irradiated with ionizing radiation and then subjected to a polymerization reaction, or so-called simultaneous irradiation in which the substrate and the monomer are irradiated simultaneously. It can be performed by any of the irradiation methods. The pre-irradiation method is preferably used because the amount of homopolymer that does not undergo graft polymerization on the polymer substrate is small. There are two pre-irradiation methods: a polymer radical method for irradiating a polymer substrate in an inert gas and a peroxide method for irradiating the substrate in an oxygen-containing atmosphere, both of which are used in the present invention. can do.

前照射法の一例を以下に説明する。
まず、高分子基材を酸素不透過性ポリ袋中に挿入後、この袋内を窒素置換し、袋内酸素を除去する。次いでこの基材を含む袋に電離放射線の一つである電子線を、−10〜80℃、好ましくは室温付近で、25〜400kGy照射する。次いで、照射済み基材を大気中で取り出し、ガラス容器に移し替えた後、容器内にモノマー液又はモノマー溶液(溶媒希釈液)を充填する。モノマー液又はモノマー溶液は、酸素の存在しない不活性ガスによるバブリングや凍結脱気などで予め酸素ガスを除いたものを使用する。照射済み基材にポリマーのグラフト鎖を導入するためのグラフト重合は、通常、室温〜80℃、好ましくは、25〜70℃で実施する。
An example of the pre-irradiation method will be described below.
First, after inserting the polymer base material into an oxygen-impermeable plastic bag, the inside of the bag is purged with nitrogen to remove oxygen in the bag. Next, the bag containing the base material is irradiated with an electron beam, which is one of ionizing radiation, at −10 to 80 ° C., preferably near room temperature, at 25 to 400 kGy. Next, after the irradiated base material is taken out in the atmosphere and transferred to a glass container, the container is filled with a monomer solution or a monomer solution (solvent dilution). As the monomer liquid or monomer solution, one obtained by removing oxygen gas in advance by bubbling or freeze degassing with an inert gas free of oxygen is used. Graft polymerization for introducing a polymer graft chain to an irradiated substrate is usually carried out at room temperature to 80 ° C, preferably 25 to 70 ° C.

これにより得られたポリマーのグラフト率(すなわち、重合前の高分子基材に対するグラフト鎖の質量パーセント)は、5〜300質量%、より好ましくは50〜200質量%である。グラフト率は、照射線量、重合温度、重合時間等に依存して適宜変化させることができる。   The graft ratio of the polymer thus obtained (that is, the weight percentage of the graft chain with respect to the polymer substrate before polymerization) is 5 to 300% by mass, more preferably 50 to 200% by mass. The graft ratio can be appropriately changed depending on the irradiation dose, polymerization temperature, polymerization time and the like.

グラフト鎖を導入した高分子基材への陰イオン交換基の導入は、従来行われている広範な方法が何の制限もなく使用できる。
また、陰イオン交換基を導入する薬剤としては、弱塩基性イオン交換基を導入可能なアンモニア、メチルアミン、ジメチルアミンなど、強塩基性イオン交換基を導入可能なトリメチルアミン、ジメチルアミンエタノール、トリエタノールアミンなどが挙げられるが、これらに限定されるものではない。
The introduction of an anion exchange group into a polymer substrate into which a graft chain has been introduced can be carried out without any limitation using a wide range of conventional methods.
Examples of agents that introduce anion exchange groups include ammonia, methylamine, and dimethylamine that can introduce weakly basic ion exchange groups, such as trimethylamine, dimethylamine ethanol, and triethanol that can introduce strong basic ion exchange groups. Examples include, but are not limited to, amines.

以下、本発明の陰イオン交換膜及びその製造方法を実施例にもとづいてさらに詳細に説明する。なお、本発明はかかる実施例に限定されるものではない。   Hereinafter, the anion exchange membrane of the present invention and the production method thereof will be described in more detail based on examples. In addition, this invention is not limited to this Example.

(実施例1)
分子量160万、膜厚30μmのインフレーション法により製造された超高分子量ポリエチレン基材(作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名))を酸素不透過性ポリ袋中に挿入後、この袋内を窒素置換し、袋内の酸素を除去する。次いでこの基材を含む袋に電子線を25℃、加速電圧250keV、電子線電流32.7mAで50kGy照射した。次いで、照射済み基材を大気中で取り出し、ガラス容器に移し替えた後、高純度窒素によりバブリングし、予め酸素ガスを除いたクロロメチルスチレン、ジビニルベンゼン及びシクロヘキサンを15:1:4の重合割合で混合した溶液を充填した。充填後、50℃で180minグラフト重合した後、膜をガラス容器より取り出し、メタノールで洗浄し、風乾した。グラフト率は109%であった。
Example 1
After inserting an ultra-high molecular weight polyethylene base material (manufactured by Sakushin Kogyo Co., Ltd., Saxin New Light Film Innovate (product name)) with a molecular weight of 1.6 million and a film thickness of 30 μm into an oxygen-impermeable plastic bag, The inside of the bag is purged with nitrogen to remove oxygen in the bag. Subsequently, the bag containing this substrate was irradiated with an electron beam at 25 ° C., an acceleration voltage of 250 keV, and an electron beam current of 32.7 mA at 50 kGy. Next, the irradiated base material is taken out in the air, transferred to a glass container, bubbled with high-purity nitrogen, and a polymerization ratio of chloromethylstyrene, divinylbenzene and cyclohexane from which oxygen gas has been removed in advance is 15: 1: 4. The solution mixed in was filled. After filling, graft polymerization was performed at 50 ° C. for 180 minutes, and then the membrane was taken out of the glass container, washed with methanol, and air-dried. The graft rate was 109%.

グラフト反応後の高分子基材を、オートクレープ中で30質量%トリメチルアミン水溶液に50℃で2時間浸漬した後、48時間常温で放置した。得られた陰イオン交換膜はよく水洗し、0.5N−NaCl水溶液中に保存した。合成した膜の膜厚は71μmであった。破裂強度はミューレン式破裂強度試験機により測定した。   The polymer substrate after the graft reaction was immersed in a 30% by mass trimethylamine aqueous solution in an autoclave at 50 ° C. for 2 hours, and then allowed to stand at room temperature for 48 hours. The obtained anion exchange membrane was thoroughly washed with water and stored in a 0.5N-NaCl aqueous solution. The film thickness of the synthesized film was 71 μm. The burst strength was measured with a Murren burst strength tester.

さらに、該陰イオン交換膜と市販の陽イオン交換膜(旭硝子(株)CSO)を小型電気透析装置(膜面積8cm)に装着し、濃縮試験を実施した。脱塩室流速は6cm/s、電流密度3A/dmの濃縮条件で供給液は0.5Mの塩化ナトリウム水溶液を用いた。 Further, the anion exchange membrane and a commercially available cation exchange membrane (Asahi Glass Co., Ltd. CSO) were mounted on a small electrodialysis apparatus (membrane area 8 cm 2 ), and a concentration test was performed. A 0.5 M sodium chloride aqueous solution was used as the feed solution under the concentration conditions of a desalting chamber flow rate of 6 cm / s and a current density of 3 A / dm 2 .

(実施例2〜26、比較例1〜2)
実施例1と異なる基材及び方法で合成した膜を実施例2〜26、現在製塩用陰イオン交換膜として使用されている膜を比較例1〜2とし、実施例1とあわせ、合成条件及び膜特性を第1表に示す。
(Examples 2-26, Comparative Examples 1-2)
Membranes synthesized by different base materials and methods from Example 1 were used as Examples 2 to 26, and membranes currently used as anion exchange membranes for salt production were set as Comparative Examples 1 and 2, and together with Example 1, synthesis conditions and The film properties are shown in Table 1.

なお、モノマー比とは重合に使用した溶液におけるクロロメチルスチレン:ジビニルベンゼン:膨潤溶媒の質量比を示す。実施例15は、膨潤溶媒を含有していない例であり、実施例16は、ジビニルベンゼンを含有していない例である。また、実施例26は、ジビニルベンゼン、膨潤溶媒をともに含有しない例である。   The monomer ratio indicates the mass ratio of chloromethylstyrene: divinylbenzene: swelling solvent in the solution used for polymerization. Example 15 is an example not containing a swelling solvent, and Example 16 is an example not containing divinylbenzene. Example 26 is an example in which neither divinylbenzene nor swelling solvent is contained.

Figure 2008255351
Figure 2008255351

Figure 2008255351
Figure 2008255351

さらに、濃縮試験の結果として膜抵抗と濃縮液の塩化ナトリウム濃度との関係を図1に示す。
第1表に示したとおり製造したいずれの膜についても、市販されている製塩用陰イオン交換膜と比較し、高い破裂強度を示した。
また、膜抵抗も市販膜とほぼ同等か、それより低い値を示した。
図1に示したとおり、本発明に従って製造したいずれの陰イオン交換膜についても、市販されている陰イオン交換膜と比較し高い濃縮性能を示した。なお、図1中に示した直線は、市販イオン交換膜と同等の濃縮性能を示す直線であり、直線より上部に示される膜性能はすべて市販膜より高い濃縮性能であるといえる。
Further, FIG. 1 shows the relationship between the membrane resistance and the concentration of sodium chloride in the concentrated solution as a result of the concentration test.
All of the membranes produced as shown in Table 1 showed high burst strength compared to the commercially available anion exchange membrane for salt production.
Further, the membrane resistance was almost the same as or lower than that of the commercially available membrane.
As shown in FIG. 1, any anion exchange membrane produced according to the present invention showed high concentration performance as compared with a commercially available anion exchange membrane. In addition, the straight line shown in FIG. 1 is a straight line which shows the concentration performance equivalent to a commercially available ion exchange membrane, and it can be said that all the membrane performance shown above a straight line is higher concentration performance than a commercial membrane.

本発明の実施例及び比較例における陰イオン交換膜の抵抗と濃縮液の塩化ナトリウム濃度との関係を表すグラフである。It is a graph showing the relationship between the resistance of the anion exchange membrane in the Example and comparative example of this invention, and the sodium chloride density | concentration of a concentrate.

Claims (6)

超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことにより得られることを特徴とする製塩用陰イオン交換膜。   By irradiating the ultrahigh molecular weight polyethylene film with ionizing radiation, radicals are generated in the ultra high molecular weight polyethylene, and then the polymerizable monomer having a functional group capable of introducing an anion exchange group alone or the polymerizable monomer alone. An anion exchange membrane for salt production, which is obtained by graft polymerization using a polymerizable mixture of a monomer and a crosslinkable monomer. 前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用することを特徴とする請求項1記載の製塩用陰イオン交換膜。   The salt-forming shade according to claim 1, wherein a swelling solvent is used when graft polymerization is performed using the monomer alone or a polymerizable mixture of the polymerizable monomer and the crosslinkable monomer. Ion exchange membrane. 前記陰イオン交換基を導入可能な官能基自体が陰イオン交換基でない場合には、グラフト重合後に、陰イオン交換基を付与できる化合物で処理するものである請求項1又は請求項2記載の製塩用陰イオン交換膜。   The salt production according to claim 1 or 2, wherein when the functional group capable of introducing an anion exchange group itself is not an anion exchange group, the functional group is treated with a compound capable of providing an anion exchange group after graft polymerization. Anion exchange membrane. 超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことを特徴とする製塩用陰イオン交換膜の製造方法。   By irradiating the ultrahigh molecular weight polyethylene film with ionizing radiation, radicals are generated in the ultra high molecular weight polyethylene, and then the polymerizable monomer having a functional group capable of introducing an anion exchange group alone or the polymerizable monomer alone. A method for producing an anion exchange membrane for salt production, wherein graft polymerization is carried out using a polymerizable mixture of a monomer and a crosslinkable monomer. 前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用することを特徴とする請求項4記載の製塩用陰イオン交換膜の製造方法。   The salt-forming shade according to claim 4, wherein a swelling solvent is used when graft polymerization is performed using the monomer alone or a polymerizable mixture of the polymerizable monomer and the crosslinkable monomer. A method for producing an ion exchange membrane. 前記陰イオン交換基を導入可能な官能基自体が陽イオン交換基でない場合には、グラフト重合後に、陰イオン交換基を付与できる化合物で処理するものである請求項4又は請求項5記載の製塩用陰イオン交換膜の製造法。   6. The salt production according to claim 4 or 5, wherein when the functional group capable of introducing an anion exchange group is not a cation exchange group, the functional group is treated with a compound capable of providing an anion exchange group after graft polymerization. Of manufacturing anion exchange membranes.
JP2008064720A 2007-03-14 2008-03-13 Anion exchange membrane for salt production and method for producing the same Active JP5050285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064720A JP5050285B2 (en) 2007-03-14 2008-03-13 Anion exchange membrane for salt production and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007065333 2007-03-14
JP2007065333 2007-03-14
JP2008064720A JP5050285B2 (en) 2007-03-14 2008-03-13 Anion exchange membrane for salt production and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008255351A true JP2008255351A (en) 2008-10-23
JP5050285B2 JP5050285B2 (en) 2012-10-17

Family

ID=39979236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064720A Active JP5050285B2 (en) 2007-03-14 2008-03-13 Anion exchange membrane for salt production and method for producing the same

Country Status (1)

Country Link
JP (1) JP5050285B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256638A (en) * 2008-03-28 2009-11-05 Solt Industry Center Of Japan Cation exchange membrane for salt production, and method for producing the same
JP2010227801A (en) * 2009-03-26 2010-10-14 Solt Industry Center Of Japan Solid-state cation exchanger and method for producing the same
JP2012201693A (en) * 2011-03-23 2012-10-22 Solt Industry Center Of Japan Monovalent anion-permselective anion exchange membrane for salt production, and method for producing the same
US8703831B2 (en) 2009-08-26 2014-04-22 Evoqua Water Technologies Pte. Ltd. Ion exchange membranes
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
US8969424B2 (en) 2010-10-15 2015-03-03 Evoqua Water Technologies Llc Anion exchange membranes and process for making
US9540261B2 (en) 2012-10-11 2017-01-10 Evoqua Water Technologies Llc Coated ion exchange membranes
US9611368B2 (en) 2010-10-15 2017-04-04 Evoqua Water Technologies Llc Process for making a monomer solution for making cation exchange membranes
US10626029B2 (en) 2012-10-04 2020-04-21 Evoqua Water Technologies Llc High-performance anion exchange membranes and methods of making same
CN113583278A (en) * 2021-04-23 2021-11-02 重庆大学 Preparation method of ultrathin composite anion exchange membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106231A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Novel preparation of ion-exchange membrane
JPS55106240A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Preparation of graft membrane with excellent dimension stability by radiation-induced graft polymerization
JPH0649236A (en) * 1992-08-04 1994-02-22 Japan Atom Energy Res Inst Production of ion exchange resin
JPH0741574A (en) * 1993-07-30 1995-02-10 Asahi Chem Ind Co Ltd Production of leaching-resistant anion-adsorbing film and film produced thereby
JP2004269681A (en) * 2003-03-07 2004-09-30 Nippon Muki Co Ltd Ion-exchange-functional membrane and method for producing the same
JP2005344263A (en) * 2004-06-07 2005-12-15 Solt Industry Center Of Japan Method for producing anion exchange membrane and the resultant anion exchange membrane
JP2006007162A (en) * 2004-06-29 2006-01-12 Nittetsu Mining Co Ltd Ion exchange filter and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106231A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Novel preparation of ion-exchange membrane
JPS55106240A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Preparation of graft membrane with excellent dimension stability by radiation-induced graft polymerization
JPH0649236A (en) * 1992-08-04 1994-02-22 Japan Atom Energy Res Inst Production of ion exchange resin
JPH0741574A (en) * 1993-07-30 1995-02-10 Asahi Chem Ind Co Ltd Production of leaching-resistant anion-adsorbing film and film produced thereby
JP2004269681A (en) * 2003-03-07 2004-09-30 Nippon Muki Co Ltd Ion-exchange-functional membrane and method for producing the same
JP2005344263A (en) * 2004-06-07 2005-12-15 Solt Industry Center Of Japan Method for producing anion exchange membrane and the resultant anion exchange membrane
JP2006007162A (en) * 2004-06-29 2006-01-12 Nittetsu Mining Co Ltd Ion exchange filter and its production method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256638A (en) * 2008-03-28 2009-11-05 Solt Industry Center Of Japan Cation exchange membrane for salt production, and method for producing the same
JP2010227801A (en) * 2009-03-26 2010-10-14 Solt Industry Center Of Japan Solid-state cation exchanger and method for producing the same
US8703831B2 (en) 2009-08-26 2014-04-22 Evoqua Water Technologies Pte. Ltd. Ion exchange membranes
US9023902B2 (en) 2009-08-26 2015-05-05 Evoqua Water Technologies Pte. Ltd Ion exchange membranes
US9731247B2 (en) 2009-08-26 2017-08-15 Evoqua Water Technologies Llc Ion exchange membranes
US9944546B2 (en) 2010-10-15 2018-04-17 Evoqua Water Technologies Llc Anion exchange membranes and process for making
US9768502B2 (en) 2010-10-15 2017-09-19 Evoqua Water Technologies Llc Anion exchange membranes and process for making
US8969424B2 (en) 2010-10-15 2015-03-03 Evoqua Water Technologies Llc Anion exchange membranes and process for making
US9611368B2 (en) 2010-10-15 2017-04-04 Evoqua Water Technologies Llc Process for making a monomer solution for making cation exchange membranes
JP2012201693A (en) * 2011-03-23 2012-10-22 Solt Industry Center Of Japan Monovalent anion-permselective anion exchange membrane for salt production, and method for producing the same
US10626029B2 (en) 2012-10-04 2020-04-21 Evoqua Water Technologies Llc High-performance anion exchange membranes and methods of making same
US9540261B2 (en) 2012-10-11 2017-01-10 Evoqua Water Technologies Llc Coated ion exchange membranes
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
EP2940764A4 (en) * 2012-12-28 2016-08-24 Nitto Denko Corp Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
US9620802B2 (en) 2012-12-28 2017-04-11 Nitto Denko Corporation Fuel cell membrane electrode assembly and method for producing the same, and fuel cell
CN104798234A (en) * 2012-12-28 2015-07-22 日东电工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
JP2014143197A (en) * 2012-12-28 2014-08-07 Nitto Denko Corp Method for producing anion exchange membrane, membrane-electrode assembly for fuel cell, and fuel cell
JP2014143196A (en) * 2012-12-28 2014-08-07 Nitto Denko Corp Fuel cell membrane-electrode assembly and method for manufacturing the same, and fuel cell
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
CN113583278A (en) * 2021-04-23 2021-11-02 重庆大学 Preparation method of ultrathin composite anion exchange membrane

Also Published As

Publication number Publication date
JP5050285B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050285B2 (en) Anion exchange membrane for salt production and method for producing the same
JP5196242B2 (en) Anion exchange membrane and method for producing the same
JP5196234B2 (en) Anion exchange membrane and method for producing the same
JP5579365B2 (en) Anion exchange membrane and method for producing the same
JP5196241B2 (en) Cation exchange membrane and method for producing the same
JPWO2007069714A1 (en) Hydrophilic composite microporous membrane and method for producing the same
JP2000159914A (en) Modified fluororesin molded product and its production
JP2012207095A (en) Ion-exchange membrane
JP5120543B2 (en) Cation exchange membrane and method for producing the same
JP5196236B2 (en) Cation exchange membrane and method for producing the same
TWI324614B (en) Polymer grafted support polymers
JP5050284B2 (en) Cation exchange membrane for salt production and method for producing the same
JP5626684B2 (en) Monovalent anion selective permeation anion exchange membrane for salt production and method for producing the same
JP5578557B2 (en) Method for producing metal ion collector
JP5120541B2 (en) Cation exchange membrane for salt production and method for producing the same
JP5140861B2 (en) Cation exchange membrane for salt production and method for producing the same
JP2009126971A (en) Cation exchange and anion exchange membrane, and method of manufacturing them
JP2016193407A (en) Ion exchange membrane for radioactive substance concentrator
JP6887913B2 (en) Method for manufacturing polymer base material with graft chain
WO2011136296A1 (en) Anion exchange membrane and method for producing same
JP6983575B2 (en) Method for manufacturing polymer base material with graft chain
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JP6665418B2 (en) Method for producing electrolyte membrane
Muftuoglu et al. Photografting of polymeric materials
JPH03139534A (en) Surface modification of polymeric structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5050285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250