WO2011136296A1 - Anion exchange membrane and method for producing same - Google Patents

Anion exchange membrane and method for producing same Download PDF

Info

Publication number
WO2011136296A1
WO2011136296A1 PCT/JP2011/060314 JP2011060314W WO2011136296A1 WO 2011136296 A1 WO2011136296 A1 WO 2011136296A1 JP 2011060314 W JP2011060314 W JP 2011060314W WO 2011136296 A1 WO2011136296 A1 WO 2011136296A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
exchange membrane
graft
monomer
polymer
Prior art date
Application number
PCT/JP2011/060314
Other languages
French (fr)
Japanese (ja)
Inventor
信義 正司
公平 宮崎
斎藤 恭一
Original Assignee
Agcエンジニアリング株式会社
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcエンジニアリング株式会社, 国立大学法人 千葉大学 filed Critical Agcエンジニアリング株式会社
Priority to JP2012512897A priority Critical patent/JP5656201B2/en
Publication of WO2011136296A1 publication Critical patent/WO2011136296A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00

Definitions

  • the present invention relates to an anion exchange membrane and a method for producing the same.
  • Anion exchange membranes are used as separators for fuel cells, secondary batteries, etc., in addition to seawater concentration by electrodialysis, brine desalination, acid concentration or recovery, and valuable metal recovery.
  • alkaline solid polymer fuel cells using an anion exchange membrane that does not use noble metals such as platinum as an electrode catalyst have attracted attention, and there is a need for an anion exchange membrane having heat resistance and alkali resistance. Yes.
  • an anion exchange membrane having heat resistance and alkali resistance and an intermediate thereof for example, the following are proposed.
  • a polyethylene cloth irradiated with an electron beam is impregnated with a viscous liquid in which a monomer component containing 4- (4-bromobutyl) styrene and a styrene thermoplastic elastomer are mixed, and the monomer component is polymerized in the cloth.
  • triethylamine is reacted to convert bromine into a trimethylammonium group, and the counter ion Br 2 — is exchanged with Cl 2 — (Patent Document 1).
  • an anion exchange membrane for an alkaline polymer electrolyte fuel cell is required to have a lower resistance, and accordingly, the anion exchange membrane is made thinner and the monomer graft ratio is improved. Is required.
  • the present invention provides an anion exchange membrane having a heat resistance and an alkali resistance, capable of suppressing the occurrence of pinholes and a decrease in strength even when it is thinned, and a sufficiently low membrane resistance, and a method for producing the same.
  • the gist of the present invention is as follows. (1) A monomer component containing a monomer represented by the following formula (1) is added to a film-like polymer in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component. A method for producing an anion exchange membrane, wherein a compound of the following formula (2) is reacted after graft polymerization by a radiation graft polymerization method.
  • A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms
  • R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups
  • Z is a halogen atom
  • the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  • a monomer component containing the monomer represented by the following formula (31) or the monomer represented by the following formula (32) in the film-like polymer is added in an amount of 0.005 to 3 masses with respect to 100 mass parts of the monomer component.
  • a method for producing an anion exchange membrane wherein graft polymerization is carried out by radiation graft polymerization in the presence of a part of the polymerization inhibitor.
  • A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, X 2 — is a counter ion of an ammonium group, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  • dg m m / m p ⁇ 100 (I).
  • dg is the graft rate [mol%]
  • m p is the number of moles of monomer units constituting the film-shaped polymer
  • m m is moles of the monomer component is graft-polymerized to a membrane-like polymer Is a number.
  • (7) The anion exchange membrane according to the above (6), wherein the ion exchange capacity is 1.5 to 3 meq / g dry resin.
  • the anion exchange membrane of the present invention has heat resistance and alkali resistance, and even when it is thinned, generation of pinholes and a decrease in strength are suppressed, and membrane resistance is sufficiently low.
  • the anion exchange membrane has heat resistance and alkali resistance, the occurrence of pinholes and a decrease in strength can be suppressed even when the thickness is reduced, and the membrane resistance is sufficiently low. Can be manufactured.
  • the monomer means a compound having a radical polymerizable functional group.
  • the monomer unit means a unit derived from the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • a monomer represented by the formula (1) is referred to as a monomer (1).
  • a compound represented by the formula (2) is referred to as a compound (2).
  • the anion exchange membrane of the present invention can be produced by the following method ( ⁇ ) or method ( ⁇ ).
  • a monomer component containing the monomer (1) is added to the film-like polymer by radiation graft polymerization in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component.
  • A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms.
  • the alkylene group may be linear or branched.
  • A is preferably an alkylene group having 3 to 7 carbon atoms, and more preferably an alkylene group having 3 to 5 carbon atoms.
  • the number of carbon atoms is at least the lower limit, the positively charged ammonium group is hardly affected by the benzene ring through the alkylene group, and the heat resistance of the anion exchange group is improved. If the number of carbon atoms is not more than the upper limit value, the ion exchange capacity per mass becomes sufficiently high, and an increase in membrane resistance can be suppressed.
  • R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms.
  • R 1 to R 3 may be the same or one or more may be different.
  • As the alkyl group or hydroxyalkyl group a methyl group, ethyl group, propyl group, butyl group, hydroxyethyl group or hydroxypropyl group is preferable.
  • Z is a halogen atom.
  • the halogen atom is preferably bromine from the viewpoint of the stability of the monomer (1), polymerizability, and convertibility to an anion exchange group.
  • X ⁇ is a counter ion of an ammonium group. Examples of X ⁇ include halogen ions, HCO 3 ⁇ , CO 3 2 ⁇ , acetate ions, NO 3 ⁇ , OH ⁇ , p-toluenesulfonate ions, and the like.
  • X ⁇ may be a polyvalent anion such as SO 4 2 ⁇ , in which case X ⁇ represents a polyvalent anion corresponding to a monovalent amount.
  • the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  • the alkyl group is preferably a methyl group or an ethyl group, and the halogen atom is preferably chlorine or bromine.
  • a film-like polymer is obtained by forming a polymer into a film form (film, sheet, coating film, etc.).
  • the polymer include polyolefin, fluororesin, polyvinylidene chloride, polysulfone, nylon, polyester and the like. From the viewpoint of alkali resistance, polyolefin or fluororesin is preferable.
  • Polyolefins include high-pressure low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, propylene-ethylene block copolymers; polyolefin-based thermoplastics in which ethylene-propylene rubber, EPDM, etc. are dispersed in polyethylene, polypropylene, etc. An elastomer etc. are mentioned.
  • Fluororesin includes polytetrafluoroethylene, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, ethylene -Chlorotrifluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride and the like.
  • the thickness of the film-like polymer is preferably 10 to 200 ⁇ m, more preferably 15 to 150 ⁇ m. If the thickness of the film-like polymer is equal to or greater than the lower limit, the film-like polymer is easy to handle. If the thickness of the membranous polymer is below the upper limit, the monomer can be sufficiently graft polymerized near the center of the membranous polymer in the thickness direction, and the membrane resistance of the anion exchange membrane can be kept low. Can do.
  • the molecular weight of the film-like polymer is preferably about 10,000 to 1,000,000, more preferably about tens of thousands to hundreds of thousands in terms of number average molecular weight, but is not limited thereto.
  • the monomer component includes a component consisting only of monomer (1) or a mixture of monomers including monomer (1), or a component consisting only of monomer (31) or monomer (32) or monomer (31) or monomer (32). It is a mixture of monomers.
  • the monomer component may contain other monomers other than the monomer (1), the monomer (31), and the monomer (32) in order to adjust the ion selective permeability and strength of the obtained anion exchange membrane.
  • Other monomers include styrene, vinyl toluene, ethylene, propylene, acrylonitrile, divinyl benzene, trivinyl benzene, divinyl toluene, divinyl naphthalene, ethylene glycol dimethacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, vinyl pyridine And chloromethylstyrene.
  • divinylbenzene trivinylbenzene, divinyltoluene, or divinyl is used from the viewpoint of cross-linking an anion exchange membrane to increase strength and adjusting water and ion permeability by controlling the crosslink density.
  • Naphthalene is preferred and divinylbenzene is particularly preferred.
  • the proportion of the other monomer is preferably 40% by mass or less and more preferably 30% by mass or less in the monomer component (100% by mass) from the viewpoint of heat resistance and alkali resistance of the obtained anion exchange membrane.
  • the monomer component may be diluted with a solvent and may not contain a solvent.
  • the ratio of all monomer components to the total amount of all monomer components and the solvent is preferably 10% by mass or more.
  • Polymerization inhibitors include hydroxyaromatics (hydroquinone, p-methoxyphenol, cresol, t-butylcatechol, 3,5-di-t-butyl-4-hydroxytoluene, 2,2′-methylenebis (4-methyl- 6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-butylphenol), 4,4'-thiobis (3-methyl-6-tert-butylphenol), thioethers (phenothiazine, distearylthiodipro) Pionate, etc.), amines (p-phenylenediamine, 4-aminodiphenylamine, N, N'-diphenyl-p-phenylenediamine, Ni-propyl-N'-phenyl-p-phenylenediamine, N- (1 , 3-Dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-d
  • hydroxyaromatic is preferable, more specifically, hydroquinone, p-methoxyphenol, cresol, or t-butylcatechol is preferable, and t-butylcatechol is more preferable.
  • the amount of the polymerization inhibitor is 0.005 to 3 parts by mass, preferably 0.05 to 1.5 parts by mass with respect to 100 parts by mass of the monomer component. If the amount of the polymerization inhibitor is not less than the lower limit, oligomerization of the monomer (1), monomer (31) and monomer (32) is sufficiently suppressed, and the graft ratio is sufficiently high, that is, the membrane resistance is sufficiently low. An anion exchange membrane can be obtained. When the amount of the polymerization inhibitor is not more than the upper limit value, an anion exchange membrane having a sufficiently high graft ratio, that is, a sufficiently low membrane resistance can be obtained without inhibiting graft polymerization.
  • the radiation graft polymerization method is a method in which a radical is generated in the polymer by irradiating the polymer with radiation, and the monomer component is graft-polymerized using the radical as a starting point.
  • radiation include electron beams, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays and the like.
  • the irradiation with radiation is preferably performed in an atmosphere free of molecular oxygen, that is, in an atmosphere of an inert gas (such as nitrogen gas).
  • an inert gas such as nitrogen gas
  • the radiation dose is preferably 5 to 300 kGy.
  • Graft polymerization may be performed in a state in which a film-like polymer is impregnated with a monomer component that is excessive or polymerized, or may be performed in a state in which a film-like polymer is immersed in the monomer component.
  • the polymer may be immersed in a solution in which the monomer component is dissolved in a solvent.
  • the solvent include toluene, xylene, benzene, chlorobenzene, chlorobenzene derivatives, dimethyl sulfoxide, cyclohexane, hexane, various alcohols, various ketones, water and the like.
  • the temperature during graft polymerization is preferably 4 to 80 ° C.
  • Polymerization time affects the graft rate described later.
  • the graft ratio increases as the polymerization time increases. However, if the content of the polymerization inhibitor in the monomer component is large or small, the graft ratio is not sufficiently high even if the polymerization time is lengthened, and the ion exchange capacity of the obtained anion exchange membrane is insufficient. Become.
  • the polymerization time is preferably 60 minutes or longer, although it depends on the amount of monomer components, polymerization temperature, radiation dose, polymerization inhibitor amount and the like. If the polymerization time is too long, the productivity is lowered. Therefore, the polymerization time is preferably within 10 hours, more preferably within 8 hours, by appropriately adjusting the above conditions.
  • conversion of X group bonded to A group to anion exchange group In the method ( ⁇ ), for the graft polymerized membrane (anion exchange membrane intermediate) obtained after graft polymerization, the X group bonded to the A group is converted to an anion exchange group (amino group or ammonium group). There is a need. Conversion of the X group bonded to the A group to an anion exchange group is performed by reacting the compound (2) with the X group bonded to the A group.
  • Compound (2) may be in the form of a salt such as hydrochloride.
  • a primary amine such as methylamine
  • a secondary amine such as dimethylamine
  • a weakly basic anion exchange membrane can be obtained.
  • compound (2) is a tertiary amine (trimethylamine, dimethylethanolamine, methyldiethanolamine, triethanolamine, etc.)
  • a strongly basic anion exchange membrane is obtained.
  • the monomer component containing monomer (1) or the monomer component containing monomer (31) or monomer (32) is grafted to the membrane polymer. Since it is polymerized, the obtained anion exchange membrane has heat resistance and alkali resistance. In addition, since a film-like polymer is used as the base, even if the base is thinned, generation of pinholes and a decrease in strength can be suppressed even when the base is thinned.
  • the monomer component is graft-polymerized by radiation graft polymerization in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component, monomer (1), monomer Oligomerization of (31) and monomer (32) can be sufficiently suppressed, and an anion exchange membrane having a sufficiently high graft ratio, that is, a sufficiently low membrane resistance can be obtained.
  • the reason why the graft polymerization has proceeded well is that, after 4- (4-bromobutyl) styrene penetrates between the fibers of the cloth or the nonwoven fabric, oligomerization and graft polymerization occur between the fibers. Since the oligomers were confined between the fibers, it seemed that the graft polymerization seemed to proceed well.
  • the anion exchange membrane obtained by the production method of the present invention has a graft chain having a monomer unit represented by the following formula (41) or a monomer unit represented by the following formula (42).
  • A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms
  • R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups
  • X 2 — is a counter ion of an ammonium group, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  • X ⁇ also includes Z ⁇ (halogen ion) derived from Z of the monomer (1).
  • the graft ratio (dg) determined by the following formula (I) is preferably 6 mol% or more, and more preferably 8 to 16 mol%.
  • dg m m / m p ⁇ 100 (I).
  • dg is the graft rate [mol%]
  • m p is the number of moles of monomer units constituting the film-shaped polymer
  • m m is moles of the monomer component is graft-polymerized to a membrane-like polymer Is a number.
  • dg When dg is less than 6 mol%, the ion exchange capacity of the anion exchange membrane becomes insufficient and the membrane resistance increases, so that the function as an anion exchange membrane cannot be fully exhibited. If dg is too high, the moisture content of the anion exchange membrane will increase, ion selective permeability will decrease, and current efficiency will also decrease.
  • m p is the dry weight (W 0 ) of the film-like polymer used in the radiation graft polymerization method, the molecular weight of the monomer unit constituting the polymer (M p ) (in the case of a plurality of monomer units, the mole of each monomer unit) It is determined by dividing by the average molecular weight taking into account the fraction.
  • m m is the mass (W 1 ⁇ ) obtained by subtracting the dry mass (W 0 ) of the film-like polymer used in the radiation graft polymerization method from the dry mass (W 1 ) of the graft polymer film obtained by the radiation graft polymerization method.
  • W 0 that is, the dry mass of the graft chain is divided by the molecular weight (M m ) of the monomer units constituting the graft chain (in the case of a plurality of monomer units, the average molecular weight including the molar fraction of each monomer unit).
  • M m molecular weight of the monomer units constituting the graft chain
  • the ion exchange capacity (Q) of the anion exchange membrane of the present invention is preferably 1 to 4 meq / g dry resin, more preferably 1.5 to 3 meq / g dry resin.
  • Q ion exchange capacity
  • Q is obtained by the following formula (II).
  • Q ⁇ (W 1 ⁇ W 0 ) / M m ⁇ / W 1 ⁇ 10 3 (II).
  • W 0 is the dry mass of the film-like polymer used in the radiation graft polymerization method
  • W 1 is the dry mass of the graft polymer film obtained by the radiation graft polymerization method
  • M m is the graft chain. Is the molecular weight of the monomer unit that constitutes.
  • the anion exchange membrane obtained by the production method of the present invention preferably has a wet film thickness of 5 to 400 ⁇ m, more preferably 10 to 200 ⁇ m.
  • membrane resistance is 0.05 ⁇ 4 ⁇ ⁇ cm 2 at 0.5 mol / l NaCL (25 ° C.), and more preferably 0.1 ⁇ 2 ⁇ ⁇ cm 2.
  • the static transport number using 0.5 mol / liter NaCl and 1 mol / liter NaCl is preferably 0.90 or more, and more preferably 0.94 or more.
  • the monomer component is preferentially graft-polymerized near both surfaces of the membrane-like polymer, and also in the vicinity of the central portion in the thickness direction of the membrane-like polymer.
  • the monomer component is sufficiently graft polymerized.
  • an element derived from a monomer unit of the graft chain in the thickness direction of the membrane measured using an X-ray element analyzer for example, In the X-ray intensity distribution of the halogen element
  • the ratio (X min / X max ) to the average value (X max ) of the second maximum value (X max2 ) appearing in the vicinity of the surface is preferably 0.6 or more, and more preferably 0.75 or more.
  • X min / X max is preferably 1.1 or less, and more preferably 1 or less.
  • An anion exchange membrane having an X min / X max of 0.6 to 1.1 is obtained by graft-polymerizing monomer components preferentially near both surfaces of a film-like polymer by a radiation graft polymerization method, and a dg of 6 to It can be obtained by adjusting to 16 mol%.
  • the anion exchange membrane of the present invention described above is an anion exchange membrane obtained by the production method of the present invention
  • the graft unit is represented by the monomer unit represented by the formula (41) or the formula (42). Having monomer units represented. As a result, it has heat resistance and alkali resistance.
  • a film-like polymer is used as the base, generation of pinholes and a decrease in strength can be suppressed even if the base is made thinner than when the base is a cloth or a nonwoven fabric.
  • a graft ratio of 6 mol% or more is preferable because the membrane resistance is sufficiently low.
  • Examples 1 to 6 are examples, and examples 7 and 8 are comparative examples.
  • HDPE high density polyethylene.
  • BBS 4- (4-bromobutyl) styrene (the following formula (1-1)).
  • TBC 4-t-butylcatechol.
  • TMA hydrochloride trimethylammonium hydrochloride (N (CH 3 ) 3 .HCl).
  • DMF N, N-dimethylformamide.
  • the graft ratio (dg) in the anion exchange membrane was determined by the following formula (I).
  • dg is the graft rate [mol%]
  • m p is the number of moles of ethylene units constituting the HDPE film
  • m m is the number of moles of BBS prepared by graft polymerizing a HDPE film
  • W 0 is the dry mass of the HDPE film used in the radiation graft polymerization method
  • W 1 is the dry mass of the graft polymer film obtained by the radiation graft polymerization method
  • M m is the BBS unit constituting the graft chain
  • M p is the molecular weight of the ethylene units that make up the HDPE film.
  • the ion exchange capacity (Q) of the anion exchange membrane was determined by the following formula (II).
  • Q ⁇ (W 1 ⁇ W 0 ) / M m ⁇ / W 1 ⁇ 10 3 (II).
  • W 0 is the dry mass of the HDPE film used in the radiation graft polymerization method
  • W 1 is the dry mass of the graft polymerized film obtained by the radiation graft polymerization method
  • M m constitutes the graft chain.
  • X-ray intensity distribution of bromine element For the graft polymerized membrane (anion exchange membrane intermediate), a scanning electron microscope equipped with an energy dispersive X-ray element analyzer (SU6600, manufactured by Hitachi High-Technologies Corporation) was used to observe the cross section of the graft polymerized membrane and The X-ray intensity distribution of the bromine element in the thickness direction of the graft polymerized film was measured by a distributed X-ray element analyzer.
  • the thickness of the anion exchange membrane was determined by immersing the anion exchange membrane in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, washing with pure water, and then using an electromagnetic membrane pressure gauge (LZ-, manufactured by Kent Science Laboratory Co., Ltd.). 200J) in a wet state.
  • LZ- electromagnetic membrane pressure gauge
  • H w (W 3 ⁇ W 2 ) / W 2 ⁇ 100 (III).
  • W 2 is the dry mass of the anion exchange membrane
  • W 3 is the wet mass after the anion exchange membrane is immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours and washed with pure water. It is.
  • the anion exchange membrane was sandwiched between measurement cells having an effective membrane area of 1.00 cm 2 , and 1.0 mol / L sodium chloride aqueous solution and 0.50 mol / L sodium chloride aqueous solution were placed in the left and right cells, respectively. .
  • the left and right cells were connected to saturated potassium chloride by a salt bridge, and a sweet potato electrode connected to a voltmeter (Texio, DL-2040) was installed. After the left and right cells were stirred and the potential difference was measured, the blank potential difference was measured. The measurement temperature was 25 ° C. From the measured potential difference and blank potential difference, the static transport number [ ⁇ ] was determined from the following formula (V).
  • E 1 , E 0 , E L , R, T, F, a ⁇ 1.0 and a ⁇ 0.5 are the measured potential, 0.50 mol / L sodium chloride aqueous solution- 1.0 mol / L, respectively.
  • the anion exchange membrane was immersed in a 1.0 mol / L sodium hydroxide aqueous solution for 6 hours, so that the counter ion was OH ⁇ .
  • the membrane resistance of the anion exchange membrane was measured using a 0.5 mol / L aqueous sodium hydroxide solution (25 ° C.). Electrodialysis was performed using a 0.5 mol / L sodium hydroxide aqueous solution as a model alkaline solution.
  • a commercially available cation exchange membrane manufactured by Asahi Glass Co., Ltd., SELEMION (registered trademark) CMV was used.
  • the effective membrane area and intermembrane distance during dialysis were 8.0 cm 2 and 1.5 mm, respectively.
  • a 0.50 mol / L sodium hydroxide aqueous solution was previously placed in the concentration chamber, and a 0.50 mol / L sodium hydroxide aqueous solution (25 ° C.) was circulated at 7.1 cm / s in the dilution chamber. .
  • a direct current was applied at a current density of 30 mA / cm 2 .
  • the concentrated solution was collected for 100 minutes, and the alkali concentration (C OH ⁇ ) of the concentrated solution was quantified by neutralization titration using 0.1 mol / L hydrochloric acid.
  • the HDPE film was irradiated with an electron beam with a dose of 200 kGy in a nitrogen atmosphere to generate radicals.
  • the HDPE film was immersed in a commercial product (unpurified) of BBS at 40 ° C., and BBS was graft-polymerized starting from a radical to obtain a graft-polymerized film.
  • the graft ratio (dg) was adjusted by the graft polymerization time (0.25 to 4 hours).
  • the graft polymerized membrane was washed with DMF, methanol and pure water and then dried. Table 1 shows dg and ion exchange capacity (Q).
  • Table 1 shows Br min / Br max obtained from the X-ray intensity distribution of bromine element.
  • the graft polymerized membrane was immersed in an aqueous 0.5 mol / L TMA hydrochloride solution (adjusted to pH 12) for 6 hours to convert bromine of BBS units into TMA groups to obtain an anion exchange membrane.
  • the immersion temperature was 40 ° C.
  • the anion exchange membrane was washed with methanol and pure water.
  • the anion exchange membrane was immersed in an aqueous 0.5 mol / L sodium bromide solution for 6 hours to make the counter ion Br 2 - and then dried.
  • the anion exchange membrane was immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, and the counter ion was Cl 2 ⁇ . After the anion exchange membrane was washed with pure water, the wet thickness was measured. Table 1 shows the thickness. Moreover, after measuring the wet mass of an anion exchange membrane, the anion exchange membrane was dried at 40 degreeC, and the dry mass was measured. The moisture content (H w ) is shown in Table 1. Table 1 shows the membrane resistance, static transport number, electroosmosis coefficient, and alkali concentration of the concentrate.
  • Example 7 As BBS, the polymerization inhibitor was removed from the commercial product (purity: 97.5 mass%, TBC: 0.1 mass%) by liquid-liquid extraction using a 5 mass% aqueous sodium hydroxide solution, and after the polymerization inhibitor was extracted The BBS was added with calcium chloride, dried and purified (TBC with respect to 100 parts by mass of BBS: 0 parts by mass).
  • the HDPE film was irradiated with an electron beam with a dose of 200 kGy in a nitrogen atmosphere to generate radicals.
  • the HDPE film was immersed in a purified product of BBS at 40 ° C., and BBS was graft polymerized starting from radicals to obtain a graft polymerized film.
  • the graft polymerized membrane was washed with DMF, methanol and pure water and then dried. The dg is shown in Table 1.
  • the graft polymerized membrane was immersed in an aqueous 0.5 mol / L TMA hydrochloride solution (adjusted to pH 12) for 6 hours to convert bromine of BBS units into TMA groups to obtain an anion exchange membrane.
  • the immersion temperature was 40 ° C.
  • the anion exchange membrane was washed with methanol and pure water.
  • the anion exchange membrane was immersed in an aqueous 0.5 mol / L sodium bromide solution for 6 hours to make the counter ion Br 2 - and then dried.
  • the anion exchange membrane was immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, and the counter ion was Cl 2 ⁇ . After the anion exchange membrane was washed with pure water, the wet thickness was measured. Table 1 shows the thickness. Table 1 shows the membrane resistance.
  • Example 8 A commercially available anion exchange membrane (SELEMION (registered trademark) AHT, manufactured by Asahi Glass Co., Ltd.) was prepared.
  • the anion exchange membrane was obtained by using HDPE cloth as a base, impregnating it with BBS and divinylbenzene, performing bulk polymerization, and then reacting with TMA hydrochloride.
  • Table 1 shows the Q, thickness, H w , membrane resistance, static transport number, electroosmotic coefficient, and alkali concentration of the concentrate of the anion exchange membrane.
  • the anion exchange membrane of the present invention is useful as a separator for fuel cells, secondary batteries, etc. in addition to seawater concentration by electrodialysis, brine desalination, acid concentration or recovery, recovery of valuable metals, etc.
  • it is useful as an anion exchange membrane for an alkaline solid polymer fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Disclosed is an anion exchange membrane having heat resistance and alkali resistance, capable of controlling occurrences of pinholes and reduction in strength even with the formation of thin membranes, and having sufficiently low membrane resistance. Also disclosed is a method for producing the same. Specifically disclosed is a method for producing an anion exchange membrane wherein, after graft polymerization by radiation graft polymerization of a monomer component containing a monomer (1) to a membrane-shaped polymer in the presence of 0.005 - 3 parts by mass of a polymerization inhibitor per 100 parts by mass of the monomer component, a compound (2) is reacted. A is a C3-8 alkylene group or the like; R1 - R3 are H, C1-6 alkyl groups or the like; and Z is Br or the like.

Description

陰イオン交換膜およびその製造方法Anion exchange membrane and method for producing the same
 本発明は、陰イオン交換膜およびその製造方法に関する。 The present invention relates to an anion exchange membrane and a method for producing the same.
 陰イオン交換膜は、電気透析法による海水濃縮、かん水の脱塩、酸の濃縮または回収、有価金属の回収等のほか、燃料電池、二次電池等のセパレータ等として用いられている。特に、電極触媒として白金等の貴金属を用いない、陰イオン交換膜を用いたアルカリ型の固体高分子形燃料電池が注目されており、耐熱性および耐アルカリ性を有する陰イオン交換膜が求められている。 Anion exchange membranes are used as separators for fuel cells, secondary batteries, etc., in addition to seawater concentration by electrodialysis, brine desalination, acid concentration or recovery, and valuable metal recovery. In particular, alkaline solid polymer fuel cells using an anion exchange membrane that does not use noble metals such as platinum as an electrode catalyst have attracted attention, and there is a need for an anion exchange membrane having heat resistance and alkali resistance. Yes.
 耐熱性および耐アルカリ性を有する陰イオン交換膜およびその中間体としては、たとえば、下記のものが提案されている。
 (1)電子線を照射したポリエチレンのクロスに、4-(4-ブロモブチル)スチレンを含むモノマー成分とスチレン系熱可塑性エラストマーとを混合した粘稠液を含浸させ、クロス内でモノマー成分を重合させた後、トリエチルアミンを反応させて、臭素をトリメチルアンモニウム基に変換し、さらに対イオンのBrをClに交換した陰イオン交換膜(特許文献1)。
 (2)電子線を照射したポリエチレン被覆ポリプロピレンの不織布に、4-(4-ブロモブチル)スチレンを含む溶液を含浸させ、不織布内で4-(4-ブロモブチル)スチレンをグラフト重合させた陰イオン交換膜中間体(特許文献2)。
As an anion exchange membrane having heat resistance and alkali resistance and an intermediate thereof, for example, the following are proposed.
(1) A polyethylene cloth irradiated with an electron beam is impregnated with a viscous liquid in which a monomer component containing 4- (4-bromobutyl) styrene and a styrene thermoplastic elastomer are mixed, and the monomer component is polymerized in the cloth. Then, triethylamine is reacted to convert bromine into a trimethylammonium group, and the counter ion Br 2 is exchanged with Cl 2 (Patent Document 1).
(2) An anion exchange membrane obtained by impregnating a polyethylene-coated polypropylene nonwoven fabric irradiated with an electron beam with a solution containing 4- (4-bromobutyl) styrene and graft-polymerizing 4- (4-bromobutyl) styrene in the nonwoven fabric. Intermediate (Patent Document 2).
特開2002-114854号公報JP 2002-114854 A 特開2002-088132号公報JP 2002-088132 A
 ところで、最近では、アルカリ型の固体高分子形燃料電池用の陰イオン交換膜には、さらなる低抵抗化が求められており、それに伴って陰イオン交換膜の薄膜化およびモノマーのグラフト率の向上が求められている。 Recently, an anion exchange membrane for an alkaline polymer electrolyte fuel cell is required to have a lower resistance, and accordingly, the anion exchange membrane is made thinner and the monomer graft ratio is improved. Is required.
 しかし、クロスや不織布をベースにした陰イオン交換膜を薄膜化した場合、下記の問題が生じる。
 (i)クロスや不織布が多孔質であるため、クロスや不織布を薄膜化した場合、得られる陰イオン交換膜にピンホールが発生しやすくなる。ピンホールが多く発生すると、陰イオン交換膜として用いることはできない。
 (ii)薄膜化したクロスや不織布の強度が低いため、得られる陰イオン交換膜の強度が不足する。
However, when an anion exchange membrane based on cloth or nonwoven fabric is thinned, the following problems occur.
(I) Since the cloth and the nonwoven fabric are porous, when the cloth or the nonwoven fabric is thinned, pinholes are easily generated in the obtained anion exchange membrane. When many pinholes are generated, it cannot be used as an anion exchange membrane.
(Ii) Since the strength of the thin cloth or nonwoven fabric is low, the strength of the obtained anion exchange membrane is insufficient.
 なお、(i)、(ii)の問題を解決する方法としては、クロスや不織布の代わりに、クロスや不織布のように多孔質ではなく、かつ薄膜化してもクロスや不織布よりも強度が高い、膜状のポリマーをベースに用いることが考えられる。また、特許文献1、2にも、膜状のものを用い得る旨が記載されている。 In addition, as a method of solving the problem of (i) and (ii), instead of cloth or non-woven cloth, it is not porous like cloth or non-woven cloth, and has higher strength than cloth or non-woven cloth even if it is thinned. It is conceivable to use a film-like polymer as a base. Patent Documents 1 and 2 also describe that a film-like material can be used.
 しかし、膜状のポリマーに、特許文献1、2に記載された方法にて4-(4-ブロモブチル)スチレンをグラフト重合させた場合、グラフト重合よりも4-(4-ブロモブチル)スチレンのオリゴマー化が優先的に進行し、グラフト率が充分に高い、すなわち膜抵抗が充分に低い陰イオン交換膜を得ることはできない。 However, when 4- (4-bromobutyl) styrene is graft polymerized to a film-like polymer by the method described in Patent Documents 1 and 2, oligomerization of 4- (4-bromobutyl) styrene is performed rather than graft polymerization. However, it is not possible to obtain an anion exchange membrane having a sufficiently high graft ratio, that is, a sufficiently low membrane resistance.
 本発明は、耐熱性および耐アルカリ性を有し、薄膜化してもピンホールの発生や強度の低下が抑えられ、かつ膜抵抗が充分に低い陰イオン交換膜およびその製造方法を提供する。 The present invention provides an anion exchange membrane having a heat resistance and an alkali resistance, capable of suppressing the occurrence of pinholes and a decrease in strength even when it is thinned, and a sufficiently low membrane resistance, and a method for producing the same.
 本発明は以下の構成を要旨とするものである。
(1)膜状のポリマーに、下式(1)で表わされるモノマーを含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させた後、下式(2)の化合物を反応させる、陰イオン交換膜の製造方法。
Figure JPOXMLDOC01-appb-C000003
 ただし、Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基であり、R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基であり、Zは、ハロゲン原子であり、ベンゼン環の水素原子はアルキル基またはハロゲン原子で置換されていてもよい。
(2)膜状のポリマーに、下式(31)で表わされるモノマーまたは下式(32)で表わされるモノマーを含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させる、陰イオン交換膜の製造方法。
Figure JPOXMLDOC01-appb-C000004
 ただし、Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基であり、R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基であり、Xは、アンモニウム基の対イオンであり、ベンゼン環の水素原子はアルキル基またはハロゲン原子で置換されていてもよい。
(3)前記ポリマーが、ポリオレフィンまたはフッ素樹脂である、上記(1)または(2)に記載の陰イオン交換膜の製造方法。
(4)前記重合禁止剤が、ハイドロキノン、p-メトキシフェノール、クレゾール、またはt-ブチルカテコールである、上記(1)~(3)のいずれかに記載の陰イオン交換膜の製造方法。
(5)前記膜状のポリマーの厚みが、10~200μmである、上記(1)~(4)のいずれかに記載の陰イオン交換膜の製造方法。
(6)上記(1)~(5)のいずれかに記載の製造方法で得られた陰イオン交換膜であって、下式(I)によって求めたグラフト率が、6モル%以上である、陰イオン交換膜。
 dg=m/m×100 ・・・(I)。
 ただし、dgは、グラフト率[モル%]であり、mは、膜状のポリマーを構成するモノマー単位のモル数であり、mは、膜状のポリマーにグラフト重合させたモノマー成分のモル数である。
(7)イオン交換容量が、1.5~3ミリ当量/g乾燥樹脂である、上記(6)に記載の陰イオン交換膜。
The gist of the present invention is as follows.
(1) A monomer component containing a monomer represented by the following formula (1) is added to a film-like polymer in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component. A method for producing an anion exchange membrane, wherein a compound of the following formula (2) is reacted after graft polymerization by a radiation graft polymerization method.
Figure JPOXMLDOC01-appb-C000003
A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, Z is a halogen atom, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
(2) A monomer component containing the monomer represented by the following formula (31) or the monomer represented by the following formula (32) in the film-like polymer is added in an amount of 0.005 to 3 masses with respect to 100 mass parts of the monomer component. A method for producing an anion exchange membrane, wherein graft polymerization is carried out by radiation graft polymerization in the presence of a part of the polymerization inhibitor.
Figure JPOXMLDOC01-appb-C000004
A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, X 2 is a counter ion of an ammonium group, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
(3) The method for producing an anion exchange membrane according to the above (1) or (2), wherein the polymer is a polyolefin or a fluororesin.
(4) The method for producing an anion exchange membrane according to any one of (1) to (3), wherein the polymerization inhibitor is hydroquinone, p-methoxyphenol, cresol, or t-butylcatechol.
(5) The method for producing an anion exchange membrane according to any one of the above (1) to (4), wherein the thickness of the membrane polymer is 10 to 200 μm.
(6) An anion exchange membrane obtained by the production method according to any one of (1) to (5) above, wherein the graft ratio determined by the following formula (I) is 6 mol% or more. Anion exchange membrane.
dg = m m / m p × 100 (I).
However, dg is the graft rate [mol%], m p is the number of moles of monomer units constituting the film-shaped polymer, m m is moles of the monomer component is graft-polymerized to a membrane-like polymer Is a number.
(7) The anion exchange membrane according to the above (6), wherein the ion exchange capacity is 1.5 to 3 meq / g dry resin.
 本発明の陰イオン交換膜は、耐熱性および耐アルカリ性を有し、薄膜化してもピンホールの発生や強度の低下が抑えられ、かつ膜抵抗が充分に低い。
 本発明の陰イオン交換膜の製造方法によれば、耐熱性および耐アルカリ性を有し、薄膜化してもピンホールの発生や強度の低下が抑えられ、かつ膜抵抗が充分に低い陰イオン交換膜を製造できる。
The anion exchange membrane of the present invention has heat resistance and alkali resistance, and even when it is thinned, generation of pinholes and a decrease in strength are suppressed, and membrane resistance is sufficiently low.
According to the method for producing an anion exchange membrane of the present invention, the anion exchange membrane has heat resistance and alkali resistance, the occurrence of pinholes and a decrease in strength can be suppressed even when the thickness is reduced, and the membrane resistance is sufficiently low. Can be manufactured.
 本明細書において、モノマーとは、ラジカル重合性の官能基を有する化合物を意味する。
 本明細書において、モノマー単位とは、モノマーが重合することによって形成された該モノマーに由来する単位を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって該単位の一部が別の構造に変換された単位であってもよい。
In the present specification, the monomer means a compound having a radical polymerizable functional group.
In the present specification, the monomer unit means a unit derived from the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
 本明細書においては、式(1)で表されるモノマーをモノマー(1)と記す。他の式で表される化合物も同様に記す。
 本明細書においては、式(2)で表される化合物を化合物(2)と記す。他の式で表される化合物も同様に記す。
In the present specification, a monomer represented by the formula (1) is referred to as a monomer (1). The same applies to compounds represented by other formulas.
In this specification, a compound represented by the formula (2) is referred to as a compound (2). The same applies to compounds represented by other formulas.
<陰イオン交換膜の製造方法>
 本発明の陰イオン交換膜は、下記の方法(α)または方法(β)によって製造できる。
<Method for producing anion exchange membrane>
The anion exchange membrane of the present invention can be produced by the following method (α) or method (β).
 (α)膜状のポリマーに、モノマー(1)を含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させた後、化合物(2)を反応させる方法。 (Α) A monomer component containing the monomer (1) is added to the film-like polymer by radiation graft polymerization in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component. A method of reacting compound (2) after graft polymerization.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (β)膜状のポリマーに、モノマー(31)またはモノマー(32)を含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させる方法。 (Β) A monomer component containing monomer (31) or monomer (32) in a film-like polymer in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component, A method of graft polymerization by radiation graft polymerization.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基である。アルキレン基は、直鎖状であってもよく、分岐状であってもよい。
 Aとしては、炭素数3~7のアルキレン基が好ましく、炭素数3~5のアルキレン基がより好ましい。
 炭素数が下限値以上であれば、正電荷を有するアンモニウム基がアルキレン基を通じてベンゼン環の影響を受けにくく、陰イオン交換基の耐熱性が良好となる。炭素数が上限値以下であれば、質量あたりのイオン交換容量が充分に高くなり、膜抵抗の増加が抑えられる。
A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms. The alkylene group may be linear or branched.
A is preferably an alkylene group having 3 to 7 carbon atoms, and more preferably an alkylene group having 3 to 5 carbon atoms.
When the number of carbon atoms is at least the lower limit, the positively charged ammonium group is hardly affected by the benzene ring through the alkylene group, and the heat resistance of the anion exchange group is improved. If the number of carbon atoms is not more than the upper limit value, the ion exchange capacity per mass becomes sufficiently high, and an increase in membrane resistance can be suppressed.
 R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基である。R~Rは、同一であってもよく、1つ以上が異なっていてもよい。
 アルキル基またはヒドロキシアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヒドロキシエチル基またはヒドロキシプロピル基が好ましい。
R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms. R 1 to R 3 may be the same or one or more may be different.
As the alkyl group or hydroxyalkyl group, a methyl group, ethyl group, propyl group, butyl group, hydroxyethyl group or hydroxypropyl group is preferable.
 Zは、ハロゲン原子である。ハロゲン原子としては、モノマー(1)の安定性、重合性および陰イオン交換基への変換性の点から、臭素が好ましい。
 Xは、アンモニウム基の対イオンである。Xとしては、ハロゲンイオン、HCO 、CO 2-、酢酸イオン、NO 、OH、p-トルエンスルホン酸イオン等が挙げられる。XはSO 2-のような多価アニオンであってもよく、該場合のXは一価相当分の多価アニオンを表わす。
Z is a halogen atom. The halogen atom is preferably bromine from the viewpoint of the stability of the monomer (1), polymerizability, and convertibility to an anion exchange group.
X is a counter ion of an ammonium group. Examples of X include halogen ions, HCO 3 , CO 3 2− , acetate ions, NO 3 , OH , p-toluenesulfonate ions, and the like. X may be a polyvalent anion such as SO 4 2− , in which case X represents a polyvalent anion corresponding to a monovalent amount.
 ベンゼン環の水素原子は、アルキル基またはハロゲン原子で置換されていてもよい。アルキル基としては、メチル基またはエチル基が好ましく、ハロゲン原子としては、塩素または臭素が好ましい。 The hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom. The alkyl group is preferably a methyl group or an ethyl group, and the halogen atom is preferably chlorine or bromine.
(膜状のポリマー)
 膜状のポリマーは、ポリマーを膜状(フィルム、シート、塗膜等)に成形したものである。
 ポリマーとしては、ポリオレフィン、フッ素樹脂、ポリ塩化ビニリデン、ポリスルホン、ナイロン、ポリエステル等が挙げられ、耐アルカリ性の点から、ポリオレフィン、またはフッ素樹脂が好ましい。
(Film polymer)
A film-like polymer is obtained by forming a polymer into a film form (film, sheet, coating film, etc.).
Examples of the polymer include polyolefin, fluororesin, polyvinylidene chloride, polysulfone, nylon, polyester and the like. From the viewpoint of alkali resistance, polyolefin or fluororesin is preferable.
 ポリオレフィンとしては、高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、プロピレン-エチレンブロック共重合体;ポリエチレン、ポリプロピレン等にエチレンプロピレンゴム、EPDM等を分散させたポリオレフィン系熱可塑性エラストマー等が挙げられる。 Polyolefins include high-pressure low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, propylene-ethylene block copolymers; polyolefin-based thermoplastics in which ethylene-propylene rubber, EPDM, etc. are dispersed in polyethylene, polypropylene, etc. An elastomer etc. are mentioned.
 フッ素樹脂としては、ポリテトラフルオロエチレン、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。 Fluororesin includes polytetrafluoroethylene, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, ethylene -Chlorotrifluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride and the like.
 膜状のポリマーの厚さは、10~200μmが好ましく、15~150μmがより好ましい。膜状のポリマーの厚さが下限値以上であれば、膜状のポリマーの取り扱い性がよい。膜状のポリマーの厚さが上限値以下であれば、膜状のポリマーの厚さ方向の中央部付近にもモノマーを充分にグラフト重合でき、また、陰イオン交換膜の膜抵抗を低く抑えることができる。
 膜状のポリマーの分子量は、数平均分子量で、1万~100万程度が好ましく、数万~数十万程度がより好ましいが、これに限定されるものではない。
The thickness of the film-like polymer is preferably 10 to 200 μm, more preferably 15 to 150 μm. If the thickness of the film-like polymer is equal to or greater than the lower limit, the film-like polymer is easy to handle. If the thickness of the membranous polymer is below the upper limit, the monomer can be sufficiently graft polymerized near the center of the membranous polymer in the thickness direction, and the membrane resistance of the anion exchange membrane can be kept low. Can do.
The molecular weight of the film-like polymer is preferably about 10,000 to 1,000,000, more preferably about tens of thousands to hundreds of thousands in terms of number average molecular weight, but is not limited thereto.
(モノマー成分)
 モノマー成分は、モノマー(1)のみからなる成分もしくはモノマー(1)を含むモノマーの混合物、または、モノマー(31)もしくはモノマー(32)のみからなる成分またはモノマー(31)若しくはモノマー(32)を含むモノマーの混合物である。
(Monomer component)
The monomer component includes a component consisting only of monomer (1) or a mixture of monomers including monomer (1), or a component consisting only of monomer (31) or monomer (32) or monomer (31) or monomer (32). It is a mixture of monomers.
 モノマー成分は、得られる陰イオン交換膜のイオン選択透過性や強度を調整するために、モノマー(1)、モノマー(31)およびモノマー(32)を除く、他のモノマーを含んでいてもよい。他のモノマーとしては、スチレン、ビニルトルエン、エチレン、プロピレン、アクリニトリル、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、エチレングリコールジメタクリレート、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ビニルピリジン、クロロメチルスチレン等が挙げられる。
 これらの中でも、陰イオン交換膜を架橋して強度を上げたり、架橋密度をコントロールすることによって水やイオンの透過性を調整したりする観点から、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、またはジビニルナフタレンが好ましく、ジビニルベンゼンが特に好ましい。
The monomer component may contain other monomers other than the monomer (1), the monomer (31), and the monomer (32) in order to adjust the ion selective permeability and strength of the obtained anion exchange membrane. Other monomers include styrene, vinyl toluene, ethylene, propylene, acrylonitrile, divinyl benzene, trivinyl benzene, divinyl toluene, divinyl naphthalene, ethylene glycol dimethacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, vinyl pyridine And chloromethylstyrene.
Among these, divinylbenzene, trivinylbenzene, divinyltoluene, or divinyl is used from the viewpoint of cross-linking an anion exchange membrane to increase strength and adjusting water and ion permeability by controlling the crosslink density. Naphthalene is preferred and divinylbenzene is particularly preferred.
 他のモノマーの割合は、得られる陰イオン交換膜の耐熱性や耐アルカリ性の点から、モノマー成分(100質量%)のうち、40質量%以下が好ましく、30質量%以下がより好ましい。
 モノマー成分は、溶媒で希釈されていてもよく、溶媒を含んでいなくてもよい。モノマー成分が溶媒で希釈される場合には、全モノマー成分と溶媒の合計量における全モノマー成分の割合が、10質量%以上であることが好ましい。
The proportion of the other monomer is preferably 40% by mass or less and more preferably 30% by mass or less in the monomer component (100% by mass) from the viewpoint of heat resistance and alkali resistance of the obtained anion exchange membrane.
The monomer component may be diluted with a solvent and may not contain a solvent. When the monomer component is diluted with a solvent, the ratio of all monomer components to the total amount of all monomer components and the solvent is preferably 10% by mass or more.
(重合禁止剤)
 重合禁止剤としては、ヒドロキシ芳香族(ハイドロキノン、p-メトキシフェノール、クレゾール、t-ブチルカテコール、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、チオエーテル系(フェノチアジン、ジステアリルチオジプロピオネート等)、アミン系(p-フェニレンジアミン、4-アミノジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチル-ジフェニルアミン等)、ニトロソ化合物系(N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等)、その他窒素含有化合物(ピペリジン-1-オキシル、ピロリジン-1-オキシル,2,2,6,6-テトラメチル-4-オキソピペリジン-1-オキシル、2,2,6,6-テトラメチルピペリジン-1-オキシル等のニトロキシド等)、遷移金属塩(ジアルキルジチオカルバミン酸銅、酢酸銅、サリチル酸銅、チオシアン酸銅、硝酸銅、塩化銅、炭酸銅、水酸化銅、アクリル酸銅等の銅塩;ジアルキルジチオカルバミン酸マンガン、ジフェニルジチオカルバミン酸マンガン、蟻酸マンガン、酢酸マンガン、オクタン酸マンガン、ナフテン酸マンガン、過マンガン酸マンガン、エチレンジアミン四酢酸のマンガン塩)等の重合禁止剤が挙げられる。
 これらの中でも、モノマーや溶媒との相溶性の観点から、ヒドロキシ芳香族が好ましく、より具体的にはハイドロキノン、p-メトキシフェノール、クレゾール、またはt-ブチルカテコールが好ましく、t-ブチルカテコールがより好ましい。
(Polymerization inhibitor)
Polymerization inhibitors include hydroxyaromatics (hydroquinone, p-methoxyphenol, cresol, t-butylcatechol, 3,5-di-t-butyl-4-hydroxytoluene, 2,2′-methylenebis (4-methyl- 6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-butylphenol), 4,4'-thiobis (3-methyl-6-tert-butylphenol), thioethers (phenothiazine, distearylthiodipro) Pionate, etc.), amines (p-phenylenediamine, 4-aminodiphenylamine, N, N'-diphenyl-p-phenylenediamine, Ni-propyl-N'-phenyl-p-phenylenediamine, N- (1 , 3-Dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthy Ru-p-phenylenediamine, diphenylamine, N-phenyl-β-naphthylamine, 4,4′-dicumyl-diphenylamine, 4,4′-dioctyl-diphenylamine, etc.), nitroso compound systems (N-nitrosodiphenylamine, N-nitrosophenyl) Naphthylamine, N-nitrosodinaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, α-nitroso-β-naphthol, etc., and other nitrogen-containing compounds (piperidine-1-oxyl, pyrrolidine-1-oxyl, 2, 2,6,6-tetramethyl-4-oxopiperidine-1-oxyl, nitroxides such as 2,2,6,6-tetramethylpiperidine-1-oxyl, etc.), transition metal salts (copper dialkyldithiocarbamate, copper acetate) , Copper salicylate, thiocyan Copper salts of acid copper, copper nitrate, copper chloride, copper carbonate, copper hydroxide, copper acrylate, etc .; manganese dialkyldithiocarbamate, manganese diphenyldithiocarbamate, manganese formate, manganese acetate, manganese octoate, manganese naphthenate, permanganese Polymerization inhibitors such as manganese acid and manganese salt of ethylenediaminetetraacetic acid).
Among these, from the viewpoint of compatibility with monomers and solvents, hydroxyaromatic is preferable, more specifically, hydroquinone, p-methoxyphenol, cresol, or t-butylcatechol is preferable, and t-butylcatechol is more preferable. .
 重合禁止剤の量は、モノマー成分の100質量部に対して0.005~3質量部であり、0.05~1.5質量部が好ましい。重合禁止剤の量が下限値以上であれば、モノマー(1)、モノマー(31)およびモノマー(32)のオリゴマー化が充分に抑えられ、グラフト率が充分に高い、すなわち膜抵抗が充分に低い陰イオン交換膜を得ることができる。重合禁止剤の量が上限値以下であれば、グラフト重合が阻害されることなく、グラフト率が充分に高い、すなわち膜抵抗が充分に低い陰イオン交換膜を得ることができる。 The amount of the polymerization inhibitor is 0.005 to 3 parts by mass, preferably 0.05 to 1.5 parts by mass with respect to 100 parts by mass of the monomer component. If the amount of the polymerization inhibitor is not less than the lower limit, oligomerization of the monomer (1), monomer (31) and monomer (32) is sufficiently suppressed, and the graft ratio is sufficiently high, that is, the membrane resistance is sufficiently low. An anion exchange membrane can be obtained. When the amount of the polymerization inhibitor is not more than the upper limit value, an anion exchange membrane having a sufficiently high graft ratio, that is, a sufficiently low membrane resistance can be obtained without inhibiting graft polymerization.
(放射線グラフト重合法)
 放射線グラフト重合法は、ポリマーに放射線を照射することによってポリマー内にラジカルを発生させ、該ラジカルを開始点としてモノマー成分をグラフト重合させる方法である。
 放射線としては、電子線、紫外線、X線、α線、β線、γ線等が挙げられる。
(Radiation graft polymerization method)
The radiation graft polymerization method is a method in which a radical is generated in the polymer by irradiating the polymer with radiation, and the monomer component is graft-polymerized using the radical as a starting point.
Examples of radiation include electron beams, ultraviolet rays, X-rays, α rays, β rays, γ rays and the like.
 放射線の照射は、分子状酸素の存在しない雰囲気下、すなわち不活性ガス(窒素ガス等)の雰囲気下に行うことが好ましい。
 放射線の線量は、電子線の場合、5~300kGyが好ましい。
The irradiation with radiation is preferably performed in an atmosphere free of molecular oxygen, that is, in an atmosphere of an inert gas (such as nitrogen gas).
In the case of an electron beam, the radiation dose is preferably 5 to 300 kGy.
 グラフト重合は、膜状のポリマーに、過剰または重合させる分のモノマー成分を含浸させた状態で行ってもよく、膜状のポリマーを、モノマー成分中に浸漬した状態で行ってもよく、膜状のポリマーを、モノマー成分を溶媒に溶解した溶液中に浸漬した状態で行ってもよい。
 溶媒としては、トルエン、キシレン、ベンゼン、クロロベンゼン、クロロベンゼン誘導体、ジメチルスルホキシド、シクロヘキサン、ヘキサン、各種アルコール類、各種ケトン類、水等が挙げられる。
 グラフト重合の際の温度は、4~80℃が好ましい。
Graft polymerization may be performed in a state in which a film-like polymer is impregnated with a monomer component that is excessive or polymerized, or may be performed in a state in which a film-like polymer is immersed in the monomer component. The polymer may be immersed in a solution in which the monomer component is dissolved in a solvent.
Examples of the solvent include toluene, xylene, benzene, chlorobenzene, chlorobenzene derivatives, dimethyl sulfoxide, cyclohexane, hexane, various alcohols, various ketones, water and the like.
The temperature during graft polymerization is preferably 4 to 80 ° C.
 重合時間は、後述するグラフト率に影響を及ぼす。重合時間が長くなるにつれてグラフト率は高くなる。しかし、モノマー成分中の重合禁止剤の含有量が多かったり少なかったりすると、重合時間を長くしてもグラフト率が充分に高くならず、得られた陰イオン交換膜のイオン交換容量が不充分となる。重合時間は、モノマー成分の量、重合温度、放射線量、重合禁止剤量等にもよるが、60分以上行うことが好ましい。重合時間が長すぎると生産性が低下するので、前記の諸条件を適宜調整することにより、重合時間を10時間以内とすることが好ましく、8時間以内とすることがより好ましい。 Polymerization time affects the graft rate described later. The graft ratio increases as the polymerization time increases. However, if the content of the polymerization inhibitor in the monomer component is large or small, the graft ratio is not sufficiently high even if the polymerization time is lengthened, and the ion exchange capacity of the obtained anion exchange membrane is insufficient. Become. The polymerization time is preferably 60 minutes or longer, although it depends on the amount of monomer components, polymerization temperature, radiation dose, polymerization inhibitor amount and the like. If the polymerization time is too long, the productivity is lowered. Therefore, the polymerization time is preferably within 10 hours, more preferably within 8 hours, by appropriately adjusting the above conditions.
(A基に結合したX基の陰イオン交換基への変換)
 方法(α)においては、グラフト重合の後に得られたグラフト重合膜(陰イオン交換膜中間体)については、A基に結合したX基を陰イオン交換基(アミノ基またはアンモニウム基)に変換する必要がある。
 A基に結合したX基の陰イオン交換基への変換は、A基に結合したX基に化合物(2)を反応させることによって行われる。化合物(2)は、塩酸塩等の塩の状態であってもよい。
(Conversion of X group bonded to A group to anion exchange group)
In the method (α), for the graft polymerized membrane (anion exchange membrane intermediate) obtained after graft polymerization, the X group bonded to the A group is converted to an anion exchange group (amino group or ammonium group). There is a need.
Conversion of the X group bonded to the A group to an anion exchange group is performed by reacting the compound (2) with the X group bonded to the A group. Compound (2) may be in the form of a salt such as hydrochloride.
 化合物(2)が、アンモニア、第一級アミン(メチルアミン等)、第二級アミン(ジメチルアミン等)の場合は、弱塩基性陰イオン交換膜が得られる。
 化合物(2)が、第三級アミン(トリメチルアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミン等)の場合は、強塩基性陰イオン交換膜が得られる。
When the compound (2) is ammonia, a primary amine (such as methylamine), or a secondary amine (such as dimethylamine), a weakly basic anion exchange membrane can be obtained.
When compound (2) is a tertiary amine (trimethylamine, dimethylethanolamine, methyldiethanolamine, triethanolamine, etc.), a strongly basic anion exchange membrane is obtained.
(対イオンの交換)
 方法(α)または方法(β)によって得られた陰イオン交換膜がアンモニウム基を有する場合、アンモニウム基の対イオンを、他の対イオンに交換してもよい。
 対イオンの交換は、変換後の対イオンを含む水溶液に陰イオン交換膜を浸漬することによって行われる。
(Exchange of counter ion)
When the anion exchange membrane obtained by the method (α) or the method (β) has an ammonium group, the counter ion of the ammonium group may be exchanged with another counter ion.
Counter ion exchange is performed by immersing the anion exchange membrane in an aqueous solution containing the converted counter ion.
(作用効果)
 以上説明した本発明の陰イオン交換膜の製造方法にあっては、膜状のポリマーに、モノマー(1)を含むモノマー成分、または、モノマー(31)もしくはモノマー(32)を含むモノマー成分をグラフト重合しているため、得られる陰イオン交換膜は、耐熱性および耐アルカリ性を有する。
 また、ベースとして膜状のポリマーを用いているため、ベースがクロスや不織布の場合に比べ、ベースを薄膜化しても、得られる陰イオン交換膜におけるピンホールの発生や強度の低下が抑えられる。
 また、モノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させているため、モノマー(1)、モノマー(31)およびモノマー(32)のオリゴマー化が充分に抑えられ、グラフト率が充分に高い、すなわち膜抵抗が充分に低い陰イオン交換膜を得ることができる。
(Function and effect)
In the method for producing an anion exchange membrane of the present invention described above, the monomer component containing monomer (1) or the monomer component containing monomer (31) or monomer (32) is grafted to the membrane polymer. Since it is polymerized, the obtained anion exchange membrane has heat resistance and alkali resistance.
In addition, since a film-like polymer is used as the base, even if the base is thinned, generation of pinholes and a decrease in strength can be suppressed even when the base is thinned.
In addition, since the monomer component is graft-polymerized by radiation graft polymerization in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component, monomer (1), monomer Oligomerization of (31) and monomer (32) can be sufficiently suppressed, and an anion exchange membrane having a sufficiently high graft ratio, that is, a sufficiently low membrane resistance can be obtained.
 通常、モノマーの重合を行う際には、モノマーを精製して、モノマーの保存安定性のために添加されていた重合禁止剤を取り除くのが常識であるため、特許文献1、2に記載された方法にて、膜状のポリマーに精製された4-(4-ブロモブチル)スチレンをグラフト重合させても、不安定な4-(4-ブロモブチル)スチレンのオリゴマー化が優先的に進行し、グラフト重合がうまく進行しなかったものと考えられる。また、ベースがクロスや不織布の場合にグラフト重合がうまく進行した理由としては、クロスや不織布の繊維間に4-(4-ブロモブチル)スチレンが浸透した後、繊維間にてオリゴマー化とグラフト重合とが進行し、オリゴマーが繊維間に閉じ込められたため、見かけ上、グラフト重合がうまく進行していたように見えていたものと考えられる。 Normally, when polymerizing monomers, it is common knowledge to purify the monomers and remove the polymerization inhibitor added for the storage stability of the monomers. In this method, even when 4- (4-bromobutyl) styrene purified to a film-like polymer is graft-polymerized, oligomerization of unstable 4- (4-bromobutyl) styrene proceeds preferentially, and graft polymerization It is probable that did not progress well. In addition, when the base is a cloth or a nonwoven fabric, the reason why the graft polymerization has proceeded well is that, after 4- (4-bromobutyl) styrene penetrates between the fibers of the cloth or the nonwoven fabric, oligomerization and graft polymerization occur between the fibers. Since the oligomers were confined between the fibers, it seemed that the graft polymerization seemed to proceed well.
<陰イオン交換膜>
 本発明の製造方法で得られた陰イオン交換膜は、下式(41)で表わされるモノマー単位または下式(42)で表わされるモノマー単位を有するグラフト鎖を有するものである。
<Anion exchange membrane>
The anion exchange membrane obtained by the production method of the present invention has a graft chain having a monomer unit represented by the following formula (41) or a monomer unit represented by the following formula (42).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ただし、Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基であり、R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基であり、Xは、アンモニウム基の対イオンであり、ベンゼン環の水素原子はアルキル基またはハロゲン原子で置換されていてもよい。Xには、モノマー(1)のZに由来するZ(ハロゲンイオン)も含まれる。 A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, X 2 is a counter ion of an ammonium group, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom. X also includes Z (halogen ion) derived from Z of the monomer (1).
(グラフト率)
 本発明の陰イオン交換膜においては、下式(I)によって求めたグラフト率(dg)が、6モル%以上であるのが好ましく、8~16モル%であることがより好ましい。
 dg=m/m×100 ・・・(I)。
 ただし、dgは、グラフト率[モル%]であり、mは、膜状のポリマーを構成するモノマー単位のモル数であり、mは、膜状のポリマーにグラフト重合させたモノマー成分のモル数である。
(Graft rate)
In the anion exchange membrane of the present invention, the graft ratio (dg) determined by the following formula (I) is preferably 6 mol% or more, and more preferably 8 to 16 mol%.
dg = m m / m p × 100 (I).
However, dg is the graft rate [mol%], m p is the number of moles of monomer units constituting the film-shaped polymer, m m is moles of the monomer component is graft-polymerized to a membrane-like polymer Is a number.
 dgが6モル%未満では、陰イオン交換膜のイオン交換容量が不充分となり、膜抵抗も上がるため、陰イオン交換膜としての機能を充分に発揮できない。dgが高すぎると、陰イオン交換膜の含水率が高くなり、イオン選択透過性が低くなり、電流効率も低下してしまう。 When dg is less than 6 mol%, the ion exchange capacity of the anion exchange membrane becomes insufficient and the membrane resistance increases, so that the function as an anion exchange membrane cannot be fully exhibited. If dg is too high, the moisture content of the anion exchange membrane will increase, ion selective permeability will decrease, and current efficiency will also decrease.
 mは、放射線グラフト重合法に用いた膜状のポリマーの乾燥質量(W)を、ポリマーを構成するモノマー単位の分子量(M)(モノマー単位が複数の場合は、各モノマー単位のモル分率を加味した平均分子量)で除すことによって求める。
 mは、放射線グラフト重合法によって得られたグラフト重合膜の乾燥質量(W)から、放射線グラフト重合法に用いた膜状のポリマーの乾燥質量(W)を引いた質量(W-W)、すなわちグラフト鎖の乾燥質量を、グラフト鎖を構成するモノマー単位の分子量(M)(モノマー単位が複数の場合は、各モノマー単位のモル分率を加味した平均分子量)で除すことによって求める。
m p is the dry weight (W 0 ) of the film-like polymer used in the radiation graft polymerization method, the molecular weight of the monomer unit constituting the polymer (M p ) (in the case of a plurality of monomer units, the mole of each monomer unit) It is determined by dividing by the average molecular weight taking into account the fraction.
m m is the mass (W 1 −) obtained by subtracting the dry mass (W 0 ) of the film-like polymer used in the radiation graft polymerization method from the dry mass (W 1 ) of the graft polymer film obtained by the radiation graft polymerization method. W 0 ), that is, the dry mass of the graft chain is divided by the molecular weight (M m ) of the monomer units constituting the graft chain (in the case of a plurality of monomer units, the average molecular weight including the molar fraction of each monomer unit). Ask by.
(イオン交換容量)
 本発明の陰イオン交換膜のイオン交換容量(Q)は、1~4ミリ当量/g乾燥樹脂が好ましく、1.5~3ミリ当量/g乾燥樹脂がより好ましい。
 Qが小さすぎると、膜抵抗が高くなり、陰イオン交換膜としての機能を充分に発揮できない。Qが大きすぎると、イオン選択透過性が低下する。
(Ion exchange capacity)
The ion exchange capacity (Q) of the anion exchange membrane of the present invention is preferably 1 to 4 meq / g dry resin, more preferably 1.5 to 3 meq / g dry resin.
When Q is too small, the membrane resistance increases, and the function as an anion exchange membrane cannot be sufficiently exhibited. When Q is too large, the ion selective permeability decreases.
 Qは、下式(II)によって求める。
 Q={(W-W)/M}/W×10 ・・・(II)。
 ただし、Wは、放射線グラフト重合法に用いた膜状のポリマーの乾燥質量であり、Wは、放射線グラフト重合法によって得られたグラフト重合膜の乾燥質量であり、Mは、グラフト鎖を構成するモノマー単位の分子量である。
 本発明の製造方法で得られた陰イオン交換膜は、湿潤状態での膜厚が5~400μmであるのが好ましく、10~200μmであるのがより好ましい。また、0.5mol/リットルNaCL(25℃)での膜抵抗が0.05~4Ω・cmであるのが好ましく、0.1~2Ω・cmであるのがより好ましい。さらに、0.5mol/リットルNaCLと1mol/リットルNaCLを用いた静的輸率が0.90以上であるのが好ましく、0.94以上であるのがより好ましい。
Q is obtained by the following formula (II).
Q = {(W 1 −W 0 ) / M m } / W 1 × 10 3 (II).
However, W 0 is the dry mass of the film-like polymer used in the radiation graft polymerization method, W 1 is the dry mass of the graft polymer film obtained by the radiation graft polymerization method, and M m is the graft chain. Is the molecular weight of the monomer unit that constitutes.
The anion exchange membrane obtained by the production method of the present invention preferably has a wet film thickness of 5 to 400 μm, more preferably 10 to 200 μm. Further, it is preferred membrane resistance is 0.05 ~ 4Ω · cm 2 at 0.5 mol / l NaCL (25 ° C.), and more preferably 0.1 ~ 2Ω · cm 2. Furthermore, the static transport number using 0.5 mol / liter NaCl and 1 mol / liter NaCl is preferably 0.90 or more, and more preferably 0.94 or more.
(グラフト鎖のモノマー単位に由来する元素のX線強度分布)
 本発明の製造方法で得られた陰イオン交換膜においては、膜状のポリマーの両表面付近に優先的にモノマー成分がグラフト重合しつつ、膜状のポリマーの厚さ方向の中央部付近にもモノマー成分が充分にグラフト重合する。
(X-ray intensity distribution of elements derived from the monomer units of the graft chain)
In the anion exchange membrane obtained by the production method of the present invention, the monomer component is preferentially graft-polymerized near both surfaces of the membrane-like polymer, and also in the vicinity of the central portion in the thickness direction of the membrane-like polymer. The monomer component is sufficiently graft polymerized.
 本発明の陰イオン交換膜またはその中間体(グラフト重合膜)においては、X線元素分析器を用いて測定された、膜の厚さ方向における、グラフト鎖のモノマー単位に由来する元素(たとえば、ハロゲン元素)のX線強度分布において、膜の厚さ方向の中央部付近に現れる極小値(Xmin)と、膜の一方の表面付近に現れる第1の極大値(Xmax1)および膜の他方の表面付近に現れる第2の極大値(Xmax2)の平均値(Xmax)との比(Xmin/Xmax)は、0.6以上が好ましく、0.75以上がより好ましい。また、Xmin/Xmaxは、1.1以下が好ましく、1以下がより好ましい。 In the anion exchange membrane of the present invention or an intermediate thereof (graft polymerized membrane), an element derived from a monomer unit of the graft chain in the thickness direction of the membrane measured using an X-ray element analyzer (for example, In the X-ray intensity distribution of the halogen element), the minimum value (X min ) that appears near the center of the film in the thickness direction, the first maximum value (X max1 ) that appears near one surface of the film, and the other of the film The ratio (X min / X max ) to the average value (X max ) of the second maximum value (X max2 ) appearing in the vicinity of the surface is preferably 0.6 or more, and more preferably 0.75 or more. Further, X min / X max is preferably 1.1 or less, and more preferably 1 or less.
 Xmin/Xmaxが小さすぎると、膜の厚さ方向の中央部付近におけるモノマーのグラフト重合が不充分であるため、陰イオン交換膜のイオン交換容量が不充分となり、膜抵抗が上昇し、陰イオン交換膜としての機能を充分に発揮できないおそれがある。Xmin/Xmaxが大きすぎると、膜の厚さ方向の中央部付近におけるイオン交換基の量が多くなり、イオン選択透過性が低下するおそれがある。 If Xmin / Xmax is too small, the graft polymerization of the monomer in the vicinity of the center in the thickness direction of the membrane is insufficient, so that the ion exchange capacity of the anion exchange membrane becomes insufficient, and the membrane resistance increases. There is a possibility that the function as an anion exchange membrane cannot be sufficiently exhibited. If X min / X max is too large, the amount of ion exchange groups in the vicinity of the central portion in the thickness direction of the membrane increases, and the ion selective permeability may decrease.
 Xmin/Xmaxが0.6~1.1である陰イオン交換膜は、放射線グラフト重合法によって膜状のポリマーの両表面付近に優先的にモノマー成分をグラフト重合させ、かつdgを6~16モル%に調整することによって得ることができる。 An anion exchange membrane having an X min / X max of 0.6 to 1.1 is obtained by graft-polymerizing monomer components preferentially near both surfaces of a film-like polymer by a radiation graft polymerization method, and a dg of 6 to It can be obtained by adjusting to 16 mol%.
(作用効果)
 以上説明した本発明の陰イオン交換膜にあっては、本発明の製造方法で得られた陰イオン交換膜であるため、グラフト鎖に式(41)で表わされるモノマー単位または式(42)で表わされるモノマー単位を有する。その結果、耐熱性および耐アルカリ性を有する。
 また、ベースとして膜状のポリマーを用いているため、ベースがクロスや不織布の場合に比べ、薄膜化してもピンホールの発生や強度の低下が抑えられる。
 また、グラフト率が6モル%以上であれば、膜抵抗が充分に低いので好ましい。
(Function and effect)
Since the anion exchange membrane of the present invention described above is an anion exchange membrane obtained by the production method of the present invention, the graft unit is represented by the monomer unit represented by the formula (41) or the formula (42). Having monomer units represented. As a result, it has heat resistance and alkali resistance.
In addition, since a film-like polymer is used as the base, generation of pinholes and a decrease in strength can be suppressed even if the base is made thinner than when the base is a cloth or a nonwoven fabric.
A graft ratio of 6 mol% or more is preferable because the membrane resistance is sufficiently low.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
 例1~6は実施例であり、例7、8は比較例である。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited by these examples.
Examples 1 to 6 are examples, and examples 7 and 8 are comparative examples.
(略号)
 HDPE:高密度ポリエチレン。
 BBS:4-(4-ブロモブチル)スチレン(下式(1-1))。
 TBC:4-t-ブチルカテコール。
 TMA塩酸塩:トリメチルアンモニウム塩酸塩(N(CH・HCl)。
 DMF:N,N-ジメチルホルムアミド。
(Abbreviation)
HDPE: high density polyethylene.
BBS: 4- (4-bromobutyl) styrene (the following formula (1-1)).
TBC: 4-t-butylcatechol.
TMA hydrochloride: trimethylammonium hydrochloride (N (CH 3 ) 3 .HCl).
DMF: N, N-dimethylformamide.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(グラフト率)
 陰イオン交換膜におけるグラフト率(dg)は、下式(I)によって求めた。
 dg=m/m×100
   ={(W-W)/M}/{W/M}×100 ・・・(I)。
 ただし、dgは、グラフト率[モル%]であり、mは、HDPEフィルムを構成するエチレン単位のモル数であり、mは、HDPEフィルムにグラフト重合させたBBSのモル数であり、Wは、放射線グラフト重合法に用いたHDPEフィルムの乾燥質量であり、Wは、放射線グラフト重合法によって得られたグラフト重合膜の乾燥質量であり、Mは、グラフト鎖を構成するBBS単位の分子量であり、Mは、HDPEフィルムを構成するエチレン単位の分子量である。
(Graft rate)
The graft ratio (dg) in the anion exchange membrane was determined by the following formula (I).
dg = m m / m p × 100
= {(W 1 -W 0 ) / M m } / {W 0 / M p } × 100 (I).
However, dg is the graft rate [mol%], m p is the number of moles of ethylene units constituting the HDPE film, m m is the number of moles of BBS prepared by graft polymerizing a HDPE film, W 0 is the dry mass of the HDPE film used in the radiation graft polymerization method, W 1 is the dry mass of the graft polymer film obtained by the radiation graft polymerization method, and M m is the BBS unit constituting the graft chain M p is the molecular weight of the ethylene units that make up the HDPE film.
(イオン交換容量)
 陰イオン交換膜のイオン交換容量(Q)は、下式(II)によって求めた。
 Q={(W-W)/M}/W×10 ・・・(II)。
 ただし、Wは、放射線グラフト重合法に用いたHDPEフィルムの乾燥質量であり、Wは、放射線グラフト重合法によって得られたグラフト重合膜の乾燥質量であり、Mは、グラフト鎖を構成するBBS単位の分子量である。
(Ion exchange capacity)
The ion exchange capacity (Q) of the anion exchange membrane was determined by the following formula (II).
Q = {(W 1 −W 0 ) / M m } / W 1 × 10 3 (II).
However, W 0 is the dry mass of the HDPE film used in the radiation graft polymerization method, W 1 is the dry mass of the graft polymerized film obtained by the radiation graft polymerization method, and M m constitutes the graft chain. The molecular weight of the BBS unit.
(臭素元素のX線強度分布)
 グラフト重合膜(陰イオン交換膜中間体)について、エネルギー分散形X線元素分析器を備えた走査電子顕微鏡(日立ハイテクノロジーズ社製、SU6600)を用い、グラフト重合膜の断面を観察すると同時に、エネルギー分散形X線元素分析器によって、グラフト重合膜の厚さ方向における臭素元素のX線強度分布を測定した。
(X-ray intensity distribution of bromine element)
For the graft polymerized membrane (anion exchange membrane intermediate), a scanning electron microscope equipped with an energy dispersive X-ray element analyzer (SU6600, manufactured by Hitachi High-Technologies Corporation) was used to observe the cross section of the graft polymerized membrane and The X-ray intensity distribution of the bromine element in the thickness direction of the graft polymerized film was measured by a distributed X-ray element analyzer.
(厚さ)
 陰イオン交換膜の厚さは、陰イオン交換膜を0.5モル/Lの塩化ナトリウム水溶液に6時間浸漬させ、純水で洗浄した後、電磁膜圧計(ケント科学研究所社製、LZ-200J)を用いて湿潤状態にて測定した。
(thickness)
The thickness of the anion exchange membrane was determined by immersing the anion exchange membrane in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, washing with pure water, and then using an electromagnetic membrane pressure gauge (LZ-, manufactured by Kent Science Laboratory Co., Ltd.). 200J) in a wet state.
(含水率)
 陰イオン交換膜の含水率(H)は、下式(III)によって求めた。
 H=(W-W)/W×100 ・・・(III)。
 ただし、Wは、陰イオン交換膜の乾燥質量であり、Wは、陰イオン交換膜を0.5モル/Lの塩化ナトリウム水溶液に6時間浸漬させ、純水で洗浄した後の湿潤質量である。
(Moisture content)
The water content (H w ) of the anion exchange membrane was determined by the following formula (III).
H w = (W 3 −W 2 ) / W 2 × 100 (III).
Where W 2 is the dry mass of the anion exchange membrane, and W 3 is the wet mass after the anion exchange membrane is immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours and washed with pure water. It is.
(膜抵抗)
 陰イオン交換膜を、内径:1.50cm、幅:5.5cmの膜抵抗測定用のセル(有効膜面積:1.77cm)に挟み、陰イオン交換膜の両側1cmの位置に白金電極を置いた。インピーダンスメータ(アジレント・テクノロジー社製、433B)を用い、0.5モル/Lの塩化ナトリウム水溶液中における1kHzの交流抵抗を測定した。測定温度は25℃とした。陰イオン交換膜と水溶液との交流抵抗の和を測定した後、陰イオン交換膜を外し、水溶液のみの交流抵抗を測定した。これらの差から、陰イオン交換膜のみの交流抵抗R[Ω]を算出した。膜抵抗[Ω・cm]を下式(IV)によって求めた。
 膜抵抗=R×有効膜面積 ・・・(IV)。
(Membrane resistance)
An anion exchange membrane is sandwiched between membrane resistance measurement cells (effective membrane area: 1.77 cm 2 ) having an inner diameter of 1.50 cm and a width of 5.5 cm, and platinum electrodes are placed at positions 1 cm on both sides of the anion exchange membrane. placed. Using an impedance meter (manufactured by Agilent Technologies, 433B), an AC resistance of 1 kHz in a 0.5 mol / L sodium chloride aqueous solution was measured. The measurement temperature was 25 ° C. After measuring the sum of the AC resistance of the anion exchange membrane and the aqueous solution, the anion exchange membrane was removed and the AC resistance of only the aqueous solution was measured. From these differences, the AC resistance R m [Ω] of only the anion exchange membrane was calculated. The membrane resistance [Ω · cm 2 ] was determined by the following formula (IV).
Membrane resistance = R m × effective membrane area (IV).
(静的輸率)
 陰イオン交換膜を、有効膜面積:1.00cmの測定セルに挟み、左右のセルに、それぞれ1.0モル/Lの塩化ナトリウム水溶液および0.50モル/Lの塩化ナトリウム水溶液を入れた。左右のセルを塩橋によって飽和塩化カリウムと連結し、電圧計(テクシオ社製、DL-2040)に接続した甘コウ電極を設置した。左右のセルを撹拌し、電位差を測定した後、ブランク電位差を測定した。測定温度は25℃とした。測定した電位差およびブランク電位差から、静的輸率[-]を下式(V)から求めた。
 静的輸率=0.5-(E-E+E)/[2RT/Fln(a±1.0/a±0.5)]
     =0.5-(E-E+E)/33.7 ・・・(V)。
 ただし、E、E、E、R、T、F、a±1.0およびa±0.5は、それぞれ測定電位、0.50モル/Lの塩化ナトリウム水溶液-1.0モル/Lの塩化ナトリウム水溶液間の液間電位(4.4mV)、輸率測定装置から陰イオン交換膜を除いたブランク電位、気体定数(8.31J/(K モル))、測定温度(298K)、ファラデー定数(96485C/モル)、1.0モル/Lの塩化ナトリウム水溶液の平均活量(0.657)および0.5モル/Lの塩化ナトリウム水溶液の平均活量(0.341)である。
(Static transportation rate)
The anion exchange membrane was sandwiched between measurement cells having an effective membrane area of 1.00 cm 2 , and 1.0 mol / L sodium chloride aqueous solution and 0.50 mol / L sodium chloride aqueous solution were placed in the left and right cells, respectively. . The left and right cells were connected to saturated potassium chloride by a salt bridge, and a sweet potato electrode connected to a voltmeter (Texio, DL-2040) was installed. After the left and right cells were stirred and the potential difference was measured, the blank potential difference was measured. The measurement temperature was 25 ° C. From the measured potential difference and blank potential difference, the static transport number [−] was determined from the following formula (V).
Static transport number = 0.5− (E 1 −E 0 + E L ) / [2RT / Fln (a ± 1.0 / a ± 0.5 )]
= 0.5- (E 1 -E 0 + E L ) /33.7 (V).
However, E 1 , E 0 , E L , R, T, F, a ± 1.0 and a ± 0.5 are the measured potential, 0.50 mol / L sodium chloride aqueous solution- 1.0 mol / L, respectively. L potential between sodium chloride aqueous solution (4.4 mV), blank potential obtained by removing the anion exchange membrane from the transport number measuring device, gas constant (8.31 J / (K mol)), measurement temperature (298 K), Faraday constant (96485 C / mol), average activity of sodium chloride aqueous solution of 1.0 mol / L (0.657) and average activity of sodium chloride aqueous solution of 0.5 mol / L (0.341).
(電気浸透係数および濃縮液のアルカリ濃度)
 陰イオン交換膜を1.0モル/Lの水酸化ナトリウム水溶液に6時間浸漬し、対イオンをOHとした。0.5モル/Lの水酸化ナトリウム水溶液(25℃)を用いて陰イオン交換膜の膜抵抗を測定した。
 0.5モル/Lの水酸化ナトリウム水溶液をモデルアルカリ性溶液に用いて電気透析を行った。このときの対膜としては、市販の陽イオン交換膜(旭硝子社製、SELEMION(登録商標)CMV)を用いた。透析時の有効膜面積および膜間距離は、それぞれ8.0cmおよび1.5mmとした。濃縮室にはあらかじめ0.50モル/Lの水酸化ナトリウム水溶液を入れておき、希釈室には0.50モル/Lの水酸化ナトリウム水溶液(25℃)を7.1cm/sで循環させた。電流密度:30mA/cmで直流電流を流した。200分間定常運転させた後、濃縮液を100分間採取し、0.1モル/Lの塩酸を用いた中和滴定によって、濃縮液のアルカリ濃度(COH )を定量した。電気浸透係数[-]を、下式(VI)によって求めた。
 電気浸透係数=(水分子の透過流束)/(水酸化物イオンの透過流束) ・・・(VI)。
(Electroosmosis coefficient and alkali concentration of concentrate)
The anion exchange membrane was immersed in a 1.0 mol / L sodium hydroxide aqueous solution for 6 hours, so that the counter ion was OH . The membrane resistance of the anion exchange membrane was measured using a 0.5 mol / L aqueous sodium hydroxide solution (25 ° C.).
Electrodialysis was performed using a 0.5 mol / L sodium hydroxide aqueous solution as a model alkaline solution. As a counter membrane at this time, a commercially available cation exchange membrane (manufactured by Asahi Glass Co., Ltd., SELEMION (registered trademark) CMV) was used. The effective membrane area and intermembrane distance during dialysis were 8.0 cm 2 and 1.5 mm, respectively. A 0.50 mol / L sodium hydroxide aqueous solution was previously placed in the concentration chamber, and a 0.50 mol / L sodium hydroxide aqueous solution (25 ° C.) was circulated at 7.1 cm / s in the dilution chamber. . A direct current was applied at a current density of 30 mA / cm 2 . After a steady operation for 200 minutes, the concentrated solution was collected for 100 minutes, and the alkali concentration (C OH ) of the concentrated solution was quantified by neutralization titration using 0.1 mol / L hydrochloric acid. The electroosmosis coefficient [−] was determined by the following formula (VI).
Electroosmosis coefficient = (permeation flux of water molecule) / (permeation flux of hydroxide ion) (VI).
〔例1~6〕
 HDPEフィルム(タマポリ社製、厚さ:35μm、密度:0.94g/cm)を用意した。また、BBSは、市販品(純度:97.5質量%、TBC:0.1質量%=BBSの100質量部に対するTBC:0.1質量部)を精製せずに、そのまま用いた。
[Examples 1 to 6]
An HDPE film (manufactured by Tamapoli Co., Ltd., thickness: 35 μm, density: 0.94 g / cm 3 ) was prepared. Further, BBS was used as it was without purifying a commercial product (purity: 97.5% by mass, TBC: 0.1% by mass = TBC with respect to 100 parts by mass of BBS: 0.1 part by mass).
 HDPEフィルムに、窒素雰囲気下において200kGyの線量の電子線を照射し、ラジカルを発生させた。HDPEフィルムを、40℃のBBSの市販品(未精製)に浸漬し、ラジカルを開始点としてBBSをグラフト重合させ、グラフト重合膜を得た。グラフト率(dg)は、グラフト重合の時間(0.25~4時間)によって調整した。
 グラフト重合膜をDMF、メタノールおよび純水を用いて洗浄した後、乾燥させた。dgおよびイオン交換容量(Q)を表1に示す。また、グラフト重合膜の厚さ方向における臭素元素のX線強度分布を測定した。臭素元素のX線強度分布から求めたBrmin/Brmaxを表1に示す。
The HDPE film was irradiated with an electron beam with a dose of 200 kGy in a nitrogen atmosphere to generate radicals. The HDPE film was immersed in a commercial product (unpurified) of BBS at 40 ° C., and BBS was graft-polymerized starting from a radical to obtain a graft-polymerized film. The graft ratio (dg) was adjusted by the graft polymerization time (0.25 to 4 hours).
The graft polymerized membrane was washed with DMF, methanol and pure water and then dried. Table 1 shows dg and ion exchange capacity (Q). Moreover, the X-ray intensity distribution of the bromine element in the thickness direction of the graft polymerization film was measured. Table 1 shows Br min / Br max obtained from the X-ray intensity distribution of bromine element.
 グラフト重合膜を0.5モル/LのTMA塩酸塩水溶液(pH12に調製)に6時間浸漬し、BBS単位の臭素をTMA基に変換し、陰イオン交換膜を得た。浸漬温度は40℃とした。
 陰イオン交換膜をメタノールおよび純水を用いて洗浄した。陰イオン交換膜を0.5モル/Lの臭化ナトリウム水溶液に6時間浸漬し、対イオンをBrとした後、乾燥させた。
The graft polymerized membrane was immersed in an aqueous 0.5 mol / L TMA hydrochloride solution (adjusted to pH 12) for 6 hours to convert bromine of BBS units into TMA groups to obtain an anion exchange membrane. The immersion temperature was 40 ° C.
The anion exchange membrane was washed with methanol and pure water. The anion exchange membrane was immersed in an aqueous 0.5 mol / L sodium bromide solution for 6 hours to make the counter ion Br 2 - and then dried.
 陰イオン交換膜を0.5モル/Lの塩化ナトリウム水溶液に6時間浸漬し、対イオンをClとした。陰イオン交換膜を純水で洗浄した後、湿潤状態の厚さを測定した。厚さを表1に示す。また、陰イオン交換膜の湿潤質量を測定した後、陰イオン交換膜を40℃で乾燥させ、乾燥質量を測定した。含水率(H)を表1に示す。
 また、膜抵抗、静的輸率、電気浸透係数および濃縮液のアルカリ濃度を表1に示す。
The anion exchange membrane was immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, and the counter ion was Cl 2 . After the anion exchange membrane was washed with pure water, the wet thickness was measured. Table 1 shows the thickness. Moreover, after measuring the wet mass of an anion exchange membrane, the anion exchange membrane was dried at 40 degreeC, and the dry mass was measured. The moisture content (H w ) is shown in Table 1.
Table 1 shows the membrane resistance, static transport number, electroosmosis coefficient, and alkali concentration of the concentrate.
〔例7〕
 BBSとして、市販品(純度:97.5質量%、TBC:0.1質量%)から、5質量%水酸化ナトリウム水溶液を用いた液液抽出によって重合禁止剤を除去し、重合禁止剤抽出後のBBSに塩化カルシウムを添加して乾燥させ、精製したもの(BBSの100質量部に対するTBC:0質量部)を用いた。
[Example 7]
As BBS, the polymerization inhibitor was removed from the commercial product (purity: 97.5 mass%, TBC: 0.1 mass%) by liquid-liquid extraction using a 5 mass% aqueous sodium hydroxide solution, and after the polymerization inhibitor was extracted The BBS was added with calcium chloride, dried and purified (TBC with respect to 100 parts by mass of BBS: 0 parts by mass).
 HDPEフィルムに、窒素雰囲気下において200kGyの線量の電子線を照射し、ラジカルを発生させた。HDPEフィルムを、40℃のBBSの精製品に浸漬し、ラジカルを開始点としてBBSをグラフト重合させ、グラフト重合膜を得た。
 グラフト重合膜をDMF、メタノールおよび純水を用いて洗浄した後、乾燥させた。dgを表1に示す。
The HDPE film was irradiated with an electron beam with a dose of 200 kGy in a nitrogen atmosphere to generate radicals. The HDPE film was immersed in a purified product of BBS at 40 ° C., and BBS was graft polymerized starting from radicals to obtain a graft polymerized film.
The graft polymerized membrane was washed with DMF, methanol and pure water and then dried. The dg is shown in Table 1.
 グラフト重合膜を0.5モル/LのTMA塩酸塩水溶液(pH12に調製)に6時間浸漬し、BBS単位の臭素をTMA基に変換し、陰イオン交換膜を得た。浸漬温度は40℃とした。
 陰イオン交換膜をメタノールおよび純水を用いて洗浄した。陰イオン交換膜を0.5モル/Lの臭化ナトリウム水溶液に6時間浸漬し、対イオンをBrとした後、乾燥させた。
The graft polymerized membrane was immersed in an aqueous 0.5 mol / L TMA hydrochloride solution (adjusted to pH 12) for 6 hours to convert bromine of BBS units into TMA groups to obtain an anion exchange membrane. The immersion temperature was 40 ° C.
The anion exchange membrane was washed with methanol and pure water. The anion exchange membrane was immersed in an aqueous 0.5 mol / L sodium bromide solution for 6 hours to make the counter ion Br 2 - and then dried.
 陰イオン交換膜を0.5モル/Lの塩化ナトリウム水溶液に6時間浸漬し、対イオンをClとした。陰イオン交換膜を純水で洗浄した後、湿潤状態の厚さを測定した。厚さを表1に示す。また、膜抵抗を表1に示す。 The anion exchange membrane was immersed in a 0.5 mol / L sodium chloride aqueous solution for 6 hours, and the counter ion was Cl 2 . After the anion exchange membrane was washed with pure water, the wet thickness was measured. Table 1 shows the thickness. Table 1 shows the membrane resistance.
〔例8〕
 市販の陰イオン交換膜(旭硝子社製、SELEMION(登録商標)AHT)を用意した。該陰イオン交換膜は、ベースにHDPEのクロスを用い、これにBBSおよびジビニルベンゼンを含浸させてバルク重合を行った後、TMA塩酸塩を反応させて得られたものである。
 該陰イオン交換膜のQ、厚さ、H、膜抵抗、静的輸率、電気浸透係数および濃縮液のアルカリ濃度を表1に示す。
[Example 8]
A commercially available anion exchange membrane (SELEMION (registered trademark) AHT, manufactured by Asahi Glass Co., Ltd.) was prepared. The anion exchange membrane was obtained by using HDPE cloth as a base, impregnating it with BBS and divinylbenzene, performing bulk polymerization, and then reacting with TMA hydrochloride.
Table 1 shows the Q, thickness, H w , membrane resistance, static transport number, electroosmotic coefficient, and alkali concentration of the concentrate of the anion exchange membrane.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明の陰イオン交換膜は、電気透析法による海水濃縮、かん水の脱塩、酸の濃縮または回収、有価金属の回収等のほか、燃料電池、二次電池等のセパレータ等として有用であり、特に、アルカリ型の固体高分子形燃料電池用の陰イオン交換膜として有用である。
 なお、2010年4月27日に出願された日本特許出願2010-102295号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The anion exchange membrane of the present invention is useful as a separator for fuel cells, secondary batteries, etc. in addition to seawater concentration by electrodialysis, brine desalination, acid concentration or recovery, recovery of valuable metals, etc. In particular, it is useful as an anion exchange membrane for an alkaline solid polymer fuel cell.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-102295 filed on April 27, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (7)

  1.  膜状のポリマーに、下式(1)で表わされるモノマーを含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させた後、下式(2)の化合物を反応させる、陰イオン交換膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ただし、Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基であり、R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基であり、Zは、ハロゲン原子であり、ベンゼン環の水素原子はアルキル基またはハロゲン原子で置換されていてもよい。
    A monomer component containing a monomer represented by the following formula (1) is added to a film-like polymer in the presence of 0.005 to 3 parts by mass of a polymerization inhibitor with respect to 100 parts by mass of the monomer component. A method for producing an anion exchange membrane, in which a compound of the following formula (2) is reacted after graft polymerization by a legal method.
    Figure JPOXMLDOC01-appb-C000001
    A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, Z is a halogen atom, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  2.  膜状のポリマーに、下式(31)で表わされるモノマーまたは下式(32)で表わされるモノマーを含むモノマー成分を、該モノマー成分の100質量部に対して0.005~3質量部の重合禁止剤の存在下に、放射線グラフト重合法によってグラフト重合させる、陰イオン交換膜の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     ただし、Aは、炭素数3~8のアルキレン基または炭素数4~8のアルキレンオキシメチレン基であり、R~Rは、それぞれ水素原子、炭素数1~6のアルキル基、または炭素数1~6のヒドロキシアルキル基であり、Xは、アンモニウム基の対イオンであり、ベンゼン環の水素原子はアルキル基またはハロゲン原子で置換されていてもよい。
    Polymerization of a monomer component containing the monomer represented by the following formula (31) or the monomer represented by the following formula (32) into the film-like polymer in an amount of 0.005 to 3 parts by mass with respect to 100 parts by mass of the monomer component A method for producing an anion exchange membrane, in which graft polymerization is carried out by radiation graft polymerization in the presence of an inhibitor.
    Figure JPOXMLDOC01-appb-C000002
    A is an alkylene group having 3 to 8 carbon atoms or an alkyleneoxymethylene group having 4 to 8 carbon atoms, and R 1 to R 3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 to 6 hydroxyalkyl groups, X 2 is a counter ion of an ammonium group, and the hydrogen atom of the benzene ring may be substituted with an alkyl group or a halogen atom.
  3.  前記ポリマーが、ポリオレフィンまたはフッ素樹脂である、請求項1または2に記載の陰イオン交換膜の製造方法。 The method for producing an anion exchange membrane according to claim 1 or 2, wherein the polymer is a polyolefin or a fluororesin.
  4.  前記重合禁止剤が、ハイドロキノン、p-メトキシフェノール、クレゾール、またはt-ブチルカテコールである、請求項1~3のいずれかに記載の陰イオン交換膜の製造方法。 The method for producing an anion exchange membrane according to any one of claims 1 to 3, wherein the polymerization inhibitor is hydroquinone, p-methoxyphenol, cresol, or t-butylcatechol.
  5.  前記膜状のポリマーの厚みが、10~200μmである、請求項1~4のいずれかに記載の陰イオン交換膜の製造方法。 The method for producing an anion exchange membrane according to any one of claims 1 to 4, wherein the thickness of the membranous polymer is 10 to 200 µm.
  6.  請求項1~5のいずれかに記載の製造方法で得られた陰イオン交換膜であって、下式(I)によって求めたグラフト率が、6モル%以上である、陰イオン交換膜。
     dg=m/m×100 ・・・(I)。
     ただし、dgは、グラフト率[モル%]であり、mは、膜状のポリマーを構成するモノマー単位のモル数であり、mは、膜状のポリマーにグラフト重合させたモノマー成分のモル数である。
    6. The anion exchange membrane obtained by the production method according to claim 1, wherein the graft ratio determined by the following formula (I) is 6 mol% or more.
    dg = m m / m p × 100 (I).
    However, dg is the graft rate [mol%], m p is the number of moles of monomer units constituting the film-shaped polymer, m m is moles of the monomer component is graft-polymerized to a membrane-like polymer Is a number.
  7.  イオン交換容量が、1.5~3ミリ当量/g乾燥樹脂である、請求項6に記載の陰イオン交換膜。 The anion exchange membrane according to claim 6, wherein the ion exchange capacity is 1.5 to 3 meq / g dry resin.
PCT/JP2011/060314 2010-04-27 2011-04-27 Anion exchange membrane and method for producing same WO2011136296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512897A JP5656201B2 (en) 2010-04-27 2011-04-27 Anion exchange membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102295 2010-04-27
JP2010-102295 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011136296A1 true WO2011136296A1 (en) 2011-11-03

Family

ID=44861593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060314 WO2011136296A1 (en) 2010-04-27 2011-04-27 Anion exchange membrane and method for producing same

Country Status (2)

Country Link
JP (1) JP5656201B2 (en)
WO (1) WO2011136296A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238328A (en) * 1984-05-11 1985-11-27 Asahi Glass Co Ltd Manufacture of ion-exchange membrane
JP2000212306A (en) * 1999-01-21 2000-08-02 Mitsubishi Chemicals Corp Anion exchange membrane
JP2005066599A (en) * 2004-10-25 2005-03-17 Mitsubishi Chemicals Corp Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas
WO2008090351A1 (en) * 2007-01-26 2008-07-31 The Secretary Of State For Defence Anion exchange membranes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088132A (en) * 2000-09-12 2002-03-27 Japan Atom Energy Res Inst Method for radiation graft polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238328A (en) * 1984-05-11 1985-11-27 Asahi Glass Co Ltd Manufacture of ion-exchange membrane
JP2000212306A (en) * 1999-01-21 2000-08-02 Mitsubishi Chemicals Corp Anion exchange membrane
JP2005066599A (en) * 2004-10-25 2005-03-17 Mitsubishi Chemicals Corp Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas
WO2008090351A1 (en) * 2007-01-26 2008-07-31 The Secretary Of State For Defence Anion exchange membranes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
JP2014143197A (en) * 2012-12-28 2014-08-07 Nitto Denko Corp Method for producing anion exchange membrane, membrane-electrode assembly for fuel cell, and fuel cell
EP2940765A4 (en) * 2012-12-28 2016-08-17 Nitto Denko Corp Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
EP2940764A4 (en) * 2012-12-28 2016-08-24 Nitto Denko Corp Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
US9620802B2 (en) 2012-12-28 2017-04-11 Nitto Denko Corporation Fuel cell membrane electrode assembly and method for producing the same, and fuel cell

Also Published As

Publication number Publication date
JP5656201B2 (en) 2015-01-21
JPWO2011136296A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
EP2734292B1 (en) Ion exchange membranes
US10279319B2 (en) Curable compositions and membranes
EP2352771B1 (en) Curable compositions and membranes
US20100062313A1 (en) Anion exchange membranes
JP5050285B2 (en) Anion exchange membrane for salt production and method for producing the same
US9944765B2 (en) Curable compositions and membranes
JP5579365B2 (en) Anion exchange membrane and method for producing the same
WO2013111583A1 (en) Anion exchange membrane, method for producing same, and fuel cell using same
JP2009173786A (en) Anion exchange membrane, and method for producing the same
JPWO2007069714A1 (en) Hydrophilic composite microporous membrane and method for producing the same
US10974209B2 (en) Ion-exchange membrane
US10597502B2 (en) Ion exchange membranes
JP5656201B2 (en) Anion exchange membrane and method for producing the same
US20140165837A1 (en) Method for manufacturing carbon dioxide separation membrane, and carbon dioxide separation membrane
US10421044B2 (en) Composite anion exchange membrane, method for producing the same, ion exchange membrane module, and ion exchange device
EP3322749B1 (en) Ion exchange membranes
JP2016137434A (en) Polymer functional film, and production method, laminate, and device thereof
JP2011189223A (en) Cation exchange membrane, hydrogen ion permselective membrane and method of recovering acid
JP2008255350A (en) Cation exchange membrane for salt production and method for producing the same
JP5028661B2 (en) Cation exchange, anion exchange membrane and production method thereof
JP2012201693A (en) Monovalent anion-permselective anion exchange membrane for salt production, and method for producing the same
JP5120541B2 (en) Cation exchange membrane for salt production and method for producing the same
JP6231927B2 (en) Gas separation membrane
JP2001137717A (en) Gas cleaning anion exchangeable filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512897

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775077

Country of ref document: EP

Kind code of ref document: A1