JP5196241B2 - Cation exchange membrane and method for producing the same - Google Patents

Cation exchange membrane and method for producing the same Download PDF

Info

Publication number
JP5196241B2
JP5196241B2 JP2008062806A JP2008062806A JP5196241B2 JP 5196241 B2 JP5196241 B2 JP 5196241B2 JP 2008062806 A JP2008062806 A JP 2008062806A JP 2008062806 A JP2008062806 A JP 2008062806A JP 5196241 B2 JP5196241 B2 JP 5196241B2
Authority
JP
Japan
Prior art keywords
styrene
cation exchange
exchange membrane
divinylbenzene
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008062806A
Other languages
Japanese (ja)
Other versions
JP2009215499A (en
Inventor
智彦 加留部
信彦 大村
直人 吉川
Original Assignee
財団法人塩事業センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人塩事業センター filed Critical 財団法人塩事業センター
Priority to JP2008062806A priority Critical patent/JP5196241B2/en
Publication of JP2009215499A publication Critical patent/JP2009215499A/en
Application granted granted Critical
Publication of JP5196241B2 publication Critical patent/JP5196241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、製塩に用いられる陽イオン交換膜及びその製造方法に関する。   The present invention relates to a cation exchange membrane used for salt production and a method for producing the same.

イオン交換膜製塩法における海水濃縮工程には、陽及び陰イオン交換膜を利用した電気透析槽が用いられている。電気透析槽に利用するイオン交換膜は、食塩の製造費低減のために、膜の電気抵抗を増加させることなく、濃縮性能を向上させることが必要である。   An electrodialysis tank using positive and anion exchange membranes is used in the seawater concentration step in the ion exchange membrane salt production method. An ion exchange membrane used for an electrodialysis tank needs to improve the concentration performance without increasing the electrical resistance of the membrane in order to reduce the production cost of salt.

製塩用イオン交換膜の製法については従来から数多くの方法が提案されている(例えば特許文献1〜3参照)が、それらの中でもイオン交換基が導入可能な官能基を有する単量体、架橋剤及び重合開始剤を主たる成分として含有する混合物をポリ塩化ビニル製の織布等に塗布して重合した後、必要に応じてイオン交換基を導入する方法が広く知られている。   A number of methods for producing an ion exchange membrane for salt production have been proposed (see, for example, Patent Documents 1 to 3). Among them, a monomer having a functional group into which an ion exchange group can be introduced, and a crosslinking agent. In addition, a method in which a mixture containing a polymerization initiator as a main component is applied to a woven fabric made of polyvinyl chloride and polymerized, and then ion exchange groups are introduced as necessary is widely known.

しかしながら、この方法により得られたイオン交換膜は、膜の電気抵抗を増加させることなく、濃縮性能を向上させることは困難であった。
かかる問題点を解決するため、ポリプロピレン繊維基材等に重合性単量体を含浸担持させた後、電離放射線でグラフト重合しイオン交換膜を得る方法や、ポリオレフィン製基材等に重合性単量体を含浸担持させた後、電離放射線で一部重合を行い、続いて重合開始剤の存在下で加熱することにより、重合を完結させてイオン交換膜を得る方法が提案されている(例えば特許文献4〜6参照)。
However, it has been difficult to improve the concentration performance of the ion exchange membrane obtained by this method without increasing the electrical resistance of the membrane.
In order to solve such problems, a method of obtaining an ion exchange membrane by impregnating and supporting a polymerizable monomer on a polypropylene fiber substrate or the like and then graft polymerizing with ionizing radiation, or a polymerizable monomer on a polyolefin substrate or the like A method has been proposed in which a polymer is impregnated and supported, and then partially polymerized with ionizing radiation, followed by heating in the presence of a polymerization initiator to complete the polymerization and obtain an ion exchange membrane (for example, a patent) References 4-6).

しかし、いずれの方法も、膜の濃縮性能については満足のいく成果は見られなかった。
特公昭39−27861号公報 特公昭40−28951号公報 特公昭44−19253号公報 特開昭51−52489号公報 特開昭60−238327号公報 特開平06−271687号公報
However, none of the methods yielded satisfactory results in terms of membrane concentration performance.
Japanese Examined Patent Publication No. 39-27861 Japanese Patent Publication No.40-28951 Japanese Patent Publication No. 44-19253 JP-A-51-52489 JP 60-238327 A Japanese Patent Application Laid-Open No. 06-271687

本発明は、このような課題に鑑みてなされたものであり、製塩に用いられる陽イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させることを目的とするものである。   This invention is made | formed in view of such a subject, Compared with the membrane currently used about the cation exchange membrane used for salt production, it improves a concentration performance, without increasing an electrical resistance. It is for the purpose.

本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、グラフトポリマーを含有するポリエチレン等からなる多孔性基材の細孔内に、スルホン酸基を有する共重合体が充填された陽イオン交換膜が、従来使用されている製塩用の陽イオン交換膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させることを見出した。より具体的には、ポリエチレンや超高分子量ポリエチレンからなる多孔性基材に電子線を照射することによりラジカルを発生させ、スチレン、クロロメチルスチレン及びジビニルベンゼン等の単量体をグラフト重合した後、さらにスチレン及びジビニルベンゼン等の単量体を充填して熱重合し、スルホン酸基を導入することにより得られる陽イオン交換膜が、従来使用されている製塩用の陽イオン交換膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have filled a copolymer having a sulfonic acid group into the pores of a porous substrate made of polyethylene or the like containing a graft polymer. It has been found that the cation exchange membrane improves the concentration performance without increasing the electric resistance as compared with a conventionally used cation exchange membrane for salt production. More specifically, after generating radicals by irradiating a porous substrate made of polyethylene or ultrahigh molecular weight polyethylene with an electron beam, and graft-polymerizing monomers such as styrene, chloromethylstyrene and divinylbenzene, Furthermore, a cation exchange membrane obtained by charging a monomer such as styrene and divinylbenzene, thermal polymerization, and introducing a sulfonic acid group is compared with a conventionally used cation exchange membrane for salt production, It has been found that the concentration performance is improved without increasing the electrical resistance.

すなわち、本発明は、下記の構成とすることにより上記の目的を達成するに至った。
(1)グラフトポリマーを含有する、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材の細孔内に、75質量%以上のスチレンと25質量%以下のジビニルベンゼンとを少なくとも共重合成分とし、かつスルホン酸基を有する共重合体が充填されていることを特徴とする製塩用陽イオン交換膜。
(2)前記グラフトポリマーの枝ポリマーがスチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを重合成分とする重合体であることを特徴とする前記(1)に記載の製塩用陽イオン交換膜。
(3)電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合を行った後、スルホン酸基を導入することにより得られることを特徴とする前記(1)に記載の製塩用陽イオン交換膜。
(4)前記ポリオレフィンがポリエチレンであることを特徴とする前記(1)〜(3)のいずれか1項に記載の製塩用陽イオン交換膜。
(5)前記ポリオレフィンが超高分子量ポリエチレンであることを特徴とする前記(4)記載の製塩用陽イオン交換膜。
That is, the present invention has achieved the above object by adopting the following configuration.
(1) containing the graft polymer, into the pores of the porous film-like substrate made of a polyolefin having an average pore diameter of 0.005~5Myuemu, at least a greater than 75 wt% styrene and 25 wt% or less of divinylbenzene A salt-forming cation exchange membrane characterized by being filled with a copolymer component and a copolymer having a sulfonic acid group.
(2) The salt-forming cation exchange membrane as described in (1) above, wherein the branch polymer of the graft polymer is a polymer having at least one of styrene, chloromethylstyrene and divinylbenzene as a polymerization component.
(3) Graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm that has been generated by irradiation with ionizing radiation. after, by filling a polymerizable mixture containing at least 75 wt% styrene and 25 wt% divinylbenzene, after the thermal polymerization was Tsu line, and characterized in that it is obtained by introducing a sulfonic acid group The cation exchange membrane for salt production as described in (1) above.
(4) The salt-forming cation exchange membrane according to any one of (1) to (3), wherein the polyolefin is polyethylene.
(5) The salt-forming cation exchange membrane according to (4 ), wherein the polyolefin is ultrahigh molecular weight polyethylene.

(6)前記グラフト重合のグラフト率が、1〜100%であることを特徴とする前記(3)〜(5)のいずれか1項に記載の製塩用陽イオン交換膜。
(7)電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合し、その後、スルホン酸基を導入する工程を含むことを特徴とする製塩用陽イオン交換膜の製造方法。
(8)前記電離放射線が電子線であることを特徴とする前記(7)に記載の製塩用陽イオン交換膜の製造方法。
(6) The cation exchange membrane for salt production according to any one of (3) to (5) , wherein a graft ratio of the graft polymerization is 1 to 100%.
(7) Graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm that has been generated by irradiation with ionizing radiation. Then, a polymerizable mixture containing 75% by mass or more of styrene and 25% by mass or less of divinylbenzene is charged, thermally polymerized, and then a step of introducing a sulfonic acid group is included. A method for producing a cation exchange membrane.
(8) The method for producing a cation exchange membrane for salt production as described in (7) above, wherein the ionizing radiation is an electron beam.

上記から明らかなように、本発明の骨子は、下記(a)〜(c)に存する。
(a)グラフトポリマーを含有する、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材の細孔内に、75質量%以上のスチレンと25質量%以下のジビニルベンゼンとを少なくとも共重合成分とし、かつスルホン酸基を有する共重合体が充填された製塩用陽イオン交換膜。
(b)電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合を行った後、スルホン酸基を導入することにより得られた前記(a)に記載の製塩用陽イオン交換膜。
(c)電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合し、その後、スルホン酸基を導入する工程を含むことを特徴とする製塩用陽イオン交換膜の製造方法。
As is clear from the above, the gist of the present invention resides in the following (a) to (c).
(A) containing the graft polymer, into the pores of the porous film-like substrate made of a polyolefin having an average pore diameter of 0.005~5Myuemu, at least a greater than 75 wt% styrene and 25 wt% or less of divinylbenzene A salt-forming cation exchange membrane filled with a copolymer having a sulfonic acid group as a copolymerization component.
(B) Graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm, generated by irradiation with ionizing radiation. after, by filling a polymerizable mixture containing at least 75 wt% styrene and 25 wt% divinylbenzene, after the thermal polymerization was Tsu line, the obtained by introducing a sulfonic acid group (a ) For cation exchange membrane for salt production.
(C) Graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm that has been generated by irradiation with ionizing radiation. Then, a polymerizable mixture containing 75% by mass or more of styrene and 25% by mass or less of divinylbenzene is charged, thermally polymerized, and then a step of introducing a sulfonic acid group is included. A method for producing a cation exchange membrane.

本発明により、現在製塩に用いられている陽イオン交換膜と比較して、電気抵抗を増加させずに、濃縮性能を向上させた陽イオン交換膜を提供できることから、製塩コスト低減に寄与できる。   According to the present invention, a cation exchange membrane with improved concentration performance can be provided without increasing the electrical resistance as compared with the cation exchange membrane currently used for salt production, which can contribute to reduction in salt production cost.

本発明の陽イオン交換膜の製造方法は、包括的には、スチレン、クロロメチルスチレン及びジビニルベンゼン等を重合成分とする重合体を枝ポリマーとするグラフトポリマーを含有するポリオレフィンからなる多孔性基材の細孔内に、スルホン酸基を導入可能な官能基を有する重合性混合物を充填して熱重合し、クロロスルホン酸等を用いてスルホン酸基を導入することが特徴である。より具体的には、ポリエチレンや超高分子量ポリエチレンからなる多孔性基材に電子線を照射することによりラジカルを発生させ、スチレン、クロロメチルスチレン及びジビニルベンゼン等の単量体をグラフト重合した後、さらにスチレン及びジビニルベンゼン等の単量体を充填して熱重合し、スルホン酸基を導入することを特徴とするものである。   The method for producing a cation exchange membrane according to the present invention generally comprises a porous substrate comprising a polyolefin containing a graft polymer having a polymer containing styrene, chloromethylstyrene, divinylbenzene or the like as a polymerization component as a branch polymer. It is a feature that a polymerizable mixture having a functional group capable of introducing a sulfonic acid group is filled in the pores of the resin and thermally polymerized to introduce the sulfonic acid group using chlorosulfonic acid or the like. More specifically, after generating radicals by irradiating a porous substrate made of polyethylene or ultrahigh molecular weight polyethylene with an electron beam, and graft-polymerizing monomers such as styrene, chloromethylstyrene and divinylbenzene, Furthermore, it is characterized in that a monomer such as styrene and divinylbenzene is charged and thermally polymerized to introduce a sulfonic acid group.

以下、本発明の実施の形態を詳細に説明する。
本発明においてグラフトポリマーとは、グラフト反応、グラフト重合により合成される異種の化学構造を有するポリマー(枝ポリマー)が幹ポリマーに化学的に結合した分岐ポリマーをいう。グラフトポリマーの合成方法は、従来行われている広範な方法が何の制限もなく使用できる。例えば、幹ポリマーへの連鎖移動反応を利用する方法、幹ポリマーを酸化することによって導入したペルオキシ基等を重合開始点として利用する方法、電子線等の電離放射線照射により幹ポリマーにラジカルを発生させて重合開始点として利用する方法、幹ポリマーの水酸基やチオール基とセリウム(IV)塩等の金属イオンとのレドックス機構による重合開始反応を利用する方法、幹ポリマーの水酸基、アミノ基等とエポキシ、ラクタム、極性ビニルモノマー等の重合開始反応を利用する方法等が挙げられる。その中で特に電子線等の電離放射線照射により幹ポリマーにラジカルを発生させて重合開始点として利用する方法が好適である。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the graft polymer refers to a branched polymer in which a polymer having a different chemical structure (branched polymer) synthesized by graft reaction or graft polymerization is chemically bonded to a trunk polymer. As a method for synthesizing the graft polymer, a wide range of conventional methods can be used without any limitation. For example, a method using a chain transfer reaction to a trunk polymer, a method using a peroxy group introduced by oxidizing the trunk polymer as a polymerization starting point, and generating radicals in the trunk polymer by ionizing radiation irradiation such as an electron beam. A method of using as a polymerization initiation point, a method of using a polymerization initiation reaction by a redox mechanism between a hydroxyl group or thiol group of a trunk polymer and a metal ion such as a cerium (IV) salt, a hydroxyl group of the trunk polymer, an amino group or the like and an epoxy, Examples thereof include a method utilizing a polymerization initiation reaction such as lactam and polar vinyl monomer. Among them, a method in which radicals are generated in the trunk polymer by irradiation with ionizing radiation such as an electron beam and used as a polymerization initiation point is particularly preferable.

本発明においてグラフトポリマーの幹ポリマーは、グラフト反応、グラフト重合を起こすポリマーであれば特に制限を受けない。例えば、ポリアミドのような縮合系重合体、ウレタンのような重付加系重合体、ポリオレフィン等があげられるが、化学安定性の高さから特にポリオレフィンが好適である。また、グラフトポリマーの枝ポリマーについても特に制限を受けない。例えば、スチレン、クロロメチルスチレン、α−メチルスチレン、ビニルトルエン、p−メトキシスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等のスチレン系単量体、アクリル酸メチル、メタクリル酸メチル、アクリルアミド、アクリロニトリル等のアクリル酸あるいはメタクリル酸系単量体、ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、1,2−ビス(ビニルフェニル)エタン等の芳香族ジエン類、トリビニルベンゼン等の芳香族ポリエン類、エチレングリコールジメタクリレート、N,N−メチレンビスアクリルアミド等のアクリル酸系ジエン類、ペンタエリスリトールトリアクリレート等のアクリル酸系ポリエン類等の1種の単量体の重合により生成するポリマーでもよいし、2種以上の単量体の共重合により生成するポリマーでもよい。この中で特にスチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを重合成分とするポリマーが好適である。   In the present invention, the backbone polymer of the graft polymer is not particularly limited as long as it is a polymer that causes a graft reaction and graft polymerization. For example, a condensation polymer such as polyamide, a polyaddition polymer such as urethane, a polyolefin, and the like can be mentioned. Polyolefin is particularly preferable because of its high chemical stability. The branch polymer of the graft polymer is not particularly limited. For example, styrene monomers such as styrene, chloromethyl styrene, α-methyl styrene, vinyl toluene, p-methoxy styrene, p-ethyl styrene, m-ethyl styrene, o-ethyl styrene, methyl acrylate, methyl methacrylate , Acrylic acid or methacrylic acid monomers such as acrylamide and acrylonitrile, aromatic dienes such as divinylbenzene, divinyltoluene, divinylnaphthalene, 1,2-bis (vinylphenyl) ethane, and aromatic polyenes such as trivinylbenzene A polymer produced by polymerization of a single monomer such as an acrylic acid diene such as ethylene glycol dimethacrylate or N, N-methylenebisacrylamide, or an acrylic acid polyene such as pentaerythritol triacrylate. 2 or more types It may be a polymer produced by copolymerization of a monomer. Among these, a polymer having at least one of styrene, chloromethylstyrene and divinylbenzene as a polymerization component is particularly preferable.

本発明においてポリオレフィンとは、分子中に二重結合を有する化合物の重合体である。具体的には、ポリエチレン、ポリプロピレン、ポリブチレン、ポリブタジエン等の脂肪族オレフィンの重合体、ポリスチレン、ポリα−メチルスチレン、ポリジビニルベンゼン等の芳香族オレフィンの重合体、ポリメタクリル酸メチル、ポリ酢酸ビニル、ポリビニルアルコール等の含酸素オレフィンの重合体、ポリアクリロニトリル、ポリN−ビニルピロリドン等の含窒素オレフィンの重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含ハロゲンオレフィンの重合体等が挙げられる。これらのポリオレフィンを単独で使用してもよいし、複数のポリオレフィンを混合してもよい。また、上記の2個以上のオレフィンの共重合体、あるいはグラフトポリマーでもよい。2個以上の二重結合を有する化合物との共重合あるいは電子線照射、プラズマ照射、紫外線照射、化学反応等により架橋構造を有するものでもよい。その中でも化学的安定性やコストの面等からポリエチレンが好ましく、特に分子量が100万以上の超高分子量ポリエチレンが好適である。また、本発明において、ポリオレフィンには、その望ましい特性を損なわない範囲において、酸化防止剤、紫外線吸収剤、帯電防止剤等の種々の添加剤を含んでいてもよい。   In the present invention, the polyolefin is a polymer of a compound having a double bond in the molecule. Specifically, polymers of aliphatic olefins such as polyethylene, polypropylene, polybutylene and polybutadiene, polymers of aromatic olefins such as polystyrene, poly α-methylstyrene and polydivinylbenzene, polymethyl methacrylate, polyvinyl acetate, Polymers of oxygen-containing olefins such as polyvinyl alcohol, polymers of nitrogen-containing olefins such as polyacrylonitrile and poly N-vinylpyrrolidone, halogen-containing olefins such as polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and polytetrafluoroethylene A polymer etc. are mentioned. These polyolefins may be used alone or a plurality of polyolefins may be mixed. Moreover, the copolymer of said 2 or more olefin, or a graft polymer may be sufficient. It may have a crosslinked structure by copolymerization with a compound having two or more double bonds, electron beam irradiation, plasma irradiation, ultraviolet irradiation, chemical reaction, or the like. Among them, polyethylene is preferable from the viewpoint of chemical stability and cost, and ultrahigh molecular weight polyethylene having a molecular weight of 1,000,000 or more is particularly preferable. In the present invention, the polyolefin may contain various additives such as an antioxidant, an ultraviolet absorber, and an antistatic agent as long as the desired characteristics are not impaired.

本発明においてポリオレフィンに含有されるグラフトポリマーの割合は、特に制限を受けないが、0.1〜95%が好ましく、特に1〜80%が好適である。なお、ポリオレフィンに含有されるグラフトポリマーの割合とは、ポリオレフィンに含有されるグラフトポリマーの重量G(g)をグラフトポリマーの重量G(g)とグラフトポリマーを除いたポリオレフィンの重量P(g)の和で割ったものであり、次式により算出される値である。
ポリオレフィンに含有されるグラフトポリマーの割合(%)=(G/G+P)×100
In the present invention, the ratio of the graft polymer contained in the polyolefin is not particularly limited, but is preferably 0.1 to 95%, and particularly preferably 1 to 80%. The ratio of the graft polymer contained in the polyolefin is the weight G (g) of the graft polymer contained in the polyolefin, the weight G (g) of the graft polymer and the weight P (g) of the polyolefin excluding the graft polymer. It is a value calculated by the following equation, divided by the sum.
Ratio of graft polymer contained in polyolefin (%) = (G / G + P) × 100

本発明においてグラフトポリマーを含有するポリオレフィンからなる多孔性基材の製造方法は、特に制限を受けない。例えば、グラフトポリマーを含有しないポリオレフィンにグラフトポリマーを混合した後、多孔性基材にする方法、グラフトポリマーを含有しないポリオレフィンを多孔性基材にした後、酸化することによって導入したペルオキシ基等を重合開始点として単量体をグラフト重合することによりポリオレフィンの一部をグラフトポリマーにする方法、グラフトポリマーを含有しないポリオレフィンを多孔性基材にした後、電子線等を照射してラジカルを発生させ、単量体をグラフト重合することによりポリオレフィンの一部をグラフトポリマーにする方法等があげられる。その中で特にグラフトポリマーを含有しないポリオレフィンを多孔性基材にした後、電子線等を照射してラジカルを発生させ、単量体をグラフト重合することによりポリオレフィンの一部をグラフトポリマーにする方法が好適である。   In the present invention, the method for producing a porous substrate comprising a polyolefin containing a graft polymer is not particularly limited. For example, after mixing a graft polymer with a polyolefin that does not contain a graft polymer, a method for forming a porous substrate, and then converting a polyolefin that does not contain a graft polymer into a porous substrate and then polymerizing peroxy groups introduced by oxidation A method of grafting a monomer as a starting point to make a part of the polyolefin a graft polymer, making a polyolefin that does not contain a graft polymer into a porous substrate, and generating radicals by irradiating an electron beam or the like, Examples thereof include a method in which a part of polyolefin is graft polymerized by graft polymerization of monomers. Among them, a method in which a polyolefin that does not contain a graft polymer in particular is used as a porous substrate, and then a radical is generated by irradiation with an electron beam or the like to graft a monomer to make a part of the polyolefin into a graft polymer. Is preferred.

本発明での多孔性基材とは、孔の平均孔径が0.001〜50μm、厚みが1〜300μm、空孔率が1〜95%のフィルム状物である。多孔性基材の孔の平均孔径は、0.005〜5μmが好ましく、特に0.01〜2μmが好適である。また、多孔性基材の厚みは、5〜200μmが好ましく、特に10〜150μmが好適である。多孔性基材の空孔率は、10〜90%が好ましく、特に20〜80%が好適である。ここでいう空孔率とは、多孔性基材の単位面積あたりの重量と厚みからみかけの密度ρa(g/cm)を求め、多孔性基材を構成するポリオレフィン(添加剤を含む場合は、添加剤も含めたもの)の真の密度ρt(g/cm)から次式により算出された値である。
空孔率(%)=(1−ρa/ρt)×100
The porous substrate in the present invention is a film-like material having an average pore diameter of 0.001 to 50 μm, a thickness of 1 to 300 μm, and a porosity of 1 to 95%. The average pore diameter of the pores of the porous substrate is preferably 0.005 to 5 μm, and particularly preferably 0.01 to 2 μm. The thickness of the porous substrate is preferably 5 to 200 μm, particularly preferably 10 to 150 μm. The porosity of the porous substrate is preferably 10 to 90%, particularly preferably 20 to 80%. The porosity here means the apparent density ρa (g / cm 3 ) based on the weight and thickness per unit area of the porous substrate, and the polyolefin constituting the porous substrate (in the case where an additive is included) The value calculated from the true density ρt (g / cm 3 ) of the product including the additive by the following formula.
Porosity (%) = (1−ρa / ρt) × 100

本発明において多孔性基材の製造方法は、従来行われている広範な方法が何の制限もなく使用できる。例えば、溶融ポリマーをシート化して、さらに熱処理によって積層ラメラ構造を形成させ、一軸延伸によって結晶界面の剥離を行う延伸開孔法や、ポリマーと溶剤を加熱溶融してシート化することでミクロ相分離させ、その溶剤を抽出除去しながら一軸あるいは二軸延伸する相分離法等があげられる。   In the present invention, as a method for producing a porous substrate, a wide range of conventional methods can be used without any limitation. For example, a melted polymer is made into a sheet, a laminated lamella structure is formed by heat treatment, and the crystal opening is separated by uniaxial stretching, or the polymer and solvent are heated and melted into a sheet for microphase separation. And a phase separation method in which the solvent is extracted and removed uniaxially or biaxially.

ポリオレフィンからなる多孔性基材としては、例えば旭化成ケミカルズ株式会社製ハイポア(製品名)、東燃化学那須株式会社製セティーラ(製品名)等が挙げられる。   Examples of the porous substrate made of polyolefin include Hypore (product name) manufactured by Asahi Kasei Chemicals Corporation, Setilla (product name) manufactured by Tonen Chemical Nasu Co., Ltd., and the like.

本発明において共重合体とは、2種又は2種以上の単量体を構成単位としているような重合体をいう。例えば、スチレンとクロロメチルスチレンのように二重結合を有する化合物が付加重合することにより生成した共重合体、ジカルボン酸とジアルコールとの反応のように重縮合することにより生成した共重合体、ジイソシアナートとジアルコールとの反応のように重付加することにより生成した共重合体等があげられる。また、スチレンとジビニルベンゼンの共重合体のように架橋構造を有するものも含まれる。   In the present invention, the copolymer means a polymer having two or more monomers as constituent units. For example, a copolymer produced by addition polymerization of a compound having a double bond such as styrene and chloromethylstyrene, a copolymer produced by polycondensation such as a reaction between a dicarboxylic acid and a dialcohol, Examples thereof include copolymers formed by polyaddition as in the reaction of diisocyanate and dialcohol. Moreover, what has a crosslinked structure like the copolymer of styrene and divinylbenzene is also contained.

本発明において多孔性基材の細孔内に充填する共重合体は、スチレンとジビニルベンゼンとを少なくとも共重合成分とするが、その他の共重合成分としては、スチレン及びジビニルベンゼンと共重合するものであれば特に制限を受けない。例えば、クロロメチルスチレン、α−メチルスチレン、ビニルトルエン、p−メトキシスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等のスチレン系単量体、アクリル酸メチル、メタクリル酸メチル、アクリルアミド、アクリロニトリル等のアクリル酸あるいはメタクリル酸系単量体、ジビニルトルエン、ジビニルナフタレン、1,2−ビス(ビニルフェニル)エタン等の芳香族ジエン類、トリビニルベンゼン等の芳香族ポリエン類、エチレングリコールジメタクリレート、N,N−メチレンビスアクリルアミド等のアクリル酸系ジエン類、ペンタエリスリトールトリアクリレート等のアクリル酸系ポリエン類等が挙げられる。   In the present invention, the copolymer filled in the pores of the porous base material contains at least a copolymer component of styrene and divinylbenzene, and other copolymer components are copolymerized with styrene and divinylbenzene. If so, there is no particular restriction. For example, styrene monomers such as chloromethyl styrene, α-methyl styrene, vinyl toluene, p-methoxy styrene, p-ethyl styrene, m-ethyl styrene, o-ethyl styrene, methyl acrylate, methyl methacrylate, acrylamide Acrylic acid or methacrylic acid monomers such as acrylonitrile, aromatic dienes such as divinyltoluene, divinylnaphthalene, 1,2-bis (vinylphenyl) ethane, aromatic polyenes such as trivinylbenzene, ethylene glycol di Examples thereof include acrylic acid dienes such as methacrylate and N, N-methylenebisacrylamide, and acrylic acid polyenes such as pentaerythritol triacrylate.

本発明において、多孔性基材の細孔内にスルホン酸基を有する共重合体を充填する方法は、従来行われている広範な方法が何の制限もなく使用できる。例えば、スルホン酸基を有する共重合体溶液に多孔性基材を浸漬した後、溶媒を除去する方法、スルホン酸基を導入可能な官能基を有する重合性単量体、架橋性単量体を含有する重合性混合物を充填して光照射により重合した後、共重合体をスルホン化する方法、多孔性基材の細孔内にスルホン酸基を導入可能な官能基を有する重合性単量体、架橋性単量体を含有する重合性混合物を充填して熱重合した後、共重合体をスルホン化する方法等があるが、特に多孔性基材の細孔内にスルホン酸基を導入可能な官能基を有する重合性単量体、架橋性単量体を含有する重合性混合物を充填して熱重合した後、スルホン化する方法が好適である。また、多孔性基材の細孔内にスルホン酸基を導入可能な官能基を有する重合性単量体、架橋性単量体を含有する重合性混合物を充填する方法としては、スルホン酸基を導入可能な官能基を有する重合性単量体、架橋性単量体を含有する重合性混合物又はその溶液に多孔性基材を浸漬する方法が好適である。   In the present invention, as a method of filling a copolymer having a sulfonic acid group in the pores of a porous substrate, a wide range of conventional methods can be used without any limitation. For example, a method of removing a solvent after immersing a porous substrate in a copolymer solution having a sulfonic acid group, a polymerizable monomer having a functional group capable of introducing a sulfonic acid group, and a crosslinkable monomer A method of sulfonating a copolymer after filling with a polymerizable mixture and polymerizing by light irradiation, a polymerizable monomer having a functional group capable of introducing a sulfonic acid group into the pores of a porous substrate There are methods such as a method of sulfonating a copolymer after filling a polymerizable mixture containing a crosslinkable monomer, followed by thermal polymerization. In particular, sulfonic acid groups can be introduced into the pores of a porous substrate. A method in which a polymerizable monomer containing a polymerizable functional group or a crosslinkable monomer is charged and thermally polymerized and then sulfonated is suitable. In addition, as a method of filling a polymerizable monomer having a functional group capable of introducing a sulfonic acid group into the pores of a porous substrate and a polymerizable mixture containing a crosslinkable monomer, a sulfonic acid group may be used. A method of immersing the porous substrate in a polymerizable monomer having a functional group that can be introduced, a polymerizable mixture containing a crosslinkable monomer, or a solution thereof is preferable.

多孔性基材に充填された共重合体にスルホン酸基を導入する方法としては、従来製塩用陽イオン交換膜の製造方法として用いられてきた方法が制限なく適用できる。例えば、スチレンとジビニルベンゼンを含有する重合性混合物を共重合して、濃硫酸、発煙硫酸、クロロスルホン酸、三酸化硫黄、塩化スルフリル等のスルホン化剤でスルホン化する方法、芳香族環を有する単量体をスチレンとジビニルベンゼンを含有する重合性混合物と共重合して、芳香族環を濃硫酸等のスルホン化剤でスルホン化する方法、スルホン酸誘導体の単量体をスチレンとジビニルベンゼンを含有する重合性混合物と共重合して、加水分解等によりスルホン酸基を導入する方法、エポキシ基を有する単量体をスチレンとジビニルベンゼンを含有する重合性混合物と共重合して、亜硫酸ナトリウム等との反応によりスルホン酸基を導入する方法、スルホン酸基を有する単量体をスチレンとジビニルベンゼンを含有する重合性混合物と共重合する方法等が挙げられる。その中で、スチレンとジビニルベンゼンを含有する重合性混合物を共重合して、濃硫酸、発煙硫酸、クロロスルホン酸、三酸化硫黄、塩化スルフリル等のスルホン化剤でスルホン化する方法が特に好適である。   As a method for introducing a sulfonic acid group into a copolymer filled in a porous substrate, a method conventionally used as a method for producing a cation exchange membrane for salt can be applied without limitation. For example, a method of copolymerizing a polymerizable mixture containing styrene and divinylbenzene and sulfonating with a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, and sulfuryl chloride, and having an aromatic ring A method in which a monomer is copolymerized with a polymerizable mixture containing styrene and divinylbenzene, and an aromatic ring is sulfonated with a sulfonating agent such as concentrated sulfuric acid, and a monomer of a sulfonic acid derivative is converted into styrene and divinylbenzene. A method of introducing a sulfonic acid group by copolymerization with a polymerizable mixture containing, such as hydrolysis, copolymerizing a monomer having an epoxy group with a polymerizable mixture containing styrene and divinylbenzene, sodium sulfite, etc. Of introducing a sulfonic acid group by reaction with styrene, a polymerizable mixture containing a monomer having a sulfonic acid group and styrene and divinylbenzene And a method of co-polymerization. Among them, a method of copolymerizing a polymerizable mixture containing styrene and divinylbenzene and sulfonating with a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, and sulfuryl chloride is particularly suitable. is there.

濃硫酸等のスルホン化剤でのスルホン化は、スルホン化剤のみで行うこともできるが、1,2−ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、塩化メチレン、クロロホルム、四塩化炭素等の溶媒を用いることが有効である。スルホン化の温度は−20〜100℃が好ましく、より好ましくは0〜80℃である。   Sulfonation with a sulfonating agent such as concentrated sulfuric acid can be carried out only with a sulfonating agent, but it is effective to use a solvent such as 1,2-dichloroethane, trichloroethylene, tetrachloroethylene, methylene chloride, chloroform, carbon tetrachloride. It is. The temperature for sulfonation is preferably -20 to 100 ° C, more preferably 0 to 80 ° C.

本発明において電離放射線とは、物質を透過する際、電離作用を起こす性質を持つ高速度で運動している粒子線や電磁波のことをいい、具体的には、α線、β線、γ線、X線、陽子線、電子線、中性子線、紫外線等が挙げられ、特にγ線と電子線が好適である。   In the present invention, ionizing radiation means a particle beam or electromagnetic wave moving at a high speed having a property of causing an ionizing action when passing through a substance. Specifically, α rays, β rays, γ rays are used. X-rays, proton beams, electron beams, neutron beams, ultraviolet rays, and the like, and γ rays and electron beams are particularly preferable.

本発明においては、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを含む重合性単量体や架橋性単量体を多孔性基材にグラフト重合をするために、多孔性基材に電離放射線を照射してラジカルを発生させる。電離放射線に電子線を用いる場合、多孔性基材への照射量は0.1〜1,000kGyが好適であり、25〜400kGyが特に好適である。多孔性基材への照射量が少な過ぎるとグラフト重合のグラフト率を好ましい範囲まで大きくすることができず、その結果、合成した陽イオン交換膜の濃縮性能の向上が小さい。また、多孔性基材への照射量が多くなり過ぎると多孔性基材自身の架橋反応や分解反応が進み、合成した陽イオン交換膜が脆くなり機械的強度が低下する。なお、グラフト率は、グラフト重合前の多孔性基材の重量A(g)に対するグラフト重合で生成した枝ポリマーの重量%をいい、グラフト重合後の多孔性基材の重量B(g)とグラフト重合前の多孔性基材の重量A(g)との差をグラフト重合前の多孔性基材の重量A(g)で割ったものであり、次式により算出される値である。
グラフト率(%)=((B−A)/A)×100
In the present invention, in order to graft polymerize a polymerizable monomer or a crosslinkable monomer containing at least one of styrene, chloromethylstyrene, and divinylbenzene onto a porous substrate, ionizing radiation is applied to the porous substrate. To generate radicals. When an electron beam is used for ionizing radiation, the irradiation amount to the porous substrate is preferably 0.1 to 1,000 kGy, and particularly preferably 25 to 400 kGy. If the irradiation amount to the porous substrate is too small, the grafting rate of the graft polymerization cannot be increased to a preferable range, and as a result, the improvement in the concentration performance of the synthesized cation exchange membrane is small. Moreover, when the irradiation amount to a porous base material increases too much, the crosslinking reaction and decomposition | disassembly reaction of porous base material itself will advance, the synthetic | combination cation exchange membrane will become weak, and mechanical strength will fall. The graft ratio refers to the weight percent of the branch polymer formed by graft polymerization relative to the weight A (g) of the porous substrate before graft polymerization, and the weight B (g) of the porous substrate after graft polymerization and the graft The difference from the weight A (g) of the porous substrate before polymerization is divided by the weight A (g) of the porous substrate before graft polymerization, and is a value calculated by the following equation.
Graft rate (%) = ((B−A) / A) × 100

本発明においてグラフト率は、0.1〜200%が好ましく、より好ましくは1〜100%である。グラフト率は、多孔性基材への電子線照射量、重合温度、重合時間等により適宜変化させることができる。多孔性基材への電子線照射時の温度は、−10〜130℃が好ましく、より好ましくは10〜50℃である。多孔性基材への電子線照射時の雰囲気は、空気中でも可能であるが、酸化反応を防止するため窒素、ヘリウム、アルゴン等の不活性気体の雰囲気中、あるいは真空下で行うことが好適である。   In the present invention, the graft ratio is preferably 0.1 to 200%, more preferably 1 to 100%. The graft ratio can be appropriately changed depending on the electron beam irradiation amount on the porous substrate, the polymerization temperature, the polymerization time, and the like. As for the temperature at the time of electron beam irradiation to a porous base material, -10-130 degreeC is preferable, More preferably, it is 10-50 degreeC. The atmosphere at the time of electron beam irradiation to the porous substrate can be in air, but in order to prevent an oxidation reaction, it is preferable to carry out in an atmosphere of an inert gas such as nitrogen, helium, argon, or under vacuum. is there.

本発明のグラフト重合においては、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを重合成分とするが、その他の重合性単量体や架橋性単量体と共重合させてもかまわない。その他の重合性単量体や架橋性単量体は、スチレン、クロロメチルスチレン及びジビニルベンゼンと共重合するものであれば特に制限を受けない。重合性単量体としては、例えば、α−メチルスチレン、ビニルトルエン、p−メトキシスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等のスチレン系単量体、アクリル酸メチル、メタクリル酸メチル、アクリルアミド、アクリロニトリル等のアクリル酸あるいはメタクリル酸系単量体等が挙げられる。また、架橋性単量体としては、ジビニルトルエン、ジビニルナフタレン、1,2−ビス(ビニルフェニル)エタン等の芳香族ジエン類、トリビニルベンゼン等の芳香族ポリエン類、エチレングリコールジメタクリレート、N,N−メチレンビスアクリルアミド等のアクリル酸系ジエン類、ペンタエリスリトールトリアクリレート等のアクリル酸系ポリエン類等が挙げられる。   In the graft polymerization of the present invention, at least one of styrene, chloromethylstyrene and divinylbenzene is used as a polymerization component, but it may be copolymerized with other polymerizable monomers or crosslinkable monomers. Other polymerizable monomers and crosslinkable monomers are not particularly limited as long as they are copolymerized with styrene, chloromethylstyrene and divinylbenzene. Examples of the polymerizable monomer include α-methyl styrene, vinyl toluene, p-methoxy styrene, p-ethyl styrene, m-ethyl styrene, o-ethyl styrene, and other styrene monomers, methyl acrylate, methacryl Examples include acrylic acid or methacrylic acid monomers such as methyl acid, acrylamide, and acrylonitrile. Examples of the crosslinkable monomer include aromatic dienes such as divinyltoluene, divinylnaphthalene, 1,2-bis (vinylphenyl) ethane, aromatic polyenes such as trivinylbenzene, ethylene glycol dimethacrylate, N, Examples thereof include acrylic acid-based dienes such as N-methylenebisacrylamide, and acrylic acid-based polyenes such as pentaerythritol triacrylate.

本発明においては、グラフト重合の際、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを含む重合性単量体や架橋性単量体をそのまま用いてもよいし、溶媒で希釈して用いてもよい。希釈溶媒としては、特に限定されないが、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類、n−ヘキサン、n−ヘプタン、n−オクタン等の脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン等の環状脂肪族炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン類、ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、ニトロメタン、イソプロピルアミン、ジエタノールアミン、アセトニトリル、N−メチルホルムアミド、N,N−ジメチルホルムアミド等の含窒素化合物、塩化メチレン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類、二硫化炭素、ジメチルスルホキシド等の含イオウ化合物等の溶媒が挙げられ、これらを適宜、少なくとも1種以上選択して使用することができる。また、重合性単量体や架橋性単量体を溶媒に希釈して用いる場合、重合性単量体や架橋性単量体の濃度は特に限定されないが、重合性単量体や架橋性単量体が溶媒を含めた全体の重量に対して、5質量%以上が好ましい。   In the present invention, at the time of graft polymerization, a polymerizable monomer or a crosslinkable monomer containing at least one of styrene, chloromethylstyrene and divinylbenzene may be used as it is, or diluted with a solvent and used. Also good. Although it does not specifically limit as a dilution solvent, Aromatic hydrocarbons, such as benzene, toluene, xylene, and ethylbenzene, Aliphatic hydrocarbons, such as n-hexane, n-heptane, and n-octane, Cyclohexane, methylcyclohexane, etc. Cycloaliphatic hydrocarbons, alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone, ethers such as diethyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate and butyl acetate Nitromethane, isopropylamine, diethanolamine, acetonitrile, N-methylformamide, nitrogen-containing compounds such as N, N-dimethylformamide, methylene chloride, chloroform, 1,2-dichloroethane, chloro Solvents such as halogenated hydrocarbons such as benzene and sulfur-containing compounds such as carbon disulfide and dimethyl sulfoxide can be mentioned, and at least one or more of these can be appropriately selected and used. In addition, when the polymerizable monomer or the crosslinkable monomer is diluted in a solvent, the concentration of the polymerizable monomer or the crosslinkable monomer is not particularly limited, but the polymerizable monomer or the crosslinkable monomer is not limited. The mass is preferably 5% by mass or more based on the total weight including the solvent.

本発明においてグラフト重合の重合温度は、0〜80℃が好ましく、より好ましくは30〜70℃である。また重合時間は、10分〜3日が好ましく、30分〜10時間が好適である。   In the present invention, the polymerization temperature of the graft polymerization is preferably 0 to 80 ° C, more preferably 30 to 70 ° C. The polymerization time is preferably 10 minutes to 3 days, and preferably 30 minutes to 10 hours.

本発明において、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを含む重合性単量体や架橋性単量体を多孔性基材にグラフト重合することにより、合成された陽イオン交換膜の濃縮性能が向上する。その理由については必ずしも明確ではないが、多孔性基材にグラフト重合することにより、後から多孔性基材の細孔に充填されたスルホン酸基を有する共重合体との密着性がグラフト重合しない多孔性基材と比較して向上するためと推定される。また、クロロメチルスチレン等のハロゲン化アルキルを有する重合性単量体を多孔性基材にグラフト重合した場合、後から多孔性基材の細孔に充填された共重合体を濃硫酸等のスルホン化剤でスルホン化する際に、フリーデル・クラフト反応によりグラフトポリマーの枝ポリマーと共重合体との間に化学結合を生成し、多孔性基材と多孔性基材の細孔に充填されたスルホン酸基を有する共重合体との密着性がより強くなるため、特に濃縮性能が向上すると推定される。   In the present invention, concentration of the synthesized cation exchange membrane by graft polymerization of a polymerizable monomer or a crosslinkable monomer containing at least one of styrene, chloromethylstyrene and divinylbenzene onto a porous substrate. Performance is improved. The reason for this is not necessarily clear, but by graft polymerization to the porous substrate, the adhesion with the copolymer having sulfonic acid groups filled in the pores of the porous substrate later is not graft-polymerized. This is presumed to be improved as compared with the porous substrate. In addition, when a polymerizable monomer having an alkyl halide such as chloromethylstyrene is graft-polymerized on a porous substrate, a copolymer filled in the pores of the porous substrate is later converted into a sulfone such as concentrated sulfuric acid. When sulfonating with an agent, a chemical bond was formed between the branched polymer of the graft polymer and the copolymer by Friedel-Craft reaction, and the pores of the porous substrate and the porous substrate were filled. Since the adhesion with the copolymer having a sulfonic acid group becomes stronger, it is estimated that the concentration performance is particularly improved.

電離放射線として電子線を用いた場合の多孔性基材への電離放射線照射の工程とその後のグラフト重合の工程の具体例を以下に示す。多孔性基材を酸素不透過性ポリエチレン系袋中に挿入後、この袋内を窒素置換し、袋をヒートシールして閉じる。次いでこの基材の入った袋に電子線を窒素雰囲気下、25℃で25〜400kGy照射する。電子線照射後、袋内の多孔性基材を取り出し、ガラス容器に移し替えた後、容器内にスチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを含む重合性単量体や架橋性単量体の混合液あるいはそれを溶媒で希釈した液を充填する。重合性単量体や架橋性単量体の混合液あるいはそれを溶媒で希釈した液は、不活性ガスによるバブリングや凍結脱気などで予め酸素ガスを除いたものを使用する。電子線を照射した多孔性基材のグラフト重合は、30〜70℃で30分〜10時間行う。   Specific examples of the ionizing radiation irradiation process to the porous substrate and the subsequent graft polymerization process when an electron beam is used as the ionizing radiation are shown below. After the porous substrate is inserted into the oxygen-impermeable polyethylene bag, the inside of the bag is purged with nitrogen, and the bag is heat sealed and closed. Next, the bag containing the base material is irradiated with an electron beam at 25 ° C. in a nitrogen atmosphere at 25 to 400 kGy. After electron beam irradiation, the porous substrate in the bag is taken out, transferred to a glass container, and then the polymerizable monomer or crosslinkable monomer containing at least one of styrene, chloromethylstyrene and divinylbenzene in the container Filled with a mixture of the body or a solution obtained by diluting it with a solvent. A mixture of a polymerizable monomer and a crosslinkable monomer or a solution obtained by diluting it with a solvent is one obtained by removing oxygen gas in advance by bubbling with inert gas or freeze degassing. Graft polymerization of the porous substrate irradiated with the electron beam is performed at 30 to 70 ° C. for 30 minutes to 10 hours.

本発明において重合性混合物とは、重合性単量体、架橋性単量体、ゴム、線状高分子物質、可塑剤、重合開始剤等の混合物をいう。   In the present invention, the polymerizable mixture refers to a mixture of a polymerizable monomer, a crosslinkable monomer, rubber, a linear polymer substance, a plasticizer, a polymerization initiator, and the like.

本発明においてスルホン酸基を導入可能な官能基を有する重合性単量体とは、スルホン酸基を導入しやすい官能基を有するか、あるいはスルホン酸基を有する重合性単量体であり、具体的には、以下に列記する単量体が挙げられる。
(1)スルホン酸基を導入しやすい芳香族環を有する単量体。例えば、スチレン、クロロメチルスチレン、α−メチルスチレン、ビニルトルエン、p−メトキシスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等。
(2)スルホン酸基を導入しやすいスルホン酸誘導体の単量体。例えば、ビニルスルホン酸エチル、アリルスルホン酸メチル、p−スチレンスルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸メチル等。
(3)スルホン酸基を導入しやすいエポキシ基を有する単量体。例えば、グリシジルメタクリレート、エポキシスチレン、ブタジエンモノオキシド等。
(4)スルホン酸基を有する単量体。例えば、ビニルスルホン酸、ビニルスルホン酸ナトリウム、アリルスルホン酸、アリルスルホン酸ナトリウム、p−スチレンスルホン酸、p−スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム等。
In the present invention, the polymerizable monomer having a functional group capable of introducing a sulfonic acid group is a polymerizable monomer having a functional group that can easily introduce a sulfonic acid group or a sulfonic acid group. Specifically, the monomers listed below are listed.
(1) A monomer having an aromatic ring into which a sulfonic acid group is easily introduced. For example, styrene, chloromethyl styrene, α-methyl styrene, vinyl toluene, p-methoxy styrene, p-ethyl styrene, m-ethyl styrene, o-ethyl styrene and the like.
(2) A monomer of a sulfonic acid derivative that easily introduces a sulfonic acid group. For example, ethyl vinyl sulfonate, methyl allyl sulfonate, ethyl p-styrene sulfonate, methyl 2-acrylamido-2-methylpropane sulfonate, and the like.
(3) A monomer having an epoxy group that easily introduces a sulfonic acid group. For example, glycidyl methacrylate, epoxy styrene, butadiene monoxide and the like.
(4) A monomer having a sulfonic acid group. For example, vinyl sulfonic acid, sodium vinyl sulfonate, allyl sulfonic acid, sodium allyl sulfonate, p-styrene sulfonic acid, sodium p-styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, 2-acrylamide-2- Sodium methylpropane sulfonate and the like.

本発明において架橋性単量体は、分子中に二重結合を少なくとも2個有するものであれば特に制限なく使用できる。例えば、ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、1,2−ビス(ビニルフェニル)エタン等の芳香族ジエン類、トリビニルベンゼン等の芳香族ポリエン類、エチレングリコールジメタクリレート、N,N−メチレンビスアクリルアミド等のアクリル酸系ジエン類等、ペンタエリスリトールトリアクリレート、テトラメチロールメタンテトラアクリレート等のアクリル酸系ポリエン類等が挙げられ、特にジビニルベンゼンが好適である。   In the present invention, the crosslinkable monomer can be used without particular limitation as long as it has at least two double bonds in the molecule. For example, aromatic dienes such as divinylbenzene, divinyltoluene, divinylnaphthalene, 1,2-bis (vinylphenyl) ethane, aromatic polyenes such as trivinylbenzene, ethylene glycol dimethacrylate, N, N-methylenebisacrylamide And acrylic acid-based polyenes such as pentaerythritol triacrylate and tetramethylolmethane tetraacrylate, and the like. Divinylbenzene is particularly preferable.

合成された陽イオン交換膜に柔軟性を付与するために、重合性混合物にゴム等の弾性体を添加することも有効である。ゴムとしては、従来製塩用イオン交換膜に使用されているものが何の制限もなく使用できる。例えば、ニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、天然ゴム、エチレンプロピレンゴム、ブチルゴム、クロロプレンゴム、アクリルゴム、水素添加ニトリルブタジエンゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ノルボンネンゴム等を用いることができ、単独もしくは2種以上混合して用いることができる。その中で、特にNBRとSBRが好適である。   In order to impart flexibility to the synthesized cation exchange membrane, it is also effective to add an elastic body such as rubber to the polymerizable mixture. As the rubber, those conventionally used for ion-exchange membranes for salt production can be used without any limitation. For example, nitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), natural rubber, ethylene propylene rubber, butyl rubber, chloroprene rubber, acrylic rubber, hydrogenated nitrile butadiene rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, chlorinated polyethylene Norbornene rubber or the like can be used, and these can be used alone or in admixture of two or more. Among them, NBR and SBR are particularly preferable.

また、合成された陽イオン交換膜に柔軟性を付与するために、重合性混合物に線状高分子物質として、例えば、ポリ塩化ビニル微粉末、ポリエチレン微粉末、ポリプロピレン微粉末等を添加することも有効であり、使用に際しては、単独もしくは2種以上混合して用いることができる。また、同様の目的で重合性混合物に可塑剤として、ジオクチルフタレート、ジ−2−エチルヘキシルフタレート、ジブチルフタレート、リン酸トリブチルあるいは、脂肪族酸、芳香族酸のアルコールエステル等を添加することも有効である。   In addition, in order to impart flexibility to the synthesized cation exchange membrane, for example, polyvinyl chloride fine powder, polyethylene fine powder, polypropylene fine powder, etc. may be added to the polymerizable mixture as a linear polymer substance. It is effective and can be used alone or in admixture of two or more. For the same purpose, it is also effective to add dioctyl phthalate, di-2-ethylhexyl phthalate, dibutyl phthalate, tributyl phosphate or aliphatic acid, alcohol ester of aromatic acid, etc. as a plasticizer to the polymerizable mixture. is there.

以下の説明及び実施例において、部は全て質量部を示す。スチレンとジビニルベンゼンを含有する重合性混合物に添加するゴム、線状高分子物質、可塑剤の量は、特に制限するものではないが、スチレンとジビニルベンゼンを含む重合性単量体と架橋性単量体の合計を100部とした時、ゴムは50部以下、線状高分子物質は30部以下、可塑剤は50部以下が好ましく、特にゴムは30部以下、線状高分子物質は20部以下、可塑剤は30部以下が好適である。
また、重合性混合物において、スチレンとジビニルベンゼンとの使用割合(質量割合)は、前者を1としたとき、後者は0.05〜1の範囲が好ましく、0.07〜0.67の範囲が特に好ましい。スチレンに対してジビニルベンゼンの使用割合が小さ過ぎると陽イオン交換膜にした時にスルホン酸基を有する共重合体が剥がれることがあり、また、大き過ぎると膜抵抗が高くなり過ぎる。
In the following description and examples, all parts represent parts by mass. The amount of rubber, linear polymer material and plasticizer added to the polymerizable mixture containing styrene and divinylbenzene is not particularly limited, but the polymerizable monomer containing styrene and divinylbenzene and the crosslinkable monomer are not limited. When the total amount of the polymer is 100 parts, the rubber is preferably 50 parts or less, the linear polymer substance is 30 parts or less, the plasticizer is 50 parts or less, particularly the rubber is 30 parts or less, and the linear polymer substance is 20 parts. The plasticizer is preferably 30 parts or less.
In the polymerizable mixture, the use ratio (mass ratio) of styrene and divinylbenzene is preferably in the range of 0.05 to 1, and in the range of 0.07 to 0.67, where the former is 1. Particularly preferred. If the ratio of divinylbenzene to styrene is too small, the copolymer having a sulfonic acid group may be peeled off when the cation exchange membrane is formed, and if too large, the membrane resistance becomes too high.

本発明において熱重合は、従来行われている広範な方法が何の制限もなく使用できる。重合開始剤を使用せず、加熱のみで重合することも可能であるが、重合開始剤を添加したスチレンとジビニルベンゼンを含有する重合性混合物に多孔性基材を浸漬した後、多孔性基材をガラス板、ポリエステルフィルムに挟んで、乾燥機中で加熱する方法等が好適である。   In the present invention, a wide variety of conventional methods can be used for thermal polymerization without any limitation. It is possible to polymerize only by heating without using a polymerization initiator, but after immersing the porous substrate in a polymerizable mixture containing styrene and divinylbenzene to which a polymerization initiator has been added, A method of sandwiching a glass plate and a polyester film and heating in a dryer is preferable.

熱重合に使用する重合開始剤は、特に限定されないが、アゾビスイソブチロニトリル(AIBN)、1,1’−アゾビスシクロヘキサン−1−カルボニトリル、ジメチル−2,2’−アゾビス(2−メチルプロピオネ−ト)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤、過酸化ベンゾイル(BPO)、ペルオキシ安息香酸t−ブチル、過酸化ジラウリル、過酸化ジt−ブチル、過酸化ジコハク酸等の過酸化物系重合開始剤等が使用でき、特にAIBN、BPOが好適である。   Although the polymerization initiator used for thermal polymerization is not particularly limited, azobisisobutyronitrile (AIBN), 1,1′-azobiscyclohexane-1-carbonitrile, dimethyl-2,2′-azobis (2- Azo polymerization initiators such as methylpropionate) and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide (BPO), t-butyl peroxybenzoate, dilauryl peroxide, ditoxide peroxide -Peroxide-based polymerization initiators such as butyl and disuccinic peroxide can be used, and AIBN and BPO are particularly preferable.

熱重合の具体例を以下に示す。スチレン75部、ジビニルベンゼン25部、NBR5部、AIBN1部を混合した重合性混合物中に多孔性基材を室温で3秒〜12時間浸漬する。所定時間後、多孔性基材を取り出し、ガラス板、ポリエステルフィルムに挟んで、乾燥機に入れる。熱重合の温度は30〜120℃、好ましくは50〜100℃であり、3〜24時間保つ。   Specific examples of thermal polymerization are shown below. The porous substrate is immersed in a polymerizable mixture in which 75 parts of styrene, 25 parts of divinylbenzene, 5 parts of NBR and 1 part of AIBN are mixed at room temperature for 3 seconds to 12 hours. After a predetermined time, the porous substrate is taken out, sandwiched between a glass plate and a polyester film, and placed in a dryer. The temperature of thermal polymerization is 30 to 120 ° C., preferably 50 to 100 ° C., and is maintained for 3 to 24 hours.

グラフト重合した多孔性基材の細孔内に充填されたスチレンとジビニルベンゼンの共重合体等へのスルホン酸基の導入は、従来行われている広範な方法が何の制限もなく使用できるが、具体例を以下に示す。   Introducing sulfonic acid groups into a copolymer of styrene and divinylbenzene filled in the pores of a graft-polymerized porous substrate can be used without any limitation by a wide range of conventional methods. Specific examples are shown below.

クロロスルホン酸濃度が1〜50質量%の1,2−ジクロロエタン溶液に、スチレンとジビニルベンゼンの共重合体等を細孔内に充填した多孔性基材を0〜80℃で1〜72時間浸漬して反応させる。所定時間反応後、膜を十分に水洗する。その後、濃度1〜10質量%の水酸化ナトリウム水溶液に1〜24時間浸漬することで加水分解した後、膜を十分に水洗する。   A porous substrate in which pores are filled with a copolymer of styrene and divinylbenzene in a 1,2-dichloroethane solution having a chlorosulfonic acid concentration of 1 to 50% by mass is immersed at 0 to 80 ° C. for 1 to 72 hours. And react. After reacting for a predetermined time, the membrane is thoroughly washed with water. Then, after hydrolyzing by immersing in a sodium hydroxide aqueous solution having a concentration of 1 to 10% by mass for 1 to 24 hours, the membrane is sufficiently washed with water.

以下、本発明の陽イオン交換膜およびその製造方法を実施例に基づいてさらに詳細に説明する。なお、本発明はかかる実施例に限定されるものではない。   Hereinafter, the cation exchange membrane of the present invention and the production method thereof will be described in more detail based on examples. In addition, this invention is not limited to this Example.

(実施例1)
超高分子量ポリエチレンからなる多孔性基材である東燃化学那須株式会社製セティーラE30MMS(膜厚31μm、孔径0.051μm、空孔率38%)を酸素不透過性ポリエチレン系袋である旭化成パックス株式会社製ポリフレックスバッグ飛竜(製品名)に挿入後、この袋内を窒素置換し、袋内の酸素を除去した後、ヒートシールして閉じた。次いで電子線照射装置岩崎電気株式会社製エレクトロカーテンEC250/30/90L(製品名)で、セティーラE30MMSの入った袋に電子線を25℃、加速電圧250keVで、100kGy照射した。
Example 1
Asahi Kasei Packs Co., Ltd. is an oxygen-impermeable polyethylene bag made of Tonen Chemical Nasu Co., Ltd.'s Setilla E30MMS (film thickness 31 μm, pore diameter 0.051 μm, porosity 38%), which is a porous substrate made of ultrahigh molecular weight polyethylene. After inserting into a polyflex bag made by Hiryu (product name), the inside of the bag was purged with nitrogen, and after removing oxygen in the bag, the bag was heat sealed and closed. Next, an electron beam was irradiated to a bag containing Settila E30MMS with an electron beam irradiation apparatus Iwasaki Electric Co., Ltd. Electrocurtain EC250 / 30 / 90L (product name) at 25 ° C. and an acceleration voltage of 250 keV for 100 kGy.

次いで、電子線を照射したセティーラE30MMSを取り出し、ガラス容器に移し替えた後、窒素をバブリングすることにより予め酸素を除いたクロロメチルスチレン(AGCセイミケミカル株式会社製クロロメチルスチレンCMS−P(製品名))、ジビニルベンゼン(和光純薬工業株式会社製55%ジビニルベンゼン(異性体混合物)(製品名))及びシクロヘキサンを15:1:24(質量比)の割合で混合した溶液を充填した。充填後、50℃で5時間グラフト重合した後、セティーラE30MMSをガラス容器より取り出し、アセトンで洗浄した後、60℃で2時間乾燥した。グラフト率は11%であった。   Next, the SETILA E30MMS irradiated with the electron beam was taken out and transferred to a glass container, and then nitrogen was bubbled in advance to remove oxygen, so that chloromethylstyrene (chloromethylstyrene CMS-P manufactured by AGC Seimi Chemical Co., Ltd. (product name) )), Divinylbenzene (55% divinylbenzene (isomer mixture) (product name)) manufactured by Wako Pure Chemical Industries, Ltd.) and cyclohexane were mixed at a ratio of 15: 1: 24 (mass ratio). After filling, the graft polymerization was carried out at 50 ° C. for 5 hours, and then the Setilla E30MMS was taken out from the glass container, washed with acetone, and then dried at 60 ° C. for 2 hours. The graft rate was 11%.

ガラス容器にスチレン75部、ジビニルベンゼン25部、AIBN1部からなる混合物を入れ、グラフト重合したセティーラE30MMSを室温で3時間浸漬した。浸漬後、セティーラE30MMSを取り出し、ガラス板、ポリエステルフィルムに挟んで、乾燥機に入れて60℃で16時間、90℃で3時間熱重合を行った。   A mixture consisting of 75 parts of styrene, 25 parts of divinylbenzene, and 1 part of AIBN was placed in a glass container, and graft-polymerized Setilla E30MMS was immersed at room temperature for 3 hours. After soaking, Setilla E30MMS was taken out, sandwiched between a glass plate and a polyester film, placed in a dryer, and subjected to thermal polymerization at 60 ° C. for 16 hours and at 90 ° C. for 3 hours.

次にクロロスルホン酸濃度が10質量%の1,2−ジクロロエタン溶液に、熱重合したセティーラE30MMSを室温で24時間浸漬した後、膜を十分に水洗した。その後、濃度10質量%の水酸化ナトリウム水溶液に24時間浸漬した。得られた陽イオン交換膜をよく水洗し、0.5N−NaCl水溶液中に保存した。   Next, the thermally polymerized Cetilla E30MMS was immersed in a 1,2-dichloroethane solution having a chlorosulfonic acid concentration of 10% by mass for 24 hours at room temperature, and then the membrane was sufficiently washed with water. Thereafter, it was immersed in an aqueous sodium hydroxide solution having a concentration of 10% by mass for 24 hours. The obtained cation exchange membrane was thoroughly washed with water and stored in 0.5N-NaCl aqueous solution.

さらに、該陽イオン交換膜と市販の陰イオン交換膜(旭硝子(株)ASA)を小型電気透析装置(膜面積8cm)に装着し、25℃で濃縮試験を実施した。脱塩室流速は6cm/s、電流密度3A/dmの濃縮条件で供給液は0.5N−NaCl水溶液を用いた。 Further, the cation exchange membrane and a commercially available anion exchange membrane (Asahi Glass Co., Ltd. ASA) were mounted on a small electrodialysis apparatus (membrane area 8 cm 2 ), and a concentration test was performed at 25 ° C. A 0.5N-NaCl aqueous solution was used as the feed solution under the concentration conditions of a desalting chamber flow rate of 6 cm / s and a current density of 3 A / dm 2 .

(実施例2〜5、比較例1〜4)
実施例1と電子線照射条件やグラフト重合条件を変えて合成した陽イオン交換膜を実施例2、3、電子線照射及びグラフト重合を行わずに実施例1〜3と同じ熱重合条件で合成した陽イオン交換膜を比較例1、現在製塩用陽イオン交換膜として使用されている膜(旭硝子(株)CSO)を比較例2、3とし、実施例1とあわせ、前記陽イオン交換膜の合成に用いた多孔性基材の物性を第1表、電子線照射条件とグラフト重合条件を第2表、熱重合条件を第3表、得られた陽イオン交換膜の膜特性を第4表に示す。
また、同様の操作で多孔性基材、電子線照射条件、グラフト重合条件及び熱重合条件を変えて合成した陽イオン交換膜を実施例4、5、電子線照射及びグラフト重合を行わずに実施例4、5と同じ熱重合条件で合成した陽イオン交換膜を比較例4とし、陽イオン交換膜の合成に用いた多孔性基材の物性を第1表、電子線照射条件とグラフト重合条件を第2表、熱重合条件を第3表、得られた陽イオン交換膜の膜特性を第4表に示す。なお、膜抵抗は、膜抵抗用測定セル(膜面積1.8cm)に該陽イオン交換膜を装着し、膜の両側を0.5N−NaCl水溶液で満たし、25℃でミリオームメーターにより周波数1kHzで電気抵抗を測定し、その後、該陽イオン交換膜を外して、同条件でブランクの電気抵抗を測定し、両者の差を膜抵抗とした。また、かん水濃度は、濃縮試験で得られた濃縮NaCl水溶液のCl濃度を測定し、かん水濃度とした。
(Examples 2-5, Comparative Examples 1-4)
A cation exchange membrane synthesized by changing the electron beam irradiation conditions and graft polymerization conditions in Example 1 was synthesized under the same thermal polymerization conditions as in Examples 1 and 2 without performing electron beam irradiation and graft polymerization. The cation exchange membrane thus prepared was set as Comparative Example 1, and the membranes currently used as cation exchange membranes for salt production (Asahi Glass Co., Ltd. CSO) were set as Comparative Examples 2 and 3, and together with Example 1, Table 1 shows the physical properties of the porous substrate used in the synthesis, Table 2 shows the electron beam irradiation conditions and graft polymerization conditions, Table 3 shows the thermal polymerization conditions, and Table 4 shows the membrane characteristics of the resulting cation exchange membrane. Shown in
In addition, a cation exchange membrane synthesized by changing the porous substrate, electron beam irradiation conditions, graft polymerization conditions and thermal polymerization conditions in the same manner was carried out without performing the electron beam irradiation and graft polymerization in Examples 4 and 5. The cation exchange membrane synthesized under the same thermal polymerization conditions as in Examples 4 and 5 is referred to as Comparative Example 4, and the physical properties of the porous substrate used for the synthesis of the cation exchange membrane are shown in Table 1, electron beam irradiation conditions and graft polymerization conditions. Table 2, Table 3 shows the thermal polymerization conditions, and Table 4 shows the membrane characteristics of the obtained cation exchange membrane. The membrane resistance is measured by mounting the cation exchange membrane on a membrane resistance measurement cell (membrane area 1.8 cm 2 ), filling both sides of the membrane with a 0.5N-NaCl aqueous solution, and using a milliohm meter at 25 ° C. and a frequency of 1 kHz. Then, the cation exchange membrane was removed, and the electrical resistance of the blank was measured under the same conditions. The difference between the two was taken as the membrane resistance. The brine concentration was determined by measuring the Cl concentration of the concentrated NaCl aqueous solution obtained in the concentration test.

Figure 0005196241
Figure 0005196241

Figure 0005196241
Figure 0005196241

Figure 0005196241
Figure 0005196241

Figure 0005196241
Figure 0005196241

濃縮試験の結果として膜抵抗とかん水濃度との関係を図1、2に示す。図1中に示した実線は、市販イオン交換膜と同等の濃縮性能を示す直線であり、破線は実線の傾きを変えることなく比較例1を通るように引いた直線である。同様に図2中に示した実線も市販イオン交換膜と同等の濃縮性能を示す直線であり、破線も市販イオン交換膜と同等の濃縮性能を示す直線の傾きを変えることなく比較例4を通るように引いた直線である。破線より上部に示される膜性能は、いずれも比較例(電子線照射及びグラフト重合を行わない膜)と比較して高い濃縮性能であるといえる。
第4表及び図1、2に示したとおり、本発明に従って合成したいずれの膜も、市販イオン交換膜より濃縮性能が高く、また、電子線照射及びグラフト重合を行わない膜と比較して、高い濃縮性能を示した。
As a result of the concentration test, the relationship between membrane resistance and brine concentration is shown in FIGS. The solid line shown in FIG. 1 is a straight line showing a concentration performance equivalent to that of a commercially available ion exchange membrane, and the broken line is a straight line drawn through Comparative Example 1 without changing the slope of the solid line. Similarly, the solid line shown in FIG. 2 is also a straight line showing a concentration performance equivalent to that of a commercially available ion exchange membrane, and the broken line also passes through Comparative Example 4 without changing the slope of the straight line showing the concentration performance equivalent to that of a commercially available ion exchange membrane. It is a straight line drawn like this. The membrane performance shown above the broken line can be said to be a high concentration performance compared to the comparative example (a membrane that does not perform electron beam irradiation and graft polymerization).
As shown in Table 4 and FIGS. 1 and 2, any of the membranes synthesized according to the present invention has higher concentration performance than commercially available ion exchange membranes, and compared to membranes that do not undergo electron beam irradiation and graft polymerization. High concentration performance was shown.

本発明の製塩用陽イオン交換膜は、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させることが可能となり、長期にわたって安定して運転できるので、製塩コストの低減に寄与できる。   The cation exchange membrane for salt production of the present invention can improve the concentration performance without increasing the electrical resistance and can be stably operated over a long period of time, compared with a conventionally used membrane. It can contribute to the reduction.

本発明の実施例及び比較例における陽イオン交換膜の膜抵抗とかん水濃度との関係を表すグラフである。It is a graph showing the relationship between the membrane resistance of a cation exchange membrane and brine concentration in the Example and comparative example of this invention. 本発明の実施例及び比較例における陽イオン交換膜の膜抵抗とかん水濃度との関係を表すグラフである。It is a graph showing the relationship between the membrane resistance of a cation exchange membrane and brine concentration in the Example and comparative example of this invention.

Claims (8)

グラフトポリマーを含有する、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材の細孔内に、75質量%以上のスチレンと25質量%以下のジビニルベンゼンとを少なくとも共重合成分とし、かつスルホン酸基を有する共重合体が充填されていることを特徴とする製塩用陽イオン交換膜。 Containing the graft polymer, into the pores of the porous film-like substrate made of a polyolefin having an average pore diameter of 0.005~5Myuemu, 75 wt% or more of styrene and at least a copolymerizable component and divinylbenzene than 25 wt% And a cation exchange membrane for salt production, which is filled with a copolymer having a sulfonic acid group. 前記グラフトポリマーの枝ポリマーがスチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかを重合成分とする重合体であることを特徴とする請求項1に記載の製塩用陽イオン交換膜。   2. The cation exchange membrane for salt production according to claim 1, wherein the branched polymer of the graft polymer is a polymer having at least one of styrene, chloromethylstyrene and divinylbenzene as a polymerization component. 電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合を行った後、スルホン酸基を導入することにより得られることを特徴とする請求項1に記載の製塩用陽イオン交換膜。 After graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm, generated radicals by irradiating with ionizing radiation, by filling a polymerizable mixture containing at least 75 wt% styrene and 25 wt% divinylbenzene, the claims following the thermal polymerization was Tsu row, characterized in that it is obtained by introducing a sulfonic acid group The cation exchange membrane for salt production according to 1. 前記ポリオレフィンがポリエチレンであることを特徴とする請求項1〜3のいずれか1項に記載の製塩用陽イオン交換膜。   The cation exchange membrane for salt production according to any one of claims 1 to 3, wherein the polyolefin is polyethylene. 前記ポリオレフィンが超高分子量ポリエチレンであることを特徴とする請求項4に記載の製塩用陽イオン交換膜。 The cation exchange membrane for salt production according to claim 4, wherein the polyolefin is ultra high molecular weight polyethylene. 前記グラフト重合のグラフト率が、1〜100%であることを特徴とする請求項3〜のいずれか1項に記載の製塩用陽イオン交換膜。 The cation exchange membrane for salt production according to any one of claims 3 to 5 , wherein a graft ratio of the graft polymerization is 1 to 100%. 電離放射線を照射することによりラジカルを発生させた、平均孔径0.005〜5μmのポリオレフィンからなる多孔性フィルム状基材に、スチレン、クロロメチルスチレン及びジビニルベンゼンの少なくともいずれかをグラフト重合した後、75質量%以上のスチレン及び25質量%以下のジビニルベンゼンを含有する重合性混合物を充填して、熱重合し、その後、スルホン酸基を導入する工程を含むことを特徴とする製塩用陽イオン交換膜の製造方法。 After graft polymerization of at least one of styrene, chloromethylstyrene, and divinylbenzene on a porous film-like substrate made of polyolefin having an average pore size of 0.005 to 5 μm , generated radicals by irradiating with ionizing radiation, Cation exchange for salt production characterized by including a step of charging a polymerizable mixture containing 75% by mass or more of styrene and 25% by mass or less of divinylbenzene , followed by thermal polymerization and then introducing a sulfonic acid group. A method for producing a membrane. 前記電離放射線が電子線であることを特徴とする請求項7記載の製塩用陽イオン交換膜の製造方法8. The method for producing a cation exchange membrane for salt production according to claim 7, wherein the ionizing radiation is an electron beam.
JP2008062806A 2008-03-12 2008-03-12 Cation exchange membrane and method for producing the same Active JP5196241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062806A JP5196241B2 (en) 2008-03-12 2008-03-12 Cation exchange membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062806A JP5196241B2 (en) 2008-03-12 2008-03-12 Cation exchange membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009215499A JP2009215499A (en) 2009-09-24
JP5196241B2 true JP5196241B2 (en) 2013-05-15

Family

ID=41187685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062806A Active JP5196241B2 (en) 2008-03-12 2008-03-12 Cation exchange membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP5196241B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227801A (en) * 2009-03-26 2010-10-14 Solt Industry Center Of Japan Solid-state cation exchanger and method for producing the same
JP5948243B2 (en) 2009-08-26 2016-07-06 エヴォクア ウォーター テクノロジーズ ピーティーイー リミテッド Ion exchange membrane
JP5049325B2 (en) 2009-09-17 2012-10-17 日立オートモティブシステムズ株式会社 Vehicle control device
JP5717234B2 (en) * 2010-03-11 2015-05-13 Agcエンジニアリング株式会社 Hydrogen ion selective permeable membrane and acid recovery method
JP5653079B2 (en) * 2010-06-16 2015-01-14 Agcエンジニアリング株式会社 Method for producing cation exchange membrane
CA2814701C (en) 2010-10-15 2018-11-06 Siemens Industry, Inc. Process for making a monomer solution for making cation exchange membranes
ES2886889T3 (en) 2010-10-15 2021-12-21 Evoqua Water Tech Llc Anion exchange membranes and process for their production
JP5814831B2 (en) * 2012-03-05 2015-11-17 国立大学法人 千葉大学 Manufacturing method of separation membrane
SG11201501864RA (en) 2012-10-04 2015-05-28 Evoqua Water Technologies Llc High-performance anion exchange membranes and methods of making same
CN104837542B (en) 2012-10-11 2017-04-05 伊沃夸水处理技术有限责任公司 The ion exchange membrane of coating
JP6861329B2 (en) * 2016-02-16 2021-04-21 国立研究開発法人日本原子力研究開発機構 Thermochemical hydrogen production Membrane of iodine-sulfur (IS) process Method of manufacturing cation exchange membrane used in Bunsen reactor
JP6887913B2 (en) * 2017-08-22 2021-06-16 Agcエンジニアリング株式会社 Method for manufacturing polymer base material with graft chain
JP6983575B2 (en) * 2017-08-22 2021-12-17 Agcエンジニアリング株式会社 Method for manufacturing polymer base material with graft chain
WO2020068932A1 (en) * 2018-09-25 2020-04-02 Evoqua Water Technologies Llc Monovalent selective cation exchange membrane
WO2023038133A1 (en) * 2021-09-13 2023-03-16 Agcエンジニアリング株式会社 Ion exchange membrane and method for producing ion exchange membrane with catalyst layer
GB202113996D0 (en) * 2021-09-30 2021-11-17 Fujifilm Mfg Europe Bv Films and their uses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238328A (en) * 1984-05-11 1985-11-27 Asahi Glass Co Ltd Manufacture of ion-exchange membrane

Also Published As

Publication number Publication date
JP2009215499A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5196241B2 (en) Cation exchange membrane and method for producing the same
JP5196242B2 (en) Anion exchange membrane and method for producing the same
JP5196234B2 (en) Anion exchange membrane and method for producing the same
JP5196236B2 (en) Cation exchange membrane and method for producing the same
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
CA1189018A (en) Cation exchange membrane and process for producing the same
JP5579365B2 (en) Anion exchange membrane and method for producing the same
JPH06509208A (en) Method for manufacturing polymer sheets
JP2009096923A (en) Cation exchange membrane and method for production thereof
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JP3972125B2 (en) Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP4035106B2 (en) Method for preparing a graft copolymer membrane
JP4429851B2 (en) Durable electrolyte membrane
JP2006008970A (en) Process for producing nano-space controlled polymer ion-exchange membrane
JP5050284B2 (en) Cation exchange membrane for salt production and method for producing the same
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2004010744A (en) Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
JP5305283B2 (en) Production method of polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP5120541B2 (en) Cation exchange membrane for salt production and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250