JP2004269681A - Ion-exchange-functional membrane and method for producing the same - Google Patents

Ion-exchange-functional membrane and method for producing the same Download PDF

Info

Publication number
JP2004269681A
JP2004269681A JP2003062108A JP2003062108A JP2004269681A JP 2004269681 A JP2004269681 A JP 2004269681A JP 2003062108 A JP2003062108 A JP 2003062108A JP 2003062108 A JP2003062108 A JP 2003062108A JP 2004269681 A JP2004269681 A JP 2004269681A
Authority
JP
Japan
Prior art keywords
ion
exchange
functional membrane
inorganic
exchangeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062108A
Other languages
Japanese (ja)
Other versions
JP4167914B2 (en
Inventor
Hideo Endo
秀夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2003062108A priority Critical patent/JP4167914B2/en
Publication of JP2004269681A publication Critical patent/JP2004269681A/en
Application granted granted Critical
Publication of JP4167914B2 publication Critical patent/JP4167914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion-exchange-functional membrane having highly flexible ion-exchange function using inorganic ion exchanger(s) with high ion-exchange ability, and to provide a method for producing the membrane. <P>SOLUTION: The ion-exchange-functional membrane is such that one or more inorganic ion exchangers selected from anion-exchangeable inorganic powder and cation-exchangeable inorganic powder are filled in the network of a polyolefin resin. The method for producing the membrane comprises carrying out an extrusion molding of the polyolefin resin, a plasticizer therefor and the inorganic ion exchanger powder into a filmy form, from which the plasticizer is extracted and eliminated to make the filmy form microporous. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換機能を備えた機能膜乃至はシートとその製造方法に関するもので、さらに詳細には、各種液体フィルター、イオン吸着膜、電解などの各種分野で有用なイオン交換性機能膜乃至はシートとその製造方法に関する。
【0002】
【従来の技術】
イオン交換性の機能膜は、イオン捕捉フィルター、電気透析、電解などの各種分野で利用されている。陰イオンまたは陽イオンのイオン交換体としては、イオン交換樹脂や、無機質イオン交換体が使用されている。イオン交換樹脂は、無機質イオン交換体に比較して、フィルム化が比較的容易であることからイオン交換膜としても使用されているが、耐有機溶剤性、耐酸化性、イオン選択性に劣るという欠点があった。一方、無機質イオン交換体は、イオン交換樹脂の欠点である耐有機溶剤性、耐酸化性、イオン選択性の点で優れているが、成形性、柔軟性に劣るためフィルム化が困難であることからイオン交換膜として適用できず、その適用範囲は狭いものであった。したがって、イオン交換樹脂及び無機質イオン交換体の両者の欠点を克服したイオン交換膜が要求されている。
このような要求に対して、無機質の多孔質体層の少なくとも一方の側にイオン交換体層を備えていることを特徴とする機械的強度、耐酸化性に優れた無機陰イオン交換膜が提案されている(例えば、特許文献1)。
【0003】
【特許文献1】
特開平6−114276号公報(請求項1)
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1記載のイオン交換膜は、多孔質無機材料を構造主体としているため機械的強度は強いものの柔軟性に乏しいことから、薄膜化すると割れ、欠けを生じやすく、また、折曲げ加工が困難であるという欠点を有する。
そこで、本発明は、イオン交換能に優れた無機質イオン交換体を使用し、フィルム化が容易で、割れ、欠けを生じない柔軟性に優れたイオン交換機能を有する機能膜を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のイオン交換性機能膜は、前記目的を達成するべく、請求項1に記載の通り、ポリオレフィン系樹脂の網目状ネットワーク内に、陰イオン交換性の無機質粉体と陽イオン交換性の無機質粉体より選択される1種または2種以上の無機質イオン交換体が充填されていることを特徴とする。
また、請求項2記載のイオン交換性機能膜は、請求項1記載のイオン交換性機能膜において、前記無機質イオン交換体が、30〜80質量%充填されていることを特徴とする。
また、請求項3記載のイオン交換性機能膜は、請求項1または2記載のイオン交換性機能膜において、前記陰イオン交換性の無機質粉体が、ハイドロタルサイト系無機質イオン交換体であることを特徴とする。
また、請求項4記載のイオン交換性機能膜は、請求項1乃至3の何れかに記載のイオン交換性機能膜において、前記陽イオン交換性の無機質粉体が、スメクタイト系無機質イオン交換体であることを特徴とする。
また、請求項5記載のイオン交換性機能膜は、請求項1乃至4の何れかに記載のイオン交換性機能膜において、前記イオン交換性機能膜は、水銀圧入法による平均細孔径が1μm以下であることを特徴とする。
また、請求項6記載のイオン交換性機能膜は、請求項1乃至5の何れかに記載のイオン交換性機能膜において、前記ポリオレフィン系樹脂は、重量平均分子量50万以上のポリエチレンであることを特徴とする。
また、請求項7記載のイオン交換性機能膜は、請求項6記載のイオン交換性機能膜において、前記ポリオレフィン系樹脂は、重量平均分子量100〜500万の超高分子量ポリエチレンであることを特徴とする。
本発明のイオン交換性機能膜の製造方法は、前記目的を達成するべく、請求項8に記載の通り、ポリオレフィン系樹脂とその可塑剤及び無機質イオン交換体粉体を押出成形し、フィルム状とした後、該フィルム状物より前記可塑剤を抽出除去することで微多孔質化することを特徴とする。
また、請求項9記載のイオン交換性機能膜の製造方法は、請求項8記載のイオン交換性機能膜の製造方法において、前記微多孔質化したイオン交換性機能膜を、プレス成形することにより空隙率を実質的にゼロから70体積%とすることを特徴とする。
【0006】
【発明の実施の形態】
本発明のイオン交換性機能膜は、ポリオレフィン系樹脂の網目状ネットワーク内に、陰イオン交換性の無機質粉体と陽イオン交換性の無機質粉体より選択される1種または2種以上の無機質イオン交換体が充填されていることを特徴としており、ポリオレフィン系樹脂の網目状ネットワーク内に無機質イオン交換体が充填された構造をなしているため、イオン交換体として無機質材を使用しているにも拘わらず、フィルム状に成形することができ、しかも、柔軟性に富むことから折り曲げが可能であり、割れ、欠けを生じることがないため、イオン交換機能が要求される幅広い分野に対して適応できる。また、本発明のイオン交換性機能膜は、水銀圧入法による平均細孔径が1μm以下とすることができるものであることから、液体フィルター分野にも適用できる。
また、本発明のイオン交換性機能膜の製造方法は、水銀圧入法による平均細孔径を1μm以下とすることができる固液相分離法に基づくもので、ポリオレフィン系樹脂とその可塑剤及び無機質イオン交換体粉体を押出成形してフィルム状とした後、該フィルム状物より可塑剤を抽出除去することで微多孔質化することを特徴としており、ポリオレフィン系樹脂の網目状ネットワーク内にイオン交換性の無機質粉体が充填された微多孔質膜を得ることができる。さらに、該微多孔質膜をプレス成形することで、空隙率を実質的にゼロから70体積%まで任意に調整することができ、所望の空隙率を有するイオン交換性機能膜を得ることができることから様々な要求に対応することができる。
【0007】
前記イオン交換性機能膜の構造主体であるポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン及びこれらの共重合物等の中より少なくとも1種を選ぶことができるが、2種以上を混合使用することもできる。
ポリオレフィン系樹脂の重量平均分子量は、機械的強度の優れたイオン交換性機能膜が得られる点より重量平均分子量が50万以上のものが好ましい。特に、重量平均分子量が100万以上の超高分子量ポリエチレンは、耐溶剤性、耐酸化性、機械的強度に優れた機能膜が得られるためより好ましい。この場合、重量平均分子量の異なる樹脂を混合使用して重量平均分子量が100万以上としてもよい。なお、ポリオレフィン系樹脂の重量平均分子量が50万未満では、耐酸化性及び機械的強度が不足するため好ましくなく、また、500万を超えると、製造時における押出性、成形性が低下するため好ましくない。
【0008】
前記イオン交換性の無機質粉体は、陰イオン交換性のものと陽イオン交換性のものに大別され、両者は粘土状鉱物の中より選択するのが一般的であるが、実質的なイオン吸着能、イオン交換能を有するものであれば粘土状鉱物以外の無機質材も適用できる。
陰イオン交換性の無機質粉体としては、イオン交換能が高い点でハイドロタルサイト系が好ましい。
また、陽イオン交換性の無機質粉体としては、スメクタイト系粘土状鉱物、例えばベントナイト、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトの中より選択できるが、イオン交換能が高い点よりベントナイトが好ましい。なお、スメクタイト系粘土状鉱物以外にも陽イオン吸着能、イオン交換能のある鉱物としてハロイサイト、カオリン、雲母等の粘土状鉱物やゼオライトがあり、前記スメクタイト系粘土状鉱物と併用することができる。また、前記粘土状鉱物のうち、あるものは、工業的に合成されており、実質的なイオン吸着能、イオン交換能を有するものであれば何れの物質も使用できる。
イオン交換性の無機質粉体の配合量は、要求されるイオン交換量によって適宜決定されるが、製造上の制約により30〜80質量%の範囲が好ましい。なお、イオン交換性の無機質粉体の配合量が30質量%未満では、後述のレーディゲミキサ等による材料の混合性が低下するため好ましくなく、また、80質量%を超えると、機能膜の機械的強度が著しく低下するため好ましくない。なお、混合性、押出性、成形性の向上を目的としてイオン交換性の無機質粉体の一部をシリカ微粉等に置き換えることもできる。
【0009】
次に、本発明のイオン交換性機能膜の製造方法について説明する。ポリオレフィン系樹脂の粉体20〜70質量%と、無機質イオン交換体粉体80〜30質量%と、前記ポリオレフィン系樹脂の可塑剤の適量とをレーディゲミキサ等で混合する。次いで、該混合物を押出成形機を用いて加熱溶融・混練しながらシート状に成形を行う。得られたシートの厚さはシートの成形条件あるいは、延伸、圧延等の二次加工によって任意に調整できる。その後、該シート中の可塑剤を適当な有機溶剤を用いて抽出除去し、乾燥すれば、本発明のイオン交換性機能膜が得られる。次いで、必要に応じ、該機能膜をプレスロールを用いてプレス成形することにより、所望の空隙率に調整できる。
前記可塑剤としては、飽和炭化水素からなる工業用潤滑油に代表される鉱物オイルあるいは、フタル酸ジ−2−エチルヘキシルに代表される樹脂用可塑剤が使用できる。また、可塑剤を抽出除去するために使用する抽出剤としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤や、トリクロロエチレン、テトラクロロエチレン等のハロゲン化炭化水素系の有機溶剤が使用できる。
なお、網目状ネットワークを形成するポリオレフィン系樹脂は、撥水性であるため、水溶液に対して本発明のイオン交換性機能膜を適用する場合は、必要に応じて、陰イオン性界面活性剤、陽イオン性界面活性剤あるいは、非イオン性界面活性剤の中より選択したものを用いて含浸または塗布処理して、親水性の向上を図るようにしてもよい。
【0010】
【実施例】
次に、本発明の実施例について比較例と共に詳細に説明するが、本発明はこの例に限定されるものではない。
本実施例においては、網目状ネットワークを形成するポリオレフィン系樹脂材料として超高分子量ポリエチレンを使用すると共に、無機質イオン交換体として陰イオン交換性のハイドロタルサイト微粉及び陽イオン交換性のベントナイト微粉を使用して、無機質イオン交換体を含有するイオン交換性機能膜を作製した。
【0011】
(実施例1)
陰イオン交換性の無機質粉体として平均粒子径が2μmのハイドロタルサイト微粉25質量%と、重量平均分子量200万の超高分子量ポリエチレン樹脂粉体22質量%と、鉱物オイル53質量%とをレーディゲミキサを用いて混合した。この混合物を二軸押出機を用いて加熱溶融・混練しながら押出機に接続したTダイより吐出させて前記組成のシート状物を得た。次いで、該シート状物をTダイに隣接する一対のプレスロールを用いて圧延し、厚さ100μmのシートを得た。その後、該シート中の鉱物オイルをハロゲン化炭化水素系溶剤の一種であるトリクロロエチレンを用いて抽出除去し、さらに、箱形乾燥機で100℃で乾燥して、陰イオン交換性の無機粉体53質量%と、ポリエチレン樹脂47質量%からなる厚さ100μm、空隙率54体積%の陰イオン交換性の微多孔質膜よりなる機能膜を得た。
【0012】
(実施例2)
実施例1と同様にして、陰イオン交換性の無機粉体53質量%と、ポリエチレン樹脂47質量%からなる厚さ100μm、空隙率54体積%の陰イオン交換性の微多孔質膜を得た。この微多孔質膜を箱型乾燥機に隣接する一対のプレスロールを用いて圧搾し、厚さ50μm、空隙率8体積%の陰イオン交換性の微多孔質膜よりなる機能膜を得た。
【0013】
(実施例3)
陽イオン交換性の無機質粉体として平均粒子径が2μmのベントナイト微粉30質量%と、重量平均分子量100万の超高分子量ポリエチレン樹脂粉体15質量%と、鉱物オイル55質量%とをレーディゲミキサを用いて混合した。この混合物を二軸押出機を用いて加熱溶融・混練しながら押出機に接続したTダイより吐出させて前記組成のシート状物を得た。次いで、該シート状物をTダイに隣接する一対のプレスロールを用いて圧延し、厚さ100μmのシートを得た。その後、該シート中の鉱物オイルをハロゲン化炭化水素系溶剤の一種であるトリクロロエチレンを用いて抽出除去し、さらに箱型乾燥機で100℃で乾燥して、陽イオン交換性の無機粉体67質量%と、ポリエチレン樹脂33質量%からなる厚さ100μm、空隙率59体積%の陽イオン交換性の微多孔質膜を得た。この微多孔質膜を箱型乾燥機に隣接する一対のプレスロールを用いて圧搾し、厚さ60μm、空隙率31体積%の陽イオン交換性の微多孔質膜よりなる機能膜を得た。
【0014】
(比較例)
実施例1に示す重量平均分子量200万の超高分子量ポリエチレン樹脂粉体に代え、重量平均分子量20万のポリエチレン樹脂粉体を用いたこと以外は、実施例1と同様にして、陰イオン交換性の無機粉体53質量%と、ポリエチレン樹脂47質量%からなる厚さ100μm、空隙率54体積%の陰イオン交換性の微多孔質膜よりなる機能膜を得た。
【0015】
次に、このようにして得られた実施例1乃至3及び比較例のイオン交換性機能膜について、厚さ、空隙率、平均細孔径、耐溶剤性、耐酸化性及び折曲げ性等の特性を測定した。その結果を表1に示す。
【0016】
【表1】

Figure 2004269681
【0017】
表1から以下のようなことが分かった。
(1)実施例1乃至3の機能膜は、ポリオレフィン系樹脂の網目状ネットワーク内にイオン交換性の無機質粉体が充填された構造をなしているため、イオン交換体として無機質材を使用しているにも拘わらず折曲げ時にクラックを生ずることがない。
(2)実施例1乃至3の機能膜の平均細孔径から明らかなように、本発明のイオン交換性機能膜は、水銀圧入法に基づく平均細孔径が1μm以下の微細孔を形成することができる。
(3)実施例1乃至3の機能膜は、重量平均分子量が100万以上の超高分子量ポリエチレンを網目状ネットワーク形成材として用いているため、耐溶剤性、耐酸化性に優れている。
(4)微多孔質膜を作製した後、プレス成形することにより、空隙率を任意に調整することができる。
【0018】
【発明の効果】
本発明のイオン交換性機能膜は、ポリオレフィン系樹脂の網目状ネットワーク内にイオン交換性の無機質粉体が充填された構造をなしているため、イオン交換体として無機質材を使用しているにも拘わらず成形が容易であることからフィルム状となすことが可能で、しかも、柔軟性に富むことから折り曲げが可能で割れ、欠け等を生じることがない。このため、イオン交換機能が要求される幅広い分野に対して適用できるこことから産業上の利用価値は高い。また、本発明のイオン交換性機能膜は、水銀圧入法による平均孔細孔径が1μm以下の微多孔質膜であるため、液体フィルター分野においても好適なイオン交換性機能膜として用いることができる。
また、本発明のイオン交換性機能膜の製造方法は、ポリオレフィン系樹脂とその可塑剤及び無機質イオン交換体粉体を押出成形してフィルム状とした後、該フィルム状物より可塑剤を抽出除去することで、ポリオレフィン系樹脂の網目状ネットワーク内にイオン交換性の無機質粉体が充填された微多孔質膜よりなるイオン交換性機能膜を得ることができる。さらに、前記方法により得られた微多孔質性のイオン交換性機能膜をプレス成形することで、空隙率を実質的にゼロから70体積%まで任意に調整できるため、所望の空隙率を有するイオン交換性機能膜を得ることができ、様々な要求に対して対応可能な産業上の利用価値の高いイオン交換性機能膜を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a functional membrane or sheet having an ion exchange function and a method for producing the same, and more specifically, various liquid filters, ion adsorption membranes, ion exchange functional membranes or useful in various fields such as electrolysis. Relates to a sheet and its manufacturing method.
[0002]
[Prior art]
Ion-exchange functional membranes are used in various fields such as ion trapping filters, electrodialysis, and electrolysis. As the anion or cation ion exchanger, an ion exchange resin or an inorganic ion exchanger is used. Ion-exchange resins are used as ion-exchange membranes because they are relatively easy to form into films, as compared to inorganic ion-exchangers, but they are inferior in organic solvent resistance, oxidation resistance, and ion selectivity. There were drawbacks. On the other hand, inorganic ion exchangers are excellent in terms of organic solvent resistance, oxidation resistance, and ion selectivity, which are disadvantages of ion exchange resins, but are inferior in moldability and flexibility and are difficult to form into a film. Therefore, it could not be applied as an ion exchange membrane, and its application range was narrow. Therefore, there is a need for an ion exchange membrane that overcomes the disadvantages of both ion exchange resins and inorganic ion exchangers.
In response to such demands, an inorganic anion exchange membrane having excellent mechanical strength and oxidation resistance characterized by comprising an ion exchanger layer on at least one side of the inorganic porous body layer is proposed. (For example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-6-114276 (Claim 1)
[0004]
[Problems to be solved by the invention]
However, the ion exchange membrane described in Patent Literature 1 is mainly composed of a porous inorganic material, and therefore has high mechanical strength but poor flexibility. Therefore, when the ion exchange membrane is thinned, it tends to be cracked or chipped. Is difficult.
Therefore, an object of the present invention is to provide a functional membrane having an ion exchange function which is easy to form a film, has excellent flexibility without causing cracking and chipping, using an inorganic ion exchanger having an excellent ion exchange ability. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the ion-exchangeable functional membrane of the present invention comprises, as described in claim 1, an anion-exchange inorganic powder and a cation-exchange inorganic powder in a network of polyolefin resin. One or more inorganic ion exchangers selected from powders are filled.
The ion exchange functional membrane according to claim 2 is characterized in that, in the ion exchange functional membrane according to claim 1, 30 to 80% by mass of the inorganic ion exchanger is filled.
The ion exchange functional membrane according to claim 3 is the ion exchange functional membrane according to claim 1 or 2, wherein the anion exchange inorganic powder is a hydrotalcite-based inorganic ion exchanger. It is characterized by.
The ion exchange functional membrane according to claim 4 is the ion exchange functional membrane according to any one of claims 1 to 3, wherein the cation exchange inorganic powder is a smectite-based inorganic ion exchanger. There is a feature.
The ion exchange functional membrane according to claim 5 is the ion exchange functional membrane according to any one of claims 1 to 4, wherein the ion exchange functional membrane has an average pore diameter of 1 μm or less according to a mercury intrusion method. It is characterized by being.
The ion exchange functional membrane according to claim 6 is the ion exchange functional membrane according to any one of claims 1 to 5, wherein the polyolefin-based resin is polyethylene having a weight average molecular weight of 500,000 or more. Features.
The ion exchange functional membrane according to claim 7 is the ion exchange functional membrane according to claim 6, wherein the polyolefin-based resin is an ultrahigh molecular weight polyethylene having a weight average molecular weight of 100 to 5,000,000. I do.
The method for producing an ion-exchangeable functional membrane of the present invention comprises, as described in claim 8, extruding a polyolefin-based resin, a plasticizer thereof, and an inorganic ion-exchange powder to achieve the above object, and Then, the plasticizer is microporous by extracting and removing the plasticizer from the film.
According to a ninth aspect of the present invention, in the method of manufacturing an ion-exchangeable functional membrane according to the eighth aspect, the microporous ion-exchangeable functional membrane is press-formed. The porosity is set to substantially zero to 70% by volume.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The ion-exchange functional membrane of the present invention comprises one or two or more inorganic ions selected from an anion-exchange inorganic powder and a cation-exchange inorganic powder in a network of polyolefin resin. It is characterized by the fact that it is filled with an exchanger, and because it has a structure in which an inorganic ion exchanger is filled in a network of polyolefin resin, it is possible to use an inorganic material as the ion exchanger. Regardless, it can be formed into a film, and since it is rich in flexibility, it can be bent, and it does not crack or chip, so it can be applied to a wide range of fields where ion exchange function is required. . Further, the ion-exchangeable functional membrane of the present invention can be applied to the field of liquid filters, because the average pore diameter by mercury porosimetry can be 1 μm or less.
Further, the method for producing an ion-exchangeable functional membrane of the present invention is based on a solid-liquid phase separation method capable of reducing the average pore diameter by a mercury intrusion method to 1 μm or less, and comprises a polyolefin-based resin, its plasticizer and inorganic ions. It is characterized in that after extruding the exchanger powder into a film, the plasticizer is extracted and removed from the film to make it microporous, and ion exchange is performed in a network of polyolefin resin. It is possible to obtain a microporous membrane filled with a conductive inorganic powder. Further, by press-forming the microporous membrane, the porosity can be arbitrarily adjusted from substantially zero to 70% by volume, and an ion exchange functional membrane having a desired porosity can be obtained. Can respond to various requests.
[0007]
As the polyolefin-based resin that is the main structure of the ion-exchangeable functional membrane, at least one kind can be selected from polyethylene, polypropylene, polybutene, polymethylpentene, a copolymer thereof, and the like. They can be mixed and used.
The polyolefin-based resin preferably has a weight-average molecular weight of 500,000 or more from the viewpoint that an ion-exchange functional membrane having excellent mechanical strength can be obtained. In particular, ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable because a functional film having excellent solvent resistance, oxidation resistance and mechanical strength can be obtained. In this case, the resins having different weight average molecular weights may be mixed and used so that the weight average molecular weight may be 1,000,000 or more. In addition, when the weight average molecular weight of the polyolefin resin is less than 500,000, it is not preferable because the oxidation resistance and mechanical strength are insufficient, and when it exceeds 5,000,000, the extrudability at the time of production and the moldability are reduced, which is preferable. Absent.
[0008]
The ion-exchange inorganic powder is roughly classified into an anion-exchange powder and a cation-exchange powder, and both are generally selected from clay minerals. Inorganic materials other than clay-like minerals can also be used as long as they have adsorption ability and ion exchange ability.
As the anion-exchangeable inorganic powder, a hydrotalcite-based inorganic powder is preferable because of its high ion-exchange ability.
As the cation-exchange inorganic powder, smectite-based clay minerals such as bentonite, montmorillonite, beidellite, nontronite, saponite, and hectorite can be selected, but bentonite is more highly ion-exchangeable. preferable. In addition, other than the smectite-based clay-like minerals, there are clay-like minerals such as halloysite, kaolin and mica and zeolites as cation-adsorbing and ion-exchangeable minerals, and these can be used in combination with the smectite-based clay-like minerals. Some of the clay-like minerals are industrially synthesized, and any substance can be used as long as it has substantial ion-adsorbing ability and ion-exchanging ability.
The compounding amount of the ion-exchangeable inorganic powder is appropriately determined depending on the required ion-exchange amount, but is preferably in the range of 30 to 80% by mass due to production restrictions. If the amount of the ion-exchangeable inorganic powder is less than 30% by mass, the mixing property of the material by the below-described Reedige mixer or the like deteriorates, and if it exceeds 80% by mass, the mechanical strength of the functional film is increased. Is remarkably reduced, which is not preferable. A part of the ion-exchangeable inorganic powder can be replaced with silica fine powder or the like for the purpose of improving the mixing property, the extrudability, and the moldability.
[0009]
Next, a method for producing the ion exchangeable functional membrane of the present invention will be described. 20 to 70% by mass of the polyolefin resin powder, 80 to 30% by mass of the inorganic ion exchanger powder, and an appropriate amount of the plasticizer of the polyolefin resin are mixed by a Reedige mixer or the like. Next, the mixture is formed into a sheet while being heated, melted and kneaded using an extruder. The thickness of the obtained sheet can be arbitrarily adjusted by sheet forming conditions or secondary processing such as stretching and rolling. Thereafter, the plasticizer in the sheet is extracted and removed using an appropriate organic solvent, and dried to obtain the ion-exchangeable functional membrane of the present invention. Next, if necessary, the functional film can be adjusted to a desired porosity by press-molding the functional film using a press roll.
As the plasticizer, a mineral oil represented by an industrial lubricating oil composed of a saturated hydrocarbon or a plasticizer for a resin represented by di-2-ethylhexyl phthalate can be used. Examples of the extractant used for extracting and removing the plasticizer include a saturated hydrocarbon organic solvent such as hexane, heptane, octane, nonane and decane, and a halogenated organic solvent such as trichloroethylene and tetrachloroethylene. Can be used.
Since the polyolefin-based resin forming the network is water-repellent, when the ion-exchange functional membrane of the present invention is applied to an aqueous solution, an anionic surfactant, a cationic The hydrophilicity may be improved by impregnating or applying a treatment selected from ionic surfactants and nonionic surfactants.
[0010]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples, but the present invention is not limited to these examples.
In this embodiment, ultrahigh molecular weight polyethylene is used as the polyolefin resin material forming the network network, and anion-exchange hydrotalcite fine powder and cation-exchange bentonite fine powder are used as the inorganic ion exchanger. Thus, an ion-exchangeable functional membrane containing an inorganic ion exchanger was produced.
[0011]
(Example 1)
25% by mass of hydrotalcite fine powder having an average particle size of 2 μm, 22% by mass of ultrahigh molecular weight polyethylene resin powder having a weight average molecular weight of 2,000,000, and 53% by mass of mineral oil as an anion exchangeable inorganic powder And mixed. The mixture was heated and melted and kneaded using a twin-screw extruder and discharged from a T-die connected to the extruder to obtain a sheet having the above composition. Next, the sheet was rolled using a pair of press rolls adjacent to the T-die to obtain a sheet having a thickness of 100 μm. Thereafter, the mineral oil in the sheet is extracted and removed using trichloroethylene, which is a kind of halogenated hydrocarbon solvent, and further dried at 100 ° C. in a box drier to obtain an anion exchangeable inorganic powder 53. A functional membrane consisting of an anion-exchangeable microporous membrane having a thickness of 100 μm and a porosity of 54% by volume, comprising 47% by mass and a polyethylene resin of 47% by mass, was obtained.
[0012]
(Example 2)
In the same manner as in Example 1, an anion-exchangeable microporous membrane composed of 53% by mass of anion-exchangeable inorganic powder and 47% by mass of a polyethylene resin and having a thickness of 100 μm and a porosity of 54% by volume was obtained. . This microporous membrane was squeezed using a pair of press rolls adjacent to the box dryer to obtain a functional membrane consisting of an anion-exchange microporous membrane having a thickness of 50 μm and a porosity of 8% by volume.
[0013]
(Example 3)
As a cation exchangeable inorganic powder, 30 mass% of bentonite fine powder having an average particle diameter of 2 μm, 15 mass% of ultrahigh molecular weight polyethylene resin powder having a weight average molecular weight of 1,000,000, and 55 mass% of mineral oil were used using a Reedige mixer. And mixed. The mixture was heated and melted and kneaded using a twin-screw extruder and discharged from a T-die connected to the extruder to obtain a sheet having the above composition. Next, the sheet was rolled using a pair of press rolls adjacent to the T-die to obtain a sheet having a thickness of 100 μm. Thereafter, the mineral oil in the sheet was extracted and removed using trichloroethylene, which is a kind of halogenated hydrocarbon solvent, and further dried at 100 ° C. in a box drier to obtain 67 mass of cation exchangeable inorganic powder. % And a polyethylene resin of 33% by mass to obtain a cation exchangeable microporous membrane having a thickness of 100 μm and a porosity of 59% by volume. This microporous membrane was squeezed using a pair of press rolls adjacent to the box dryer to obtain a functional membrane composed of a cation exchange microporous membrane having a thickness of 60 μm and a porosity of 31% by volume.
[0014]
(Comparative example)
Anion exchangeability was obtained in the same manner as in Example 1 except that a polyethylene resin powder having a weight average molecular weight of 200,000 was used instead of the ultrahigh molecular weight polyethylene resin powder having a weight average molecular weight of 2,000,000 shown in Example 1. A functional membrane comprising an anion-exchange microporous membrane having a thickness of 100 μm and a porosity of 54 vol%, comprising 53% by mass of an inorganic powder and 47% by mass of a polyethylene resin was obtained.
[0015]
Next, with respect to the ion-exchange functional membranes of Examples 1 to 3 and Comparative Example thus obtained, characteristics such as thickness, porosity, average pore diameter, solvent resistance, oxidation resistance, and bending property are described. Was measured. Table 1 shows the results.
[0016]
[Table 1]
Figure 2004269681
[0017]
Table 1 shows the following.
(1) Since the functional membranes of Examples 1 to 3 have a structure in which an ion-exchangeable inorganic powder is filled in a network of polyolefin resin, an inorganic material is used as an ion exchanger. Despite the presence, no cracking occurs at the time of bending.
(2) As is clear from the average pore diameters of the functional membranes of Examples 1 to 3, the ion-exchange functional membrane of the present invention can form micropores having an average pore diameter of 1 μm or less based on the mercury intrusion method. it can.
(3) The functional films of Examples 1 to 3 are excellent in solvent resistance and oxidation resistance because ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is used as a network-like network forming material.
(4) The porosity can be arbitrarily adjusted by press-forming after preparing the microporous membrane.
[0018]
【The invention's effect】
Since the ion-exchangeable functional membrane of the present invention has a structure in which an ion-exchangeable inorganic powder is filled in a network of polyolefin resin, the inorganic material is used as an ion-exchanger. Regardless of the ease of molding, it can be formed into a film, and because of its high flexibility, it can be bent and does not suffer from cracking, chipping or the like. For this reason, it can be applied to a wide range of fields where an ion exchange function is required. Further, since the ion-exchangeable functional membrane of the present invention is a microporous membrane having an average pore diameter of 1 μm or less as measured by a mercury intrusion method, it can be used as a suitable ion-exchangeable functional membrane also in the field of liquid filters.
Further, in the method for producing an ion-exchangeable functional membrane of the present invention, a polyolefin-based resin, a plasticizer thereof, and an inorganic ion-exchanger powder are extruded into a film, and then a plasticizer is extracted and removed from the film-like material. By doing so, it is possible to obtain an ion-exchange functional membrane composed of a microporous membrane in which an ion-exchange inorganic powder is filled in a network of polyolefin resin. Further, the porosity can be arbitrarily adjusted from substantially zero to 70% by volume by press-molding the microporous ion-exchangeable functional membrane obtained by the above method, so that ions having a desired porosity can be adjusted. An exchangeable functional membrane can be obtained, and an ion exchangeable functional membrane with high industrial utility value that can respond to various demands can be provided.

Claims (9)

ポリオレフィン系樹脂の網目状ネットワーク内に、陰イオン交換性の無機質粉体と陽イオン交換性の無機質粉体より選択される1種または2種以上の無機質イオン交換体が充填されていることを特徴とするイオン交換性機能膜。One or more inorganic ion exchangers selected from anion-exchange inorganic powder and cation-exchange inorganic powder are filled in a network of polyolefin resin. Ion-exchangeable functional membrane. 前記無機質イオン交換体が、30〜80質量%充填されていることを特徴とする請求項1記載のイオン交換性機能膜。The ion exchange functional membrane according to claim 1, wherein the inorganic ion exchanger is filled in an amount of 30 to 80% by mass. 前記陰イオン交換性の無機質粉体が、ハイドロタルサイト系無機質イオン交換体であることを特徴とする請求項1または2記載のイオン交換性機能膜。The ion exchange functional membrane according to claim 1 or 2, wherein the anion exchange inorganic powder is a hydrotalcite-based inorganic ion exchanger. 前記陽イオン交換性の無機質粉体が、スメクタイト系無機質イオン交換体であることを特徴とする請求項1乃至3の何れかに記載のイオン交換性機能膜。The ion exchange functional membrane according to any one of claims 1 to 3, wherein the cation exchange inorganic powder is a smectite inorganic ion exchanger. 前記イオン交換性機能膜は、水銀圧入法による平均細孔径が1μm以下であることを特徴とする請求項1乃至4の何れかに記載のイオン交換性機能膜。The ion exchange functional membrane according to any one of claims 1 to 4, wherein the ion exchange functional membrane has an average pore diameter of 1 µm or less as measured by a mercury intrusion method. 前記ポリオレフィン系樹脂は、重量平均分子量50万以上のポリエチレンであることを特徴とする請求項1乃至5の何れかに記載のイオン交換性機能膜。The ion exchange functional membrane according to any one of claims 1 to 5, wherein the polyolefin resin is polyethylene having a weight average molecular weight of 500,000 or more. 前記ポリオレフィン系樹脂は、重量平均分子量100〜500万の超高分子量ポリエチレンであることを特徴とする請求項6記載のイオン交換性機能膜。The ion-exchange functional membrane according to claim 6, wherein the polyolefin-based resin is an ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 to 5,000,000. ポリオレフィン系樹脂とその可塑剤及び無機質イオン交換体粉体を押出成形し、フィルム状とした後、該フィルム状物より前記可塑剤を抽出除去することで微多孔質化することを特徴とするイオン交換性機能膜の製造方法。After ion-extruding a polyolefin resin and its plasticizer and inorganic ion exchanger powder to form a film, the plasticizer is microporous by extracting and removing the plasticizer from the film. Method for producing exchangeable functional membrane. 前記微多孔質化したイオン交換性機能膜を、プレス成形することにより空隙率を実質的にゼロから70体積%とすることを特徴とする請求項8記載のイオン交換性機能膜の製造方法。9. The method for producing an ion-exchange functional membrane according to claim 8, wherein the microporous ion-exchange functional membrane is press-formed so that the porosity is substantially zero to 70% by volume.
JP2003062108A 2003-03-07 2003-03-07 Ion-exchange functional membrane Expired - Fee Related JP4167914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062108A JP4167914B2 (en) 2003-03-07 2003-03-07 Ion-exchange functional membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062108A JP4167914B2 (en) 2003-03-07 2003-03-07 Ion-exchange functional membrane

Publications (2)

Publication Number Publication Date
JP2004269681A true JP2004269681A (en) 2004-09-30
JP4167914B2 JP4167914B2 (en) 2008-10-22

Family

ID=33124125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062108A Expired - Fee Related JP4167914B2 (en) 2003-03-07 2003-03-07 Ion-exchange functional membrane

Country Status (1)

Country Link
JP (1) JP4167914B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024473A (en) * 2004-07-08 2006-01-26 Nippon Sheet Glass Co Ltd Insulating film for electric wire and electric wire using it
JP2008255350A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Cation exchange membrane for salt production and method for producing the same
JP2008255351A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Anion exchange membrane for salt production and method for producing the same
WO2012127519A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Machine lubricating device and oil filter
CN108905645A (en) * 2018-08-29 2018-11-30 深圳合核环境科技有限公司 A kind of amberplex and preparation method thereof with polymer protective film
CN109818023A (en) * 2019-01-17 2019-05-28 湖北工程学院 Compound alkaline polyelectrolyte film of a kind of flower-shaped hydrotalcite and its preparation method and application

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024473A (en) * 2004-07-08 2006-01-26 Nippon Sheet Glass Co Ltd Insulating film for electric wire and electric wire using it
JP2008255350A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Cation exchange membrane for salt production and method for producing the same
JP2008255351A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Anion exchange membrane for salt production and method for producing the same
WO2012127519A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Machine lubricating device and oil filter
CN103443525A (en) * 2011-03-18 2013-12-11 丰田自动车株式会社 Machine lubricating device and oil filter
EP2687770A1 (en) * 2011-03-18 2014-01-22 Toyota Jidosha Kabushiki Kaisha Machine lubricating device and oil filter
EP2687770A4 (en) * 2011-03-18 2014-09-03 Toyota Motor Co Ltd Machine lubricating device and oil filter
JP5668840B2 (en) * 2011-03-18 2015-02-12 トヨタ自動車株式会社 Machine lubricator and oil filter
CN108905645A (en) * 2018-08-29 2018-11-30 深圳合核环境科技有限公司 A kind of amberplex and preparation method thereof with polymer protective film
CN108905645B (en) * 2018-08-29 2024-05-17 深圳合核环境科技有限公司 Ion exchange membrane with high molecular protection film and preparation method thereof
CN109818023A (en) * 2019-01-17 2019-05-28 湖北工程学院 Compound alkaline polyelectrolyte film of a kind of flower-shaped hydrotalcite and its preparation method and application

Also Published As

Publication number Publication date
JP4167914B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
DE19705497C2 (en) Process for the preparation of mesoporous solids, solids obtainable by the process and their use
US6620355B1 (en) Method for compacting aerogels
WO1982002006A1 (en) Composite adsorbent molding and process for manufacturing same
Libbrecht et al. Tunable large pore mesoporous carbons for the enhanced adsorption of humic acid
CN102824898B (en) Three-dimensional porous pressure-resistant and expansion-limiting type bentonite adsorbing material and preparation method thereof
JP2001512773A (en) Nanocomposite
JP2009197227A (en) Porous composite product particularly with high specific surface area, method for producing the same and electrode for electrochemical assembly formed with porous composite film
JP4167914B2 (en) Ion-exchange functional membrane
KR20040007441A (en) Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion-exchanger, and electric deionized water manufacturing device
KR20100139121A (en) Method for producing microporous sheet
DE60211455T2 (en) Organic porous material and organic porous ion exchanger
KR20160006699A (en) Block products incorporating small particle thermoplastic binders and methods of making same
CN103906772A (en) Method for melt processing sulfonated block copolymers and articles comprising optionally amine modified sulfonated block copolymers
Vantomme et al. One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure
US6737376B1 (en) Porous ceramic
JP3957179B2 (en) Organic porous ion exchanger
JP4519433B2 (en) Particulate mesoporous silica
DE2139646C3 (en) Method of making a microporous septum
JP5233798B2 (en) Electric regenerative pure water production equipment
CN1314736C (en) Hydrophilized porous film and process for producing the same
JP4498532B2 (en) Heterogeneous ion exchange membrane and method for producing the same
US20130260127A1 (en) Process for preparing an insulating material
JP3340538B2 (en) Storage battery separator
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JP2001294685A (en) Porous heterogeneous ion exchange membrane and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees