JP5140861B2 - Cation exchange membrane for salt production and method for producing the same - Google Patents

Cation exchange membrane for salt production and method for producing the same Download PDF

Info

Publication number
JP5140861B2
JP5140861B2 JP2009067821A JP2009067821A JP5140861B2 JP 5140861 B2 JP5140861 B2 JP 5140861B2 JP 2009067821 A JP2009067821 A JP 2009067821A JP 2009067821 A JP2009067821 A JP 2009067821A JP 5140861 B2 JP5140861 B2 JP 5140861B2
Authority
JP
Japan
Prior art keywords
film
cation exchange
exchange membrane
molecular weight
weight polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009067821A
Other languages
Japanese (ja)
Other versions
JP2009256638A (en
Inventor
剛 永谷
直人 吉川
信彦 大村
Original Assignee
財団法人塩事業センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人塩事業センター filed Critical 財団法人塩事業センター
Priority to JP2009067821A priority Critical patent/JP5140861B2/en
Publication of JP2009256638A publication Critical patent/JP2009256638A/en
Application granted granted Critical
Publication of JP5140861B2 publication Critical patent/JP5140861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、製塩に用いられる陽イオン交換膜及びその製造方法に関する。   The present invention relates to a cation exchange membrane used for salt production and a method for producing the same.

イオン交換膜製塩法における海水濃縮工程には、陽および陰イオン交換膜を利用した電気透析槽が用いられている。電気透析槽に利用するイオン交換膜の性能上求められているのは、膜の電気抵抗、濃縮性能、耐久性等であり、製造費低減のためには、膜の電気抵抗を増加させることなく、濃縮性能を向上させることが必要である。加えて耐久性、特に機械的強度を向上させることも必要となる。   An electrodialysis tank using positive and negative ion exchange membranes is used in the seawater concentration step in the ion exchange membrane salt production method. What is required in terms of the performance of ion exchange membranes used in electrodialysis tanks is membrane electrical resistance, concentration performance, durability, etc. To reduce manufacturing costs, without increasing membrane electrical resistance. It is necessary to improve the concentration performance. In addition, it is necessary to improve durability, particularly mechanical strength.

製塩用イオン交換膜の製法については従来から数多くの方法が提案されている(例えば特許文献1〜3参照)が、イオン交換基が導入可能な官能基又はイオン交換基を有するモノマー、架橋剤及び重合触媒を主たる成分として含有する混合物をポリ塩化ビニル製の織布などに塗布して重合した後、必要に応じてイオン交換基を導入する方法が広く知られている。   A number of methods have been proposed for producing an ion exchange membrane for salt production (see, for example, Patent Documents 1 to 3). However, a monomer having a functional group or an ion exchange group into which an ion exchange group can be introduced, a crosslinking agent, and There is widely known a method in which a mixture containing a polymerization catalyst as a main component is applied to a woven fabric made of polyvinyl chloride and polymerized, and then ion exchange groups are introduced as necessary.

特公昭39−27861号公報Japanese Examined Patent Publication No. 39-27861 特公昭40−28951号公報Japanese Patent Publication No.40-28951 特公昭44−19253号公報Japanese Patent Publication No. 44-19253

しかしながら、この方法により得られたイオン交換膜は、膜の電気抵抗を増加させることなく、濃縮性能を向上させることは困難であり、かつ機械的強度についても満足できる性質のものではなかった。   However, the ion exchange membrane obtained by this method is difficult to improve the concentration performance without increasing the electrical resistance of the membrane, and the mechanical strength is not satisfactory.

かかる問題点を解決するため、本発明者等は、先にイオン交換膜の基材として、汎用のポリオレフィンに比べ、耐衝撃性、耐摩耗性、耐薬品性、引っ張り強度等に優れている、超高分子量ポリエチレンフィルムを用いた方法を発明し、出願をした(特開2008−255350号公報)。すなわち、この方法は、超高分子量ポリエチレンフィルムに電離放射線を照射し、スチレン系モノマー等をグラフト重合した後、形成されるグラフト側鎖にスルホン酸基を導入し、イオン交換膜を製造することにより、従来使用されている製塩用のイオン交換膜と比較し、電気抵抗を増加させずに、濃縮性能を増加させ、且つ機械的強度を向上させた膜を提供できる方法である。   In order to solve such problems, the present inventors are superior in impact resistance, wear resistance, chemical resistance, tensile strength, etc., compared to general-purpose polyolefin as the base material of the ion exchange membrane. A method using an ultrahigh molecular weight polyethylene film was invented and an application was filed (Japanese Patent Laid-Open No. 2008-255350). That is, in this method, an ion exchange membrane is produced by irradiating an ultrahigh molecular weight polyethylene film with ionizing radiation, graft polymerization of a styrene monomer, etc., and then introducing a sulfonic acid group into the formed graft side chain. Compared with conventionally used ion-exchange membranes for salt production, this is a method that can provide a membrane with increased concentration performance and improved mechanical strength without increasing electrical resistance.

本発明者等は、上記イオン交換膜製造法において、さらなる性能向上を目的とし、鋭意検討を進めた結果、基材として用いられる超高分子量ポリエチレンを、融点付近まで加温し一部溶融させ、上記条件下でフィルムを厚み方向に加圧することにより、製造される陽イオン交換膜の濃縮性能が大幅に向上することを見出した。   In the above ion exchange membrane manufacturing method, the present inventors have conducted an extensive study aiming at further performance improvement.As a result, the ultra-high molecular weight polyethylene used as a substrate is heated to near the melting point and partially melted, It has been found that the concentration performance of the produced cation exchange membrane is greatly improved by pressurizing the film in the thickness direction under the above conditions.

すなわち、本発明は、下記の構成とすることにより上記の目的を達成するに至った。
(1)高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜において、該高分子フィルム基材として、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより得られるフィルムを用いることを特徴とする製塩用陽イオン交換膜。
(2)前記の加圧条件下で加熱処理を、130〜170℃の温度で、50kPa以上の圧力で行うことを特徴とする前記(1)記載の製塩用陽イオン交換膜。
(3)超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより処理したフィルムに、電離放射線を照射することにより、該フィルム中にラジカルを発生させ、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、その後陽イオン交換基を導入することにより得られることを特徴とする製塩用陽イオン交換膜。
That is, the present invention has achieved the above object by adopting the following configuration.
(1) In a cation exchange membrane in which a cation exchange group is bonded to a polymer film substrate, as the polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, A cation exchange membrane for salt production, characterized by using a film obtained by pressurizing in the thickness direction to such an extent that the film does not shrink under heating conditions.
(2) The cation exchange membrane for salt production according to the above (1), wherein the heat treatment is performed at a temperature of 130 to 170 ° C. and a pressure of 50 kPa or more under the pressure condition.
(3) The ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, and the film treated by pressurizing in the thickness direction to such an extent that the film does not shrink under the heating condition is irradiated with ionizing radiation. A polymerizable monomer having a functional group capable of generating a radical in the film and introducing a cation exchange group, or a polymerizable mixture of the polymerizable monomer and the crosslinkable monomer. graft polymerization of have rows, salt production for cation exchange membrane then characterized in that it is obtained by introducing a cation exchange group Te.

(4)高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜の製造方法において、該高分子フィルム基材として、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより得られるフィルムを用いることを特徴とする製塩用陽イオン交換膜の製造方法。
(5)高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜の製造方法において、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧する処理したフィルムに、電離放射線を照射することにより、該フィルム中にラジカルを発生させ、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、その後陽イオン交換基を導入することを特徴とする製塩用陽イオン交換膜の製造方法。
(4) In a method for producing a cation exchange membrane in which a cation exchange group is bonded to a polymer film substrate, as the polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted. And a film obtained by pressurizing the film in the thickness direction to such an extent that the film does not shrink under the heating condition, a method for producing a cation exchange membrane for salt production.
(5) In the method for producing a cation exchange membrane in which a cation exchange group is bonded to a polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, A polymerizable monomer having a functional group capable of introducing a cation exchange group by generating radicals in the film by irradiating ionized radiation to the treated film that is pressurized in the thickness direction so that the film does not shrink. body alone or the polymerizable have rows graft polymerization using a polymerizable mixture of monomers and a crosslinking monomer, the production of salt production for the cation exchange membrane followed and introducing a cation exchange group Method.

本発明により、現在製塩に用いられている陽イオン交換膜と比較して、電気抵抗を増加させずに、濃縮性能を増加させ、且つ機械的強度を向上させた陽イオン交換膜を提供できることから、製塩コスト低減に寄与できる。   According to the present invention, it is possible to provide a cation exchange membrane having an increased concentration performance and an improved mechanical strength without increasing the electric resistance as compared with the cation exchange membrane currently used for salt production. , Can contribute to reducing salt production costs.

本発明の実施例及び比較例における陽イオン交換膜の抵抗と濃縮液の塩化ナトリウム濃度との関係を表すグラフである。It is a graph showing the relationship between the resistance of the cation exchange membrane in the Example and comparative example of this invention, and the sodium chloride density | concentration of a concentrate.

本発明の陽イオン交換膜は、基材として用いられる超高分子量ポリエチレンに対して加熱加圧処理を施し、得られたフィルムに電離放射線を照射することにより、ラジカルを発生させた後、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、必要に応じてクロロスルホン酸等を用いて陽イオン交換基を導入したものである。
本発明の陽イオン交換膜の製造方法は、基材として用いられる超高分子量ポリエチレンに対して加熱加圧処理を施し、得られたフィルムに電離放射線を照射することにより、ラジカルを発生させた後、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、必要に応じてクロロスルホン酸等を用いて陽イオン交換基を導入することが特徴である。
The cation exchange membrane of the present invention is obtained by subjecting ultra-high molecular weight polyethylene used as a substrate to heat and pressure treatment, and irradiating the resulting film with ionizing radiation to generate radicals, and then cation Perform graft polymerization using a polymerizable monomer having a functional group capable of introducing an exchange group alone, or a polymerizable mixture of the polymerizable monomer and a crosslinkable monomer, and chlorosulfonic acid or the like as necessary. A cation exchange group was introduced using
In the method for producing a cation exchange membrane of the present invention, after heating and pressurizing treatment is performed on ultrahigh molecular weight polyethylene used as a base material, the resulting film is irradiated with ionizing radiation, thereby generating radicals. Graft polymerization using a polymerizable monomer having a functional group capable of introducing a cation exchange group alone or a polymerizable mixture of the polymerizable monomer and a crosslinkable monomer, and if necessary, It is characterized by introducing a cation exchange group using sulfonic acid or the like.

以下、本発明の実施の形態を詳細に説明する。
本発明で対象となる、高分子フィルム基材は、超高分子量ポリエチレンフィルムであり、特に分子量が160万〜630万であり、厚みが20〜100μmのものを含む。フィルムとしては例えば、作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名)などが挙げられる。
超高分子量ポリエチレンフィルムの製法としては、インフレーション法およびスカイブ法が代表的である。インフレーション法により製造されたフィルムはスカイブ法により製造されたフィルムと比較し、高い引っ張り強度や破裂強度を有するため、基材として有効である。
Hereinafter, embodiments of the present invention will be described in detail.
The polymer film substrate to be used in the present invention is an ultra-high molecular weight polyethylene film, particularly including those having a molecular weight of 1,600,000 to 6,300,000 and a thickness of 20 to 100 μm. Examples of the film include Saxin New Light Film Innovate (product name) manufactured by Sakushin Kogyo Co., Ltd.
As a method for producing an ultrahigh molecular weight polyethylene film, an inflation method and a skive method are typical. A film produced by the inflation method is effective as a base material because it has higher tensile strength and bursting strength than a film produced by the skive method.

次にフィルムの加熱加圧処理方法について説明する。
本発明は、超高分子量ポリエチレンを融点付近まで加温し一部溶融させ、前記加温条件下でフィルムを厚み方向に加圧することにより、フィルムの結晶構造を一部変化させることを特徴とする。前記超高分子量ポリエチレンのフィルムをその一部が溶融するように加温する加熱条件としては、前記超高分子量ポリエチレンの性状により変わるが、130℃〜170℃の範囲が好適である。
Next, the method for heating and pressing the film will be described.
The present invention is characterized in that the crystalline structure of the film is partially changed by heating the ultrahigh molecular weight polyethylene to near the melting point and partially melting it, and pressing the film in the thickness direction under the heating condition. . The heating conditions for heating the ultrahigh molecular weight polyethylene film so as to partially melt the film vary depending on the properties of the ultrahigh molecular weight polyethylene, but a range of 130 ° C to 170 ° C is preferable.

加圧方法としては、従来行われている広範な方法が何の制限もなく使用できるが、特に有効な方法としては加熱を同時に実施できるホットプレスを用いる方法、及びロールの接触圧力を利用する方法が挙げられる。ホットプレスを用いた場合、加圧の開始と同時に加熱処理をすることが可能となる。膜面全体を均一に処理する場合、ホットプレスを用いる方法が有効であるが、処理フィルムの寸法はホットプレスの処理面積に制限される。一方、ロールの接触圧力を利用した場合、ロール状のフィルムを一度に熱処理することが可能である。そのため、大量のフィルムを同時に処理する場合や、以後の処理においてバッチではなく連続的な製造ラインを構築できるなどの利点がある。   As a pressurizing method, a wide range of conventional methods can be used without any limitation. As a particularly effective method, a method using a hot press capable of simultaneously performing heating and a method utilizing the contact pressure of a roll. Is mentioned. When a hot press is used, heat treatment can be performed simultaneously with the start of pressurization. In the case where the entire film surface is processed uniformly, a method using a hot press is effective, but the size of the processing film is limited to the processing area of the hot press. On the other hand, when the contact pressure of the roll is used, the roll-shaped film can be heat-treated at once. Therefore, there is an advantage that a large production film can be processed at the same time, and a continuous production line can be constructed instead of a batch in subsequent processing.

加圧条件に特に制限はないが、加圧が不十分である場合、加熱時に膜が収縮し、フィルムの形状を維持することが出来なくなる。そのため、少なくとも、膜が収縮しない程度の圧力をかける必要がある。ロール法による場合には、ロールの周囲から加圧型で全面的に加圧する手段を用いなくとも、粘着性テープあるいはベルトを用い、フィルムを巻きつけたロールの上に巻いて締めれば、ロールの周囲からフィルムの厚み方向に全面的に加圧することができる。   Although there is no restriction | limiting in particular in pressurization conditions, When pressurization is inadequate, a film | membrane will shrink | contract at the time of a heating, and it will become impossible to maintain the shape of a film. Therefore, it is necessary to apply at least a pressure that does not cause the membrane to contract. In the case of the roll method, it is possible to use an adhesive tape or belt and roll the film around a roll around the roll, without using a means for pressurizing the entire surface of the roll. To pressurizing all over the thickness direction of the film.

加熱方法としては、従来行われている広範な方法が何の制限もなく使用できる。特に有効な方法としては、加圧方法としてロールの接触圧力を利用する方法を採用した、乾燥機を用いた加熱方法が挙げられる。
なお、加圧方法としてホットプレスを採用した場合、同時に加熱することが可能である。加熱時間に特に制限はないが、少なくとも1時間以上、好ましくは6時間以上、より好ましくは12時間以上とするのがよい。
As a heating method, a wide range of conventional methods can be used without any limitation. As a particularly effective method, there is a heating method using a dryer that employs a method utilizing the contact pressure of a roll as a pressurizing method.
In addition, when a hot press is employ | adopted as a pressurization method, it is possible to heat simultaneously. There is no particular limitation on the heating time, but it should be at least 1 hour, preferably 6 hours or more, more preferably 12 hours or more.

本発明における加熱の目的が超高分子量ポリエチレンを一部溶融させ、結晶構造を変化させることを目的としている。従って、加熱温度は、少なくとも超高分子量ポリエチレンの溶融温度付近とすることが好ましい。そのため、加熱温度は、少なくとも120〜170℃、好ましくは130〜160℃、より好ましくは152℃とする。   The purpose of heating in the present invention is to partially melt ultrahigh molecular weight polyethylene and change the crystal structure. Therefore, it is preferable that the heating temperature is at least near the melting temperature of ultra high molecular weight polyethylene. Therefore, the heating temperature is at least 120 to 170 ° C, preferably 130 to 160 ° C, more preferably 152 ° C.

ホットプレスを用いた場合の処理方法の一例を説明する。
超高分子量ポリエチレンフィルム(例えば、作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名))を2枚の保護フィルムの間に挟み、ホットプレス(例えば、テスター産業株式会社製、SA401高精度ホットプレス)を用いて、処理圧力1563〜6250kPa、処理温度130〜150℃、処理時間1〜12時間とし、加圧加熱処理を行う。ここで用いる保護フィルムに特に制限は無いが、保護フィルムの種類としては、処理温度において形状変化を生じず、表面平滑性が高く、処理後超高分子量ポリエチレンフィルムとの剥離が容易であることが好ましく、特にPETフィルム(例えば、東レ株式会社製、ルミラー(製品名))を用いるのが好ましい。
An example of a processing method when using a hot press will be described.
An ultra-high molecular weight polyethylene film (for example, Saxin New Light Film Innovate (product name) manufactured by Sakushin Kogyo Co., Ltd.) is sandwiched between two protective films, and hot press (for example, Tester Sangyo Co., Ltd., SA401 high precision Using a hot press, a pressure and heat treatment are performed at a processing pressure of 1563 to 6250 kPa, a processing temperature of 130 to 150 ° C., and a processing time of 1 to 12 hours. Although there is no restriction | limiting in particular in the protective film used here, As a kind of protective film, it does not produce a shape change in processing temperature, surface smoothness is high, and it is easy to peel from the ultra high molecular weight polyethylene film after a process. In particular, it is preferable to use a PET film (for example, Lumirror (product name) manufactured by Toray Industries, Inc.).

ロールの接触圧を利用する場合の処理方法の一例を説明する。
超高分子量ポリエチレンフィルム(例えば、作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名))を保護フィルムと共にロールに巻き取る。巻取り速度に特に制限は無く、接触圧は少なくとも熱処理時に膜が収縮しない程度であればよい。保護フィルムに特に制限は無いが、保護フィルムとしては加熱温度において形状変化を生じず、表面平滑性が高く、処理後超高分子量ポリエチレンフィルムとの剥離が容易であることが好ましく、特にPETフィルム(例えば、東レ株式会社製、ルミラー(製品名))を用いるのが好ましい。また、巻取りに使用するロールの芯としては特に制限は無いが、処理温度において形状変化を起こさない物質であり、接触圧による形状変化も起こさず、表面平滑性が高いことが好ましく、特に鉄等の金属を用いるのが好ましい。ロールに巻き取られたフィルムは接触圧を維持したまま、乾燥機に入れ加熱する。乾燥機の温度は130〜160℃とし、1〜12時間加熱した後、乾燥機よりロールを取り出し、自然冷却をした。
An example of a processing method when using the contact pressure of the roll will be described.
An ultrahigh molecular weight polyethylene film (for example, Saxin New Light Film Innovate (product name) manufactured by Sakushin Kogyo Co., Ltd.) is wound on a roll together with a protective film. The winding speed is not particularly limited, and the contact pressure may be at least as long as the film does not shrink during heat treatment. Although there is no restriction | limiting in particular in a protective film, As a protective film, it does not produce a shape change in heating temperature, It is preferable that surface smoothness is high and peeling with an ultrahigh molecular weight polyethylene film after a process is easy, especially PET film ( For example, it is preferable to use Lumirror (product name) manufactured by Toray Industries, Inc. Further, the core of the roll used for winding is not particularly limited, but it is a substance that does not cause a change in shape at the processing temperature, does not cause a change in shape due to contact pressure, and preferably has a high surface smoothness. It is preferable to use a metal such as The film wound up on the roll is heated in a drier while maintaining the contact pressure. The temperature of the dryer was 130 to 160 ° C., and after heating for 1 to 12 hours, the roll was taken out of the dryer and naturally cooled.

以下、本発明の改良された陽イオン交換膜及びその製造方法を実施例に基づいてさらに詳細に説明する。   Hereinafter, the improved cation exchange membrane of the present invention and the production method thereof will be described in more detail based on examples.

(実施例1)
分子量160万、膜厚30μmの超高分子量ポリエチレンフィルム(作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名))縦150mm×横150mmを、2枚のPETフィルム(膜厚50μm)の間に挟み、ホットプレス(テスター産業株式会社製、SA401高精度ホットプレス)を用いて、処理圧力1563kPa、処理温度130℃、処理時間1.5時間とし、加圧加熱処理を行った。
Example 1
Ultra high molecular weight polyethylene film with a molecular weight of 1,600,000 and a film thickness of 30 μm (Sakushin Kogyo Co., Ltd., Saxin New Light Film Innovate (product name)) 150 mm long by 150 mm wide between two PET films (film thickness 50 μm) Then, using a hot press (SA401 high-precision hot press manufactured by Tester Sangyo Co., Ltd.), the heat treatment was performed under a processing pressure of 1563 kPa, a processing temperature of 130 ° C., and a processing time of 1.5 hours.

処理により得られたフィルムを酸素不透過性フィルム袋(旭化成パックス株式会社製飛龍(製品名))中に挿入後、この袋内を窒素置換し、袋内の酸素を除去する。次いでこの基材を含む袋に電子線を25℃、加速電圧250keV、電子線電流32.7mAで、50kGy照射した。次いで、照射済み基材を大気中で取り出し、ガラス容器に移し替えた後、該容器を高純度窒素によりバブリングし、予め酸素ガスを除いたスチレンの40重量%キシレン溶液を充填した。充填後、50℃で75minグラフト重合した後、膜をガラス容器より取り出し、メタノールで洗浄し、風乾した。グラフト率は33%であった。   The film obtained by the treatment is inserted into an oxygen-impermeable film bag (Hiryu (product name) manufactured by Asahi Kasei Packs Co., Ltd.), and then the inside of the bag is replaced with nitrogen to remove oxygen in the bag. Next, the bag containing the substrate was irradiated with an electron beam at 25 ° C., an acceleration voltage of 250 keV, and an electron beam current of 32.7 mA at 50 kGy. Next, after the irradiated base material was taken out in the atmosphere and transferred to a glass container, the container was bubbled with high-purity nitrogen and filled with a 40 wt% xylene solution of styrene excluding oxygen gas in advance. After filling, graft polymerization was performed at 50 ° C. for 75 minutes, and then the membrane was taken out of the glass container, washed with methanol, and air-dried. The graft rate was 33%.

このグラフト反応後の高分子基材を、1,2−ジクロロエタンを溶媒とする濃度10重量%のクロロスルホン酸溶液に室温で24時間浸漬した後、膜を十分に水洗した。その後、濃度10重量%の水酸化ナトリウム水溶液に24時間浸漬した。得られた陽イオン交換膜はよく水洗し、0.5N−NaCl水溶液中に保存した。合成した膜の膜厚は54μmであった。得られた陽イオン交換膜の破裂強度はミューレン式破裂強度試験機により測定した。   The polymer substrate after the graft reaction was immersed in a chlorosulfonic acid solution having a concentration of 10% by weight using 1,2-dichloroethane as a solvent at room temperature for 24 hours, and the membrane was then thoroughly washed with water. Thereafter, it was immersed in an aqueous solution of sodium hydroxide having a concentration of 10% by weight for 24 hours. The obtained cation exchange membrane was thoroughly washed with water and stored in 0.5N-NaCl aqueous solution. The film thickness of the synthesized film was 54 μm. The rupture strength of the obtained cation exchange membrane was measured with a Murren burst strength tester.

さらに、該陽イオン交換膜と市販の陰イオン交換膜(旭硝子(株)ASA)を小型電気透析装置(膜面積8cm)に装着し、濃縮試験を実施した。脱塩室流速は6cm/s、電流密度3A/dmの濃縮条件で、供給液は0.5Mの塩化ナトリウム水溶液を用いた。 Further, the cation exchange membrane and a commercially available anion exchange membrane (Asahi Glass Co., Ltd. ASA) were mounted on a small electrodialysis apparatus (membrane area 8 cm 2 ), and a concentration test was performed. The demineralization chamber flow rate was 6 cm / s and the current density was 3 A / dm 2 , and the feed solution was a 0.5 M sodium chloride aqueous solution.

(実施例2〜4)
ホットプレスについて処理圧力及び処理温度を第1表に示すように、実施例1と異なる条件として、実施例1と同じ材料の超高分子量ポリエチレンフィルムを改質し、それらより製造された陽イオン交換膜を実施例2〜4とする。実施例1にあわせ、膜特性を第1表に示す。
(Examples 2 to 4)
As shown in Table 1, the processing pressure and the processing temperature for hot press were modified under the same conditions as in Example 1 and the ultrahigh molecular weight polyethylene film made of the same material as in Example 1 was modified. The membrane is referred to as Examples 2-4. In accordance with Example 1, the film properties are shown in Table 1.

(実施例5)
分子量160万、膜厚30μmの超高分子量ポリエチレンフィルム(作新工業株式会社製、Saxinニューライトフィルム イノベート(製品名))縦200cm×横20cmを、PETフィルム(膜厚50μm)と共に鉄製ロール(直径100mm)の芯を用いたロールに巻き取る。サンプル巻取り後、PETフィルムを5m程度巻き接触圧を増加させ、さらに粘着性テープ等で巻き締めることにより、内部の接触圧が維持されるようにした。巻き取り速度は100cm/minとし、サンプルにかかる接触圧はいずれの部分も50kPa以上とした。また、対象フィルム巻き取り後、140℃とした乾燥機に入れ、12時間加熱した後、乾燥機よりロールを取り出し、自然冷却した。
(Example 5)
Ultra high molecular weight polyethylene film with molecular weight of 1.6 million and film thickness of 30μm (Sakushin Kogyo Co., Ltd., Saxin New Light Film Innovate (product name)) length 200cm x width 20cm, PET film (thickness 50μm) and iron roll (diameter 100 mm) is wound on a roll using a core. After winding the sample, the contact pressure of the PET film was increased by about 5 m and further tightened with an adhesive tape or the like to maintain the internal contact pressure. The winding speed was 100 cm / min, and the contact pressure applied to the sample was 50 kPa or more in any part. Moreover, after winding up an object film, it put into the dryer set to 140 degreeC, and after heating for 12 hours, the roll was taken out from the dryer and naturally cooled.

得られた基材に電子線を25℃、加速電圧250keV、電子線電流32.7mAで、50kGy照射した。次いで、照射済み基材をガラス容器に移し替えた後、該ガラス容器を高純度窒素によりバブリングし、予め酸素ガスを除いたスチレンの40重量%キシレン溶液を充填した。充填後、50℃で75minグラフト重合した後、膜をガラス容器より取り出し、メタノールで洗浄し、風乾した。グラフト率は41%であった。   The obtained substrate was irradiated with an electron beam at 25 ° C., an acceleration voltage of 250 keV, and an electron beam current of 32.7 mA at 50 kGy. Next, after the irradiated substrate was transferred to a glass container, the glass container was bubbled with high-purity nitrogen and filled with a 40% by weight xylene solution of styrene excluding oxygen gas in advance. After filling, graft polymerization was performed at 50 ° C. for 75 minutes, and then the membrane was taken out of the glass container, washed with methanol, and air-dried. The graft rate was 41%.

該グラフト反応後の高分子基材を、1,2−ジクロロエタンを溶媒とする濃度10重量%のクロロスルホン酸溶液に、室温で24時間浸漬した後、膜を十分に水洗した。その後、濃度10重量%の水酸化ナトリウム水溶液に24時間浸漬した。得られた陽イオン交換膜はよく水洗し、0.5N−NaCl水溶液中に保存した。合成した膜の膜厚は41μmであった。得られた陽イオン交換膜の破裂強度はミューレン式破裂強度試験機により測定した。   The polymer base material after the graft reaction was immersed in a chlorosulfonic acid solution having a concentration of 10% by weight using 1,2-dichloroethane as a solvent at room temperature for 24 hours, and the membrane was then thoroughly washed with water. Thereafter, it was immersed in an aqueous solution of sodium hydroxide having a concentration of 10% by weight for 24 hours. The obtained cation exchange membrane was thoroughly washed with water and stored in 0.5N-NaCl aqueous solution. The film thickness of the synthesized film was 41 μm. The rupture strength of the obtained cation exchange membrane was measured with a Murren burst strength tester.

さらに、該陽イオン交換膜と市販の陰イオン交換膜(旭硝子(株)ASA)を小型電気透析装置(膜面積8cm)に装着し、濃縮試験を実施した。脱塩室流速は6cm/s、電流密度3A/dmの濃縮条件で供給液は0.5Mの塩化ナトリウム水溶液を用いた。 Further, the cation exchange membrane and a commercially available anion exchange membrane (Asahi Glass Co., Ltd. ASA) were mounted on a small electrodialysis apparatus (membrane area 8 cm 2 ), and a concentration test was performed. A 0.5 M sodium chloride aqueous solution was used as the feed solution under the concentration conditions of a desalting chamber flow rate of 6 cm / s and a current density of 3 A / dm 2 .

(実施例6〜20)
ロールによる熱処理について処理圧力、処理温度、処理時間及び合成条件を第1表に示すように、実施例5と異なる条件として、実施例5と同じ材料の超高分子量ポリエチレンフィルムを改質し、それらより製造された陽イオン交換膜を実施例6〜20とする。
後記するように、改質しない超高分子量ポリエチレンフィルムにより製造された陽イオン交換膜を比較例1、市販膜を比較例2とし、実施例5にあわせ、膜特性を第1表に示す。
(Examples 6 to 20)
As shown in Table 1, the treatment pressure, treatment temperature, treatment time, and synthesis conditions for the rolls were modified as conditions different from Example 5, and the ultrahigh molecular weight polyethylene film made of the same material as Example 5 was modified. The cation exchange membrane manufactured by this is made into Examples 6-20.
As will be described later, the cation exchange membrane produced from an unmodified ultra high molecular weight polyethylene film is referred to as Comparative Example 1, the commercially available membrane as Comparative Example 2, and the membrane properties are shown in Table 1 in accordance with Example 5.

(比較例1)
分子量160万、膜厚30μmの超高分子量ポリエチレンフィルムの加圧加温処理をしないもの縦150mm×横150mmの試料を酸素不透過性ポリエチレン袋中に挿入後、この袋内を窒素置換し、袋内の酸素を除去する。次いでこの基材を含む袋に電子線を25℃、加速電圧250keV、電子線電流32.7mAで、50kGy照射した。次いで、照射済み基材を大気中で取り出し、ガラス容器に移し替えた後、該ガラス容器を高純度窒素によりバブリングし、予め酸素ガスを除いたスチレンの40重量%キシレン溶液を充填した。充填後、50℃で75minグラフト重合した後、膜をガラス容器より取り出し、メタノールで洗浄し、風乾した。グラフト率は43%であった。
(Comparative Example 1)
Non-pressurized heat treatment of ultra high molecular weight polyethylene film with molecular weight of 1.6 million and film thickness of 30 μm After inserting a 150 mm long x 150 mm wide sample into an oxygen-impermeable polyethylene bag, the inside of the bag is purged with nitrogen, Remove oxygen inside. Next, the bag containing the substrate was irradiated with an electron beam at 25 ° C., an acceleration voltage of 250 keV, and an electron beam current of 32.7 mA at 50 kGy. Next, after the irradiated base material was taken out in the atmosphere and transferred to a glass container, the glass container was bubbled with high-purity nitrogen and filled with a 40 wt% xylene solution of styrene excluding oxygen gas in advance. After filling, graft polymerization was performed at 50 ° C. for 75 minutes, and then the membrane was taken out of the glass container, washed with methanol, and air-dried. The graft rate was 43%.

該グラフト反応後の高分子基材を、1,2−ジクロロエタンを溶媒とする濃度10重量%のクロロスルホン酸溶液に、室温で24時間浸漬した後、膜を十分に水洗した。その後、濃度10重量%の水酸化ナトリウム水溶液に24時間浸漬した。得られた陽イオン交換膜はよく水洗し、0.5N−NaCl水溶液中に保存した。合成した陽イオン膜の膜厚は65μmであった。得られた陽イオン交換膜の破裂強度はミューレン式破裂強度試験機により測定した。   The polymer base material after the graft reaction was immersed in a chlorosulfonic acid solution having a concentration of 10% by weight using 1,2-dichloroethane as a solvent at room temperature for 24 hours, and the membrane was then thoroughly washed with water. Thereafter, it was immersed in an aqueous solution of sodium hydroxide having a concentration of 10% by weight for 24 hours. The obtained cation exchange membrane was thoroughly washed with water and stored in 0.5N-NaCl aqueous solution. The film thickness of the synthesized cation film was 65 μm. The rupture strength of the obtained cation exchange membrane was measured with a Murren burst strength tester.

さらに、該陽イオン交換膜と市販の陰イオン交換膜(旭硝子(株)ASA)を小型電気透析装置(膜面積8cm)に装着し、濃縮試験を実施した。脱塩室流速は6cm/s、電流密度3A/dmの濃縮条件で供給液は0.5Mの塩化ナトリウム水溶液を用いた。
実施例1〜5、比較例1とあわせ、現在製塩用陽イオン交換膜として使用されている膜(旭硝子(株)CSO)を比較例2とし、その合成条件及び膜特性を第1表に示す。
Further, the cation exchange membrane and a commercially available anion exchange membrane (Asahi Glass Co., Ltd. ASA) were mounted on a small electrodialysis apparatus (membrane area 8 cm 2 ), and a concentration test was performed. A 0.5 M sodium chloride aqueous solution was used as the feed solution under the concentration conditions of a desalting chamber flow rate of 6 cm / s and a current density of 3 A / dm 2 .
In combination with Examples 1 to 5 and Comparative Example 1, a membrane (Asahi Glass Co., Ltd. CSO) currently used as a cation exchange membrane for salt production is referred to as Comparative Example 2, and its synthesis conditions and membrane characteristics are shown in Table 1. .

Figure 0005140861
Figure 0005140861

また、濃縮試験の結果として膜抵抗と濃縮液の塩化ナトリウム濃度との関係を図1に示す。図1に示したとおり、本発明に従って製造したいずれの陽イオン交換膜についても、加熱加圧処理未実施の膜及び市販されている陽イオン交換膜と比較し高い濃縮性能を示した。なお、図1中に示した直線は、市販イオン交換膜と同等の濃縮性能を示す直線であり、直線より上部に示される膜性能はすべて市販膜より高い濃縮性能であるといえる。さらに、同程度のかん水濃度である場合、低抵抗であるほうが高い濃縮性能であるといえる。   Further, FIG. 1 shows the relationship between the membrane resistance and the concentration of sodium chloride in the concentrated solution as a result of the concentration test. As shown in FIG. 1, any cation exchange membrane produced according to the present invention showed high concentration performance as compared with a membrane not subjected to heat and pressure treatment and a commercially available cation exchange membrane. In addition, the straight line shown in FIG. 1 is a straight line which shows the concentration performance equivalent to a commercially available ion exchange membrane, and it can be said that all the membrane performance shown above a straight line is higher concentration performance than a commercial membrane. Furthermore, it can be said that the lower the resistance, the higher the concentration performance when the water concentration is comparable.

本発明の製塩用陽イオン交換膜は、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させることが可能となり、長期にわたって安定して運転できるので、製塩コストの低減に寄与できる。   The cation exchange membrane for salt production of the present invention can improve the concentration performance without increasing the electrical resistance and can be stably operated over a long period of time, compared with a conventionally used membrane. It can contribute to the reduction.

Claims (5)

高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜において、該高分子フィルム基材として、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより得られるフィルムを用いることを特徴とする製塩用陽イオン交換膜。   In the cation exchange membrane formed by binding a cation exchange group to a polymer film substrate, as the polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, and the heating conditions A salt-forming cation exchange membrane, wherein a film obtained by pressing in the thickness direction to such an extent that the film does not shrink below is used. 前記の加圧条件下で加熱処理を、130〜170℃の温度で、50kPa以上の圧力で行うことを特徴とする請求項1記載の製塩用陽イオン交換膜。   2. The cation exchange membrane for salt production according to claim 1, wherein the heat treatment is performed at a temperature of 130 to 170 ° C. and a pressure of 50 kPa or more under the pressure condition. 超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより処理したフィルムに、電離放射線を照射することにより、該フィルム中にラジカルを発生させ、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、その後陽イオン交換基を導入することにより得られることを特徴とする製塩用陽イオン交換膜。 By heating the ultrahigh molecular weight polyethylene film to near the melting point and partially melting it, and irradiating the film treated by pressurizing in the thickness direction to such an extent that the film does not shrink under the heating condition, Graft polymerization using a polymerizable monomer having a functional group capable of generating a radical in the film and introducing a cation exchange group, or a polymerizable mixture of the polymerizable monomer and the crosslinkable monomer. gastric row, salt production for cation exchange membrane then characterized in that it is obtained by introducing a cation exchange group. 高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜の製造方法において、該高分子フィルム基材として、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより得られるフィルムを用いることを特徴とする製塩用陽イオン交換膜の製造方法。   In the method for producing a cation exchange membrane in which a cation exchange group is bonded to a polymer film substrate, as the polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, A method for producing a cation exchange membrane for salt production, comprising using a film obtained by pressurizing in the thickness direction to such an extent that the film does not shrink under heating conditions. 高分子フィルム基材に陽イオン交換基を結合させてなる陽イオン交換膜の製造方法において、超高分子量ポリエチレンフィルムを融点付近まで加温し一部溶融させ、前記加温条件下で前記フィルムが収縮しない程度に厚み方向に加圧することにより処理し、該処理をしたフィルムに、電離放射線を照射することにより、該フィルム中にラジカルを発生させ、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行い、その後陽イオン交換基を導入することを特徴とする製塩用陽イオン交換膜の製造方法。 In a method for producing a cation exchange membrane in which a cation exchange group is bonded to a polymer film substrate, an ultrahigh molecular weight polyethylene film is heated to near the melting point and partially melted, and the film is heated under the heating condition. It has a functional group capable of introducing a cation exchange group by generating a radical in the film by irradiating ionizing radiation to the treated film by applying pressure in the thickness direction so as not to shrink. polymerizable monomer alone or the polymerizable have rows graft polymerization using a polymerizable mixture of monomers and a crosslinking monomer, salt production for cations thereafter and introducing a cation exchange group An exchange membrane manufacturing method.
JP2009067821A 2008-03-28 2009-03-19 Cation exchange membrane for salt production and method for producing the same Active JP5140861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067821A JP5140861B2 (en) 2008-03-28 2009-03-19 Cation exchange membrane for salt production and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008086492 2008-03-28
JP2008086492 2008-03-28
JP2009067821A JP5140861B2 (en) 2008-03-28 2009-03-19 Cation exchange membrane for salt production and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009256638A JP2009256638A (en) 2009-11-05
JP5140861B2 true JP5140861B2 (en) 2013-02-13

Family

ID=41384440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067821A Active JP5140861B2 (en) 2008-03-28 2009-03-19 Cation exchange membrane for salt production and method for producing the same

Country Status (1)

Country Link
JP (1) JP5140861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227801A (en) * 2009-03-26 2010-10-14 Solt Industry Center Of Japan Solid-state cation exchanger and method for producing the same
JP5626684B2 (en) * 2011-03-23 2014-11-19 公益財団法人 塩事業センター Monovalent anion selective permeation anion exchange membrane for salt production and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576620B2 (en) * 2003-08-28 2010-11-10 独立行政法人 日本原子力研究開発機構 Method for producing nanostructure control polymer ion exchange membrane
JP5050285B2 (en) * 2007-03-14 2012-10-17 財団法人塩事業センター Anion exchange membrane for salt production and method for producing the same
JP5050284B2 (en) * 2007-03-14 2012-10-17 財団法人塩事業センター Cation exchange membrane for salt production and method for producing the same

Also Published As

Publication number Publication date
JP2009256638A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5050285B2 (en) Anion exchange membrane for salt production and method for producing the same
JP5196242B2 (en) Anion exchange membrane and method for producing the same
JP5196234B2 (en) Anion exchange membrane and method for producing the same
JP7461933B2 (en) Ion exchange membranes by UV-initiated polymerization
US7674349B2 (en) Method for continuous production of a functional film
JP5579365B2 (en) Anion exchange membrane and method for producing the same
JP5697687B2 (en) Curable composition and film
US20180008936A1 (en) Curable Compositions and Membranes
Golubenko et al. New approach to the preparation of grafted ion exchange membranes based on UV-oxidized polymer films and sulfonated polystyrene
KR20080086489A (en) Hydrophilic composite microporous membrane and method for producing same
EP3322748B1 (en) Ion exchange membranes
JP5140861B2 (en) Cation exchange membrane for salt production and method for producing the same
JP5120543B2 (en) Cation exchange membrane and method for producing the same
JP2009173828A (en) Cation exchange membrane, and method for producing the same
JP5050284B2 (en) Cation exchange membrane for salt production and method for producing the same
CN107849274B (en) Ion exchange membrane
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
JP5626684B2 (en) Monovalent anion selective permeation anion exchange membrane for salt production and method for producing the same
JP4794028B2 (en) Functional polytetrafluoroethylene resin and method for producing the same
JP2018057987A (en) Composite anion exchange membrane and manufacturing method therefor, ion exchange membrane module, and ion exchange device
JP2006241618A (en) Continuous radiation graft polymerization method of organic polymer composite material
JP6665418B2 (en) Method for producing electrolyte membrane
KR20220161302A (en) Anion exchange membrane and manufacturing method thereof
JP2009126971A (en) Cation exchange and anion exchange membrane, and method of manufacturing them
JP3907459B2 (en) Electric regenerative deionizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5140861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250