JP2008251241A - 固体酸化物形燃料電池及びそのスタック構造 - Google Patents

固体酸化物形燃料電池及びそのスタック構造 Download PDF

Info

Publication number
JP2008251241A
JP2008251241A JP2007088499A JP2007088499A JP2008251241A JP 2008251241 A JP2008251241 A JP 2008251241A JP 2007088499 A JP2007088499 A JP 2007088499A JP 2007088499 A JP2007088499 A JP 2007088499A JP 2008251241 A JP2008251241 A JP 2008251241A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
solid oxide
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007088499A
Other languages
English (en)
Other versions
JP5114999B2 (ja
Inventor
Kazufumi Kotani
和史 小谷
Kuniaki Yoshikata
邦聡 芳片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007088499A priority Critical patent/JP5114999B2/ja
Publication of JP2008251241A publication Critical patent/JP2008251241A/ja
Application granted granted Critical
Publication of JP5114999B2 publication Critical patent/JP5114999B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】導電性を有する固定部材を使用することのできる固体酸化物形燃料電池及びそのスタック構造を提供する。
【解決手段】導電性を有し、少なくとも一つの貫通孔が形成された多孔質基板2と、基板2上に形成された燃料極3と、燃料極3を覆い、さらに基板2の貫通孔21の内壁面を覆うように形成された電解質4と、電解質4上に形成され、電解質4上における貫通孔21の形成されていない領域に配置された空気極5と、を備えている。
【選択図】図1

Description

本発明は、固体酸化物形燃料電池及びそのスタック構造に関するものである。
燃料電池とは外部からの燃料供給と燃焼生成物の排気とを連続的に行いながら、燃料が酸化する際に発生する化学エネルギーを電気エネルギーに直接変換できる電池である。このような燃料電池は、複数の燃料電池をスタック化することで、その出力の向上を図っている。例えば、特許文献1には、空気極を基板とした単セルを複数積層したスタック構造が開示されている。このスタック構造では、空気極基板に形成された固定用の穴にボルト等の固定部材を通してナットを締め付けることによって、積層された単セルを固定している。
特開平6−325779号公報
しかしながら、上記スタック構造では、導電性材料のボルトを使用すると、ボルトを介して各単セルの空気極同士が短絡してしまう。このため、絶縁性のボルトを使用する必要があるが、一般的に絶縁性を有する材料からなるボルトは、金属などの導電性を有する材料と比較して強度面で劣るものが多く、材料選択の幅が狭まるという問題があった。
そこで、本発明は、導電性を有する固定部材を使用することのできる固体酸化物形燃料電池及びそのスタック構造を提供することを課題とする。
本発明に係る固体酸化物形燃料電池は、上記課題を解決するためになされたものであり、導電性を有し、少なくとも一つの貫通孔が形成された多孔質基板と、前記基板上に形成された、燃料極あるいは空気極のどちらか一方の電極と、前記一方の電極を覆い、さらに前記基板の貫通孔の内壁面を覆うように形成された電解質と、前記電解質上に形成され、前記電解質上における前記貫通孔の形成されていない領域に配置された他方の電極と、を備えている。
このように構成することで、以下のような効果を得ることができる。すなわち、上記燃料電池は、通常、その出力向上のために複数の燃料電池がスタック化されて使用される。具体的には、積層された各燃料電池の基板に形成された貫通孔内にボルトなどの固定部材を通し、ナットなどで締め付けられることにより、複数の燃料電池は積層された状態で固定されてスタック化される。このとき、固定部材は貫通孔の内壁面と接触するが、この貫通孔の内壁面は絶縁性の電解質によって覆われている。このため、固定部材が導電性を有していても、各燃料電池の一方の電極同士が各基板から固定部材を介して短絡してしまうといったことを防止することができる。よって、導電性を有する材料から構成された固体部材を使用することが可能となり、固定部材の材料選択の幅を広げることができる。
上記燃料電池は種々の構成をとることができるが、例えば、上記基板の貫通孔の内壁面は、一旦、一方の電極で覆った後に、その上から電解質で覆うように構成することもできる。このように構成することで、反応場である一方の電極と電解質との接触面積を大きくすることができ、出力の向上を図ることができる。
また、本発明に係る固体酸化物形燃料電池のスタック構造は、上記課題を解決するためになされたものであり、上記いずれかの複数の固体酸化物形燃料電池であって、隣接する固体酸化物形燃料電池における一方及び他方の電極が対向し、且つ前記各基板の貫通孔が積層方向に整列するように配置された固体酸化物形燃料電池と、前記各燃料電池の基板における貫通孔内を延び、前記複数の固体酸化物形燃料電池を締結する固定部材と、を備えている。
このように、上記燃料電池のスタック構造は、各貫通孔内を延びる固定部材によって固定されている。そして、この固定部材が接触する貫通孔の内壁面は絶縁性を有する電解質によって覆われているため、固定部材が導電性を有していても、各燃料電池の一方の電極同士が基板から固定部材を介して短絡することを防止することができる。したがって、導電性の固定部材を使用することが可能となり、固定部材の材料選択の幅を広げることができる。
なお、上記「貫通孔の形成されていない領域」とは、ボルトなどの固定部材を貫通孔に通した際に、他方の電極が固定部材と接触しないような領域のことをいう。
本発明によれば、導電性を有する固定部材を使用することのできる固体酸化物形燃料電池及びそのスタック構造を提供することができる。
以下、本発明に係る固体酸化物形燃料電池およびそのスタック構造の実施形態を添付図面に従って説明する。図1は、本実施形態に係る固体酸化物形燃料電池の平面図(a)及びこの平面図(a)のA−A線断面図(b)である。
図1に示すように、本実施形態に係る固体酸化物形燃料電池1は、導電性を有する平面視矩形状の多孔質基板2を備えており、この基板2上に燃料極3,電解質4及び空気極5がこの順で形成されている。基板2には、図1(a)に示すように、その厚さ方向に貫通する貫通孔21が四隅にそれぞれ形成されている。燃料極3は、基板2上に平面視矩形状で形成されており、4つの貫通孔21で囲まれた領域内に収まるような大きさ、すなわち、貫通孔21には届かないような大きさで形成されている。この燃料極3上に形成された電解質4は、平面視矩形状であって燃料極3全体を覆っている。また、電解質4は、4つの貫通孔21で囲まれた領域まで延びるような大きさを有しており、貫通孔21の内壁面を覆っている(図1(b))。このように内壁面が電解質4で覆われた貫通孔21は、後述するボルト6が挿通するような寸法に形成されている。空気極5は、電解質4上で燃料極3とほぼ同じ大きさの平面視矩形状に形成されている。また、空気極5は、燃料極3と同様、貫通孔21には届かないように形成されている。
次に、上記燃料電池1を構成する材料について説明する。
多孔質基板2は、ガス透過性及びその強度を考慮すると、その気孔率が20〜60%の範囲にあることが好ましい。このように、気孔率を20%以上とすることで、ガス透過性を確保することができる一方、気孔率を60%以下とすることで、基板2と燃料極3との接着面積を確保し、基板2と燃料極3との剥離をより確実に防止することができる。このような要求を満たすため、基板2を構成する材料は、Fe、Ti、Cr、Cu、Ni、Ag、Au、Pt等の導電性金属を用いることが出来、1種を単独で使用してもよいし、2種以上を混合してもよく、例えばステンレス系耐熱材料などが使用出来、具体的には、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、インコネルやハステロイなどのニッケル基の耐熱合金などを用いることができる。
燃料極3及び空気極5は、セラミックス粉末材料により形成することができる。このとき用いられる粉末の平均粒径は、好ましくは10nm〜100μmであり、さらに好ましくは50nm〜50μmであり、特に好ましくは100nm〜10μmである。なお、平均粒径は、例えば、JISZ8901にしたがって計測することができる。
燃料極3は、例えば、金属触媒と酸化物イオン導電体からなるセラミックス粉末材料との混合物を用いることができる。このとき用いられる金属触媒としては、ニッケル、鉄、コバルトや、貴金属(白金、ルテニウム、パラジウム等)等の還元性雰囲気中で安定で、水素酸化活性を有する材料を用いることができる。また、酸化物イオン導電体としては、蛍石型構造又はペロブスカイト型構造を有するものを好ましく用いることができる。蛍石型構造を有するものとしては、例えばサマリウムやガドリニウム等をドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などを挙げることができる。また、ペロブスカイト型構造を有するものとしてはストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物を挙げることができる。上記材料の中では、酸化物イオン導電体とニッケルとの混合物で、燃料極3を形成することが好ましい。なお、酸化物イオン導電体からなるセラミックス材料とニッケルとの混合形態は、物理的な混合形態であってもよいし、ニッケルへの粉末修飾またはセラミックス材料へのニッケル修飾などの形態であってもよい。また、上述したセラミックス材料は、1種類を単独で、或いは2種類以上を混合して使用することができる。また、燃料極3は、金属触媒を単体で用いて構成することもできる。
空気極5を形成するセラミックス粉末材料としては、例えば、ペロブスカイト型構造等を有するCo,Fe,Ni,Cr又はMn等からなる金属酸化物を用いることができる。具体的には(Sm,Sr)CoO,(La,Sr)MnO,(La,Sr)CoO,(La,Sr)(Fe,Co)O,(La,Sr)(Fe,Co,Ni)Oなどの酸化物が挙げられ、好ましくは、(La,Sr)(Fe,Co)Oである。上述したセラミックス材料は、1種を単独で、或いは2種以上を混合して使用することができる。
電解質4の材料としては、固体酸化物形燃料電池の電解質として公知のものを使用することができ、例えば、サマリウムやガドリニウム等をドープしたセリア系酸化物(GDC)、ストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物(YSZ)などの酸素イオン伝導性セラミックス材料を用いることができる。
上記燃料極3、電解質4は、例えばドライコーティング法によって形成することができる。ドライコーティング法としては、例えば、スパッタリング法を例示することができる。スパッタリング法を使用した場合、基板2をスパッタリング装置の基板ホルダーに設置し、成膜材料として、燃料極或いは電解質材料をバッフルプレート上に載置し、真空ポンプを用いて、チャンバー内を到達真空度3×10−4Paまで減圧した後、金属基板を700℃まで加熱し、導入管からチャンバー内へアルゴンガス(1slm)を導入すると共に、導入管からチャンバー内へ、それぞれ酸素(0.5slm)を導入する。続いて、パルス直流電源により成膜材料に2kWの電力を印加して成膜材料を拡散させ、所定の厚みになるまで成膜を行う。なお、成膜時の雰囲気圧は1Paに設定する。
空気極5は、例えば、スクリーン印刷によって形成することができるが、この場合、上述した材料を主成分として、さらにバインダー樹脂、有機溶媒などが適量加えられることにより形成される。より詳細には、上記主成分とバインダー樹脂との混合において、上記主成分が50〜95重量%となるように、バインダー樹脂等を加えることが好ましい。
次に、上述した燃料電池1の製造方法について図2を参照しつつ説明する。図2は、燃料電池1の製造方法を示す説明図である。
まず、上述した材料からなる多孔質基板2を準備する(図2(a))。
この基板2上に上述したドライコーティング法によって、基板2をその下面と貫通孔を除いて覆うように燃料極3を形成する(図2(b))。
続いて、基板2の貫通孔の内壁面および燃料極3によって覆われた基板2をさらにその上から覆うように、上記と同様の手法によって緻密質電解質4を形成する(図2(c))。
続いて、電解質4上に、空気極ペーストをスクリーン印刷法によって塗布し、所定時間及び温度で乾燥・焼結することにより空気極5を形成する。以上の工程により、固体酸化物形燃料電池1が形成される(図2(d))。
また、上記実施形態では、燃料極3、電解質4の成膜法としてスパッタリング法、空気極の成膜法としてスクリーン印刷法を用いているが、これに限定されるものではなく、ドクターブレード法、スプレーコート法、スピンコート法、電気泳動法、ゾルーゲル法、CVD,EVD,スパッタリング法、転写法等の印刷方法等、その他一般的な印刷法を用いることができる。また、印刷後の後工程として、CIP(静水圧プレス)、HIP(熱間静水圧プレス)、ホットプレス、その他の一般的なプレス工程を用いることができる。
次に上述した固体酸化物形燃料電池1を使用したスタック構造10について図面を参照しつつ説明する。図3は、本実施形態に係る固体酸化物形燃料電池のスタック構造の平面図(a)及びその平面図(a)のA−A線断面図(b)である。
図3に示すように、固体酸化物形燃料電池のスタック構造10は、4つの燃料電池1を備えている。各燃料電池1は、空気極5が上方を向くように配置されるとともに、各基板2の4つの貫通孔21が他の基板2の対応する各貫通孔21と上下方向(積層方向)に整列するように配置されている。そして、この上下方向に整列された貫通孔21内をボルト(固定部材)6が延びており、最下部に位置する燃料電池1の基板2の下面側からナット7を締め付けることによって、4つの燃料電池1を積層した状態で固定している。この積層された燃料電池1は、基板2が導電性を有しているため電気的に直列に接続されている。貫通孔21内を延びるボルト6は、貫通孔21の内壁面が電解質4によって覆われているため、基板2と直接接触していない。また、ボルト6は、空気極5が貫通孔21まで届かないような大きさで形成されているため、空気極とも接触していない。上記ボルト6の材質は、導電性の材料を使用することができ、例えば、強度や熱膨張の観点から基板と同種の材料を使用することが好ましく、Fe、Ti、Cr、Cu、Ni、Ag、Au、Pe等の導電性金属を用いることが出来、1種を単独で使用してもよいし、2種以上を混合してもよく、例えばステンレス系耐熱材料などが使用出来、具体的には、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、インコネルやハステロイなどのニッケル基の耐熱合金などを用いることができる。
以上のように構成された燃料電池のスタック構造10は、次のようにして発電が行われる。まず、燃料電池のスタック構造10を密閉された空間内に収容し、その空間内に、水素やメタン、エタンなどの炭化水素からなる燃料ガスと空気等の酸化剤ガスとの混合ガスを、高温の状態(例えば、400〜1000℃)で導入する。すると、各燃料電池1の空気極5は露出しているために混合ガスが直接接触する。また、燃料極3は、電解質4によって覆われているため、多孔質の基板2を介して混合ガスが接触する。こうして、各燃料電池1の燃料極3及び空気極5がそれぞれ混合ガスと接触するため、各燃料電池1における燃料極3と空気極5との間で、電解質4を介した酸素イオン伝導が起こり、発電が行われる。
以上のように、本実施形態によれば、各基板2の貫通孔21の内壁面が絶縁性の電解質4によって覆われているため、導電性を有する材料からなるボルト6を使用しても、ボルト6と基板2とは電気的に接続しない。このため、各燃料極3同士が、基板2及びボルト6を介して短絡するおそれがない。したがって、導電性を有するボルト6を使用することが可能となり、ボルト6の材料選択の幅を広げることができる。
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記実施形態では、単室型の固体酸化物形燃料電池1として説明したが、二室型の固体酸化物形燃料電池1として使用することもできる。この場合は、図4に示すように、各燃料電池1間にセパレータ8を配置することによって、各燃料電池1を隔離する。このセパレータ8は、上面に第1ガス流路81が、下面に第2ガス流路82が形成されており、基板2の貫通孔21と対向する位置に貫通孔83が形成されている。そして、このように構成された二室型の固体酸化物形燃料電池のスタック構造20では、次のようにして発電が行われる。すなわち、各セパレータ8の第1ガス流路81に燃料ガスを高温の状態で供給して、多孔質の基板2を介して燃料極3に燃料ガスを接触させる。また、各セパレータ8の第2ガス流路82には酸化剤ガスを高温の状態で供給して、空気極5に酸化剤ガスを接触させる。このように各燃料電池1の燃料極3に燃料ガス、空気極5に酸化剤ガスを接触させることで、各燃料電池1における燃料極3と空気極5との間で、電解質4を介した酸素イオン伝導が起こり、発電が行われる。なお、セパレータ8は、導電性を有する材料のものを使用することによって、各燃料電池1を電気的に直列に接続させることができるが、この場合は、少なくとも貫通孔83の内壁面を絶縁性材料によって覆うなどすることにより、ボルト6を介した短絡を防止している。
また、上記実施形態では、燃料極3は4つの貫通孔21で囲まれた領域内に収まるように形成されているが、図5に示すように、燃料極3が上記領域よりも大きくなるように形成されている、すなわち、燃料極3が、基板2の貫通孔21の内壁面を覆うように形成されていてもよい。この場合は、基板2の貫通孔21の内壁面をまず燃料極3が覆い、その燃料極3の上から電解質4がさらに覆うように構成されている。
また、上記実施形態では、下から基板2、燃料極3、電解質4、空気極5の順に形成されているが、燃料極3と空気極5との順番を入れ替えて、基板2,空気極5,電解質4,燃料極3の順に形成することもできる。
また、上記実施形態では、固定部材をボルト及びナットとして説明したが、特にこれに限定されるものではなく、基板2の貫通孔21内を上下方向に延びて、各燃料電池1を積層した状態で固定できるものであればよく、例えばバネ部材を使用することができる。
また、図6に示すように、2つの固定板9によって、積層された4つの燃料電池1を上下から挟むように構成することもできる。この各固定板9は、基板2の貫通孔21と対応する位置に4つの貫通孔91が形成されている。そして、この各固定板9の貫通孔91内及び基板2の貫通孔21内をボルト6が延びて、下側に配置された固定板9の下面からナット7を締め付けることで、4つの燃料電池1を積層した状態で固定している。
本発明に係る固体酸化物形燃料電池の実施形態を示す平面図(a)及びその平面図(a)のA−A線断面図である。 本実施形態に係る固体酸化物形燃料電池の製造方法を示す説明図である。 本発明に係る固体酸化物形燃料電池のスタック構造の実施形態を示す平面図(a)及びその平面図(a)のB−B線断面図である。 本発明に係る固体酸化物形燃料電池のスタック構造の他の実施形態を示す正面断面図である。 本発明に係る固体酸化物形燃料電池の他の実施形態を示す正面断面図である。 本発明に係る固体酸化物形燃料電池のスタック構造の他の実施形態を示す正面断面図である。
符号の説明
1 固体酸化物形燃料電池
2 多孔質基板
21 貫通孔
3 燃料極
4 電解質
5 空気極
6 ボルト(固定部材)
10 固体酸化物形燃料電池のスタック構造

Claims (3)

  1. 導電性を有し、少なくとも一つの貫通孔が形成された多孔質基板と、
    前記基板上に形成された、燃料極あるいは空気極のどちらか一方の電極と、
    前記一方の電極を覆い、さらに前記基板の貫通孔の内壁面を覆うように形成された電解質と、
    前記電解質上に形成され、前記電解質上における前記貫通孔の形成されていない領域に配置された他方の電極と、
    を備えた、固体酸化物形燃料電池。
  2. 前記一方の電極は、前記貫通孔の内壁面を覆うように形成されており、
    前記電解質は、前記一方の電極により覆われた貫通孔の内壁面をさらに覆うように形成されている、請求項1に記載の固体酸化物形燃料電池。
  3. 請求項1又は2に記載された複数の固体酸化物形燃料電池であって、隣接する固体酸化物形燃料電池における基板と他方の電極とが対向し、且つ前記各基板の貫通孔が積層方向に整列するように配置された固体酸化物形燃料電池と、
    前記各燃料電池の基板における貫通孔内を延び、前記複数の固体酸化物形燃料電池を締結する固定部材と、
    を備えた、固体酸化物形燃料電池のスタック構造。
JP2007088499A 2007-03-29 2007-03-29 固体酸化物形燃料電池及びそのスタック構造 Expired - Fee Related JP5114999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088499A JP5114999B2 (ja) 2007-03-29 2007-03-29 固体酸化物形燃料電池及びそのスタック構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088499A JP5114999B2 (ja) 2007-03-29 2007-03-29 固体酸化物形燃料電池及びそのスタック構造

Publications (2)

Publication Number Publication Date
JP2008251241A true JP2008251241A (ja) 2008-10-16
JP5114999B2 JP5114999B2 (ja) 2013-01-09

Family

ID=39975969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088499A Expired - Fee Related JP5114999B2 (ja) 2007-03-29 2007-03-29 固体酸化物形燃料電池及びそのスタック構造

Country Status (1)

Country Link
JP (1) JP5114999B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033617A (ja) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd 固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法
JP2016154158A (ja) * 2016-06-01 2016-08-25 大日本印刷株式会社 固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436962A (ja) * 1990-06-01 1992-02-06 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH06325779A (ja) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池のスタックおよびその作製方法
JPH06349516A (ja) * 1993-06-07 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池のスタック
JP2000243405A (ja) * 1999-02-23 2000-09-08 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池の製造方法
JP2003263995A (ja) * 2002-03-12 2003-09-19 Suzuki Motor Corp 燃料電池
JP2004259555A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 燃料電池セル及び燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436962A (ja) * 1990-06-01 1992-02-06 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH06325779A (ja) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池のスタックおよびその作製方法
JPH06349516A (ja) * 1993-06-07 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池のスタック
JP2000243405A (ja) * 1999-02-23 2000-09-08 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池の製造方法
JP2003263995A (ja) * 2002-03-12 2003-09-19 Suzuki Motor Corp 燃料電池
JP2004259555A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 燃料電池セル及び燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033617A (ja) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd 固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法
JP2016154158A (ja) * 2016-06-01 2016-08-25 大日本印刷株式会社 固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法

Also Published As

Publication number Publication date
JP5114999B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2008108647A (ja) 改質器一体型燃料電池
JP5422867B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2008066296A (ja) 電気化学装置
JP5352943B2 (ja) 固体酸化物形燃料電池、及びそのスタック構造
JP5428178B2 (ja) 固体酸化物形燃料電池の製造方法、及び積層体
JP5114999B2 (ja) 固体酸化物形燃料電池及びそのスタック構造
JP2008251382A (ja) 固体酸化物形燃料電池
JP5373668B2 (ja) 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
JP6748518B2 (ja) 電気化学反応セルの製造方法
JP5176362B2 (ja) 固体酸化物形燃料電池用構造体及びこれを用いた固体酸化物形燃料電池
JP2006019044A (ja) 固体酸化物形燃料電池
JP5217567B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2009245660A (ja) 固体酸化物形燃料電池及びその製造方法
JP5522882B2 (ja) 固体酸化物形燃料電池
JP5194943B2 (ja) 固体酸化物形燃料電池の製造方法、及びこの方法により製造された固体酸化物形燃料電池
JP5315656B2 (ja) 固体酸化物形燃料電池のスタック構造
JP5233143B2 (ja) 固体酸化物形燃料電池
JP2008010255A (ja) 電気化学装置
JP2008077887A (ja) 単室型固体酸化物形燃料電池及びそのスタック構造
JP2008047380A (ja) 単室型固体酸化物形燃料電池
JP5045024B2 (ja) 単室型固体酸化物形燃料電池及びその製造方法
JP5211531B2 (ja) 固体酸化物形燃料電池
JP2007273424A (ja) 固体酸化物形燃料電池
JP5233148B2 (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees