JP2008249360A - 表面プラズモンセンサー - Google Patents

表面プラズモンセンサー Download PDF

Info

Publication number
JP2008249360A
JP2008249360A JP2007087839A JP2007087839A JP2008249360A JP 2008249360 A JP2008249360 A JP 2008249360A JP 2007087839 A JP2007087839 A JP 2007087839A JP 2007087839 A JP2007087839 A JP 2007087839A JP 2008249360 A JP2008249360 A JP 2008249360A
Authority
JP
Japan
Prior art keywords
prism
surface plasmon
light beam
metal film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007087839A
Other languages
English (en)
Inventor
Tadahiro Matsuno
忠宏 松野
Toshihiro Mori
寿弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007087839A priority Critical patent/JP2008249360A/ja
Publication of JP2008249360A publication Critical patent/JP2008249360A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】抗体のような測定対象物質を特異的に認識する物質をセンサーに固定化することなく極めて高い感度で検出する。
【解決手段】プリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して表面プラズモンを発生させる入射角で入射させる光学系と、前記プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段および/又は該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する手段を備えてなる表面プラズモンセンサーにおいて、該不撓性膜が荷電物質であることを特徴とする。
【選択図】図1

Description

本発明は、表面プラズモンの発生を利用して試料中の物質を分析する表面プラズモンセンサーに関するものである。
金属中においては、自由電子が集団的に振動して、プラズマ波と呼ばれる粗密波が生じる。そして、金属表面に生じるこの粗密波を量子化したものは、表面プラズモンと呼ばれている。
従来、この表面プラズモンが光波によって励起される現象を利用して、試料中の物質を定量分析する表面プラズモンセンサーが種々提案されている。そして、それらの中で特に良く知られているものとして、特許文献1に記載のKretschmann配置と称される系を用いるものが挙げられる。
上記の系を用いる表面プラズモンセンサーは基本的に、プリズムと、このプリズムの一面に形成されて試料に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して種々の入射角が得られるように入射させる光学系と、上記の界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えてなるものである。
なお上述のように種々の入射角を得るためには、比較的細い光ビームを偏向させて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面で集束するように入射させてもよい。前者の場合は、光ビームの偏向にともなって出射角が変化する光ビームを、光ビームの偏向に同期移動する小さな光検出器によって検出したり、出射角の変化方向に沿って延びるエリアセンサーによって検出したりすることができる。一方後者の場合は、種々の出射角で出射した各光ビームを全て受光できる方向に延びるエリアセンサーによって検出することができる。
上記構成の表面プラズモンセンサーにおいて、P偏光(センサー面に垂直な偏光成分)の光ビームを金属膜に対して全反射角以上の特定入射角θSPで入射させると、該金属膜に接している試料中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と試料との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立すると、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、プリズムと金属膜との界面で全反射する光の強度が鋭く低下する。
この現象が生じる入射角θSPより表面プラズモンの波数が分かると、試料の誘電率が求められる。すなわち表面プラズモンの波数をKSP、表面プラズモンの角周波数をω、cを真空中の光速、εm とεs をそれぞれ金属、試料の誘電率とすると、以下の関係がある。
Figure 2008249360
試料の誘電率εs が分かれば、所定の較正曲線等に基づいて試料中の特定物質の濃度が分かるので、結局、上記反射光強度が低下する入射角θSPを知ることにより、試料中の特定物質を定量分析することができる。
また、バイオ測定等において、高感度かつ簡易な測定法として蛍光法が広く用いられている。この蛍光法は、特定波長の光により励起されて蛍光を発する検出対象物質を含むと考えられる試料に上記特定波長の励起光を照射し、そのときの蛍光を検出することによって検出対象物質の存在を確認する方法である。検出対象物質が蛍光体でない場合には、蛍光体で標識されて検出対象物質と特異的に結合する物質を試料に接触させ、その後上記と同様にして蛍光を検出することにより、この結合すなわち検出対象物質の存在を確認することも広く行われている。
図3は、上記の標識された物質を用いる蛍光法を実施するセンサーの一例を概略表示するものである。この蛍光センサーは一例として試料1に含まれる抗原2を検出するためのものであり、基板3には抗原2と特異的に結合する第一抗体4が塗布されている。そしてこの基板3上に設けられた試料保持部5の中において試料1が流され、次いで同様に蛍光体10で標識されて抗原2と特異的に結合する第二抗体6が流される。その後、基板3の表面部分に向けて光源7から励起光8が照射され、光検出器9により蛍光検出がなされる。このとき、光検出器9によって所定の蛍光が検出されれば、上記第二抗体6と抗原2との結合、すなわち試料1中における抗原2の存在を確認できることになる。
なお以上の例では、蛍光検出によって実際に存在が確認されるのは第二抗体6であるが、この第二抗体6は抗原2と結合しなければ流されてしまって基板3上に存在し得ないものであるから、この第二抗体6の存在を確認することにより、間接的に検出対象物質である抗原2の存在が確認されることとなる。
しかしながら、図4に示したような従来の蛍光センサーでは、基板と試料との界面における励起光の反射光/散乱光や、検出対象物質以外の不純物/浮遊物M等による散乱光がノイズとなるため、せっかく光検出器を高性能化しても蛍光検出におけるS/Nは向上しないのが実情であった。
これに対する解決法として、例えば非特許文献1に示されるようなエバネッセント蛍光法、つまりエバネッセント波を用いる蛍光法が提案されている。この蛍光法を実施する蛍光センサーの一例を図4に概略的に示す。なおこの図5において、図4中の構成要素と同等の構成要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、同様)。
この蛍光センサーにおいては、前述の基板3に代わるものとしてプリズム(誘電体ブロック)13が用いられ、そして光源7からの励起光8は、このプリズム13と試料1との界面で全反射する条件で、プリズム13を通して照射される。この構成においては、励起光8が上記界面で全反射するとき該界面近傍に染み出すエバネッセント波11により第二抗体6が励起される。そして蛍光検出は、試料1に対してプリズム13と反対側(図中では上方)に配された光検出器9によってなされる。
この蛍光センサーにおいては、励起光8は図中の下方に全反射するので、上方からの蛍光検出において、励起光検出成分が蛍光検出信号に対するバック・グラウンドとなってしまうことがない。またエバネッセント波11は上記界面から数百nmの領域にしか到達しないので、試料中の不純物/浮遊物Mからの散乱を殆ど無くすことができる。そのため、このエバネッセント蛍光法は、従来の蛍光法と比べて(光)ノイズを大幅に低減でき、検出対象物質を1分子単位で蛍光測定できる方法として注目されている。
また、さらに高感度で蛍光測定できるセンサーとして、図6に示すような表面プラズモン増強蛍光センサーも知られている。この表面プラズモン増強蛍光センサーは、例えば特許文献2に記載があるもので、図5の蛍光センサーと比べると基本的に、プリズム13の上に金属膜20が形成されている点が異なる。すなわち、このような金属膜20が形成されていることにより、励起光8が照射されたときこの金属膜20中に表面プラズモンが生じ、その電場増幅作用によって蛍光が増幅されるようになる。あるシミュレーションによると、その場合の蛍光強度は1000倍程度まで増幅されることも判っている。
しかし、上述のような表面プラズモン増強蛍光センサーにおいては、非特許文献2に示されているように、試料中の蛍光体と金属膜とが接近し過ぎていると、蛍光体内で励起されたエネルギーが蛍光を発生させる前に金属膜へ遷移してしまい、蛍光が生じないという現象(いわゆる金属消光)が起こり得る。
この金属消光に対処するために非特許文献2には、金属膜の上にSAM(自己組織化膜)を形成し、それにより試料中の蛍光体と金属膜とをこのSAMの厚さ以上離間させることが提案されている。なお図6でも、このSAMに番号21を付けて示してある。また非特許文献3では、この金属消光に関連して、表面プラズモンにより増強された蛍光強度の、金属膜からの距離に対する依存性が検討されている。
ところで、これまで述べてきた表面プラズモンセンサーを用いて特定の物質を検出する場合、いずれの場合においても、測定対象物質を特異的に認識する物質をセンサー基板表面に固定化する必要がある。特定の物質を特異的に認識する物質としては、抗体が例として挙げられる。抗体を固定化する方法としては、非特許文献4に記載されている物理吸着による固定化方法ならびに共有結合を形成させることによる固定化方法などが用いられる。
一般に、抗体を固定化した場合、固相−液相での反応形式となるため、反応効率が著しく低下してしまうことや、結合定数が低下してしまうことが知られている。このことから、検出感度の低下や、反応時間が長時間必要であるなどの問題がある。さらに、異なる測定対象物質に対しては、それぞれに特異的な抗体を固定化する必要があり、センサーの汎用性の向上を妨げる要因でもある。
特開平6−167443号 特許第3562912号公報 「バイオイメージングでここまで理解る」p.104-113 楠見明弘他著 羊土社 W.Knoll他、Analytical Chemistry(Anal.Chem.)75(2003) p.2610 W.Knoll他、Colloids and Surfaces. A.(Colloids Surf. A), 171(2000) p.115 「Immunoassay」p.129-163 J. P. Gosling他著 Oxford University Press
測定対象物質を特異的に認識する物質を固定化した場合、固相−液相での反応による反応効率の著しい低下や、結合定数の低下が懸念される。このことから、検出感度の低下や、反応時間が長時間必要であるなどの問題がある。さらに、異なる測定対象物質に対しては、それぞれに特異的な物質をそれぞれセンサーに固定化する必要があり、センサーの汎用性の向上を妨げる要因でもある。
本発明は上記の事情に鑑みてなされたものであり、測定対象を特異的に認識する物質をセンサー表面に固定化することなく、極めて高い感度で検出することができる表面プラズモンセンサーを提供することを目的とするものである。
本発明の第1の表面プラズモンセンサーは、プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームを前記プリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、前記プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段とを備えてなる表面プラズモンセンサーにおいて、前記不撓性膜が荷電性物質であることを特徴としている。
また、本発明の第2の表面プラズモンセンサーは、プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、前記不撓性膜が荷電性物質であることを特徴としている。
また、本発明の第3の表面プラズモンセンサーは、プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、前記プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段と、表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモン蛍光センサーにおいて、前記不撓性膜が荷電性物質であることを特徴としている。
また、前記不撓性膜としては、アニオン性物質またはカチオン性物質から選択され、ポリマーからなるものが好適に用いられる。
前記不撓性膜に荷電性物質を用いることにより、不撓性膜とは逆の荷電を有する物質を選択的にセンサー表面に濃縮することが可能となる。
ここで、上記の「不撓性」とは、表面プラズモン増強蛍光検出を普通に行っているうちに膜厚が変わってしまうほどに変形することが無い程度の剛性を備えていることを意味する。前記不撓性膜の膜厚は、10〜100nmの範囲であることが好ましい。
表面プラズモンセンサーにおいて表面プラズモンが励起されると、金属膜の表面近傍には強い電場が発生する。この電場内に分析対象物質が存在していると、全反射光強度が低下や、分析対象物質によって表面プラズモンの電場が乱されることによる散乱光の発生などの光学的変化を伴う。
上記構成を有する本発明の各表面プラズモンセンサーにおいて、金属膜の上に形成された不撓性膜を荷電物質とすることによって、不撓性膜とは逆の荷電を有する物質を選択的にセンサー表面に濃縮することが可能となる。
すなわち、静電的な相互作用を利用するので、予め測定対象物質を特異的に認識する物質を固定化することなくセンサー表面に集めることができる。これにより、捕捉反応を液層で行えるため、固相での反応と比較して反応効率が向上し、極めて高い感度で検出すること可能となるとともに、反応時間の短縮が可能となる。また、抗体などの測定対象物質を特異的に認識する物質を予め固定化する必要が無いため、センサーの汎用性の向上が可能となる。
本発明による第1の表面プラズモンセンサーは、光ビームをプリズムと金属膜との界面に対して種々の入射角が得られるように入射させる光学系と、上記界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えたことにより、全反射解消角θ SP の検出による試料分析を行なうことができる。
また、本発明による第2の表面プラズモンセンサーは、試料中の物質が表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を備えているから、この第2の表面プラズモンセンサーによれば、分析対象物質を蛍光色素等で標識しておき、上記蛍光を検出することによって免疫反応等を分析することも可能になる。
さらに、本発明の第3の表面プラズモンセンサーは、第2のプラズモンセンサーに、プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段を併せ持っており、全反射解消角θSPの検出による試料分析も行なうことが可能になる。
以下、本発明の表面プラズモンセンサーの実施形態について説明する。図1は、本発明の表面プラズモンセンサーの実施に利用される表面プラズモンセンサー(以下、単にセンサーという)を示す概略側面図である。図示の通りこのセンサーは、励起光8を発する半導体レーザ等の光源7と、上記励起光8を透過させる材料からなり、この励起光8が一端面から入射する位置に配されたプリズム(誘電体ブロック)13と、このプリズム13の一表面13aに形成された、例えば金、銀等からなる金属膜20と、この金属膜20の上に形成された荷電物質からなる不撓性膜31と、プリズム13と反対側から不撓性膜31に液体状試料1が接するように該試料1を保持する試料保持部5と、光源7から発散光状態で出射した光ビーム8をプリズム13の長軸に垂直な面(紙面に平行な面)内のみで集束させるシリンドリカルレンズ15と、プリズム13と金属膜20との界面13aで全反射した光ビーム8の強度を検出する光検出手段41とを備えている。
励起光8は、シリンドリカルレンズ15の作用により上述のように集束するので、図中に最小入射角θ 1 と最大入射角θ 2 とを例示するように、界面13aに対して種々の入射角θで入射する成分を含むことになる。なおこの入射角θは、全反射角以上の角度とされる。そこで、光ビーム8は界面13aで全反射し、この反射した光ビーム8には、種々の反射角で反射する成分が含まれることになる。
光検出手段41としては、上記のように種々の反射角で反射した全部の光ビーム8を受光できる方向に受光部が延びる、例えばCCDラインセンサ等が用いられている。そこで、この光検出手段41の各受光素子毎に出力される光検出信号Sは、上記種々の反射角毎に(つまり、種々の入射角毎に)光ビーム8の強度を示すものとなる。
以下、上記構成の表面プラズモンセンサーによる試料分析について説明する。分析対象物質2を含む試料液1および分析対象物質2を特異的に認識する物質4は、上記不撓性膜に接触する状態で試料保持部5に配置される。ここで、分析対象物質2を特異的に認識する物質4は不撓性膜と逆の荷電物質51で標識されており、静電的相互作用によって分析対象物質2および分析対象物質2を特異的に認識する物質4の複合体がセンサー表面に濃縮される。
試料分析に際しては、シリンドリカルレンズ15の作用で上述のように集束する光ビーム8が金属膜20に向けて照射される。この金属膜20とプリズム13との界面13aで全反射した光ビーム8は、光検出手段41で検出される。
前述した通り、光検出手段41の各受光素子毎に出力される光検出信号Sは、全反射した光ビーム8の強度Iを入射角θ毎に示すものとなる。
ここで、ある特定の入射角θ SP で入射した光は、金属膜20と試料液1との界面に表面プラズモンを励起させるので、この光については反射光強度Iが鋭く低下する。光検出手段41の各受光素子毎に出力される光検出信号Sを用いれば上記入射角θ SP が分かり、このθ SP の値に基づいて試料液1中の物質2を定量分析することができる。その理由は、先に詳しく説明した通りである。
上述のように、分析対象物質2を特異的に認識する物質4は不撓性膜とは逆の荷電物質51で標識されており、試料液1の金属膜20に接する部分では分析対象物質2の濃度が高くなり、該分析対象物質2を短時間内に分析可能となる。
不撓性膜31としては、カチオン性またはアニオン性物質から選択され、好ましくはポリマーが用いられる。アニオン性ポリマーとしては、ポリマー鎖の一部又はそこに直接結合したカルボキシル基、水酸基、硫酸基及び/又はリン酸基を含有するポリマーを用いることができる。また、カチオン性ポリマーとしては、ポリマー鎖の一部又はそこに直接結合した一級、二級、三級及び/又は四級アミン基を含有するポリマーを用いることができる。
分析対象物質2を特異的に認識する物質4としては、例えば分析対象物質2が1本鎖核酸の場合、該1本鎖核酸と相補的に結合する1本鎖核酸が、分析対象物質2がタンパク質等の場合、該分析対象物質2に対する抗体が挙げられる。
また上記の実施形態においては、種々の入射角qを得るため、比較的太い光ビーム8を界面13aで集束するように入射させているが、比較的細い光ビームを偏向させることによって種々の入射角qを得るようにしても良い。
次に図2を用いて本発明の第2の実施形態について説明する。この図2の表面プラズモンセンサーは図示の通り、光ビーム8を発する半導体レーザ等の光源7と、上記光ビーム8を透過させる材料からなり、この光ビーム8が一端面から入射する位置に配されたプリズム(誘電体ブロック)13と、このプリズム13の一表面13aに形成された金、銀等からなる金属膜20と、この金属膜20の上に形成された荷電物質からなる不撓性膜31と、プリズム13と反対側から不撓性膜31に液体状試料1が接するように該試料1を保持する試料保持部5と、この試料保持部5の上方に配された光検出器(蛍光検出手段)9とを備えてなるものである。
なお図2では、光源7が、励起光8を、プリズム13と金属膜20との界面に向けて、全反射条件を満たすようにプリズム13を通して入射させるように配置されている。つまりこの光源7自体が、プリズム13に対して励起光8を上述のように入射させる入射光学系を構成している。しかしこのような構成に限らず、励起光8を上述のように入射させるレンズやミラーなどからなる入射光学系を、光源7とは別途設けるようにしても何ら支障はない。
以下、上記構成の第2の表面プラズモンセンサーによる試料分析について説明する。分析対象物質2を含む試料液1、分析対象物質2を特異的に認識する物質4および上記センサーで検出可能な蛍光体10で標識された分析対象物質2を特異的に認識する物質6は、は、上記不撓性膜に接触する状態で試料保持部5に配置される。ここで、分析対象物質2を特異的に認識する物質4は不撓性膜と逆の荷電物質51で標識されており、静電的相互作用によって分析対象物質2および分析対象物質2を特異的に認識する物質4および6の複合体がセンサー表面に濃縮される。
試料分析に際しては、シリンドリカルレンズ15の作用で上述のように集束する光ビーム8が金属膜20に向けて照射される。蛍光体10は、表面プラズモンによって増強された、金属膜表面に染み出したエバネッセント波によって励起され蛍光を発する。この蛍光強度に基づいて試料液1中の物質2を定量分析することができる。
なお、金属の近傍に存在する蛍光体は、金属へのエネルギー移動により消光を起こす。エネルギー移動の程度は、金属が半無限の厚さを持つ平面なら距離の3乗に反比例して、金属が無限に薄い平板なら距離の4乗に反比例して、また、金属が微粒子なら距離の6乗に反比例して小さくなる。そして前述した非特許文献3にも述べられているように、金属膜の場合は、金属と蛍光分子との間の距離は少なくとも 数nm以上、より好ましくは10nm以上確保しておくことが望ましい。従って不撓性膜31の膜厚の下限値は10nmとすることが好ましい。
一方、蛍光体分子は、表面プラズモンによって増強された、金属膜表面に染み出したエバネッセント波によって励起される。エバネッセント波の到達範囲(金属膜表面からの距離)は高々波長程度であり、その電界強度は金属膜表面からの距離に応じて指数関数的に急激に減衰することが知られている。実際、波長808nmの近赤外光では、エバネッセント波の染み出しが生じているのは、波長(808nm)程度であり、100nmを超えるとその電界強度が急激に減衰する。蛍光体分子を励起する電界強度は大きいほど望ましいので、効果的な励起を行なうためには、金属膜表面と蛍光体分子との距離を100nmより小さくすることが望ましい。従って、不撓性膜31の膜厚の上限値は100nmとすることが好ましい。
上述のように、分析対象物質2を特異的に認識する物質4は不撓性膜とは逆の荷電物質51で標識されており、試料液1の金属膜20に接する部分では分析対象物質2の濃度が高くなり、該分析対象物質2を短時間内に分析可能となる。
不撓性膜31としては、カチオン性またはアニオン性物質から選択され、好ましくはポリマーが用いられる。アニオン性ポリマーとしては、ポリマー鎖の一部又はそこに直接結合したカルボキシル基、水酸基、硫酸基及び/又はリン酸基を含有するポリマーを用いることができる。また、カチオン性ポリマーとしては、ポリマー鎖の一部又はそこに直接結合した一級、二級、三級及び/又は四級アミン基を含有するポリマーを用いることができる。
分析対象物質2を特異的に認識する物質4としては、例えば分析対象物質2が1本鎖核酸の場合、該1本鎖核酸と相補的に結合する1本鎖核酸が、分析対象物質2がタンパク質等の場合、該分析対象物質2に対する抗体が挙げられる。
光検出器9としては、蛍光検出器であればいずれの場合も用いることができる。例えば富士写真フイルム株式会社製 LAS−1000(商品名)が用いられる。
次に、図3を参照して、本発明の第3の実施形態について説明する。この図3の表面プラズモンセンサーは図1のものと比べると、基本的に、試料保持部5の上方に配された光検出器(蛍光検出手段)9が付加された点が異なるものである。
このように、試料中の物質が表面プラズモンにより励起されて発した蛍光を検出する蛍光検出手段を付加しておけば、分析対象物質を蛍光色素等で標識しておき、上記蛍光を検出することによって免疫反応等を分析することも可能になる。
本発明の第1の実施形態である表面プラズモンセンサーの側面図 本発明の第2の実施形態である表面プラズモンセンサーの側面図 本発明の第3の実施形態である表面プラズモンセンサーの側面図 従来の蛍光センサーの一例を示す概略側面図 従来の蛍光センサーの別の例を示す概略側面図 従来の蛍光センサーのさらに別の例を示す概略側面図
符号の説明
1 試料
2 分析対象物質
4 分析対象物質を特異的に認識する第一の物質
5 試料保持部
6 分析対象物質を特異的に認識する第二の物質
7 光源
8 光ビーム
9 光検出器
10 蛍光体
13 プリズム
15 シリンドリカルレンズ
20 金属膜
31 荷電性不撓性膜
41 光検出器
51 荷電性標識物

Claims (6)

  1. プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームを前記プリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、前記プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段とを備えてなる表面プラズモンセンサーにおいて、前記不撓性膜が荷電性物質であることを特徴とする表面プラズモンセンサー。
  2. プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、該表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、前記不撓性膜が荷電性物質であることを特徴とする表面プラズモンセンサー。
  3. プリズムと、このプリズムの一表面に形成された金属膜と、金属膜の上に形成された不撓性膜と、光ビームを発生させる光源と、前記光ビームをプリズムに通し、該プリズムと金属膜との界面に対して、全反射角を含む種々の入射角が得られるように入射させる光学系と、前記プリズムの一面で全反射する光ビームにおいて、全反射解消による光量低下が生じる前記入射角を検出する手段と、表面プラズモンによって増強されたエバネッセント波によって励起されたことによって発生する蛍光を検出する蛍光検出手段とを備えてなる表面プラズモンセンサーにおいて、前記不撓性膜が荷電性物質であることを特徴とする表面プラズモンセンサー。
  4. 前記不撓性膜がアニオン性物質であることを特徴とする請求項1、2および3のいずれかに記載の表面プラズモンセンサー。
  5. 前記不撓性膜がカチオン性物質であることを特徴とする請求項1、2および3のいずれかに記載の表面プラズモンセンサー。
  6. 前記不撓性膜の膜厚が10〜100nmの範囲にあることを特徴とする請求項1から5のいずれかに記載の表面プラズモンセンサー。
JP2007087839A 2007-03-29 2007-03-29 表面プラズモンセンサー Abandoned JP2008249360A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087839A JP2008249360A (ja) 2007-03-29 2007-03-29 表面プラズモンセンサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087839A JP2008249360A (ja) 2007-03-29 2007-03-29 表面プラズモンセンサー

Publications (1)

Publication Number Publication Date
JP2008249360A true JP2008249360A (ja) 2008-10-16

Family

ID=39974508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087839A Abandoned JP2008249360A (ja) 2007-03-29 2007-03-29 表面プラズモンセンサー

Country Status (1)

Country Link
JP (1) JP2008249360A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048756A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
WO2019044202A1 (ja) * 2017-08-31 2019-03-07 コニカミノルタ株式会社 B型肝炎ウイルス表面抗原の検出方法および検出キット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048756A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
WO2019044202A1 (ja) * 2017-08-31 2019-03-07 コニカミノルタ株式会社 B型肝炎ウイルス表面抗原の検出方法および検出キット
JPWO2019044202A1 (ja) * 2017-08-31 2020-08-20 コニカミノルタ株式会社 B型肝炎ウイルス表面抗原の検出方法および検出キット

Similar Documents

Publication Publication Date Title
JP2008249361A (ja) 表面プラズモンセンサーおよび免疫学的測定方法
JP3562912B2 (ja) 表面プラズモンセンサー
JP5152917B2 (ja) 検出方法、検出用試料セルおよび検出用キット
US7652768B2 (en) Chemical sensing apparatus and chemical sensing method
US7615760B2 (en) Luminescence sensor comprising at least two wire grids
US10690596B2 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
JP2010008247A (ja) 検出方法、検出装置、検出用試料セルおよび検出用キット
JP5143668B2 (ja) 検出方法、検出用試料セルおよび検出用キット
US7560708B2 (en) Luminescence sensor using multi-layer substrate structure
JP4885019B2 (ja) 表面プラズモン増強蛍光センサ
US20090109441A1 (en) Method and apparatus for enhancing waveguide sensor signal
JP2009080011A (ja) 蛍光検出方法
Yuk et al. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip
JP2008249360A (ja) 表面プラズモンセンサー
JP2019012041A (ja) 濃度測定方法、濃度測定装置及び検査方法
JP3578188B2 (ja) 表面プラズモンセンサー
JP2008157923A (ja) 化学センシング装置及び化学センシング方法
US20100320397A1 (en) Molecular diagnostic system based on evanescent illumination and fluorescence
WO2014007134A1 (ja) センサーチップ
JP7300201B2 (ja) 蛍光検出用生体分子検査チップ
KR102103077B1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
JP2022061692A (ja) ナノ粒子体
Chan et al. SPR prism sensor using laser line generator
JP2007147314A (ja) 表面プラズモンセンサーおよび表面プラズモンセンサーを用いた標的物質の検出方法
JP6586884B2 (ja) チップおよび表面プラズモン増強蛍光測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Effective date: 20110608

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A762 Written abandonment of application

Effective date: 20110815

Free format text: JAPANESE INTERMEDIATE CODE: A762