JP2008248322A - HEAT RESISTANT Ir BASE ALLOY - Google Patents

HEAT RESISTANT Ir BASE ALLOY Download PDF

Info

Publication number
JP2008248322A
JP2008248322A JP2007091178A JP2007091178A JP2008248322A JP 2008248322 A JP2008248322 A JP 2008248322A JP 2007091178 A JP2007091178 A JP 2007091178A JP 2007091178 A JP2007091178 A JP 2007091178A JP 2008248322 A JP2008248322 A JP 2008248322A
Authority
JP
Japan
Prior art keywords
mass
alloy
volatilization
oxidation
epma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007091178A
Other languages
Japanese (ja)
Inventor
Koichi Hasegawa
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2007091178A priority Critical patent/JP2008248322A/en
Publication of JP2008248322A publication Critical patent/JP2008248322A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ir base alloy usable for a short time or a long time in a high temperature region even in an oxygen-containing atmosphere, and in which selective oxidation from grain boundaries is suppressed. <P>SOLUTION: Disclosed is an alloy including 0.05 to 1.5% Al, and the balance Ir. Also disclosed is an alloy further including 0.1 to 49.95% Rh, or at least one kind selected from Cr, Fe, Co and Ni by 0.1 to 10%, or at least one kind selected from Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr, Y and rare earth elements by 0.1 to 20.0%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、短時間もしくは長時間、高温領域で使用される耐熱性合金およびそれらの使用に関する。   The present invention relates to a heat resistant alloy used in a high temperature region for a short time or for a long time and use thereof.

従来、白金族系金属の中でPtやIrが耐熱材料として単体および合金で使用されている。
用途としてはガラス溶解用器具や単結晶育成用ルツボ等や、高温で使用される構造材料またはヒーター線、熱電対等の導電材料や車載等のスパークプラグに代表される電極がある。またタービンブレード等の基体を保護するための被覆材として用いられている。
Conventionally, among platinum group metals, Pt and Ir are used as a heat-resistant material in a simple substance and an alloy.
Applications include electrodes for glass melting instruments, crucibles for growing single crystals, structural materials used at high temperatures, conductive materials such as heater wires, thermocouples, and spark plugs for in-vehicle use. Moreover, it is used as a coating material for protecting a substrate such as a turbine blade.

PtやPt系合金の場合、真空雰囲気や不活性ガス中雰囲気、大気等の酸素含有雰囲気等、雰囲気を選ばず高温で使用が可能であるが、融点を越えるような温度、電極等で使用する際、火花放電により局所的に融点を瞬間的に越え一部溶融する場合があり、使用に耐えられないケースがある。
このような用途には、さらに融点が高いIrやIr系合金が使用される。
ただしIrの場合、真空雰囲気や不活性ガス中雰囲気での使用には問題ないが、大気等の酸素含有雰囲気下では酸化揮発が激しく、重量減少が激しい欠点がある。
In the case of Pt and Pt-based alloys, it can be used at any temperature, such as a vacuum atmosphere, an inert gas atmosphere, or an oxygen-containing atmosphere such as air, but it can be used at a temperature exceeding the melting point, an electrode, etc. At this time, there are cases where the melting point exceeds the melting point locally and partly melts due to spark discharge, and it cannot be used.
For such applications, Ir and Ir alloys having a higher melting point are used.
However, Ir does not have any problem when used in a vacuum atmosphere or an inert gas atmosphere, but has a drawback that the oxidative volatilization is severe and the weight is severely reduced in an oxygen-containing atmosphere such as air.

欠点である酸化揮発を抑えるため、Rhを添加し酸化揮発を抑えたIr合金が熱電対として規格化されている他、特許文献1ではIr表面にRhを被覆処理し、大気中での酸化揮発を抑えた製造方法が公開されている。
特開平11−217683号公報
In order to suppress oxidation volatilization, which is a drawback, an Ir alloy added with Rh to suppress oxidation volatilization is standardized as a thermocouple. In Patent Document 1, Rh is coated on the Ir surface to oxidize and volatilize in the atmosphere. The manufacturing method which suppressed is released.
JP-A-11-217683

酸化揮発に関しては、体積が大きく短時間での使用の場合、問題にならないことがあるが、別の欠点として、結晶粒界から優先的に酸化、特に大気中で1000℃以上の高温に曝された場合、酸化揮発により粒界が亀裂のような凹部を形成し、粒界から結晶粒の欠落や、高温応力負荷時に破壊の起点となることから、粒界の選択酸化を抑える、または均一に酸化揮発させ、粒界を起点とした破壊を抑制する必要がある。   Oxidative volatilization may not be a problem when used in a short time due to its large volume, but another disadvantage is that it is preferentially oxidized from the grain boundaries, especially exposed to high temperatures of 1000 ° C or higher in the atmosphere. In this case, the grain boundary forms a recess like a crack due to oxidative volatilization, and crystal grains are missing from the grain boundary. It is necessary to oxidize and volatilize to suppress the breakage starting from the grain boundary.

本発明者らは、粒界からの選択酸化を解決すべく鋭意検討を重ねた結果、IrにAlを添加することにより、高温酸化雰囲気下に曝された際、表面に酸化アルミが形成、いったん酸化アルミの下にIrO2として蓄積、その後揮発させることにより、粒界からの優先的な酸化を抑制、亀裂のような凹部形成を減少させ、均一な酸化揮発となる。
また粒界が酸化揮発した場合でも、粒界近傍でAl濃度が濃くなる、またはAlが酸化し、粒界からの酸化揮発の進行を抑え、結晶粒の欠落を抑える。
さらにIrにAlおよびRhを添加すると酸化揮発自体を抑制したうえで、粒界からの選択酸化も抑制することを見出した。
As a result of intensive studies to solve selective oxidation from the grain boundary, the present inventors have added aluminum to Ir, and when exposed to a high temperature oxidizing atmosphere, aluminum oxide is formed on the surface once. Accumulation as IrO 2 under the aluminum oxide, followed by volatilization, suppresses preferential oxidation from grain boundaries, reduces formation of recesses such as cracks, and uniform oxidation and volatilization.
Even when the grain boundary is oxidized and volatilized, the Al concentration is increased in the vicinity of the grain boundary, or Al is oxidized, and the progress of oxidation and volatilization from the grain boundary is suppressed, and the lack of crystal grains is suppressed.
Furthermore, it has been found that when Al and Rh are added to Ir, oxidation volatilization itself is suppressed and selective oxidation from grain boundaries is also suppressed.

さらに上記の合金にCr,Fe,Ni,Coを添加することにより、酸化アルミ層が厚くなり、より安定した酸化アルミ層が形成される。   Further, by adding Cr, Fe, Ni, Co to the above alloy, the aluminum oxide layer becomes thicker, and a more stable aluminum oxide layer is formed.

また、さらにPt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を含有させると、Pt,Ru,Ta,Nb,Wは硬度が上昇、Reの場合はさらに融点が上昇、Ti,Hf,Zr,Y,希土類元素は粒界で酸化し、粒界からの酸化揮発を表面近傍に留めることを見出し、本発明を完成するに至った。
以下、本発明についてさらに詳細に説明する。
Further, when at least one of Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr, Y, and a rare earth element is contained, the hardness of Pt, Ru, Ta, Nb, and W increases. The melting point further increased, and Ti, Hf, Zr, Y, and rare earth elements were oxidized at the grain boundary, and the oxidization and volatilization from the grain boundary was found to be close to the surface, and the present invention was completed.
Hereinafter, the present invention will be described in more detail.

本発明の合金は、Ir基金合金であり、Alを0.05〜1.5mass%添加することにより、粒界からの選択酸化を抑制した合金を得ることができた。   The alloy of the present invention is an Ir-based alloy, and by adding 0.05 to 1.5 mass% Al, an alloy in which selective oxidation from the grain boundary is suppressed can be obtained.

さらに、Rhを0.1〜49.95mass%添加し、Irを50mass%以上とすることにより、全体の酸化揮発自体を抑え、さらに粒界からの選択酸化を抑制した合金を得ることができた。   Furthermore, by adding 0.1 to 49.95 mass% of Rh and setting Ir to 50 mass% or more, it was possible to obtain an alloy in which the entire oxidation volatilization itself was suppressed and the selective oxidation from the grain boundary was further suppressed. .

これに加え、Cr,Fe,Co,Niの少なくとも一種を0.1〜10mass%を添加することにより、形成される酸化アルミ層を厚くし、より安定した層を形成させる合金を得ることができた。   In addition, by adding 0.1 to 10 mass% of at least one of Cr, Fe, Co, and Ni, an aluminum oxide layer to be formed can be thickened, and an alloy that can form a more stable layer can be obtained. It was.

また、さらにPt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を0.1〜20.0mass%添加することにより、硬度を上昇させることができた。   Further, the hardness could be increased by adding 0.1 to 20.0 mass% of at least one of Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr, Y, and rare earth elements. .

Alの範囲を0.05〜1.5mass%に限定した理由は、0.05mass%未満だと、表面に十分な酸化アルミ層が形成されず、また1.5mass%より上だと酸化アルミが剥離しやすくなるためである。   The reason for limiting the range of Al to 0.05 to 1.5 mass% is that if it is less than 0.05 mass%, a sufficient aluminum oxide layer is not formed on the surface, and if it is above 1.5 mass%, aluminum oxide is not formed. It is because it becomes easy to peel.

Rhの範囲は、0.1mass%未満だと十分な酸化揮発の抑制効果が得られないためより多くの添加が望ましいが、Ir含有量が50mass%を下回ると融点が低下し、Ir基合金を使用する際に必要とする融点が得られないためである。   When the Rh range is less than 0.1 mass%, a sufficient effect of suppressing oxidation volatilization cannot be obtained, so more addition is desirable. However, when the Ir content is less than 50 mass%, the melting point decreases, and the Ir-based alloy is reduced. This is because the melting point required for use cannot be obtained.

Cr,Fe,Co,Niの少なくとも一種の範囲を0.1〜10mass%に限定した理由は、0.1mass%未満だと、酸化アルミ層への効果が十分得られず、また10mass%より上だと融点が低下し、Ir基合金を使用する際に必要とする融点が得られないためである。   The reason why the range of at least one of Cr, Fe, Co, and Ni is limited to 0.1 to 10 mass% is that if it is less than 0.1 mass%, the effect on the aluminum oxide layer cannot be sufficiently obtained, and more than 10 mass%. This is because the melting point is lowered and the melting point required when using an Ir-based alloy cannot be obtained.

Pt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種の範囲を0.1〜20.0mass%に限定した理由は、0.1mass%未満だと、添加効果が確認できず、また20mass%より上だと、熱間鍛造等の加工が困難になるためである。   The reason for limiting the range of at least one of Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr, Y, and rare earth elements to 0.1 to 20.0 mass% is less than 0.1 mass%, This is because the effect of addition cannot be confirmed, and if it is higher than 20 mass%, processing such as hot forging becomes difficult.

さらに好ましくは、Alが0.5〜1.5mass%添加することからなる。   More preferably, Al consists of adding 0.5 to 1.5 mass%.

またさらに好ましくは、Rhを1.0〜40mass%添加し、Irを60mass%以上とすることからなる。   More preferably, Rh is added in an amount of 1.0 to 40 mass%, and Ir is set to 60 mass% or more.

また別にさらに好ましくは、Cr,Fe,Co,Niの少なくとも一種を0.5〜2.0mass%を添加することからなる。   Still more preferably, it comprises adding 0.5 to 2.0 mass% of at least one of Cr, Fe, Co, and Ni.

また別にさらに好ましくは、Pt,Ru,Ta,Nb,Wの少なくとも一種は、0.5〜10mass%、Reは、0.5〜15mass%、Ti,Hf,Zr,Y,希土類元素の少なくとも一種は、0.1〜1.5mass%添加することからなる。   Still more preferably, at least one of Pt, Ru, Ta, Nb, and W is 0.5 to 10 mass%, Re is 0.5 to 15 mass%, and at least one of Ti, Hf, Zr, Y, and a rare earth element. Consists of adding 0.1 to 1.5 mass%.

以下、本発明の具体的実施例について説明する。   Hereinafter, specific examples of the present invention will be described.

表1に示すIrおよびIr基合金をアーク溶解にてインゴットを作製、ファインカッターで約5mm角、厚みが0.5〜1.5mmに切出し試験用試料とした。   An ingot was prepared by arc melting of Ir and an Ir-based alloy shown in Table 1, and cut into approximately 5 mm square and a thickness of 0.5 to 1.5 mm with a fine cutter, and used as test samples.

(酸化揮発試験)
酸化揮発試験として、表1の組成の試料を使用し、試験前の重量および表面積および厚み、表面積周囲長を測定後、アルミナ基板上に試料を置き、大気中1200℃および1500℃×20時間熱処理した後、再度重量を測定、アルミナ基板に接していない試験前の表面積から単位面積当りの酸化揮発重量を算出した。
(Oxidation volatilization test)
For the oxidation volatilization test, use the sample with the composition shown in Table 1 and measure the weight, surface area and thickness before test, and the circumference of the surface area. After that, the weight was measured again, and the oxidation volatilization weight per unit area was calculated from the surface area before the test that was not in contact with the alumina substrate.

単位面積当りの酸化揮発重量は式1にて算出した。
式1:ΔW(g/mm2) [単位面積当りの酸化揮発重量 =(試験後の重量−試験前の重量)/ (アルミナ基板に接していない試験前の表面積)]
The oxidation volatilization weight per unit area was calculated by Equation 1.
Formula 1: ΔW (g / mm 2 ) [oxidized volatile weight per unit area = (weight after test−weight before test) / (surface area before test not in contact with alumina substrate)]

表2に結果を示す。   Table 2 shows the results.

Al自体は、酸化揮発の抑制効果は小さいことから実施例1〜2は、比較例2よりも単位面積あたりの酸化揮発重量は大きくなっているが、比較例1のIrよりも一割程度小さくなっている。   Since Al itself has a small effect of suppressing oxidation volatilization, Examples 1 and 2 have a larger oxidation volatilization weight per unit area than Comparative Example 2, but about 10% smaller than Ir of Comparative Example 1. It has become.

Ir−RhにAlを添加した実施例3〜8については、各温度での試験とも比較例2より2〜3割程度酸化揮発を抑えており、RhにAlを添加することにより、Rhの酸化揮発抑制効果をより高められていることがわかる。   In Examples 3 to 8 in which Al was added to Ir-Rh, the oxidation and volatilization was suppressed by about 20 to 30% compared to Comparative Example 2 in the tests at each temperature. By adding Al to Rh, oxidation of Rh It can be seen that the volatilization suppression effect is further enhanced.

(X線回折試験)
酸化揮発試験後の表面の生成物をX線回折試験にて調査した。
アルミナ基板に接していない面を測定面としている。
(X-ray diffraction test)
The product on the surface after the oxidation volatilization test was examined by an X-ray diffraction test.
The surface not in contact with the alumina substrate is the measurement surface.

表3に結果を示す。   Table 3 shows the results.

実施例1〜8については、1200℃、1500℃での試験ともにIr,IrO2,Al23のピークが同定された。
比較例1については、1200℃の試験ではIr,IrO2のピークが確認されたが、1500℃の試験ではIrのみ確認できた。
比較例2では、両温度ともIrのみのピークが確認され、Rhの酸化物については確認できなかった。
比較例3は1200℃では酸化Crのピークが確認できたが、1500℃の試験では、Ir,IrO2のみ確認でき、酸化Crのピークは確認できなかった。
For example 1~8, 1200 ℃, Ir, peak of IrO 2, Al 2 O 3 were identified in both test at 1500 ° C..
In Comparative Example 1, Ir and IrO 2 peaks were confirmed in the 1200 ° C. test, but only Ir was confirmed in the 1500 ° C. test.
In Comparative Example 2, only the peak of Ir was confirmed at both temperatures, and the oxide of Rh could not be confirmed.
In Comparative Example 3, a peak of Cr oxide could be confirmed at 1200 ° C., but only Ir and IrO 2 could be confirmed in the test at 1500 ° C., and a peak of Cr oxide could not be confirmed.

比較例3については傾向が違うが、実施例1〜8のようにAlを添加することにより、大気中1500℃×20時間熱処理後でもIrO2の形で留まっている。
一方、比較例1〜2は、1500℃の試験ではIrO2が確認できず、酸化揮発を妨げる形成物は確認できなかった。
Although the tendency is different for Comparative Example 3, by adding Al as in Examples 1 to 8, it remains in the form of IrO 2 even after heat treatment at 1500 ° C. for 20 hours in the atmosphere.
On the other hand, in Comparative Examples 1 and 2, IrO 2 could not be confirmed in the test at 1500 ° C., and formations that hindered oxidation volatilization could not be confirmed.

確認のため、実施例1〜3および比較例1〜3の試験後の表面をSEMで、断面をSEMおよびEPMAにて観察を行った。   For confirmation, the surfaces after the tests of Examples 1 to 3 and Comparative Examples 1 to 3 were observed with SEM, and the cross section was observed with SEM and EPMA.

(表面のSEM観察)
図1Aおよび図1Bに、それぞれ実施例1〜3および比較例1〜3の試験後の粒界近傍の表面SEM観察結果を示す。
(SEM observation of the surface)
FIG. 1A and FIG. 1B show the surface SEM observation results in the vicinity of the grain boundaries after the tests of Examples 1 to 3 and Comparative Examples 1 to 3, respectively.

実施例1〜3の1200℃×20hr熱処理後では、粒界近傍からの顕著な酸化揮発は確認できなかった。また比較例3でも同様に、粒界近傍からの顕著な酸化揮発は確認できなかった。一方、比較例1〜2では、粒界から熱腐食のような跡が認められた。   After the heat treatment at 1200 ° C. for 20 hours in Examples 1 to 3, no significant oxidative volatilization from the vicinity of the grain boundary could be confirmed. Similarly, in Comparative Example 3, no significant oxidation and volatilization from the vicinity of the grain boundary could be confirmed. On the other hand, in Comparative Examples 1 and 2, traces such as thermal corrosion were observed from the grain boundaries.

また1500℃×20hr熱処理後では、実施例1〜3でも、熱腐食のような跡が認められたが、それほど顕著には現れなかった。比較例2については、粒界近傍でさらに熱腐食のような跡が広がっていた。比較例1および3は、粒界近傍がポーラス状になっており、酸化揮発が顕著に進んでいることが分かった。   Further, after heat treatment at 1500 ° C. for 20 hours, traces such as thermal corrosion were also observed in Examples 1 to 3, but not so remarkably. In Comparative Example 2, traces such as thermal corrosion further spread near the grain boundaries. In Comparative Examples 1 and 3, it was found that the vicinity of the grain boundary was porous, and oxidation volatilization was remarkably advanced.

(断面のSEM観察)
図2Aおよび図2Bに、それぞれ実施例1〜3および比較例1〜3の試験後の表面近傍の断面のSEM観察結果を示す。
(SEM observation of cross section)
2A and 2B show SEM observation results of cross sections near the surface after the tests of Examples 1 to 3 and Comparative Examples 1 to 3, respectively.

実施例1の1500℃×20hrで一部に粒界からの熱腐食のような跡は見られたが、他の条件の実施例では、初期の酸化揮発による凹凸は認められるものの、特に顕著な粒界からの揮発は認められなかった。   Although traces such as thermal corrosion from grain boundaries were partially observed at 1500 ° C. for 20 hours in Example 1, irregularities due to initial oxidation and volatilization were observed in the examples under other conditions, but particularly remarkable. Volatilization from the grain boundary was not observed.

一方、比較例1は、1200℃×20hrで粒界からの酸化揮発らしき跡が顕著に見られ、1500℃×20hrではポーラスな状態になっている。
また比較例2では、粒界からの酸化揮発らしき跡が見られ、また表面近傍が再結晶化している。また1500℃×20hrでは、結晶粒の欠落と思われる跡が見られた。
比較例3では、1200℃×20hrで内部でも酸化揮発らしき跡が顕著に見られ、1500℃×20hrではIrと同じようなポーラスな状態となっており、Cr単体では酸化揮発を抑える効果が無いことが分かった。
On the other hand, in Comparative Example 1, a trace of oxidation and volatilization from the grain boundary is noticeable at 1200 ° C. × 20 hr, and it is in a porous state at 1500 ° C. × 20 hr.
In Comparative Example 2, traces of oxidation and volatilization from the grain boundaries are observed, and the vicinity of the surface is recrystallized. In addition, at 1500 ° C. × 20 hr, traces that seemed to be missing crystal grains were observed.
In Comparative Example 3, a trace of oxidation volatilization was noticeable even at 1200 ° C. × 20 hr, and a porous state similar to Ir was observed at 1500 ° C. × 20 hr, and Cr alone has no effect of suppressing oxidation volatilization. I understood that.

確認のため、実施例1〜3および比較例1〜3の試験後の断面をEPMAにて観察を行った。   For confirmation, the cross sections after the tests of Examples 1 to 3 and Comparative Examples 1 to 3 were observed with EPMA.

(実施例1のEPMAによる面分析)
図3に1200℃×20hr後の、図4に1500℃×20hr後の実施例1のEPMAによる面分析結果を示す。
(Area analysis by EPMA in Example 1)
FIG. 3 shows the surface analysis results by EPMA of Example 1 after 1200 ° C. × 20 hr, and FIG. 4 after 1500 ° C. × 20 hr.

図3および図4の結果から、Alが最表面に有り、その下部にIrがでていることが分かる。特に図3ではAl層の下部に一層Irの層が形成されており、X線回折結果からIrO2層が形成されていると思われる。また、特に顕著な粒界からの選択酸化は確認されなかった。 From the results shown in FIGS. 3 and 4, it can be seen that Al is present on the outermost surface and Ir is present below the Al. In particular, in FIG. 3, an Ir layer is formed below the Al layer, and it is considered that an IrO 2 layer is formed from the X-ray diffraction results. In addition, particularly remarkable selective oxidation from the grain boundary was not confirmed.

(実施例2のEPMAによる面分析)
図5に1200℃×20hr後の、図6に1500℃×20hr後の実施例2のEPMAによる面分析結果を示す。
(Area analysis by EPMA of Example 2)
FIG. 5 shows a surface analysis result by EPMA of Example 2 after 1200 ° C. × 20 hr, and FIG. 6 after 1500 ° C. × 20 hr.

図5および図6の結果から、AlおよびCrが最表面に有り、その下部にIrがでていることが分かる。特に図5ではAl層の下部に一層Irの層が形成されており、X線回折結果からIrO2層が形成されていると思われる。
また図3および図4と比較して、AlおよびCrの層がより顕著に確認され、さらに粒界からの選択酸化も特に顕著な物は確認されなかった。
From the results of FIG. 5 and FIG. 6, it can be seen that Al and Cr are on the outermost surface and Ir is present in the lower part thereof. In particular, in FIG. 5, an Ir layer is formed below the Al layer, and it is considered that an IrO 2 layer is formed from the X-ray diffraction results.
Compared with FIGS. 3 and 4, the Al and Cr layers were more prominently confirmed, and the selective oxidation from the grain boundary was not particularly prominent.

(実施例3のEPMAによる面分析)
図7に1200℃×20hr後の、図8に1500℃×20hr後の実施例3のEPMAによる面分析結果を示す。
(Area analysis by EPMA of Example 3)
FIG. 7 shows a surface analysis result by EPMA of Example 3 after 1200 ° C. × 20 hr, and FIG. 8 after 1500 ° C. × 20 hr.

Rhが添加された場合、図7の結果から1200℃×20hrでは、Rhが最表面にきており、Alの層は確認できなかったが、図8の1500℃×20hrでは、AlおよびCrが最表面に有り、その下部にRhが若干見られた。
また、特に顕著な粒界からの選択酸化は確認されなかった。
When Rh was added, Rh was on the outermost surface at 1200 ° C. × 20 hr from the results of FIG. 7, and an Al layer could not be confirmed, but at 1500 ° C. × 20 hr in FIG. It was on the outermost surface, and some Rh was seen at the bottom.
In addition, particularly remarkable selective oxidation from the grain boundary was not confirmed.

(比較例1のEPMAによる面分析)
図9に1200℃×20hr後の、図10に1500℃×20hr後の比較例1のEPMAによる面分析結果を示す。
(Area analysis by EPMA of Comparative Example 1)
FIG. 9 shows a surface analysis result by EPMA of Comparative Example 1 after 1200 ° C. × 20 hr and FIG. 10 after 1500 ° C. × 20 hr.

図9および図10の結果から、1200℃×20hrでは、X線回折結果と合わせてIrO2層が若干残留しているが、1500℃×20hrではIrO2らしき層は確認できず、昇華のように酸化揮発が行われている。さらに1500℃×20hrでは、粒界からの選択酸化が確認された。 From the results shown in FIG. 9 and FIG. 10, the IrO 2 layer remains slightly at 1200 ° C. × 20 hr together with the X-ray diffraction results, but the IrO 2 -like layer cannot be confirmed at 1500 ° C. × 20 hr, which seems to be sublimation. Oxidizing and volatilization is performed. Further, selective oxidation from the grain boundary was confirmed at 1500 ° C. × 20 hr.

(比較例2のEPMAによる面分析)
図11に1200℃×20hr後の、図12に1500℃×20hr後の比較例2のEPMAによる面分析結果を示す。
(Area analysis by EPMA of Comparative Example 2)
FIG. 11 shows a surface analysis result by EPMA of Comparative Example 2 after 1200 ° C. × 20 hr and FIG. 12 after 1500 ° C. × 20 hr.

比較例2では、図11から、1200℃×20hrでは表面近傍が再結晶化、粒界でIrが減少、Rhが濃化しており、また図12から、最表面でRh層を形成しているが、粒界からの選択酸化や粒界からの結晶粒の欠落のような跡が見られ、Rh添加は表面の酸化揮発には有効であるが、粒界からの選択酸化を十分防ぎきれていないことが確認できた。   In Comparative Example 2, from FIG. 11, at 1200 ° C. × 20 hr, the vicinity of the surface is recrystallized, Ir is decreased at the grain boundary, and Rh is concentrated. From FIG. 12, an Rh layer is formed on the outermost surface. However, traces such as selective oxidation from the grain boundaries and loss of crystal grains from the grain boundaries are observed, and Rh addition is effective for oxidizing and volatilizing the surface, but the selective oxidation from the grain boundaries has been sufficiently prevented. It was confirmed that there was no.

(比較例3のEPMAによる面分析)
図13に1200℃×20hr後の、図14に1500℃×20hr後の比較例3のEPMAによる面分析結果を示す。
(Area analysis by EPMA of Comparative Example 3)
FIG. 13 shows a surface analysis result by EPMA of Comparative Example 3 after 1200 ° C. × 20 hr, and FIG. 14 after 1500 ° C. × 20 hr.

図13および図14の結果から、Cr単体の添加は酸化揮発の抑制にほとんど寄与していないことが分かった。   From the results shown in FIGS. 13 and 14, it was found that the addition of Cr alone hardly contributes to the suppression of oxidation volatilization.

実施例1〜3の試験後の粒界近傍の表面SEM観察結果を示している。The surface SEM observation result of the grain boundary vicinity after the test of Examples 1-3 is shown. 比較例1〜3の試験後の粒界近傍の表面SEM観察結果を示している。The surface SEM observation result of the grain boundary vicinity after the test of Comparative Examples 1-3 is shown. 実施例1〜3の試験後の表面近傍の断面のSEM観察結果を示している。The SEM observation result of the cross section of the surface vicinity after the test of Examples 1-3 is shown. 比較例1〜3の試験後の表面近傍の断面のSEM観察結果を示している。The SEM observation result of the cross section of the surface vicinity after the test of Comparative Examples 1-3 is shown. 1200℃×20hr後の実施例1のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 1 after 1200 degreeC x 20 hours is shown. 1500℃×20hr後の実施例1のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 1 after 1500 degreeC x 20 hours is shown. 1200℃×20hr後の実施例2のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 2 after 1200 degreeC x 20 hours is shown. 1500℃×20hr後の実施例2のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 2 after 1500 degreeC x 20 hours is shown. 1200℃×20hr後の実施例3のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 3 after 1200 degreeC x 20 hours is shown. 1500℃×20hr後の実施例3のEPMAによる面分析結果を示している。The surface analysis result by EPMA of Example 3 after 1500 degreeC x 20 hours is shown. 1200℃×20hr後の比較例1のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 1 after 1200 degreeC * 20hr is shown. 1500℃×20hr後の比較例1のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 1 after 1500 degreeC x 20 hours is shown. 1200℃×20hr後の比較例2のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 2 after 1200 degreeC x 20 hours is shown. 1500℃×20hr後の比較例2のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 2 after 1500 degreeC x 20 hours is shown. 1200℃×20hr後の比較例3のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 3 after 1200 degreeC x 20 hours is shown. 1500℃×20hr後の比較例3のEPMAによる面分析結果を示している。The surface analysis result by EPMA of the comparative example 3 after 1500 degreeC x 20 hours is shown.

Claims (11)

Alを0.05〜1.5mass%を含有し残部がIrとする合金。   An alloy containing 0.05 to 1.5 mass% Al with the balance being Ir. Alを0.05〜1.5mass%含有し、Rhを0.1〜49.95mass%含有し、Irを50mass%以上とする合金。   An alloy containing 0.05 to 1.5 mass% of Al, 0.1 to 49.95 mass% of Rh, and Ir of 50 mass% or more. Alを0.05〜1.5mass%含有し、Cr,Fe,Co,Niの少なくとも一種を0.1〜10mass%含有し、残部をIrとする合金。   An alloy containing 0.05 to 1.5 mass% Al, 0.1 to 10 mass% of at least one of Cr, Fe, Co, and Ni, with the balance being Ir. Alを0.05〜1.5mass%含有し、Cr,Fe,Co,Niの少なくとも一種を0.1〜10mass%を含有し、Rhを0.1〜49.85mass%含有し、Irを50mass%以上とする合金。   0.05 to 1.5 mass% of Al, 0.1 to 10 mass% of at least one of Cr, Fe, Co, and Ni, 0.1 to 49.85 mass% of Rh, and 50 mass of Ir % Alloy. Alを0.05〜1.5mass%を含有し、Pt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を0.1〜20.0mass%含有し、残部がIrとする合金。   It contains 0.05 to 1.5 mass% of Al, and 0.1 to 20.0 mass% of at least one of Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr, Y, and rare earth elements. An alloy whose balance is Ir. Alを0.05〜1.5mass%含有し、Rhを0.1〜49.85mass%含有し、Pt,Ru,Re,Ta,Nb,W,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を0.1〜20.0mass%含有し、Irを50mass%以上とする合金。   Containing 0.05 to 1.5 mass% of Al, 0.1 to 49.85 mass% of Rh, Pt, Ru, Re, Ta, Nb, W, Ti, Hf, Zr, Y, at least of rare earth elements An alloy containing 0.1 to 20.0 mass% of one kind and Ir of 50 mass% or more. Alを0.05〜1.5mass%含有し、Cr,Fe,Co,Niの少なくとも一種を0.1〜10mass%含有し、Pt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を0.1〜20.0mass%含有し、残部をIrとする合金。   0.05 to 1.5 mass% of Al, 0.1 to 10 mass% of at least one of Cr, Fe, Co, and Ni, Pt, Ru, Ta, Nb, W, Re, Ti, Hf, Zr , Y, an alloy containing 0.1 to 20.0 mass% of at least one rare earth element with the balance being Ir. Alを0.05〜1.5mass%含有し、Cr,Fe,Co,Niを0.1〜10mass%を含有し、Rhを0.1〜49.75mass%含有し、Pt,Ru,Ta,Nb,W,Re,Ti,Hf,Zr,Y,希土類元素の少なくとも一種を0.1〜20.0mass%含有し、Irを50mass%以上とする合金。   0.05 to 1.5 mass% Al, 0.1 to 10 mass% Cr, Fe, Co, Ni, 0.1 to 49.75 mass% Rh, Pt, Ru, Ta, An alloy containing 0.1 to 20.0 mass% of at least one of Nb, W, Re, Ti, Hf, Zr, Y, and rare earth elements, and Ir of 50 mass% or more. 請求項1〜8のいずれか記載の合金からなる構造材料。   A structural material comprising the alloy according to claim 1. 請求項1〜8のいずれか記載の合金からなる導電性材料またはスパークプラグ等に使用される電極材料。   The electrode material used for the electroconductive material which consists of an alloy in any one of Claims 1-8, or a spark plug. 請求項1〜8のいずれか記載の合金からなるタービンブレード等高温で使用される基体を被覆する材料。   The material which coat | covers the base | substrate used at high temperature, such as the turbine blade which consists of an alloy in any one of Claims 1-8.
JP2007091178A 2007-03-30 2007-03-30 HEAT RESISTANT Ir BASE ALLOY Pending JP2008248322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091178A JP2008248322A (en) 2007-03-30 2007-03-30 HEAT RESISTANT Ir BASE ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091178A JP2008248322A (en) 2007-03-30 2007-03-30 HEAT RESISTANT Ir BASE ALLOY

Publications (1)

Publication Number Publication Date
JP2008248322A true JP2008248322A (en) 2008-10-16

Family

ID=39973613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091178A Pending JP2008248322A (en) 2007-03-30 2007-03-30 HEAT RESISTANT Ir BASE ALLOY

Country Status (1)

Country Link
JP (1) JP2008248322A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206769A (en) * 2011-04-11 2011-10-05 昆明富尔诺林科技发展有限公司 Iridium alloy material and application thereof
JP2013091834A (en) * 2011-10-27 2013-05-16 Tanaka Kikinzoku Kogyo Kk Material for spark plug electrode
CN103633562A (en) * 2012-08-20 2014-03-12 株式会社电装 Spark plug for internal combustion engine
CN106164307A (en) * 2014-03-28 2016-11-23 田中贵金属工业株式会社 NiIr based heat resistant alloy and manufacture method thereof
WO2018116810A1 (en) * 2016-12-22 2018-06-28 株式会社東北テクノアーチ Ni-BASED HEAT-RESISTANT ALLOY
JP2018104816A (en) * 2016-12-22 2018-07-05 石福金属興業株式会社 HEAT-RESISTANT Ir ALLOY
JP2019021398A (en) * 2017-07-12 2019-02-07 日本特殊陶業株式会社 Spark plug
WO2020050392A1 (en) 2018-09-07 2020-03-12 田中貴金属工業株式会社 Material for spark plug electrodes and method for producing same
CN112553487A (en) * 2020-12-14 2021-03-26 昆明富尔诺林科技发展有限公司 Iridium-nickel alloy spark plug center electrode material with good high-temperature durable ablation performance and preparation method thereof
WO2021161845A1 (en) * 2020-02-14 2021-08-19 日本特殊陶業株式会社 Precious metal chip for spark plug, electrode for spark plug, and spark plug
US11773473B2 (en) 2016-12-22 2023-10-03 Ishifuku Metal Industry Co., Ltd. Heat-resistant IR alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010089A1 (en) * 1989-02-28 1990-09-07 Canon Kabushiki Kaisha New non-monocrystalline substance containing iridium, tantalum and aluminum
JPH08311584A (en) * 1995-03-15 1996-11-26 Natl Res Inst For Metals Refractory superalloy
JP2004172053A (en) * 2002-11-22 2004-06-17 Denso Corp Spark plug and manufacturing method thereof
WO2007091576A1 (en) * 2006-02-09 2007-08-16 Japan Science And Technology Agency Iridium-based alloy with high heat resistance and high strength and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010089A1 (en) * 1989-02-28 1990-09-07 Canon Kabushiki Kaisha New non-monocrystalline substance containing iridium, tantalum and aluminum
JPH08311584A (en) * 1995-03-15 1996-11-26 Natl Res Inst For Metals Refractory superalloy
JP2004172053A (en) * 2002-11-22 2004-06-17 Denso Corp Spark plug and manufacturing method thereof
WO2007091576A1 (en) * 2006-02-09 2007-08-16 Japan Science And Technology Agency Iridium-based alloy with high heat resistance and high strength and process for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206769A (en) * 2011-04-11 2011-10-05 昆明富尔诺林科技发展有限公司 Iridium alloy material and application thereof
JP2013091834A (en) * 2011-10-27 2013-05-16 Tanaka Kikinzoku Kogyo Kk Material for spark plug electrode
CN103633562A (en) * 2012-08-20 2014-03-12 株式会社电装 Spark plug for internal combustion engine
CN106164307A (en) * 2014-03-28 2016-11-23 田中贵金属工业株式会社 NiIr based heat resistant alloy and manufacture method thereof
US11066728B2 (en) 2016-12-22 2021-07-20 Tohoku Techno Arch Co., Ltd. Ni-based heat-resistant alloy
US11131008B2 (en) * 2016-12-22 2021-09-28 Ishifuku Metal Industry Co., Ltd. Heat-resistant Ir alloy
JP2018104729A (en) * 2016-12-22 2018-07-05 国立大学法人東北大学 Ni-based heat-resistant alloy
CN110139939A (en) * 2016-12-22 2019-08-16 石福金属兴业株式会社 Heat resistance iridium alloy
US11773473B2 (en) 2016-12-22 2023-10-03 Ishifuku Metal Industry Co., Ltd. Heat-resistant IR alloy
JP7057935B2 (en) 2016-12-22 2022-04-21 石福金属興業株式会社 Heat resistant Ir alloy
JP2018104816A (en) * 2016-12-22 2018-07-05 石福金属興業株式会社 HEAT-RESISTANT Ir ALLOY
WO2018116810A1 (en) * 2016-12-22 2018-06-28 株式会社東北テクノアーチ Ni-BASED HEAT-RESISTANT ALLOY
JP2019021398A (en) * 2017-07-12 2019-02-07 日本特殊陶業株式会社 Spark plug
US11303099B2 (en) 2018-09-07 2022-04-12 Tanaka Kikinzoku Kogyo K.K. Material for spark plug electrode and method for producing same
KR20210030398A (en) 2018-09-07 2021-03-17 다나카 기킨조쿠 고교 가부시키가이샤 Material for spark plug electrode and method for manufacturing same
WO2020050392A1 (en) 2018-09-07 2020-03-12 田中貴金属工業株式会社 Material for spark plug electrodes and method for producing same
JPWO2021161845A1 (en) * 2020-02-14 2021-08-19
WO2021161845A1 (en) * 2020-02-14 2021-08-19 日本特殊陶業株式会社 Precious metal chip for spark plug, electrode for spark plug, and spark plug
CN115038803A (en) * 2020-02-14 2022-09-09 日本特殊陶业株式会社 Noble metal tip for spark plug, electrode for spark plug, and spark plug
DE112021001025T5 (en) 2020-02-14 2022-12-01 Ngk Spark Plug Co., Ltd. Noble metal tip for spark plugs, electrode for spark plugs, and spark plug
JP7350148B2 (en) 2020-02-14 2023-09-25 日本特殊陶業株式会社 Precious metal tips for spark plugs, electrodes for spark plugs, and spark plugs
CN115038803B (en) * 2020-02-14 2024-01-19 日本特殊陶业株式会社 Noble metal tip for spark plug, electrode for spark plug, and spark plug
CN112553487B (en) * 2020-12-14 2021-11-26 昆明富尔诺林科技发展有限公司 Iridium-nickel alloy spark plug center electrode material with good high-temperature durable ablation performance and preparation method thereof
CN112553487A (en) * 2020-12-14 2021-03-26 昆明富尔诺林科技发展有限公司 Iridium-nickel alloy spark plug center electrode material with good high-temperature durable ablation performance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008248322A (en) HEAT RESISTANT Ir BASE ALLOY
Fergus Review of the effect of alloy composition on the growth rates of scales formed during oxidation of gamma titanium aluminide alloys
JP5187925B2 (en) Conductive material
EP2692703B1 (en) Molten glass holding refractory, glass manufacturing apparatus using molten glass holding refractory and method for manufacturing glass using glass manufacturing apparatus
JP4430119B2 (en) Noble metal alloy for spark plug and manufacturing method thereof
JP2001323332A5 (en)
JP2008019487A (en) Rh-BASED ALLOY
JP2012132071A (en) Method for preventing volatilization loss in high temperature apparatus
KR101830562B1 (en) Platinum thermocouple wire
TWI357893B (en) Tix oxide-based electrodes having improved corrosi
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
KR20170032462A (en) Rhodium alloys
JP4775140B2 (en) Sputtering target
JP4571373B2 (en) A method for improving the lifetime at low temperatures of heating elements made of molybdenum disilicide.
JP4199406B2 (en) Molybdenum material and manufacturing method thereof
Amano High-temperature oxidation resistance of Al2O3-and Cr2O3-forming heat-resisting alloys with noble metals and rare earths
JP5610299B2 (en) Oxidation-resistant platinum alloy, oxidation-resistant platinum alloy film and oxidation-resistant metal member
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
JP4943687B2 (en) Pack cementation method
JP6908164B2 (en) Ag alloy film
Amano High‐temperature oxidation resistance of Al2O3‐forming heat‐resisting alloys with noble metal and rare earth additions
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP5590979B2 (en) Spark plug electrode material with excellent spark wear resistance
JP6908163B2 (en) Ag alloy sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100222

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100521

A977 Report on retrieval

Effective date: 20120124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120627