JP2019021398A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2019021398A
JP2019021398A JP2017135905A JP2017135905A JP2019021398A JP 2019021398 A JP2019021398 A JP 2019021398A JP 2017135905 A JP2017135905 A JP 2017135905A JP 2017135905 A JP2017135905 A JP 2017135905A JP 2019021398 A JP2019021398 A JP 2019021398A
Authority
JP
Japan
Prior art keywords
oxide
electrode
chip
tip
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135905A
Other languages
Japanese (ja)
Other versions
JP6920907B2 (en
Inventor
昌幸 瀬川
Masayuki Segawa
昌幸 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017135905A priority Critical patent/JP6920907B2/en
Publication of JP2019021398A publication Critical patent/JP2019021398A/en
Application granted granted Critical
Publication of JP6920907B2 publication Critical patent/JP6920907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

To provide a spark plug which enables generalization of oxide included in a tip and by which tip's consumption resistance against discharge and oxidization can be ensured.SOLUTION: A spark plug comprises: a first electrode including an electrode base material with a tip joined thereto, provided that the tip includes Ir as a matrix; and a second electrode opposed to the tip through a spark gap. The tip includes at least one oxide of AlOand ZrO, and the content of the at least one oxide is 0.5-9.5 vol% to a volume of the tip.SELECTED DRAWING: Figure 1

Description

本発明はスパークプラグに関し、特にIrを主成分とするチップを電極に設けたスパークプラグに関するものである。   The present invention relates to a spark plug, and more particularly to a spark plug in which a chip mainly composed of Ir is provided on an electrode.

放電や酸化に抗する耐消耗性を確保するため、Irを主成分とするチップを電極に設けたスパークプラグが知られている。特許文献1に開示される技術では、Irを主成分とするチップを備えるスパークプラグにおいて、SrZrO等のペロブスカイト型酸化物をチップの体積に対して1〜13vol%含有する。 In order to ensure wear resistance against discharge and oxidation, a spark plug is known in which a chip mainly composed of Ir is provided on an electrode. In the technique disclosed in Patent Document 1, a spark plug including a chip mainly containing Ir contains a perovskite oxide such as SrZrO 3 in an amount of 1 to 13 vol% with respect to the volume of the chip.

特開2015−159003号公報JP2015-159003A

しかしながら上記従来の技術において、チップに含まれる酸化物を特殊なペロブスカイト型酸化物ではなく一般化する要求がある。   However, in the above prior art, there is a demand for generalizing the oxide contained in the chip instead of a special perovskite oxide.

本発明は、上述した要求に応えるためになされたものであり、チップに含まれる酸化物を一般化しつつ耐消耗性を確保できるスパークプラグを提供することを目的としている。   The present invention has been made to meet the above-described demand, and an object thereof is to provide a spark plug that can ensure wear resistance while generalizing oxides contained in a chip.

この目的を達成するために本発明のスパークプラグは、Irを主成分とするチップが接合された電極母材を備える第1電極と、第1電極のチップと火花ギャップを介して対向する第2電極と、を備えている。チップはAl及びZrOのうちの少なくとも一方の酸化物を含有し、酸化物の含有率はチップの体積に対して0.5〜9.5vol%である。 In order to achieve this object, a spark plug of the present invention includes a first electrode including an electrode base material to which a chip mainly composed of Ir is bonded, and a second electrode facing the chip of the first electrode through a spark gap. An electrode. The chip contains an oxide of at least one of Al 2 O 3 and ZrO 2 , and the oxide content is 0.5 to 9.5 vol% with respect to the volume of the chip.

請求項1記載のスパークプラグによれば、チップはAl及びZrOのうちの少なくとも一方の酸化物を含有するので、チップに含まれる酸化物を一般化できる。酸化物の含有率はチップの体積に対して0.5〜9.5vol%なので、耐消耗性を確保できる。 According to the spark plug of the first aspect, since the chip contains an oxide of at least one of Al 2 O 3 and ZrO 2 , the oxide contained in the chip can be generalized. Since the oxide content is 0.5 to 9.5 vol% with respect to the volume of the chip, wear resistance can be ensured.

請求項2記載のスパークプラグによれば、酸化物の含有率は、チップの体積に対して3.5〜8.5vol%なので、請求項1の効果に加え、耐消耗性をより向上できる。   According to the spark plug of the second aspect, since the oxide content is 3.5 to 8.5 vol% with respect to the volume of the chip, in addition to the effect of the first aspect, the wear resistance can be further improved.

請求項3記載のスパークプラグによれば、酸化物はメジアン径が0.3〜20μmなので、請求項1又は2の効果に加え、耐消耗性をより向上できる。   According to the spark plug of the third aspect, since the median diameter of the oxide is 0.3 to 20 μm, in addition to the effect of the first or second aspect, the wear resistance can be further improved.

本発明の一実施の形態におけるスパークプラグの片側断面図である。It is a half sectional view of the spark plug in one embodiment of the present invention. 各サンプルと第2電極との間に印加した電圧波形および電流波形の模式図である。It is a schematic diagram of a voltage waveform and a current waveform applied between each sample and a second electrode.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は軸線Oを境にした本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は、絶縁体11、中心電極13(第2電極)及び接地電極18(第1電極)を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a half sectional view of a spark plug 10 according to an embodiment of the present invention with an axis O as a boundary. In FIG. 1, the lower side of the drawing is referred to as the front end side of the spark plug 10, and the upper side of the drawing is referred to as the rear end side of the spark plug 10. The spark plug 10 includes an insulator 11, a center electrode 13 (second electrode), and a ground electrode 18 (first electrode).

絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された円筒状の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12の先端側に中心電極13が配置されている。   The insulator 11 is a cylindrical member formed of alumina or the like that is excellent in mechanical properties and insulation at high temperatures, and has a shaft hole 12 that penetrates along the axis O. A center electrode 13 is disposed on the tip side of the shaft hole 12.

中心電極13は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われた電極母材14と、電極母材14の先端に接合されたチップ15と、を備えている。電極母材14は絶縁体11に保持され、先端が軸孔12から露出する。チップ15はPt等の貴金属を含有する金属製の部材である。   The center electrode 13 is a rod-shaped member extending along the axis O, and is formed at an electrode base material 14 in which a core material mainly composed of copper or copper is covered with nickel or a nickel-based alloy, and at the tip of the electrode base material 14. And a joined chip 15. The electrode base material 14 is held by the insulator 11 and the tip is exposed from the shaft hole 12. The chip 15 is a metal member containing a noble metal such as Pt.

端子金具16は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具16は、先端側が軸孔12に挿入された状態で、絶縁体11の後端に固定されている。絶縁体11の外周に主体金具17が固定されている。   The terminal fitting 16 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel). The terminal fitting 16 is fixed to the rear end of the insulator 11 with the tip end inserted into the shaft hole 12. A metal shell 17 is fixed to the outer periphery of the insulator 11.

主体金具17は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具17の先端に接地電極18が接合されている。接地電極18は、主体金具17に接合された棒状の金属製(例えばニッケル基合金製)の電極母材19と、電極母材19の先端部に接合されたチップ20と、を備えている。チップ20は、中心電極13(チップ15)との間に火花ギャップを形成する。   The metal shell 17 is a substantially cylindrical member formed of a conductive metal material (for example, low carbon steel). A ground electrode 18 is joined to the tip of the metal shell 17. The ground electrode 18 includes a rod-shaped metal (for example, nickel-base alloy) electrode base material 19 joined to the metal shell 17 and a tip 20 joined to the tip of the electrode base material 19. The tip 20 forms a spark gap with the center electrode 13 (tip 15).

スパークプラグ10は、例えば、以下のような方法によって製造される。まず、予めチップ15が先端に接合された中心電極13を絶縁体11の軸孔12に挿入し、中心電極13の先端が軸孔12から外部に露出するように配置する。軸孔12に端子金具16を挿入し、端子金具16と中心電極13との導通を確保した後、予め電極母材19が接合された主体金具17を絶縁体11の外周に組み付ける。電極母材19にチップ20を接合した後、チップ20が中心電極13と対向するように電極母材19を屈曲して、スパークプラグ10を得る。   The spark plug 10 is manufactured by the following method, for example. First, the center electrode 13 having the tip 15 bonded in advance to the tip is inserted into the shaft hole 12 of the insulator 11 and arranged so that the tip of the center electrode 13 is exposed to the outside from the shaft hole 12. After the terminal fitting 16 is inserted into the shaft hole 12 and the conduction between the terminal fitting 16 and the center electrode 13 is ensured, the metal shell 17 to which the electrode base material 19 has been joined in advance is assembled to the outer periphery of the insulator 11. After joining the tip 20 to the electrode base material 19, the electrode base material 19 is bent so that the tip 20 faces the center electrode 13, and the spark plug 10 is obtained.

チップ20は、Irからなる第1相と、Al(アルミナ)及びZrO(ジルコニア)のうちの少なくとも一方の酸化物と、を含有する。チップ20は、第1相および酸化物以外に、Pt,Pd,Rh,Re,Ru,Niから選ばれる少なくとも1種の金属からなる第2相、及び、不可避不純物を含有できる。チップ20が第2相を含有する場合、第1相および第2相の合計の金属成分に対する第1相(Ir)の含有率は80wt%以上である。 The chip 20 contains a first phase made of Ir and at least one oxide of Al 2 O 3 (alumina) and ZrO 2 (zirconia). In addition to the first phase and the oxide, the chip 20 can contain a second phase made of at least one metal selected from Pt, Pd, Rh, Re, Ru, and Ni, and inevitable impurities. When the chip 20 contains the second phase, the content of the first phase (Ir) with respect to the total metal component of the first phase and the second phase is 80 wt% or more.

酸化物の含有率は、チップ20の体積に対して0.5〜9.5vol%、好ましくは3.5〜8.5vol%である。チップ20の火花消耗性を確保するためである。酸化物の含有率(vol%)は、チップ20の断面の面積とその断面に現出する酸化物の面積との比率である。   The oxide content is 0.5 to 9.5 vol%, preferably 3.5 to 8.5 vol%, with respect to the volume of the chip 20. This is to ensure the spark consumability of the chip 20. The oxide content (vol%) is the ratio between the area of the cross section of the chip 20 and the area of the oxide appearing in the cross section.

酸化物の含有率は、例えば以下の方法により測定され算出される。まず、チップ20の任意の断面を鏡面研磨し、その断面を電子顕微鏡で観察する。次いで、40μm×60μmの大きさの矩形状の視野の範囲内に存在する全ての酸化物の面積を合計した総面積(S)を求める。酸化物の含有率(vol%)=S(μm)/2400(μm)×100の計算式に総面積Sを代入して、酸化物の含有率が求められる。 The oxide content is measured and calculated by the following method, for example. First, an arbitrary cross section of the chip 20 is mirror-polished, and the cross section is observed with an electron microscope. Next, the total area (S) obtained by summing the areas of all oxides present in the range of the rectangular visual field having a size of 40 μm × 60 μm is obtained. Oxide content (vol%) = S (μm 2 ) / 2400 (μm 2 ) × 100 is substituted for the total area S to obtain the oxide content.

なお、視野の範囲内の酸化物の存在は、EPMAを用いたWDS分析により検出できる。画像解析ソフト(例えばSoft Imaging System GmbH社製Analysis Five)を用い、視野内の画像を2値化処理して、視野内の酸化物の面積を測定できる。酸化物の面積は視野ごとに多少の差が発生するので、3つの視野の平均をとる。   Note that the presence of oxide within the field of view can be detected by WDS analysis using EPMA. Image analysis software (for example, Analysis Five manufactured by Soft Imaging System GmbH) can be used to binarize the image in the field of view and measure the area of the oxide in the field of view. Since the oxide area varies slightly for each field of view, the average of the three fields of view is taken.

チップ20は、例えば、以下のような方法によって製造される。まず、第1相および酸化物(必要に応じて第2相)の原料粉末を混合した後、成形して成形体を得る。成形体を焼成して焼結体を得た後、必要に応じて焼結体を切断してチップ20を得る。鍛造、圧延、押出し、線引き等の塑性加工や熱処理などを、必要に応じて、焼結体に施すことができる。   The chip 20 is manufactured by the following method, for example. First, the first phase and oxide (second phase if necessary) raw material powders are mixed and then molded to obtain a molded body. After the molded body is fired to obtain a sintered body, the sintered body is cut as necessary to obtain the chip 20. Plastic processing such as forging, rolling, extrusion, and drawing, heat treatment, and the like can be applied to the sintered body as necessary.

焼結体の中の酸化物の粒子のメジアン径は0.3〜20μmである。酸化物の粒子のメジアン径を0.3〜20μmとすることにより、スパークプラグ10の放電時の熱衝撃で酸化物を欠け難くすることができ、酸化物の欠損に起因するチップ20の消耗を抑制できる。また、焼成時の第1相の粒成長を酸化物が妨げ難くできるので、チップ20の単位体積あたりの第1相の粒界の面積が過大にならないようにできる。その結果、第1相の粒界の酸化に起因するチップ20の消耗を抑制できる。   The median diameter of the oxide particles in the sintered body is 0.3 to 20 μm. By setting the median diameter of the oxide particles to 0.3 to 20 μm, it is possible to make the oxide difficult to chip due to thermal shock during discharge of the spark plug 10, and wear of the chip 20 due to the oxide deficiency is reduced. Can be suppressed. Further, since the oxide can hardly prevent the growth of the first phase during firing, the area of the grain boundary of the first phase per unit volume of the chip 20 can be prevented from becoming excessive. As a result, the consumption of the chip 20 due to the oxidation of the grain boundaries of the first phase can be suppressed.

メジアン径は、酸化物の粒子の累積分布50vol%のときの粒子径である。メジアン径は、鏡面研磨されたチップ20の任意の断面の電子顕微鏡による画像から、以下の方法によって測定され算出される。   The median diameter is a particle diameter when the cumulative distribution of oxide particles is 50 vol%. The median diameter is measured and calculated by the following method from an electron microscope image of an arbitrary cross section of the mirror-polished tip 20.

まず、電子顕微鏡による画像のうち、40μm×60μmの大きさの矩形状の視野の範囲内に存在する全ての酸化物(粒子)について、粒子の像を2本の平行線で挟んだときの平行線の間隔(フェレー径)を測定する。2本の平行線の向きは、作為をなくすため、粒子ごとに変えないで、常に同じ方向とする。粒子径分布は視野ごとに多少の差が発生するので、3つの視野に現出する全ての酸化物の粒子のフェレー径を測定する。   First, among all the oxides (particles) existing within the range of a rectangular field of view of 40 μm × 60 μm in the image obtained by an electron microscope, the parallel image when the particle image is sandwiched between two parallel lines. Measure the line spacing (Ferret diameter). The direction of the two parallel lines is always the same direction without changing each particle in order to eliminate artifacts. Since there is a slight difference in the particle size distribution for each field of view, the ferret diameters of all oxide particles appearing in the three fields of view are measured.

次に、測定されたフェレー径の最小値から最大値までの範囲を分割し、分割した各々の粒子径区間に存在する粒子の個数(n)を集計する。次いで、各々の粒子径区間の中央値を直径とする球の体積(v)に、その粒子径区間に存在する粒子の個数(n)を乗じて、各々の粒子径区間に存在する粒子の総体積(V=v・n)を算出する。各々の粒子径区間に存在する粒子の総体積(V)の総和を100vol%として、各々の粒子径区間に存在する粒子量の比率(vol%、頻度分布)や、特定の粒子径以下の粒子量の比率(vol%、累積分布)を求めることができる。酸化物は、累積分布50vol%のときの粒子径が0.3〜20μmに設定される。 Next, the range from the minimum value to the maximum value of the measured ferret diameter is divided, and the number of particles (n i ) existing in each divided particle diameter section is totalized. Next, the volume (v i ) of a sphere whose diameter is the median value of each particle diameter interval is multiplied by the number of particles (n i ) existing in the particle diameter interval to obtain particles existing in each particle diameter interval The total volume (V i = v i · n i ) is calculated. The sum of the total volume (V i ) of the particles existing in each particle diameter section is set to 100 vol%, and the ratio of the amount of particles existing in each particle diameter section (vol%, frequency distribution) or less than a specific particle diameter The ratio of the amount of particles (vol%, cumulative distribution) can be determined. The oxide has a particle size of 0.3 to 20 μm when the cumulative distribution is 50 vol%.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
Irを第1相、Ptを第2相とする金属成分に対しPt(第2相)の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末とメジアン径1.0μmのアルミナ粉末とを種々の比率で混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)の含有率(vol%)が異なる、直径1.6mm長さ20mmの円柱状のサンプル1〜8を得た。サンプル中のアルミナ(酸化物)のメジアン径も1.0μmであった。
Example 1
The raw material powder prepared so that the content rate of Pt (2nd phase) might be 5 wt% with respect to the metal component which makes Ir 1st phase and Pt 2nd phase was prepared. The raw material powder and alumina powder having a median diameter of 1.0 μm were mixed at various ratios, and a molded body was obtained by press molding. The compact was fired at 1400-1600 ° C. in an Ar atmosphere while uniaxially pressing to obtain a sintered body. The sintered body was cut to obtain cylindrical samples 1 to 8 having a diameter of 1.6 mm and a length of 20 mm, each having a different content (vol%) of alumina (oxide). The median diameter of alumina (oxide) in the sample was also 1.0 μm.

ニッケル基合金製の電極母材に、直径1.6mm長さ0.4mmのチップが接合された第2電極を準備した。第2電極のチップは、Ptを第1相、Niを第2相とする金属成分に対しNi(第2相)を10wt%含有する合金とした。第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、各サンプルと第2電極との間に電圧を印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。   A second electrode was prepared in which a chip having a diameter of 1.6 mm and a length of 0.4 mm was joined to an electrode base material made of a nickel-based alloy. The tip of the second electrode was an alloy containing 10 wt% of Ni (second phase) with respect to the metal component having Pt as the first phase and Ni as the second phase. After the tip of the second electrode and each sample were opposed to each other with a gap of 0.8 mm, a voltage was applied between each sample and the second electrode in a nitrogen atmosphere, and the second electrode and each sample were In the meantime, discharge was repeatedly generated.

図2は各サンプルと第2電極との間に印加した電圧波形および電流波形の模式図である。実施例1では、各サンプルと第2電極との間に放電を生じさせる主電圧21の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を2MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を3A、パルス22の持続時間Dを500μsとした。パルス22が重畳した主電圧21を繰り返し10時間印加した。   FIG. 2 is a schematic diagram of a voltage waveform and a current waveform applied between each sample and the second electrode. In the first embodiment, the frequency of the main voltage 21 that causes discharge between each sample and the second electrode is 30 Hz, the frequency of the pulse 22 (high-frequency current) superimposed on the main voltage 21 is 2 MHz, and the main voltage 21 is applied. The waiting time W until the start of applying the pulse 22 was 100 μs, the current of the pulse 22 was 3 A, and the duration D of the pulse 22 was 500 μs. The main voltage 21 superimposed with the pulse 22 was repeatedly applied for 10 hours.

試験後、各サンプルの消耗量(mm)を測定した。消耗量が0.15mm未満のサンプルは「特に優れている(A)」、消耗量が0.15mm以上0.16mm未満のサンプルは「優れている(B)」、消耗量が0.16mm以上0.175mm未満のサンプルは「良い(C)」、消耗量が0.175mm以上のサンプルは「劣る(D)」と判定した。結果を表1に示した。なお、この判定の基礎となる消耗量は、放電が生じ難くなり、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。 After the test, the consumption amount (mm 3 ) of each sample was measured. Samples with a consumption amount of less than 0.15 mm 3 are “particularly excellent (A)”, samples with a consumption amount of 0.15 mm 3 or more and less than 0.16 mm 3 are “excellent (B)”, and the consumption amount is 0 .16 mm 3 or more and less than 0.175 mm 3 were judged as “good (C)”, and samples with a consumption of 0.175 mm 3 or more were judged as “poor (D)”. The results are shown in Table 1. Note that the amount of consumption that is the basis for this determination is determined by estimating from the amount of consumption of the chip 20 that makes it difficult for electric discharge to occur and makes it difficult to start an internal combustion engine (not shown) or makes the operation unstable. It was.

Figure 2019021398
表1に示すように、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.5〜9.5vol%のサンプル2〜7は、判定をC以上にできることが確認された。サンプル8は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が10.0vol%なので、Ir等の金属に比べて熱伝導性が低いアルミナを多く含むことになり、チップの熱引き特性(熱伝導性)が低くなり、チップの消耗量が増えたと推察される。サンプル1は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.3vol%なので、酸化物による消耗の抑制効果が乏しくなったと推察される。
Figure 2019021398
As shown in Table 1, it was confirmed that the samples 2 to 7 having an alumina (oxide) content of 0.5 to 9.5 vol% with respect to the volume of the chip (sample) can be judged to be C or more. . Since sample 8 has a content of alumina (oxide) of 10.0 vol% with respect to the volume of the chip (sample), it contains a lot of alumina having a lower thermal conductivity than a metal such as Ir. It is presumed that the heat dissipation property (thermal conductivity) is lowered and the consumption of the chip is increased. In sample 1, the content of alumina (oxide) is 0.3 vol% with respect to the volume of the chip (sample), so it is presumed that the effect of suppressing consumption by oxide is poor.

特に、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が3.5〜8.5vol%のサンプル4〜6は、判定をAにできることが確認された。チップの熱引き特性と酸化物による消耗の抑制効果とを両立できたと推察される。   In particular, it was confirmed that samples 4 to 6 having an alumina (oxide) content of 3.5 to 8.5 vol% with respect to the volume of the chip (sample) can be judged as A. It is inferred that both the heat-drawing characteristics of the chip and the effect of suppressing consumption by oxides were achieved.

(実施例2)
Irを第1相とする金属成分に対し酸化物(アルミナ又はジルコニア)の含有率が7vol%となるように調製された原料粉末を準備した。プレス成形によって成形体を得た後、この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、第2相の種類や比率(wt%)及び酸化物の種類が異なる、直径1.6mm長さ20mmの円柱状のサンプル9〜28を得た。なお、サンプル中の酸化物のメジアン径は1.0μmであった。
(Example 2)
The raw material powder prepared so that the content rate of an oxide (alumina or zirconia) might be 7 vol% with respect to the metal component which makes Ir the 1st phase was prepared. After obtaining a molded body by press molding, this molded body was fired at 1400 to 1600 ° C. in an Ar atmosphere while uniaxially pressing to obtain a sintered body. The sintered body was cut to obtain cylindrical samples 9 to 28 having a diameter of 1.6 mm and a length of 20 mm, which are different in the type and ratio (wt%) of the second phase and the type of oxide. The median diameter of the oxide in the sample was 1.0 μm.

実施例1と同様にして、各サンプルと第2電極との間に、パルス(高周波電流)を重畳させた電圧(図2参照)を印加した。試験後、各サンプルの消耗量(mm)を測定した。判定基準は、実施例1の判定基準と同じにした。結果を表2に示した。 In the same manner as in Example 1, a voltage (see FIG. 2) in which a pulse (high-frequency current) was superimposed was applied between each sample and the second electrode. After the test, the consumption amount (mm 3 ) of each sample was measured. The determination criterion was the same as that of Example 1. The results are shown in Table 2.

Figure 2019021398
表2に示すように、第1相(Ir)及び第2相からなる金属成分に対し第1相(Ir)の含有率が80wt%以上のサンプル9〜12,14〜16,18,19,21,23〜25,27は、判定をC以上にできることが確認された。
Figure 2019021398
As shown in Table 2, samples 9 to 12, 14 to 16, 18, 19, samples having a first phase (Ir) content of 80 wt% or more with respect to the metal component composed of the first phase (Ir) and the second phase. It was confirmed that 21, 23, 25 and 27 can make the determination C or higher.

(実施例3)
Irを第1相、Ptを第2相とする金属成分に対し第2相の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末と種々のアルミナ粉末とを、アルミナの含有率が7vol%となるように混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)のメジアン径が異なる、直径1.6mm長さ20mmの円柱状のサンプル29〜37を得た。
(Example 3)
The raw material powder prepared so that the content rate of a 2nd phase might be 5 wt% with respect to the metal component which makes Ir the 1st phase and Pt the 2nd phase was prepared. The raw material powder and various alumina powders were mixed so that the alumina content was 7 vol%, and then a molded body was obtained by press molding. The compact was fired at 1400-1600 ° C. in an Ar atmosphere while uniaxially pressing to obtain a sintered body. The sintered body was cut to obtain cylindrical samples 29 to 37 having a diameter of 1.6 mm and a length of 20 mm, each having a different median diameter of alumina (oxide).

実施例1と同じ第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、高周波電流を重畳させた電圧を各サンプルと第2電極との間に10時間印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。実施例3では、各サンプルと第2電極との間に放電を生じさせる主電圧21(図2参照)の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を13MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を8A、パルス22の持続時間Dを1000μsとした。   The chip of the second electrode, which is the same as that of Example 1, and each sample were opposed to each other with an interval of 0.8 mm, and then a voltage in which a high-frequency current was superimposed in a nitrogen atmosphere between each sample and the second electrode. It was applied for 10 hours, and discharge was repeatedly generated between the second electrode and each sample. In Example 3, the frequency of the main voltage 21 (see FIG. 2) causing discharge between each sample and the second electrode is 30 Hz, the frequency of the pulse 22 (high-frequency current) superimposed on the main voltage 21 is 13 MHz, The waiting time W from the application of the voltage 21 to the start of applying the pulse 22 was 100 μs, the current of the pulse 22 was 8 A, and the duration D of the pulse 22 was 1000 μs.

試験後、各サンプルの消耗量(mm)を測定した。消耗量が0.12mm未満のサンプルは「特に優れている(A)」、消耗量が0.12mm以上0.15mm未満のサンプルは「優れている(B)」、消耗量が0.15mm以上0.16mm未満のサンプルは「良い(C)」、消耗量が0.16mm以上のサンプルは「劣る(D)」と判定した。結果を表3に示した。なお、この判定の基礎となる消耗量も、第1実施の形態と同様に、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。 After the test, the consumption amount (mm 3 ) of each sample was measured. Samples with a consumption of less than 0.12 mm 3 are “particularly excellent (A)”, samples with a consumption of 0.12 mm 3 or more and less than 0.15 mm 3 are “excellent (B)”, and the consumption is 0. .15 mm 3 or more and less than 0.16 mm 3 were determined to be “good (C)”, and samples with a consumption of 0.16 mm 3 or more were determined to be “poor (D)”. The results are shown in Table 3. The amount of consumption that is the basis for this determination is also estimated from the amount of consumption of the chip 20 that makes it difficult to start an internal combustion engine (not shown) or makes the operation unstable, as in the first embodiment. And determined.

Figure 2019021398
表3に示すように、アルミナ(酸化物)のメジアン径が0.3〜20μmのサンプル30〜36は、判定をC以上にできることが確認された。サンプル29は、アルミナのメジアン径が0.2μmなので、第1相の粒界に存在する多くのアルミナの粒子が、焼成時の第1相の粒成長を妨げ、サンプルの単位体積あたりの第1相の粒界の面積が過大になったものと推察される。その結果、第1相(Ir)の粒界の酸化消耗に起因するサンプルの消耗量が増加したと考えられる。サンプル37は、アルミナのメジアン径が50μmなので、放電時の熱衝撃でアルミナの粒子の一部が欠け、消耗が促進されたと推察される。
Figure 2019021398
As shown in Table 3, it was confirmed that the samples 30 to 36 in which the median diameter of alumina (oxide) is 0.3 to 20 μm can be judged to be C or more. In sample 29, the median diameter of alumina is 0.2 μm, so that many alumina particles present in the grain boundaries of the first phase hinder the growth of the first phase during firing, and the first volume per unit volume of the sample It is inferred that the area of the grain boundary of the phase has become excessive. As a result, it is considered that the amount of consumption of the sample due to the oxidation consumption of the grain boundary of the first phase (Ir) increased. Since sample 37 has an alumina median diameter of 50 μm, it is presumed that a portion of the alumina particles were missing due to thermal shock during discharge, and consumption was promoted.

なお、アルミナ(酸化物)のメジアン径が0.5〜5μmのサンプル31〜35は、判定をB以上にできることが確認された。放電時の熱衝撃によるアルミナの欠損に起因するサンプルの消耗を抑制し、また、サンプルの単位体積あたりの第1相の粒界の面積が過大になることを防ぎ、第1相(Ir)の粒界からの酸化消耗に起因するサンプルの消耗を抑制できたと推察される。さらに、アルミナ(酸化物)のメジアン径が0.5〜5μmと小さいので、放電時に生じる熱でアルミナの粒子が溶融し、サンプルの表面を覆い、消耗の抑制に寄与したと推察される。特に、アルミナ(酸化物)のメジアン径が0.7〜2μmのサンプル32〜34は、この効果を向上させることができ、判定をAにできることが確認された。   In addition, it was confirmed that the samples 31 to 35 having a median diameter of alumina (oxide) of 0.5 to 5 μm can be judged to be B or more. The consumption of the sample due to the loss of alumina due to thermal shock during discharge is suppressed, and the area of the grain boundary of the first phase per unit volume of the sample is prevented from being excessive, and the first phase (Ir) It is inferred that sample consumption due to oxidation consumption from the grain boundary could be suppressed. Furthermore, since the median diameter of alumina (oxide) is as small as 0.5 to 5 μm, it is presumed that the alumina particles were melted by the heat generated during discharge and covered the surface of the sample, thereby contributing to the suppression of wear. In particular, it was confirmed that Samples 32 to 34 having a median diameter of alumina (oxide) of 0.7 to 2 μm can improve this effect and can make the determination A.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

実施の形態では、接地電極18のチップ20が、Irを主成分としアルミナやジルコニアを含有するものとしたが、必ずしもこれに限られるものではない。中心電極13のチップ15を、チップ20と同様の組成にすることは当然可能である。チップ15,20の両方を、Irを主成分としアルミナやジルコニアを含有することは当然可能である。しかし、これに限られるものではなく、チップ15,20のいずれか一方が、Irを主成分としアルミナやジルコニアを含有するものであれば良い。   In the embodiment, the tip 20 of the ground electrode 18 includes Ir as a main component and contains alumina or zirconia, but is not necessarily limited thereto. Of course, the tip 15 of the center electrode 13 can have the same composition as the tip 20. Of course, both chips 15 and 20 can contain alumina or zirconia with Ir as the main component. However, the present invention is not limited to this, and any one of the chips 15 and 20 may be used as long as it contains Ir as a main component and contains alumina or zirconia.

実施の形態では、アルミナ又はジルコニア(いずれか一方)が含まれるチップ20について説明したが、必ずしもこれに限られるものではない。アルミナ及びジルコニアの両方をチップ20が含有することは当然可能である。アルミナとジルコニアとの比率は適宜設定できる。この場合、アルミナ及びジルコニアを合わせた酸化物の含有率が、チップ20の体積に対して0.5〜9.5vol%とされる。   In the embodiment, the chip 20 including alumina or zirconia (either one) is described, but the present invention is not necessarily limited thereto. Of course, the tip 20 can contain both alumina and zirconia. The ratio of alumina to zirconia can be set as appropriate. In this case, the content ratio of the oxide combining alumina and zirconia is set to 0.5 to 9.5 vol% with respect to the volume of the chip 20.

実施の形態では説明を省略したが、チップ20の形状は適宜設定できる。チップ20の形状は、例えば、円柱状、円錐台状、楕円柱状、三角柱や四角柱等の多角柱状などが挙げられる。   Although the description is omitted in the embodiment, the shape of the chip 20 can be set as appropriate. Examples of the shape of the chip 20 include a columnar shape, a truncated cone shape, an elliptical column shape, and a polygonal column shape such as a triangular column and a quadrangular column.

実施の形態では、チップ20が電極母材19に接合される場合について説明したが、必ずしもこれに限られるものではない。チップ20と電極母材19との間に中間材を設けることは当然可能である。チップ20と電極母材19との間に中間材を介在させることにより、電極が火炎核のエネルギーを奪う消炎作用を抑制できる。   In the embodiment, the case where the chip 20 is bonded to the electrode base material 19 has been described, but the present invention is not necessarily limited thereto. It is naturally possible to provide an intermediate material between the chip 20 and the electrode base material 19. By interposing the intermediate material between the tip 20 and the electrode base material 19, it is possible to suppress the extinguishing action in which the electrode takes away the energy of the flame core.

実施の形態では、主体金具17に接合された電極母材19を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した電極母材19を用いる代わりに、直線状の電極母材を用いることは当然可能である。この場合には、主体金具17の先端側を軸線O方向に延ばし、直線状の電極母材を主体金具17に接合して、電極母材を中心電極13と対向させる。   In the embodiment, the case where the electrode base material 19 joined to the metal shell 17 is bent has been described. However, it is not necessarily limited to this. Naturally, instead of using the bent electrode base material 19, it is possible to use a linear electrode base material. In this case, the front end side of the metal shell 17 is extended in the axis O direction, a linear electrode base material is joined to the metal shell 17, and the electrode base material is opposed to the center electrode 13.

実施の形態では、中心電極13の軸線Oとチップ20の中心軸とを一致させ、チップ20が中心電極13と軸線O方向に対向するように接地電極18を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極18と中心電極13との位置関係は適宜設定できる。接地電極18と中心電極13との他の位置関係としては、例えば、中心電極13の側面と接地電極18とが火花ギャップを介して対向するように、接地電極18を配置すること等が挙げられる。この場合、火花ギャップを臨む位置にチップ20が接合される。   In the embodiment, the case where the ground electrode 18 is disposed so that the axis O of the center electrode 13 and the center axis of the chip 20 coincide with each other and the chip 20 faces the center electrode 13 in the direction of the axis O has been described. However, the present invention is not necessarily limited to this, and the positional relationship between the ground electrode 18 and the center electrode 13 can be set as appropriate. Other positional relationships between the ground electrode 18 and the center electrode 13 include, for example, arranging the ground electrode 18 so that the side surface of the center electrode 13 and the ground electrode 18 face each other through a spark gap. . In this case, the chip 20 is joined at a position facing the spark gap.

10 スパークプラグ
13 中心電極(第2電極)
18 接地電極(第1電極)
19 電極母材
20 チップ
10 Spark plug 13 Center electrode (second electrode)
18 Ground electrode (first electrode)
19 Electrode base material 20 Tip

Claims (3)

Irを主成分とするチップが接合された電極母材を備える第1電極と、
前記チップと火花ギャップを介して対向する第2電極と、を備えるスパークプラグであって、
前記チップは、Al及びZrOのうちの少なくとも一方の酸化物を含有し、
前記酸化物の含有率は、前記チップの体積に対して0.5〜9.5vol%であるスパークプラグ。
A first electrode including an electrode base material to which a chip mainly composed of Ir is bonded;
A spark plug comprising the tip and a second electrode facing through a spark gap,
The chip contains an oxide of at least one of Al 2 O 3 and ZrO 2 ,
The spark plug has a content of the oxide of 0.5 to 9.5 vol% with respect to the volume of the chip.
前記酸化物の含有率は、前記チップの体積に対して3.5〜8.5vol%である請求項1記載のスパークプラグ。   The spark plug according to claim 1, wherein a content of the oxide is 3.5 to 8.5 vol% with respect to a volume of the chip. 前記酸化物は、メジアン径が0.3〜20μmである請求項1又は2に記載のスパークプラグ。   The spark plug according to claim 1, wherein the oxide has a median diameter of 0.3 to 20 μm.
JP2017135905A 2017-07-12 2017-07-12 Spark plug Active JP6920907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135905A JP6920907B2 (en) 2017-07-12 2017-07-12 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135905A JP6920907B2 (en) 2017-07-12 2017-07-12 Spark plug

Publications (2)

Publication Number Publication Date
JP2019021398A true JP2019021398A (en) 2019-02-07
JP6920907B2 JP6920907B2 (en) 2021-08-18

Family

ID=65353120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135905A Active JP6920907B2 (en) 2017-07-12 2017-07-12 Spark plug

Country Status (1)

Country Link
JP (1) JP6920907B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737677A (en) * 1993-07-23 1995-02-07 Ngk Spark Plug Co Ltd Spark plug
JPH1140314A (en) * 1997-07-11 1999-02-12 Ngk Spark Plug Co Ltd Spark plug
JP2008248322A (en) * 2007-03-30 2008-10-16 Ishifuku Metal Ind Co Ltd HEAT RESISTANT Ir BASE ALLOY
JP2015159003A (en) * 2014-02-24 2015-09-03 株式会社アライドマテリアル electrode material for spark plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737677A (en) * 1993-07-23 1995-02-07 Ngk Spark Plug Co Ltd Spark plug
JPH1140314A (en) * 1997-07-11 1999-02-12 Ngk Spark Plug Co Ltd Spark plug
JP2008248322A (en) * 2007-03-30 2008-10-16 Ishifuku Metal Ind Co Ltd HEAT RESISTANT Ir BASE ALLOY
JP2015159003A (en) * 2014-02-24 2015-09-03 株式会社アライドマテリアル electrode material for spark plug

Also Published As

Publication number Publication date
JP6920907B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP5978348B1 (en) Spark plug
EP1677400A2 (en) Spark plug
JP5414896B2 (en) Spark plug
JP4402046B2 (en) Spark plug
US10938186B2 (en) Spark plug electrode and spark plug
JP6320354B2 (en) Spark plug and manufacturing method thereof
WO2004105204A1 (en) Spark plug
EP2634873A1 (en) Spark plug
JP2015230744A (en) Spark plug electrode tip, and spark plug
WO2013018252A1 (en) Spark plug
JP4944433B2 (en) Spark plug
JP2019021398A (en) Spark plug
JPWO2012086206A1 (en) Spark plug
JP6328158B2 (en) Spark plug
JP4392130B2 (en) Spark plug for internal combustion engine
JP5895056B2 (en) Spark plug
JP2017531091A (en) Rhodium alloy
JP2017130267A (en) Spark plug
JP2015099721A (en) Spark plug
JP4746707B1 (en) Spark plug
JP4291540B2 (en) Spark plug
JP2021039911A (en) Spark plug
JP5750490B2 (en) Spark plug
JP2015198053A (en) spark plug
JP2018098084A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6920907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350