JPH08311584A - Refractory superalloy - Google Patents

Refractory superalloy

Info

Publication number
JPH08311584A
JPH08311584A JP7286135A JP28613595A JPH08311584A JP H08311584 A JPH08311584 A JP H08311584A JP 7286135 A JP7286135 A JP 7286135A JP 28613595 A JP28613595 A JP 28613595A JP H08311584 A JPH08311584 A JP H08311584A
Authority
JP
Japan
Prior art keywords
alloy
superalloy
iridium
melting point
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7286135A
Other languages
Japanese (ja)
Other versions
JP3146341B2 (en
Inventor
Yutaka Koizumi
裕 小泉
Yoko Yamabe
容子 山邉
Yoshiichi Ro
芳一 呂
Toshihiro Maruko
智弘 丸子
Shizuo Nakazawa
静夫 中沢
Hideyuki Murakami
秀之 村上
Koji Harada
広史 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP28613595A priority Critical patent/JP3146341B2/en
Priority claimed from US08/616,198 external-priority patent/US6071470A/en
Publication of JPH08311584A publication Critical patent/JPH08311584A/en
Application granted granted Critical
Publication of JP3146341B2 publication Critical patent/JP3146341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To provide a refractory superalloy having high temp. strength characteristic of high service temp. and excellent oxidation resistance. CONSTITUTION: This alloy is a refractory superalloy having two crystal structures of FCC structure and L12 structure and can be obtained by adding niobium, tantalum, hafnium, zirconium, uranium, vanadium, titanium, and aluminum, independently or in combination, to iridium, rhodium, or a mixture of them by 2-22atomic% additive quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高融点超合金に関す
るものである。さらに詳しくは、この発明は、発電用ガ
スタービン、ジェットエンジン、ロケットエンジン等の
タービンブレード、タービンベーン等に用いられる耐熱
部材として有用な高融点超合金に関するものである。
FIELD OF THE INVENTION This invention relates to high melting point superalloys. More specifically, the present invention relates to a high melting point superalloy useful as a heat-resistant member used for turbine blades and turbine vanes of power generation gas turbines, jet engines, rocket engines and the like.

【0002】[0002]

【従来の技術とその課題】従来より、タービンブレード
やタービンベーン等の高温機器に用いられる耐熱部材と
してはNi基超合金が用いられている。このNi基超合
金の融点は1300℃前後であり、従って、実用的な強
度を有することのできる温度範囲、つまり耐用温度は1
100℃程度である。しかしながら、発電用ガスタービ
ン、ジェットエンジン、ロケットエンジン等の高温機器
の出力や熱効率をさらに向上させるためには、燃焼ガス
温度を上昇させなければならず、このためには従来より
用いられているNi基超合金の耐用温度1100℃より
さらに高い耐用温度を有する耐熱部材が必要である。
2. Description of the Related Art Conventionally, Ni-base superalloys have been used as heat-resistant members used in high-temperature equipment such as turbine blades and turbine vanes. The melting point of this Ni-base superalloy is around 1300 ° C. Therefore, the temperature range within which it has practical strength, that is, the service temperature is 1
It is about 100 ° C. However, in order to further improve the output and thermal efficiency of high-temperature equipment such as a gas turbine for power generation, a jet engine, and a rocket engine, it is necessary to raise the combustion gas temperature. There is a need for a heat-resistant member having a service temperature higher than the service temperature of the base superalloy of 1100 ° C.

【0003】従来より、このような高い耐用温度を有す
る耐熱部材としてタングステン、ニオブ、モリブデン、
タンタル等の高融点合金が研究されている。しかしなが
ら、これらの合金は、真空中や不活性ガス中など酸化の
生じない雰囲気中においては十分な高温強度を有する
が、大気中や燃焼ガス中など酸化の生じる雰囲気中にお
いては急速に酸化消耗してしまうため上記のような高温
機器の部材としては用いることができないという欠点が
ある。
Conventionally, as heat resistant members having such a high service temperature, tungsten, niobium, molybdenum,
High melting point alloys such as tantalum have been studied. However, these alloys have sufficient high-temperature strength in an atmosphere where oxidation does not occur, such as in vacuum or in an inert gas, but are rapidly consumed by oxidation in an atmosphere where oxidation occurs, such as in the air or in combustion gas. Therefore, there is a drawback that it cannot be used as a member of the above high temperature equipment.

【0004】そこでこの発明は、上記のような従来技術
の欠点を解決するために創案されたものであり、従来の
超合金よりもさらに高い耐用温度の高温強度特性と、さ
らに優れた耐酸化特性とを有する、新しい高融点超合金
を提供することを目的としている。
Therefore, the present invention was devised in order to solve the above-mentioned drawbacks of the prior art, and has a high temperature strength property with a higher service temperature and a further excellent oxidation resistance property than conventional superalloys. It is intended to provide a new high melting point superalloy having

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、イリジウム、ロジウムまたはこ
れらの混合物に、ニオブ、タンタル、ハフニウム、ジル
コニウム、ウラン、バナジウム、チタンおよびアルミニ
ウムの1種または2種以上の元素が添加された合金であ
って、FCC構造とL12 構造との2つの結晶を有する
ことを特徴とする高融点超合金を提供する。
In order to solve the above-mentioned problems, the present invention provides iridium, rhodium or a mixture thereof with one of niobium, tantalum, hafnium, zirconium, uranium, vanadium, titanium and aluminum, or Provided is a high melting point superalloy which is an alloy to which two or more elements are added and which has two crystals of an FCC structure and an L1 2 structure.

【0006】またこの発明は、上記超合金において、ニ
オブ、タンタル、ハフニウム、ジルコニウム、ウラン、
バナジウム、チタンおよびアルミニウムの1種または2
種以上のイリジウムへの添加量を2原子%以上22原子
%以下とすることもその態様としている。
The present invention also provides the above superalloys containing niobium, tantalum, hafnium, zirconium, uranium,
One or two of vanadium, titanium and aluminum
It is also an aspect that the amount of iridium added is 2 at% or more and 22 at% or less.

【0007】[0007]

【作用】この発明においては、上記の通り、イリジウ
ム、ロジウムまたはこれらの混合物に、ニオブ、タンタ
ル、ハフニウム、ジルコニウム、ウラン、バナジウム、
チタン、アルミニウムを単独に、もしくは複合的に添加
することにより、FCC構造とL12 構造との2つの結
晶を有する高い耐用温度の高温強度特性と優れた耐酸化
特性の高融点超合金とすることができる。
In the present invention, as described above, iridium, rhodium or a mixture thereof is added to niobium, tantalum, hafnium, zirconium, uranium, vanadium,
To obtain a high melting point superalloy having two crystals of an FCC structure and an L1 2 structure and having high service temperature high temperature strength characteristics and excellent oxidation resistance characteristics by adding titanium or aluminum alone or in combination. You can

【0008】この発明の高融点超合金の高温強度は、2
つの結晶がお互いに整合して存在する時に、その整合界
面が転位の移動を妨げることにより最大となる。イリジ
ウムに添加される元素の単独、あるいは複合的な添加量
が2原子%以下で得られる合金はFCC構造の結晶のみ
の単相組織となりやすく、また、添加量が22原子%を
超えると得られる合金はL12 構造の結晶のみの単相結
晶となりやすい。このため十分な高温強度を得ることが
できにくい。従って、元素の添加量は2原子%以上22
原子%以下とすることが好ましい。
The high temperature superalloy of the present invention has a high temperature strength of 2
When two crystals are in alignment with each other, the alignment interface is maximized by hindering dislocation movement. An alloy obtained by adding an element added to iridium alone or in a composite amount of 2 atomic% or less is likely to have a single-phase structure with only FCC structure crystals, and is obtained when the added amount exceeds 22 atomic%. The alloy is likely to be a single-phase crystal having only L1 2 structure crystals. Therefore, it is difficult to obtain sufficient high temperature strength. Therefore, the addition amount of the element is 2 atomic% or more 22
It is preferably at most atomic%.

【0009】なお、FCC構造とLl2 構造の2相から
なる本発明合金の結晶構造を実質的に保つ範囲内で、他
の合金元素を添加して、特性をさらに向上させてもよ
い。たとえば、耐熱鋼やNi基超耐熱合金などの耐熱材
料に通常添加され、高温強度向上に有効であることが広
く知られているモリブデン、タングステン、レニウムな
どの強化元素を単独にあるいは複合的に添加してもよ
い。イリジウムまたはロジウムの一部をルテニウム、パ
ラジウム、プラチナ、オスミウムなどにて置換すること
も高温強度向上に有効である。また、合金の融点を若干
下げるが、イリジウムまたはロジウムの全部をパラジウ
ムまたはプラチナで置換することも可能である。
Incidentally, other alloying elements may be added within the range of substantially maintaining the crystal structure of the alloy of the present invention having two phases of FCC structure and Ll 2 structure to further improve the characteristics. For example, strengthening elements such as molybdenum, tungsten, and rhenium, which are commonly added to heat-resistant materials such as heat-resistant steel and Ni-base superalloys and are widely known to be effective in improving high-temperature strength, are added individually or in combination. You may. Substituting a part of iridium or rhodium with ruthenium, palladium, platinum, osmium, etc. is also effective for improving high temperature strength. It is also possible to replace all of the iridium or rhodium with palladium or platinum, while slightly lowering the melting point of the alloy.

【0010】耐酸化性と耐高温腐食性の向上を目的とし
て、クロム、レニウムなど耐熱合金の耐酸化性や耐高温
腐食性の向上に一般に効果のある元素を単独もしくは複
合的に添加してもよい。また、耐熱鋼やNi基超耐熱合
金に通常添加され、多結晶材として用いる場合の粒界強
度向上に有効であることが広く知られている炭素、ホウ
素などを単独にあるいは複合的に添加してもよい。
For the purpose of improving oxidation resistance and high temperature corrosion resistance, elements generally effective for improving the oxidation resistance and high temperature corrosion resistance of heat-resistant alloys such as chromium and rhenium may be added alone or in combination. Good. In addition, carbon, boron, etc., which are commonly added to heat-resistant steels and Ni-base superalloys and widely known to be effective for improving the grain boundary strength when used as a polycrystalline material, are added individually or in combination. May be.

【0011】さらに、イリジウムの一部をニッケル、コ
バルトなど廉価で比重の小さい金属元素で置換し、合金
の価格や比重を低減することもできる。さらに、Ni基
超耐熱合金の強度向上の目的で行われている一方向凝固
法や単結晶凝固法、あるいは粉末冶金成形法を適用して
組織制御を行ってもよい。2相合金に通常適用される溶
体化処理やその後の時効処理などの熱処理や、加工熱処
理などを施して、ミクロ組織を制御して特性向上を図る
ことができる。
Further, a part of iridium can be replaced with a metal element such as nickel or cobalt which is inexpensive and has a low specific gravity to reduce the price and specific gravity of the alloy. Further, the structure may be controlled by applying the unidirectional solidification method, the single crystal solidification method, or the powder metallurgical molding method, which is performed for the purpose of improving the strength of the Ni-base superalloy. A heat treatment such as a solution treatment or an aging treatment that is usually applied to a two-phase alloy, a work heat treatment, or the like can be performed to control the microstructure and improve the characteristics.

【0012】いずれにしても、イリジウム、ロジウムま
たはこれらの混合物をベースとし実質的にFCC構造と
Ll2 構造の2相からなるこの発明の合金が新しい合金
系の基本となる可能性がある。以下、実施例を示し、さ
らに詳しくこの発明の構成と作用効果について説明す
る。もちろんこの発明は以下の例によって限定されるも
のではない。
In any case, the alloy of the present invention based on iridium, rhodium or a mixture thereof and consisting essentially of two phases of FCC structure and Ll 2 structure may be the basis of a new alloy system. Examples will be shown below, and the configuration and operational effects of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples.

【0013】[0013]

【実施例】イリジウムに、ニオブ、チタン、及びアルミ
ニウムを、また、ロジウムにニオブおよびタンタルをそ
れぞれ単独で15原子%添加し、アーク溶解法により合
金を生成する。これにより生成された5種類の合金を、
耐熱強度特性について、従来のNi基超合金であるMa
rM247と比較する。また、耐酸化特性について、M
arM247、純イリジウム、ニオブ合金、タンタル合
金、モリブデン合金、タングステン合金と比較する。耐
熱強度特性については、1200℃および1800℃に
おいて圧縮試験を行った。図1は、圧縮歪みと応力との
関係を示した図である。この図1から明らかなように、
この発明のイリジウムまたはロジムウをベースとした高
融点超合金は、外部からの変形に対して非常に高い応力
(縦軸MPa)を示し、よって、従来のNi基超合金に
比べて非常に優れた強度特性を有することがわかる。ま
た、耐酸化特性については、1500℃における1時間
の酸化消耗量を計測した。表1は、各合金の酸化消耗量
と1200℃における0.2%耐力(MPa)とを示し
たものである。この表1から明らかなように、この発明
の高融点超合金は、従来のMarM247、純イリジウ
ム、ニオブ合金、タンタル合金、モリブデン合金、タン
グステン合金に比べ、同等のまたはより優れた強度を有
しながら非常に優れた耐酸化特性をも有することがわか
る。
EXAMPLE Niobium, titanium, and aluminum were added to iridium, and niobium and tantalum were added to rhodium individually at 15 atom%, and an alloy was produced by an arc melting method. The five kinds of alloys produced by this are
Regarding the heat resistance property, Ma, which is a conventional Ni-based superalloy
Compare with rM247. Regarding the oxidation resistance, M
Compare with arM247, pure iridium, niobium alloy, tantalum alloy, molybdenum alloy, and tungsten alloy. Regarding the heat resistance strength characteristics, a compression test was performed at 1200 ° C and 1800 ° C. FIG. 1 is a diagram showing the relationship between compressive strain and stress. As is clear from FIG. 1,
The high melting point superalloy based on iridium or rhodium according to the present invention exhibits a very high stress (vertical axis MPa) against external deformation, and thus is extremely superior to the conventional Ni-based superalloy. It can be seen that it has strength characteristics. As for the oxidation resistance, the amount of oxidation consumption at 1500 ° C. for 1 hour was measured. Table 1 shows the oxidative consumption of each alloy and the 0.2% proof stress (MPa) at 1200 ° C. As is clear from Table 1, the high melting point superalloy of the present invention has the same or superior strength as the conventional MarM247, pure iridium, niobium alloy, tantalum alloy, molybdenum alloy, and tungsten alloy. It can be seen that it also has very good oxidation resistance.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】この発明は、以上詳しく説明した通り、
高い耐用温度の高温強度特性と優れた耐酸化特性を有す
る高融点超合金を製造することができる。
As described in detail above, the present invention has the following advantages.
It is possible to produce a high melting point superalloy having high-temperature strength characteristics of high service temperature and excellent oxidation resistance characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の高融点超合金と従来の超合金の歪み
−応力曲線を示した図である。
FIG. 1 is a diagram showing strain-stress curves of a high melting point superalloy of the present invention and a conventional superalloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸子 智弘 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 中沢 静夫 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 村上 秀之 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 原田 広史 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiro Maruko 1-2-1, Sengen, Tsukuba-shi, Ibaraki Inside the Institute for Materials Research, Metal Science and Technology Agency (72) Shizuo Nakazawa 1-2-1, Sengen, Tsukuba-shi, Ibaraki Prefecture Issue Inside the Institute for Metals Technology, Agency for Science and Technology (72) Hideyuki Murakami 1-2-1, Sengen, Tsukuba City, Ibaraki Prefecture Inside Institute for Institute for Materials Materials, Science and Technology Agency (72) Hiroshi Harada 1-2, Sengen, Tsukuba, Ibaraki No. 1 within the Research Institute for Metals, Science and Technology Agency

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イリジウム、ロジウムまたはこれらの混
合物に、ニオブ、タンタル、ハフニウム、ジルコニウ
ム、ウラン、バナジウム、チタンおよびアルミニウムの
1種または2種以上の元素が添加された合金であって、
FCC構造とL12 構造との2つの結晶構造を有するこ
とを特徴とする高融点超合金。
1. An alloy in which one or more elements of niobium, tantalum, hafnium, zirconium, uranium, vanadium, titanium and aluminum are added to iridium, rhodium or a mixture thereof,
A high melting point superalloy having two crystal structures, an FCC structure and an L1 2 structure.
【請求項2】 ニオブ、タンタル、ハフニウム、ジルコ
ニウム、ウラン、バナジウム、チタンおよびアルミニウ
ムの1種または2種以上の元素の添加量が2原子%以上
22原子%以下である請求項1の高融点超合金。
2. The refractory material having a high melting point according to claim 1, wherein the addition amount of one or more elements of niobium, tantalum, hafnium, zirconium, uranium, vanadium, titanium and aluminum is 2 atomic% or more and 22 atomic% or less. alloy.
JP28613595A 1995-03-15 1995-11-02 High melting point superalloy Expired - Lifetime JP3146341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28613595A JP3146341B2 (en) 1995-03-15 1995-11-02 High melting point superalloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7-55688 1995-03-15
JP5568895 1995-03-15
JP28613595A JP3146341B2 (en) 1995-03-15 1995-11-02 High melting point superalloy
US08/616,198 US6071470A (en) 1995-03-15 1996-03-15 Refractory superalloys

Publications (2)

Publication Number Publication Date
JPH08311584A true JPH08311584A (en) 1996-11-26
JP3146341B2 JP3146341B2 (en) 2001-03-12

Family

ID=27295671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28613595A Expired - Lifetime JP3146341B2 (en) 1995-03-15 1995-11-02 High melting point superalloy

Country Status (1)

Country Link
JP (1) JP3146341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992614A1 (en) * 1998-10-02 2000-04-12 Asea Brown Boveri AG Coatings for turbine components
JP2005179782A (en) * 2003-12-23 2005-07-07 General Electric Co <Ge> High temperature alloy, and article made and repaired therewith
WO2006011591A1 (en) * 2004-07-29 2006-02-02 Ngk Insulators, Ltd. Lightweight heat resistant material for power generation gas turbine
WO2007091576A1 (en) * 2006-02-09 2007-08-16 Japan Science And Technology Agency Iridium-based alloy with high heat resistance and high strength and process for producing the same
JP2008248322A (en) * 2007-03-30 2008-10-16 Ishifuku Metal Ind Co Ltd HEAT RESISTANT Ir BASE ALLOY
WO2013065340A1 (en) * 2011-11-04 2013-05-10 田中貴金属工業株式会社 HIGHLY HEAT-RESISTANT HIGH-STRENGTH Rh-BASED ALLOY AND METHOD FOR PRODUCING SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388684A (en) * 1976-12-08 1978-08-04 Johnson Matthey Co Ltd Oxidation and reduction catalyst
JPH01119595A (en) * 1987-11-02 1989-05-11 Tanaka Kikinzoku Kogyo Kk Material for single crystal growing crucible

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388684A (en) * 1976-12-08 1978-08-04 Johnson Matthey Co Ltd Oxidation and reduction catalyst
JPH01119595A (en) * 1987-11-02 1989-05-11 Tanaka Kikinzoku Kogyo Kk Material for single crystal growing crucible

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992614A1 (en) * 1998-10-02 2000-04-12 Asea Brown Boveri AG Coatings for turbine components
JP2005179782A (en) * 2003-12-23 2005-07-07 General Electric Co <Ge> High temperature alloy, and article made and repaired therewith
WO2006011591A1 (en) * 2004-07-29 2006-02-02 Ngk Insulators, Ltd. Lightweight heat resistant material for power generation gas turbine
JPWO2006011591A1 (en) * 2004-07-29 2008-05-01 日本碍子株式会社 Lightweight heat-resistant material for power generation gas turbine
JP5279187B2 (en) * 2004-07-29 2013-09-04 日本碍子株式会社 Lightweight heat-resistant material for power generation gas turbine
WO2007091576A1 (en) * 2006-02-09 2007-08-16 Japan Science And Technology Agency Iridium-based alloy with high heat resistance and high strength and process for producing the same
US7666352B2 (en) 2006-02-09 2010-02-23 Japan Science And Technology Agency Iridium-based alloy with high heat resistance and high strength and process for producing the same
JP4833227B2 (en) * 2006-02-09 2011-12-07 独立行政法人科学技術振興機構 High heat resistance, high strength Ir-based alloy and manufacturing method thereof
JP2008248322A (en) * 2007-03-30 2008-10-16 Ishifuku Metal Ind Co Ltd HEAT RESISTANT Ir BASE ALLOY
WO2013065340A1 (en) * 2011-11-04 2013-05-10 田中貴金属工業株式会社 HIGHLY HEAT-RESISTANT HIGH-STRENGTH Rh-BASED ALLOY AND METHOD FOR PRODUCING SAME
US9605334B2 (en) 2011-11-04 2017-03-28 Tanaka Kikinzoku Kogyo K.K. Highly heat-resistant and high-strength Rh-based alloy and method for manufacturing the same

Also Published As

Publication number Publication date
JP3146341B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
US4764225A (en) Alloys for high temperature applications
Erickson The development and application of CMSX-10
EP1842934B1 (en) Heat-resistant superalloy
US4818486A (en) Low thermal expansion superalloy
EP2778241A1 (en) Heat-resistant nickel-based superalloy
EP0732416A1 (en) Refractory superalloys
US20030207151A1 (en) Rhenium-containing protective layer for protecting a component against corrosion and oxidation at high temperatures
US5268238A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
US5393356A (en) High temperature-resistant material based on gamma titanium aluminide
US8858874B2 (en) Ternary nickel eutectic alloy
JP5323162B2 (en) Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures
JP4115369B2 (en) Ni-base superalloy
US20060147335A1 (en) Niobium-silicide based compositions, and related articles
JP2020521879A (en) High temperature nickel base alloy
JP2004332116A (en) Nickel-base alloy
JPH08311584A (en) Refractory superalloy
US5330711A (en) Nickel base alloys for castings
CN102433467B (en) Hafnium-containing high-tungsten-nickel-based isometric crystal alloy and application thereof
EP1760164B1 (en) Nickel-base superalloy
US4684505A (en) Heat resistant alloys with low strategic alloy content
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
EP2944704B1 (en) Nickel alloy composition
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
White Nickel base alloys

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term