JP2008238574A - Method of welding fiber plates and fiber plate - Google Patents

Method of welding fiber plates and fiber plate Download PDF

Info

Publication number
JP2008238574A
JP2008238574A JP2007082245A JP2007082245A JP2008238574A JP 2008238574 A JP2008238574 A JP 2008238574A JP 2007082245 A JP2007082245 A JP 2007082245A JP 2007082245 A JP2007082245 A JP 2007082245A JP 2008238574 A JP2008238574 A JP 2008238574A
Authority
JP
Japan
Prior art keywords
fiberboard
welding
waste
heating
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082245A
Other languages
Japanese (ja)
Other versions
JP4874144B2 (en
Inventor
Masao Konishi
正夫 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007082245A priority Critical patent/JP4874144B2/en
Publication of JP2008238574A publication Critical patent/JP2008238574A/en
Application granted granted Critical
Publication of JP4874144B2 publication Critical patent/JP4874144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To weld fiber plates in which different resins are mixed without generation of thermal strain. <P>SOLUTION: A method of welding fiber plates comprises preparing fiber plates from waste textile products, applying a heat-generating material to welding parts of the fiber plates, laminating the fiber plates or attaching rib strips temporarily, promoting inside heating of the heat-generating material by laying in a high-frequency electric field so as to soften or melt the fiber plates indirectly and pressure-molding. The heat-generating material is e.g. an aqueous solution of glycerol having a high dielectric loss factor and is made to permeate into granular or fibrous wood waste under vacuum decompression so as to permeate into the central part of the pieces of the waste. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は繊維板の溶着方法および繊維板に関する。繊維板は、廃繊維製品類から回収した繊維を再利用して製造したボードで、木製のボード(単板または合板)の代用品として、土木・建築・家具・物流・梱包等々用の資材さらには自動車部品等として利用することができる。   The present invention relates to a fiberboard welding method and a fiberboard. Fibreboard is a board manufactured by reusing fibers recovered from waste fiber products. As a substitute for wooden boards (single or plywood), materials for civil engineering, architecture, furniture, logistics, packaging, etc. Can be used as automobile parts.

木製のボードは現場施工性に富み、釘または接着剤を使用することによりさらなる構造体を構成することができる。その一方で、耐水性・耐腐食性・断熱性・防音性・物理的強度等を確保した土木・建築用資材が要求される中、衝撃エネルギー・耐震性等に富んだ資材が求められている。カーテン・カーペット・衣類等の繊維製品は、肌触り・デザイン性等に配慮した製品構成とするため、ウール・コットン・ナイロン・ポリエステル等が混紡される。このようにさまざまな素材が混紡された廃繊維製品類は、分離・分別が困難なことから廃棄物として焼却処分に委ねられている。
特開平8−138819号公報 特開平8−531942号公報 国際公開パンフレットPCT/JP97/02289
Wooden boards are highly field workable and can be further constructed by using nails or adhesives. On the other hand, while civil engineering and building materials that ensure water resistance, corrosion resistance, heat insulation, sound insulation, physical strength, etc. are required, materials with high impact energy and earthquake resistance are required. . Textile products such as curtains, carpets, and clothing are blended with wool, cotton, nylon, polyester, etc. in order to achieve a product configuration that takes into consideration the feel and design. In this way, waste fiber products in which various materials are blended are left to incineration as waste because they are difficult to separate and separate.
JP-A-8-138819 Japanese Patent Laid-Open No. 8-531942 International Publication Pamphlet PCT / JP97 / 02289

高周波を利用してプラスチックを溶着する技術は種々知られている。しかし、いずれもプラスチック素材が予め特定されていることが前提となる。ナイロン・ポリエステル・ウール等の雑多種類が混在した廃繊維を素材とした繊維板の場合、自己溶着または通常の相溶化剤が機能せず、そのため、高周波誘電加熱やマイクロ波加熱を試みるも、冷却と共に剥離または分離してしまう。   Various techniques for welding plastic using high frequency are known. However, in any case, it is assumed that the plastic material is specified in advance. In the case of fiberboard made of waste fibers mixed with various types of materials such as nylon, polyester, wool, etc., self-welding or normal compatibilizers do not function, so although high frequency dielectric heating and microwave heating are attempted, cooling At the same time, it peels or separates.

この発明は、混紡素材等を用いて繊維板を得た後、任意の箇所に溶着または積層を施すことで、物理的強度を改善した新たな構造体を提供せんとするものである。そのために、この発明は、繊維板への共通する相溶化剤として木くずに含有されるセルロース(C6105)を利用し、非相溶の関係にある異種プラスチックを溶着することを提案するものである。しかしながら、木くずに含有されるセルロース成分を相溶化剤または一種の接着材を繊維板に塗布して溶着を試みたところ、繊維板の溶着機能は確認されるものの、繊維板に熱歪が発生し、安定した成形体を構築することができなかった。 The present invention is to provide a new structure with improved physical strength by obtaining a fiberboard using a blended material or the like and then performing welding or lamination at an arbitrary position. For this purpose, the present invention proposes to use a cellulose (C 6 H 10 O 5 ) contained in wood waste as a common compatibilizing agent for fiberboard and to weld dissimilar plastics in an incompatible relationship. To do. However, when a cellulose component contained in wood waste was applied with a compatibilizing agent or a kind of adhesive to the fiberboard, and welding was attempted, although the fiberboard's welding function was confirmed, thermal distortion occurred in the fiberboard. A stable molded body could not be constructed.

そこで、この発明の目的は、熱歪を発生させることなく異種プラスチックが混在した繊維板を溶着することにある。   Accordingly, an object of the present invention is to weld a fiberboard in which different types of plastics are mixed without causing thermal strain.

廃繊維製品類には、ナイロン・ポリエステル・ウール等々異なる繊維素材が混在している。このように雑多な素材が混在する廃繊維製品類を単繊維毛へと細かく反毛した後、木くずから開繊されたセルロース繊維毛(C6105)を混入し、攪拌・混合処理を施した後、熱と圧力によって押し固めることで、廃繊維等が混在した繊維板を得ることができる。 Waste fiber products contain different fiber materials such as nylon, polyester and wool. After the waste fiber products mixed with such various materials are finely bent into single fiber hairs, cellulose fiber hairs (C 6 H 10 O 5 ) opened from wood scraps are mixed and stirred and mixed. After applying the above, by pressing and solidifying with heat and pressure, a fiberboard in which waste fibers and the like are mixed can be obtained.

ナイロン・ポリエステル・ポリプロピレン等の非相溶な関係にある高分子素材に対して、熱歪を抑制しつつ溶着や積層を施すためには、局部的発熱が可能な高周波加熱が最も効率的である。高周波加熱は、繊維板表面に塗布した発熱体のみに高周波エネルギーを与えることで発熱体のみを昇温・加熱させ、繊維板の局部的発熱作用を促すことができる。高周波が誘電体に当たると、誘電体を構成している双極子が電界の極性変化によって激しく振動する。この双極子の振動が外部電界に追従できなくなると分子摩擦によって熱エネルギーに変わり、電波の強度は急速に減衰する。発熱量は誘電体の誘電損失係数(εγtanδ)に比例するため、発熱体としては誘電損失係数の大きい物質たとえばグリセリン水溶液等の溶液を採用する。   High-frequency heating capable of local heat generation is the most efficient way to weld or laminate polymer materials that are incompatible with nylon, polyester, polypropylene, etc. while suppressing thermal strain. . In the high-frequency heating, only the heating element is heated and heated by applying high-frequency energy only to the heating element applied to the surface of the fiberboard, and the local heating action of the fiberboard can be promoted. When a high frequency strikes the dielectric, the dipole that forms the dielectric vibrates violently due to the change in the polarity of the electric field. When this dipole vibration can no longer follow the external electric field, it changes into thermal energy due to molecular friction, and the intensity of the radio wave rapidly attenuates. Since the amount of heat generation is proportional to the dielectric loss coefficient (εγtanδ) of the dielectric, a substance having a large dielectric loss coefficient, such as a solution of glycerin aqueous solution, is employed as the heating element.

発熱体に高周波エネルギーを吸収させ、発熱体内部から昇温・加熱を促すのであるが、発熱体を粒子状または繊維状の木くずに含浸させた態様とすることで、高い昇温・加熱効果が期待できる。すなわち、木くずに含浸させた発熱体は、高周波電界中に置くことにより昇温・加熱状態となるが、木くずに含浸されて密閉状態にあることから飽和状態を保ち、通常より高い昇温効果を促すこととなる。木くずに含浸させた発熱体に逸早く吸収され、グリセリン水溶液の場合はグリセリン構成分子間での振動エネルギーが摩擦熱となって発熱体内部からの昇温を招く。グリセリン水溶液は、木くずにより包含されて密閉状態にあるため蒸発が阻害され、木くず内部で飽和状態となり、通常よりも、つまり密閉されていない場合に比べて逸早く、かつ、高い昇温効果が得られる。   The heating element absorbs high-frequency energy and promotes heating and heating from the inside of the heating element. By making the heating element impregnated with particulate or fibrous wood chips, a high heating and heating effect is achieved. I can expect. In other words, the heating element impregnated with wood waste becomes heated and heated by placing it in a high-frequency electric field, but since it is impregnated with wood waste and in a sealed state, it maintains a saturated state and has a higher temperature raising effect than usual. Will be encouraged. The heat is rapidly absorbed by the heating element impregnated with wood waste, and in the case of a glycerin aqueous solution, the vibrational energy between the glycerin constituent molecules becomes frictional heat, and the temperature rises from within the heating element. The glycerin aqueous solution is contained in the wood waste and is in a sealed state, so that evaporation is inhibited and saturated inside the wood waste, which is faster than usual, that is, compared to the case where it is not sealed, and a high temperature rising effect is obtained. .

このように、熱歪発生を抑制しつつ繊維板を積層して溶着するには、繊維板の表面層に発熱体を塗布した後、発熱体を高周波電界中に配置する。発熱体を中心とし、局部的発熱を促された繊維板の表面層は軟化・溶融するため、繊維板を積層して加圧成形を施すことによりセルロース成分を介して溶着することができる。複数の繊維板を積層して相互に溶着するほか、繊維板の表面にリブを溶着するなど、任意の形状の構造体を得ることができる。   Thus, in order to laminate and weld the fiber boards while suppressing the occurrence of thermal strain, after applying the heating elements to the surface layer of the fiber boards, the heating elements are placed in a high-frequency electric field. Since the surface layer of the fiberboard, which is centered on the heating element and promoted local heat generation, is softened and melted, it can be welded via the cellulose component by laminating the fiberboard and performing pressure molding. In addition to laminating a plurality of fiber boards and welding them together, it is possible to obtain a structure of any shape, such as welding ribs to the surface of the fiber boards.

この発明によれば、混紡繊維のように異種プラスチックを含んだ廃繊維を素材とした繊維板に対して、熱歪を抑制した溶着を施すことが可能となる。また、そのような溶着が可能となったことから、繊維板同士を積層溶着するほか、リブ板を溶着するなどして、任意の構造体を構築させることが可能となり、物理的強度および機能性の向上を図った繊維板を提供することができる。   According to the present invention, it is possible to perform welding with suppressed thermal strain on a fiberboard made of waste fibers containing different types of plastic such as blended fibers. In addition, since such welding is possible, it is possible to build an arbitrary structure by laminating and welding the fiberboards and welding rib plates, etc., and physical strength and functionality The fiber board which aimed at improvement of can be provided.

以下、この発明の実施の形態を説明する。まず、発熱体について述べ、その後で繊維板の溶着について述べる。   Embodiments of the present invention will be described below. First, the heating element will be described, and then the fiberboard welding will be described.

上述のとおり高周波は誘電体とりわけ誘電損失係数の大きい物質に当たると分子摩擦によって熱エネルギーに変わり、電波の強度は急速に減衰(吸収)される。このような高周波減衰効果の高い物質としては、水・水酸化ニッケル・エチレングリコール・プロピレングリコール・水酸化ナトリウム・ペンタエリストール・グリセリン・その他数多くの物質が存在する。ここでは、特に限定するものではないが、グリセリン水溶液を例にとって説明することとする。   As described above, when a high frequency wave hits a dielectric, particularly a substance having a large dielectric loss coefficient, it is converted into thermal energy by molecular friction, and the intensity of the radio wave is rapidly attenuated (absorbed). Such substances having a high frequency attenuation effect include water, nickel hydroxide, ethylene glycol, propylene glycol, sodium hydroxide, pentaerythritol, glycerin, and many other substances. Here, although not particularly limited, a glycerin aqueous solution will be described as an example.

仮に、グリセリン水溶液そのものを繊維板の表面に塗布し、高周波を照射しても、ナイロン・ポリエステル・ポリプロピレン等の異種材の溶着ができないばかりか、グリセリン水溶液は、高周波エネルギーの吸収を受け、昇温と共に蒸発する結果となり、繊維板の溶着に必要な昇温・加熱状態を導くことはできない。そのため、図2および図4に示すように、グリセリン水溶液を、粉砕した粒子状または繊維状の木くずの中央部位に含浸させることで、グリセリン水溶液を木くず由来のセルロース成分で包み込み密閉状態とした発熱体を構築し、より高い発熱効果が得られるようにする。この場合、粒子状または繊維状の木くずがグリセリン水溶液の担体となり、異種プラスチックの相溶化剤としての作用と、高周波減衰効果とを併せ持った発熱体が得られる。   Even if the glycerin aqueous solution itself is applied to the fiberboard surface and irradiated with high frequency, dissimilar materials such as nylon, polyester, and polypropylene cannot be welded. As a result, the temperature rises and the heating state necessary for welding the fiberboard cannot be led. Therefore, as shown in FIG. 2 and FIG. 4, a heating element in which a glycerin aqueous solution is impregnated in a central part of a pulverized particulate or fibrous wood waste to enclose the glycerin aqueous solution with a cellulose component derived from wood waste and is in a sealed state. To achieve a higher heat generation effect. In this case, particulate or fibrous wood waste becomes a carrier of the glycerin aqueous solution, and a heating element having both an action as a compatibilizing agent for different plastics and a high-frequency attenuation effect is obtained.

グリセリン水溶液は、図3に示すように、グリセリン(C383)100に対して水(H2O)0〜40 %を調合し、約20〜60 ℃の加熱状態で均一に攪拌・混合することによって得られる。なお、下限の「0」は文字通りの意味ではなく、限りなく少量でもよいという意味である。グリセリン(C383)は水(H2O)に対して、誘電率・比熱がいずれも極めて小さく、かつ、木くず等への浸透性が早いため、高い高周波減衰効果が望める発熱体として捉えることができる。 As shown in FIG. 3, the aqueous glycerin solution is prepared by mixing 0 to 40% of water (H 2 O) with respect to glycerin (C 3 H 8 O 3 ) 100 and stirring uniformly in a heated state of about 20 to 60 ° C. • Obtained by mixing. The lower limit “0” does not mean literally, but it means that a small amount is possible. Glycerin (C 3 H 8 O 3 ) has a very low dielectric constant and specific heat relative to water (H 2 O), and has a high permeability to wood chips, so it can be expected to have a high high-frequency damping effect. Can be understood as

Figure 2008238574
Figure 2008238574

Figure 2008238574
Figure 2008238574

表2は、水とグリセリンの単体における沸点と、粒子状の木くずに含浸させて高周波を照射したときの温度を対比して示したものである。表1および表2に示すように、沸点171 ℃のグリセリンは、粒子状の木くずの中央部位深くにグリセリン水溶液を含浸させ、木くず由来のセルロース成分で包み含んで密閉状態とした後、高周波(2.45 GHz)を照射することで、単体の沸点の約1.4倍まで昇温・発熱する。   Table 2 shows a comparison between the boiling point of water and glycerin alone and the temperature when impregnated into the granular wood chips and irradiated with high frequency. As shown in Tables 1 and 2, glycerin having a boiling point of 171 ° C. was impregnated with a glycerin aqueous solution deeply in the central part of the particulate wood waste, encapsulated with a wood component derived from wood waste, sealed, and then subjected to high frequency (2 .45 GHz) raises the temperature and generates heat up to about 1.4 times the boiling point of a single substance.

述べたように、より高い昇温効果を得るために、木くずの中央部位深くにグリセリン水溶液を浸透させる。グリセリン水溶液の担体としての木くずは、特に材質等を細かく限定する必要はなく、間伐材等の廃材を有効活用することができる。間伐材等の廃材を細かく粉砕し、50 μ〜3 mm程度のほぼ均一な大きさに整え、粒子状または繊維状となす。木くずは、セルロース(C6H10O5)を主成分とし、リグニン・ヘミセルロース等が混在したものと捉えることができるが、異種プラスチックの相溶化剤として作用するセルロースを含有すれば、その他成分構成等については細かく限定するものでない。 As described above, in order to obtain a higher temperature rising effect, the glycerin aqueous solution is infiltrated deep into the central part of the wood chip. The wood chips as the carrier of the glycerin aqueous solution do not need to be particularly limited in material and the like, and waste materials such as thinned wood can be used effectively. Waste materials such as thinned wood are finely pulverized and adjusted to an almost uniform size of about 50 μm to 3 mm to form particles or fibers. Wood waste is mainly composed of cellulose (C 6 H 10 O 5 ) and can be considered as a mixture of lignin and hemicellulose. Etc. are not limited in detail.

通常、粒子状または繊維状に細かく粉砕した木くずには、既に6〜15 %程度の水分が存在する。したがって、さらにグリセリン水溶液を含浸させるには、木くずに脱水・乾燥処理を施して含水率を低下させ、吸収性の高い木くずへと変化させることが望ましい。そのため、木くずを真空容器内へ投入して加熱・減圧状態におくことで残存する水分を蒸発させる。具体的には、密閉された容器内で60〜100 ℃の加熱状態の中、1気圧から−0.6気圧へと減圧することにより、木くずに残存していた水分を蒸発させ、含水率を3 %以下まで低下させる。   Usually, about 6 to 15% of water already exists in the wood chips finely pulverized into particles or fibers. Accordingly, in order to further impregnate the glycerin aqueous solution, it is desirable to dehydrate and dry the wood chips to reduce the moisture content and to change the wood chips to highly absorbent wood chips. Therefore, the remaining water is evaporated by putting the wood chips into the vacuum vessel and placing them in a heated / depressurized state. Specifically, by reducing the pressure from 1 atm to -0.6 atm in a heated state at 60 to 100 ° C in a sealed container, the water remaining in the wood chips is evaporated, and the water content is reduced. Reduce to 3% or less.

含水率を3 %以下に調製した絶乾状態にある木くずをグリセリン水溶液内に投入して含浸させる。グリセリン水溶液は粘度が高く、溶液内へ投入して浸漬するだけでは木くずの中央部位深くまで含浸させることはできないため、次なる加圧・蒸沸工程へと移行する。すなわち、グリセリン水溶液内に投入された木くずは、容器を密閉状態に保ち、圧力を1.6気圧程度に高めるとともに約60〜200 ℃の加熱・蒸沸処理を施すことで、木くずの中央部位深くまでグリセリン水溶液を浸透させることができる。このように、一旦真空・脱水処理を施して絶乾状態にした後、改めて加熱・増圧に伴う蒸沸処理を施すことで、木くずの中央部位深くまでグリセリン水溶液を含浸させる。   Wood chips in an absolutely dry state with a water content adjusted to 3% or less are put into an aqueous glycerin solution and impregnated. Since the glycerin aqueous solution has a high viscosity and cannot be impregnated deeply into the central part of the wood chip only by being immersed in the solution, the process proceeds to the next pressurizing and boiling step. That is, the wood waste thrown into the glycerin aqueous solution keeps the container sealed, raises the pressure to about 1.6 atm, and performs heating and boiling treatment at about 60 to 200 ° C. to deepen the central portion of the wood waste. Can be infiltrated with an aqueous glycerin solution. In this way, after once vacuuming and dehydrating treatment is performed to make it completely dry, a boiling treatment accompanying heating and pressure increase is performed again so that the aqueous glycerin solution is impregnated deep into the central part of the wood chips.

加圧・蒸沸処理により木くずに含浸させたグリセリン水溶液は20 %以上の高い含有率を確保することとなる。高周波加熱によって約150〜200 ℃の高い昇温効果を求めるためには、グリセリン水溶液を木くずの中央部位深くへ含浸させて密封する必要がある。グリセリン水溶液が木くずに密封された状態で高周波加熱を行なうと、グリセリン水溶液は昇温と共に飽和状態となり、より高い温度上昇が生じる。木くず内にグリセリン水溶液を密封した状態を構築するために、20〜80 ℃の熱風を与え、表面層に添着したグリセリン水溶液を揮発させ、木くずの表面層のみを乾燥させる。熱風により表面層を乾燥させた木くずは、中央部位にグリセリン水溶液が残存する。具体的には、表面層の乾燥処理を経た木くずは、5〜20 %のグリセリン水溶液を担持する。   The glycerin aqueous solution impregnated into the wood chips by the pressure / boiling treatment ensures a high content of 20% or more. In order to obtain a high temperature rising effect of about 150 to 200 ° C. by high-frequency heating, it is necessary to impregnate a glycerin aqueous solution deep into the central part of the wood chip and seal it. When high-frequency heating is performed in a state where the glycerin aqueous solution is sealed with wood chips, the glycerin aqueous solution becomes saturated as the temperature rises, and a higher temperature rise occurs. In order to construct a state where the glycerin aqueous solution is sealed in the wood waste, hot air of 20 to 80 ° C. is applied to volatilize the glycerin aqueous solution attached to the surface layer, and only the surface layer of the wood waste is dried. In the wood waste whose surface layer has been dried by hot air, an aqueous glycerin solution remains in the central portion. Specifically, the wood chips that have undergone the surface layer drying treatment carry 5 to 20% glycerin aqueous solution.

次に、繊維板の溶着について説明する。
廃繊維製品類は、ナイロン・ポリエステル・ウール・綿等が混在している。雑多素材が混在する廃繊維製品類を単繊維毛へと細かく反毛した後、木くずから開繊されたセルロース繊維毛を混入し、相互繊維毛に攪拌・混合を施した後、熱と圧力によって押し固めることで、雑多廃繊維等が混在した繊維板を得る。
Next, the fiberboard welding will be described.
Waste fiber products are a mixture of nylon, polyester, wool, and cotton. Waste fiber products mixed with miscellaneous materials are finely crushed into single fiber hairs, mixed with cellulose fiber hairs opened from wood scraps, stirred and mixed with each other, and then heated and pressurized. By pressing and compacting, a fiberboard in which miscellaneous waste fibers are mixed is obtained.

繊維板の任意の面に発熱体を均一に塗布する。繊維板の表面には、発熱体と共に、水酸化ニッケル・エチレングリコール・チタン・フェライト・酸化スズ・銅・鉄粉等の誘電性物質を混合させて、高周波減衰効果を高めることも可能である。繊維板の表面に発熱体を塗布した後、繊維板の積層または繊維板とリブ板等の仮組付けへと移行する。リブ板等の仮組付けに対しては、マイカレックス・白雲母・サルファイア・石英ガラス等、誘電力率の小さい素材を使用して仮組付け治具等を製作し、その治具内で仮組付けした状態のまま、次の加熱工程へ搬入するのが好ましい。   A heating element is uniformly applied to any surface of the fiberboard. It is also possible to enhance the high-frequency attenuation effect by mixing a dielectric material such as nickel hydroxide, ethylene glycol, titanium, ferrite, tin oxide, copper, iron powder together with a heating element on the surface of the fiberboard. After the heating element is applied to the surface of the fiberboard, the process proceeds to fiberboard lamination or temporary assembly of the fiberboard and rib plate. For temporary assembly of rib plates, etc., manufacture temporary assembly jigs, etc. using materials with a low dielectric power factor such as micalex, muscovite, sulfite, quartz glass, etc. It is preferable to carry in to the next heating process with the temporarily assembled state.

高周波加熱には、1 MHz〜300 MHzの周波数領域で行う高周波誘電加熱と、300 MHzから300GHzの周波数領域で行うマイクロ波加熱が存在する。マイクロ波加熱は、特定な電極板を介在させず、任意に積層溶着を施すことができる等の点に設備・汎用性でのメリットがあるが、量産性等の点に欠けるという問題点もある。もっとも、発熱体を高周波電界中に配置することによって局部的発熱を促す限りにおいてはマイクロ波加熱も高周波誘電加熱も同類であり、いずれも採用することができる。各々の加熱には特徴が存在するため、溶着する構造体の構成・生産量等によって、いずれかを選択することが望ましい。たとえば、試作品実験についてマイクロ波加熱を採用し、量産段階に到っては高周波誘電加熱を採用してもよい。   The high frequency heating includes high frequency dielectric heating performed in a frequency range of 1 MHz to 300 MHz and microwave heating performed in a frequency range of 300 MHz to 300 GHz. Microwave heating is advantageous in terms of facilities and versatility in that it can be arbitrarily laminated and welded without a specific electrode plate, but there is also a problem in that it lacks in terms of mass productivity. . However, as long as local heating is promoted by arranging the heating element in a high-frequency electric field, both microwave heating and high-frequency dielectric heating are the same, and both can be employed. Since each heating has characteristics, it is desirable to select any one depending on the structure and production amount of the structures to be welded. For example, microwave heating may be employed for a prototype experiment, and high frequency dielectric heating may be employed for mass production.

繊維板に発熱体を塗布した後、加熱炉内へ投入する。たとえば2枚の繊維板を積層溶着する場合、重ね合わせる面に発熱体を塗布する。また、繊維板にリブ板を溶着する場合、繊維板の所定の位置に発熱体を塗布してその上にリブ板を配置し、クランプ治具等で固定する(仮組付け)。加熱炉内では、グリセリン水溶液を包含した発熱体に2.45 GHzの高周波出力を照射し、発熱体内部からの昇温・加熱を促す。発熱体内部に局部的発熱を促すという高周波加熱の特性により、予め繊維板に塗布した発熱体のみを昇温させ、間接的に繊維板またはリブ板等を軟化・溶融させる。   After applying a heating element to the fiberboard, it is put into a heating furnace. For example, when two fiber boards are laminated and welded, a heating element is applied to the overlapping surface. Further, when a rib plate is welded to the fiber plate, a heating element is applied to a predetermined position of the fiber plate, the rib plate is disposed thereon, and is fixed with a clamp jig or the like (temporary assembly). In the heating furnace, a heating element including an aqueous glycerin solution is irradiated with a high-frequency output of 2.45 GHz to promote temperature rise and heating from inside the heating element. Due to the property of high-frequency heating that promotes local heat generation inside the heating element, only the heating element previously applied to the fiberboard is heated, and the fiberboard or rib plate is softened and melted indirectly.

加熱炉内で軟化・溶融した繊維板は、次に圧縮・加圧成形工程へ移行する。圧縮・加圧成形工程では、上下金型の隙間に、積層またはリブ板を仮組付けした繊維板を投入し、加圧力によって押し固める。これにより、繊維板同士または繊維板とリブ板が上下金型によって押し固められ、溶着・固形化が行われる。ナイロン・ポリエステル・ウール・ポリプロピレン等の、非相溶な関係にある雑多繊維素材が混在した繊維板の溶着に対して、木くず由来のセルロース成分を相溶化剤として利用し、かつ、このセルロース成分にグリセリン水溶液を含浸させて発熱体を構成することにより、熱歪の発生を抑えた繊維板の積層溶着を実施することができる。   The fiberboard softened and melted in the heating furnace is then transferred to a compression / pressure molding process. In the compression / pressure molding process, a fiber board in which a laminated or rib plate is temporarily assembled is placed in the gap between the upper and lower molds, and is pressed and hardened by the applied pressure. Thereby, fiber boards or a fiber board and a rib board are pressed and solidified by the upper and lower molds, and welding and solidification are performed. Uses wood components derived from wood as a compatibilizing agent for the welding of fiberboards with mixed incompatible fibers such as nylon, polyester, wool, polypropylene, etc. By forming the heating element by impregnating with the glycerin aqueous solution, it is possible to carry out lamination welding of the fiberboards with suppressed generation of thermal strain.

住宅資材等には、耐水性・断熱性等の機能性のほか物理的強度が求められる。廃繊維製品類を素材とした繊維板は、耐水性・断熱性等には優れた機能性を備えるものの、物理的強度不足に大きな問題点が存在していた。しかし、繊維板にリブ板等を溶着することで、繊維板に発生するたわみ等の物理的強度を改善することができた。このようにして物理的強度を改善した繊維板成形体すなわちパネルは、パネル同士を面接合することで、床・壁・屋根材を一体化したいわゆるモノコック構造体など、高い耐震構造体等を構築することが可能となった。   Residential materials are required to have physical strength in addition to functionality such as water resistance and heat insulation. Although fiberboard made of waste fiber products has excellent functionality in terms of water resistance, heat insulation, etc., there has been a major problem with insufficient physical strength. However, by welding a rib plate or the like to the fiberboard, it was possible to improve the physical strength such as deflection generated in the fiberboard. Fiberboard molded bodies with improved physical strength, that is, panels, are constructed with high seismic structures, such as so-called monocoque structures that integrate floors, walls, and roofing materials by joining the panels together. It became possible to do.

床下地材として利用するため、2枚の繊維板を積層溶着した実施例について述べる。
最近の木材住宅構造では、白蟻の発生と共に、腐蝕・腐敗・カビ・ダニ等の発生が大きな社会問題となっている。カーテン・カーペット・衣類等が混在した廃繊維製品類から繊維板を得ることができる。廃繊維製品類を原料とした繊維板は、ホルムアルデヒドの放散も、腐蝕・腐敗・カビ・ダニ等の発生もなく、物理的強度を改善すれば、住宅資材として利用することができる。この実施例では、2枚の繊維板を積層して溶着することで、物理的強度・耐水性・耐腐蝕性等に優れた床下地材を製造した。
An example in which two fiberboards are laminated and welded for use as a floor base material will be described.
In recent timber housing structures, the occurrence of white ants and the occurrence of corrosion, rot, mold, mites, etc. have become major social problems. A fiberboard can be obtained from waste fiber products in which curtains, carpets, clothing, etc. are mixed. Fiberboard made from waste fiber products can be used as a housing material if the physical strength is improved without formaldehyde emission and the occurrence of corrosion, decay, mold and mites. In this example, a floor base material having excellent physical strength, water resistance, corrosion resistance and the like was manufactured by laminating and welding two fiberboards.

まず、発熱体について述べる。
高周波エネルギーは誘電損失係数(εγ・tanδ)の大きい物質に吸収され、発熱作用を促す。発熱に係る単位体積あたりの電力は、電界の強さ(E/d)の2乗、周波数f、比誘電率εγ、誘電正接tanδに比例する。比誘電率と誘電正接の積を誘電損失係数と呼び、誘電損失係数が大きいほどよく発熱量は大きい。水(25℃)の誘電率は約77であるが、比熱が1.0と大きく、多くの熱エネルギーを必要とし、沸点が低い。そのため、比熱が小さく沸点の高いグリセリン(C3H8O3)と混合することで、高温領域への昇温を可能とする。具体的には、グリセリン(C3H8O3)100に対して水(H2O)を5とし、60 ℃の加熱状態で攪拌することにより、均一に混合されたグリセリン水溶液を得た。
First, the heating element will be described.
The high frequency energy is absorbed by a substance having a large dielectric loss coefficient (εγ · tanδ) and promotes heat generation. The power per unit volume related to heat generation is proportional to the square of the electric field strength (E / d), the frequency f, the relative dielectric constant εγ, and the dielectric loss tangent tanδ. The product of the dielectric constant and the dielectric loss tangent is called the dielectric loss coefficient. The larger the dielectric loss coefficient, the better the heat generation. Water (25 ° C.) has a dielectric constant of about 77, but has a large specific heat of 1.0, requires a lot of heat energy, and has a low boiling point. Therefore, the temperature can be raised to a high temperature region by mixing with glycerin (C 3 H 8 O 3 ) having a small specific heat and a high boiling point. Specifically, water (H 2 O) was set to 5 with respect to glycerin (C 3 H 8 O 3 ) 100 and stirred in a heated state at 60 ° C. to obtain a uniformly mixed glycerin aqueous solution.

発熱体を含浸させる担体として杉間伐材を利用した。直径250mm、長さ2000mmの杉間伐材を細かく粉砕し、50mm程度の杉粉砕片を得た。この杉粉砕片を、粉砕機
((株)新東工機製、型式SHM)を用いて粒子状へ整え、粒径約2.0mm、含水率約8
%の杉粒子状物質500 gを得た。
上記杉粒子状物質を真空圧力釜に投入し、加熱温度110 ℃にて20分間加熱しつつ、−0.6気圧に減圧した。真空圧力釜の加熱・真空処理に伴って、杉粒子状物質に残存する水分を蒸発させ、含水率を0.8 %以下に低下させた。こうして脱水・乾燥処理を施した杉粒子状物質を、グリセリン(C3H8O3)100に対して水(H2O)5の割合で調合した温度60 ℃のグリセリン水溶液5000 ccが入っている高周波減衰溶液槽の中に投入し、溶液を杉粒子状物質内に含浸させた。
Cedar thinning was used as a carrier to impregnate the heating element. Cedar thinned timber having a diameter of 250 mm and a length of 2000 mm was finely crushed to obtain a cedar crushed piece of about 50 mm. This cedar crushed piece was made into particles using a pulverizer (manufactured by Shinto Koki Co., Ltd., model SHM). The particle size was about 2.0 mm and the water content was about 8
% Of cedar particulate matter was obtained.
The cedar particulate matter was put into a vacuum pressure kettle, and the pressure was reduced to −0.6 atm while heating at a heating temperature of 110 ° C. for 20 minutes. With the heating and vacuum treatment of the vacuum pressure kettle, water remaining in the cedar particulate matter was evaporated, and the water content was reduced to 0.8% or less. The deceased and dried cedar particulate matter was mixed with glycerin (C 3 H 8 O 3 ) 100 at a ratio of 5 (water 2 ), and 5 cc of glycerin aqueous solution at a temperature of 60 ° C. The solution was put into a high-frequency attenuation solution tank and impregnated with the cedar particulate matter.

高周波減衰溶液槽に杉粒子状物質を投入した状態で、攪拌・混合を施した後、容器を密閉し、110 ℃に加熱するとともに、1.2気圧に加圧し、約20分間の加熱・蒸沸処理を施した。これにより、杉粒子状物質体内の中央部位深くへ高周波減衰溶液を浸透させる。杉粒子状物質は予め含水率0.8 %の脱水・乾燥状態にしてあるため、高周波減衰溶液内で加熱・蒸沸処理を施すことによって、杉粒子状物質体内の奥深くに高周波減衰溶液が浸透する。
加熱・蒸沸処理の後、杉粒子状物質を容器から取り出し、水切り・自然乾燥を行うことにより、含水率を30 %程度に調えた。その後、約60 ℃の熱風を30分間与え、表面層に添着・含浸した高周波減衰溶液を揮発させ、粒子状物質の表面層のみを均一に乾燥させることにより、含水率を15 %程度に調えた。
このようにして、高周波減衰溶液含水率15 %程度の杉粒子状物質500 gを得た。この杉粒子状物質は、表面層は乾燥し、中央部位深くには高周波減衰溶液を包含する発熱体担体として構成されている。
After stirring and mixing the cedar particulate matter in the high-frequency attenuation solution tank, the container is sealed, heated to 110 ° C., pressurized to 1.2 atmospheres, and heated and steamed for about 20 minutes. Boiling treatment was performed. As a result, the high-frequency attenuation solution is infiltrated deep into the central part of the cedar particulate matter. Since the cedar particulate matter is dehydrated and dried at a moisture content of 0.8% in advance, the high-frequency decay solution penetrates deep into the cedar particulate matter body by heating and boiling in the high-frequency decay solution. To do.
After the heating and steaming treatment, the cedar particulate matter was taken out of the container, drained and naturally dried to adjust the water content to about 30%. Thereafter, hot air at about 60 ° C. was given for 30 minutes to volatilize the high-frequency damping solution impregnated / impregnated into the surface layer, and only the surface layer of the particulate matter was uniformly dried, thereby adjusting the water content to about 15%. .
Thus, 500 g of cedar particulate matter having a high-frequency damping solution water content of about 15% was obtained. This cedar particulate matter is configured as a heating element carrier including a high-frequency damping solution deep in the central portion and having a dry surface layer.

上述の発熱体を使用して溶着する繊維板として、ナイロン・ポリエステル・ウール等が混在した廃繊維製品類を反毛し、熱と圧力を加えて押し固め、厚さ13mm、幅600mm、長さ1800 mmの繊維板を2枚得た。繊維板はそのままでは床下地材として利用す
るには物理的強度が劣り、使用に耐えないため、繊維板を積層溶着することによって物理的強度を向上させる。すなわち、上述の、粒径約2.0mm、グリセリン水溶液の含水率
が約15 %の杉粒子状物質500gを発熱体として、繊維板の表面に塗布し、均一な密嵩に調える。繊維板の表面に塗布した発熱体を挟み込むようにしてもう1枚の繊維板を重ね合わせ、2枚の繊維板を積層した構造体とした。
As a fiberboard to be welded using the above-mentioned heating element, waste fiber products mixed with nylon, polyester, wool, etc. are bristled and pressed with heat and pressure to make them 13mm thick, 600mm wide, and length. Two 1800 mm fiberboards were obtained. If the fiberboard is used as it is as a floor base material, the physical strength is inferior and it cannot be used. Therefore, the physical strength is improved by laminating and welding the fiberboard. That is, the above-mentioned 500 g of cedar particulate material having a particle size of about 2.0 mm and a water content of glycerin aqueous solution of about 15% is applied as a heating element to the surface of the fiberboard to adjust the density to be uniform. Another fiberboard was laminated so as to sandwich the heating element applied to the surface of the fiberboard, and a structure in which two fiberboards were laminated was obtained.

繊維板と繊維板の間に発熱体を介在させて積層した2層の繊維板を加熱炉内へ投入し、マイクロ波加熱を施した。具体的には、周波数2.45 GHzのマイクロ波を約240秒照射することにより、発熱体を約165 ℃まで昇温させた。発熱体の昇温を受け、間接的に、繊維板が軟化・溶融を促された。発熱体の昇温に伴って各繊維板の表面は軟化・溶融状態となり、圧力を加えることによって相互に溶着された。具体的には、厚さ13mmの
2枚の繊維板を、25 kg/cm2の圧縮・加圧成形を経て、厚さ25.5mmの一体化した
積層繊維板とした。
Two layers of fiberboards laminated with a heating element interposed between the fiberboards were put into a heating furnace and subjected to microwave heating. Specifically, the heating element was heated to about 165 ° C. by irradiating a microwave with a frequency of 2.45 GHz for about 240 seconds. Due to the temperature rise of the heating element, the fiberboard was indirectly encouraged to soften and melt. As the temperature of the heating element increased, the surface of each fiberboard became softened and melted, and was welded together by applying pressure. Specifically, two fiberboards having a thickness of 13 mm were subjected to compression and pressure molding at 25 kg / cm 2 to form an integrated laminated fiberboard having a thickness of 25.5 mm.

従来の、ベニヤ合板・パーティクルボード等の木質系集成材は、耐水性・耐腐蝕性等に劣り、湿潤時曲げ強度が問題とされる。特に、床下地材等は、湿気が高く、高い含水率と共に経年劣化が大きな社会問題となっている。しかし、繊維板を積層溶着することによって、湿潤時曲げ強度が改善される。具体例を挙げるならば、単体の繊維板の曲げ強度15 N/mm2に対して、積層溶着を施すことにより、28.7 N/mm2まで強度が向上した。
また、ベニヤ合板・パーティクルボード等の経年劣化が確認される中、含水率25 %の状態を5040 H計測した結果、繊維板の湿潤時曲げ強度は26.6 N/mm2を確保し
た。
Conventional wood-based laminated wood such as veneer plywood and particle board is inferior in water resistance and corrosion resistance, and has a problem of bending strength when wet. In particular, floor base materials and the like are high in moisture, and have a great social problem with high moisture content and aged deterioration. However, the wet bending strength is improved by laminating and welding the fiberboards. As a specific example, the strength was improved to 28.7 N / mm 2 by laminating and welding the bending strength of a single fiberboard of 15 N / mm 2 .
Further, while aged deterioration of veneer plywood, particle board, etc. was confirmed, 5040 H was measured for a moisture content of 25%, and as a result, the wet bending strength of the fiberboard secured 26.6 N / mm 2 .

この発明の実施の形態を示す繊維板の溶着工程図である。It is a welding process figure of the fiber board which shows embodiment of this invention. 発熱体の模式的断面図である。It is typical sectional drawing of a heat generating body. 発熱体を構成するグリセリン水溶液の製造工程図である。It is a manufacturing-process figure of the glycerol aqueous solution which comprises a heat generating body. グリセリン水溶液を木くずに担持させた発熱体の製造工程図である。It is a manufacturing-process figure of the heat generating body which carry | supported the glycerin aqueous solution to the wood chip. 繊維板の溶着工程図である。It is a welding process figure of a fiber board. 湿潤時曲げ強度の比較試験結果を示すグラフである。It is a graph which shows the comparative test result of bending strength at the time of wetness.

Claims (8)

第1の繊維板の表面に誘電体からなる発熱体を塗布し、第2の繊維板と重ね合わせた後、高周波電界中に配置することにより繊維板の表面層に軟化・溶融を促し、その後加圧成形を施すことによって一体化する繊維板の溶着方法。   After applying a heating element made of a dielectric on the surface of the first fiberboard, and superposing it on the second fiberboard, it is placed in a high-frequency electric field to promote softening and melting of the surface layer of the fiberboard, and then A method of welding fiberboards integrated by applying pressure molding. 前記発熱体が液体であって、木質材料に含浸させてある請求項1の方法。   The method of claim 1, wherein the heating element is a liquid and is impregnated with a wood material. 前記液体がグリセリン水溶液である請求項2の方法。   The method of claim 2, wherein the liquid is an aqueous glycerin solution. 前記木質材料が、粒子状または繊維状の木くずである請求項2または3の方法。   The method according to claim 2 or 3, wherein the wood material is particulate or fibrous wood waste. 前記木くずに真空・加熱処理を施した後、グリセリン水溶液を含浸させ、改めて加圧・蒸沸処理を施す請求項4の方法。   5. The method according to claim 4, wherein the wood chips are subjected to vacuum and heat treatment, then impregnated with an aqueous glycerin solution, and again subjected to pressure and boiling treatment. 前記第1の繊維板および前記第2の繊維板が同一形状の矩形パネルである請求項1から5のいずれか1項の方法。   The method according to any one of claims 1 to 5, wherein the first fiberboard and the second fiberboard are rectangular panels having the same shape. 前記第1の繊維板が矩形パネルで、前記第2の繊維板がリブ板である請求項1から5のいずれか1項の方法。   The method according to any one of claims 1 to 5, wherein the first fiberboard is a rectangular panel and the second fiberboard is a rib plate. 請求項1から7のいずれか1項の方法により溶着した繊維板。   A fiberboard welded by the method of any one of claims 1 to 7.
JP2007082245A 2007-03-27 2007-03-27 Fibreboard welding method and fiberboard Expired - Fee Related JP4874144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082245A JP4874144B2 (en) 2007-03-27 2007-03-27 Fibreboard welding method and fiberboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082245A JP4874144B2 (en) 2007-03-27 2007-03-27 Fibreboard welding method and fiberboard

Publications (2)

Publication Number Publication Date
JP2008238574A true JP2008238574A (en) 2008-10-09
JP4874144B2 JP4874144B2 (en) 2012-02-15

Family

ID=39910493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082245A Expired - Fee Related JP4874144B2 (en) 2007-03-27 2007-03-27 Fibreboard welding method and fiberboard

Country Status (1)

Country Link
JP (1) JP4874144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435252A (en) * 2018-08-23 2019-03-08 广州倬粤动力新能源有限公司 A kind of welding method of fiberboard
WO2019116700A1 (en) * 2017-12-14 2019-06-20 三菱重工業株式会社 Composite material forming method and composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116700A1 (en) * 2017-12-14 2019-06-20 三菱重工業株式会社 Composite material forming method and composite material
CN109435252A (en) * 2018-08-23 2019-03-08 广州倬粤动力新能源有限公司 A kind of welding method of fiberboard
CN109435252B (en) * 2018-08-23 2023-03-28 广州倬粤动力新能源有限公司 Method for welding fiber board

Also Published As

Publication number Publication date
JP4874144B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US5134026A (en) Process for manufacturing a compression-moulded synthetic resin object and fabricated material for use in said process
RU2544707C2 (en) Board made of powder from reject printed-circuit boards, method of making same
CN106660329A (en) Composite board composed of wood material
CA2786146A1 (en) Method for producing a particle-based element
US20220307171A1 (en) Method for recycling insulating wool, apparatus for processing insulating wool, fibre-reinforced foam, wood-based material with combustion resistability and method for producing a wood-based material with combustion resistability
JP4874144B2 (en) Fibreboard welding method and fiberboard
JP6663750B2 (en) Particle board
KR20100056990A (en) Environmentally-friendly wet process type hard fiberboard
JPH10166323A (en) Adhesive free woody board and laminated plate and manufacture thereof
KR101243489B1 (en) Structure of composite core for wood flooring
JPH09314524A (en) Fiber board and its manufacture
JP4526946B2 (en) Method for producing wooden molded body and wooden molded body
JP2002292608A (en) Woody base and its manufacturing method
JP6494419B2 (en) Wood chemical treatment method
US20060254731A1 (en) Recycling of lignocellulose based board materials
Hashim et al. Green binderless board from oil palm biomass
CA1241900A (en) Composite material based on particles of a plant origin and the method of manufacturing thereof
JPH0140722B2 (en)
JP2006341453A (en) Incombustible plywood and its production method
JP2006062327A (en) Manufacturing method (selfcuring of tannin) of woody composite material
KR100441383B1 (en) Waste tire-agricultural waste composite board and piled up composite thereof
JP4630607B2 (en) Manufacturing method of wood composite material
JP2009241356A (en) Nonflammable board and method of manufacturing the same
JPH0327366B2 (en)
WO2024018714A1 (en) Laminated material, method for producing same, and use application of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees