JPH0327366B2 - - Google Patents

Info

Publication number
JPH0327366B2
JPH0327366B2 JP57155609A JP15560982A JPH0327366B2 JP H0327366 B2 JPH0327366 B2 JP H0327366B2 JP 57155609 A JP57155609 A JP 57155609A JP 15560982 A JP15560982 A JP 15560982A JP H0327366 B2 JPH0327366 B2 JP H0327366B2
Authority
JP
Japan
Prior art keywords
fibers
adhesive
resin
foaming agent
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57155609A
Other languages
Japanese (ja)
Other versions
JPS5945140A (en
Inventor
Yoshitaka Yamagishi
Hiroaki Yoshida
Kimio Yugawa
Seinosuke Horiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Oil Chemical Co Ltd
Original Assignee
Nagoya Oil Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Oil Chemical Co Ltd filed Critical Nagoya Oil Chemical Co Ltd
Priority to JP15560982A priority Critical patent/JPS5945140A/en
Publication of JPS5945140A publication Critical patent/JPS5945140A/en
Publication of JPH0327366B2 publication Critical patent/JPH0327366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は独立発泡構造を有し、軽量かつ断熱性
に富み吸水、吸湿性が小さく、また機械的強度お
よび寸法安定性の向上された軽量フアイバーボー
ド及びその製造方法に関する。 従来、軽量フアイバーボードとして比重が0.4
以上0.8未満の半硬質フアイバーボード及び比重
が0.4未満の軟質フアイバーボードは、その比重
を下げることによつて軽量化が計られたが、乾式
フアイバーボード製造法では添加接着剤による繊
維相互の接着によりボードが形成されるものであ
り、比重を下げるためには熱圧成型時の圧締圧力
を低下させることが必要で、このため繊維相互の
接触面積すなわち接着面積が減少し繊維間に空隙
部分が増大する。その結果比重の低下につれて機
械的強度、耐水性が低下しフアイバーボードの内
部結合力、吸水、吸湿による寸法安定性能が著し
く低下する。この防止対策として、まず接着剤の
添加量を多くしてフアイバーボードを製造するこ
とが考えられるが、その添加量に応じて比重の増
大をまねき、機械的強度、耐水性の向上された軽
量フアイバーボードを得ることができない。また
多量の接着剤使用により製造コストが高くなり更
に接着剤使用量の増大にともない必然的に水分の
増加をみるため熱圧成型時にその水分の蒸発に起
因するパンクの発生するおそれがある。このパン
ク発生防止のためには熱圧締を低温で長時間行な
う必要があり、生産性の低下、厚さべりによる歩
留り低下等の多くの問題点を有し、実用的ではな
かつた。 本発明は上記のような従来のフアイバーボード
における問題点を解決するもので、軽量かつ断熱
性に富み吸水、吸湿のすくない機械的強度、寸法
安定性の向上された軽量フアイバーボードを提供
することを目的とする。以下その詳細を植物性繊
維の内、たとえば木質フアイバーの場合について
説明する。広葉樹・針葉樹等の木材チツプは蒸煮
され繊維間結合を緩めてリフアイナー(解繊装
置)によつて解繊され木質フアイバーを得る。木
質フアイバー以外、竹、笹、稲葉、バカス、パル
プ工場より多量に副生するノツト粕など植物性繊
維などを用いうる。リフアイナーには高温高圧蒸
気(10〜12Kg/cm2)の蒸煮装置から取出された木
材チツプを解繊するものや、蒸煮装置と直結され
た高温高圧下にあるリフアイナーによつて解繊さ
れるものなどが用いられる。リフアイナーから排
出された木質フアイバーは、多量の水分を有する
ためリフアイナーから熱風ダクト中に投入され風
送されながら乾燥される。風送速度は10〜30m/
sec、風送雰囲気温度30〜120℃前後であるが木質
フアイバーの比重、送り量、前後の工程の処理能
力等によつて広範囲に調整される。この熱風によ
る風送で木質フアイバーは5〜10%程度の水分量
にまで乾燥される。 乾燥された木質フアイバーはブレンダー(混合
装置)に投入される。ブレンダーにて揮発性液体
を内蔵する熱可塑性合成樹脂カプセルからなる発
泡剤を添加された加熱硬化性接着剤を混合して木
質フアイバーに該接着剤を塗布する。またブレン
ダーを用いずに加熱硬化性接着剤や発泡剤を解繊
と同時に添加する方法や風送ダクト内に噴霧し浮
遊中の木質フアイバーに塗布する方法によつて行
なうことも出来る。 本発明に用いる揮発性液体を内蔵する熱可塑性
合成樹脂カプセルからなる発泡剤の、揮発性液体
とはn−ブタン、n−ペンタン、ネオペンタン、
n−ヘキサン、ネオヘキサン、シクロヘキサン、
n−オクタン、iso−オクタン等の鎖式もしくは
環状飽和炭化水素、n−ペンテン、n−ヘキセ
ン、シクロヘキセン、n−オクテン等の鎖式もし
くは環状不飽和炭化水素、ベンゼン、トルエン、
キシレン等の芳香族炭化水素、エチルエーテル、
エチル−プロピルエーテル等のエーテル類、アセ
トン、メチルエチルケトン等のケトン類、酢酸メ
チル、酢酸エチル等の酢酸エステル類、セロソル
ブアセテート、ブチルセロソルブ等のセロソルブ
類、メタノール、エタノール等のアルコール類等
の一般に有機溶剤と呼ばれる有機化合物、あるい
はフツ素系化合物が主として含まれる。 カプセル外殻を構成する熱可塑性合成樹脂とは
内蔵される揮発性液体に不溶性のものが選択さ
れ、また該発泡温度に応じて適当な軟化点を有す
るものが選択される。このような熱可塑性合成樹
脂を例示すれば、ポリエチレン、ポリプロピレ
ン、アクリル樹脂、メタクリル樹脂、スチレン樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、アク
リロニトリル樹脂、塩化ビニルベンジル樹脂等で
ある。該カプセル型発泡剤は例えば特公昭42−
26524号公報に詳細される。 本発明に用いる加熱硬化性接着剤は尿素樹脂、
メラミン樹脂、尿素−メラミン共縮合樹脂、フエ
ノール樹脂、アルキルフエノール樹脂、レゾルシ
ン樹脂、アルキルレゾルシン樹脂(油母貝岩等か
ら得られるシエルオイルレゾルシンと呼ばれるア
ルキルレゾルシン混合物からなる樹脂を含む)、
エポキシ樹脂、ウレタン樹脂、アルキド樹脂、熱
硬化型アクリル樹脂等の各種の熱硬化型合成樹脂
或は熱可塑性合成樹脂が含まれ、上記合成樹脂に
はパラフイン、ワツクス等を混合してもさしつか
えない。 上記組成以外、例えば炭酸カルシウム、チタン
白、ベントナイト、タルク、木粉、小麦粉のよう
な充填剤、酸やアルカリ硬化触媒、ε−カプロラ
クタム、尿素、レゾルシン等の縮合調節剤もしく
はホルマリンキヤツチヤー、老化防止剤、紫外線
吸収剤、防腐剤、防虫剤、防水剤、難燃剤、撥水
剤、染料、顔料等を混合してもよい。加熱硬化性
接着剤の添加量は木質フアイバーに対して重量比
で30%以下が普通でありその樹脂率20〜60%であ
つて概して低樹脂率の方が木質フアイバーに対し
て均一な混合がなし得る。発泡剤は接着剤に対し
て0.1〜200%程度添加混合して使用する。木質フ
アイバーを投入されたブレンダー内にはじめに接
着剤を添加混合した後、次に該カプセル型発泡剤
を添加混合あるいはその逆にはじめに該カプセル
型発泡剤を次に接着剤を添加混合の順序で個別に
添加混合してもよい。該カプセル型発泡剤は均一
に混合され易く、このようにして均一に該カプセ
ル型発泡剤を混合された加熱硬化性接着剤を塗布
された木質フアイバーは再び風送されフエルター
に搬送しマツト状となし連続搬送する。 該マツト状木質フアイバーは定尺寸法に裁断し
た後ホツトプレスに挿入し熱圧成型される。連続
搬送されるマツト状木質フアイバーを加熱ローラ
プレスなど連続プレスに挿入して連続熱圧成型し
た後、定尺寸法に裁断してもよい。熱圧条件(熱
圧圧力、温度、時間など)は発泡温度、発泡倍
率、発泡剤の添加量、接着剤の硬化温度、接着剤
の添加量などに応じて広範囲に調整される。一般
的に加熱硬化性接着剤が尿素樹脂の場合100〜160
℃、フエノール樹脂の場合160〜200℃、レゾルシ
ン樹脂の場合100〜150℃の温度で5Kg/cm2〜40
Kg/cm2程度の圧力で1〜20分程度で熱圧成型され
る。軽量フアイバーボード特に比重が0.8以下の
ものを得ようとする場合、熱圧成型時の熱盤間隔
をデイスタンスバーを用いて調整し熱圧成型して
もよい。熱圧成型時の加熱によつて接着剤中の発
泡剤が発泡されるとともに接着剤の加熱硬化が行
なわれる。加熱によつて揮発する揮発性液体を内
蔵する熱可塑性合成樹脂カプセルからなる発泡剤
は該発泡剤の外殻が熱可塑性合成樹脂であるため
に加熱により軟化され内蔵される揮発性液体の揮
発に伴なう体積膨張により発泡膨張され独立気泡
が形成されるとともに接着剤が硬化される。該カ
プセル型発泡剤の発泡に伴なう体積膨張により圧
締された木質フアイバーマツト内の内部圧力が高
くなり熱板による圧力と相俟つて木質フアイバー
が相互に密着し木質フアイバー相互の接触面積す
なわち接着面積が増大され、また木質フアイバー
相互が接着剤と熱可塑性樹脂により連結され実質
的に接着面積が増大されその接着力が向上し機械
的強度、内部結合力が著しく向上する。更に木質
フアイバー間隙に該カプセル型発泡剤に由来する
合成樹脂独立気泡が均一に形成され、該フアイバ
ー間の空隙が減少されるため断熱性、水分遮断性
が向上する。かくしてフアイバーボード内の木質
フアイバー間に発泡剤の発泡に伴なう独立発泡構
成が形成された軽量フアイバーボードが容易にし
かも能率よく得られる。 本発明は以上の如き構成からなる軽量フアイバ
ーボードであり、均一な内部組織が得られにくい
フアイバーボードであつても該カプセル型発泡剤
を均一に混合しておけば、木質フアイバー間隙に
合成樹脂気泡からなる均一な独立発泡構成を有す
るため外部に連通する空隙が減少され、断熱性、
水分遮断性が向上し吸水吸湿による膨張収縮が強
く抑制され寸法安定性が向上し、また低温環境下
において内蔵する水の凍結のために内部破壊が起
るようなこともない。また接着剤の接着力、熱可
塑性合成樹脂のもつ接着力、発泡による該樹脂被
膜による木質フアイバー相互の機械的架橋状接
着、発泡剤の発泡に伴なう内部圧力による木質フ
アイバー相互の接触面積(接着面積)の増大によ
り高い接着効果が得られる。 実施例 1 針葉樹チツプを蒸煮し、シングルデイスクリフ
アイナーで解繊し、同時に溶融ワツクス1%を添
加した後、風送速度15m/sec、風送雰囲気温度
60〜100℃で風送し5〜10%程度の水分量にまで
乾燥する。乾燥された木質フアイバーはブレンダ
ーに投入される。ブレンダーにおいて発泡剤を添
加された樹脂率30%のフエノール樹脂接着剤を木
質フアイバーに対して重量比で10%混合する。発
泡剤としてはネオヘプタンを内蔵したポリ塩化ビ
ニルベンジル重合体カプセル(粒径10μ)を用
い、接着剤100重量部に対し発泡剤100重量部添加
する。得られた混合物をフエルテイング装置にて
マツト状に形成後、仮圧締し定尺長さに裁断、定
尺長さのマツト状木質フアイバーを10mm厚のデイ
スタンスバーを取付けられたホツトプレスにて
180℃、30Kg/cm2の条件で10分間熱圧し、板厚10
mm、比重0.5の軽量フアイバーボードAを得る。 実施例 2 広葉樹チツプを蒸煮し、ダブルデイスクリフア
イナーで解繊し、同時に溶融ワツクス3%を添加
した後、風送速度10m/sec、風送雰囲気温度60
〜80℃で風送し5〜10%程度の水分量にまで乾燥
する。乾燥された木質フアイバーはブレンダーに
投入される。ブレンダーにおいて発泡剤を添加さ
れた樹脂率50%の尿素樹脂接着剤を木質フアイバ
ーに対して重量比で15%混合する。発泡剤として
はネオヘキサンを内蔵したメチルメタクリレート
−スチレン共重合体カプセル(粒径15μ)を用い
接着剤100重量部に対し発泡剤150重量部添加す
る。また硬化剤として塩化アンモンを接着剤に対
し、1重量%添加する。得られた混合物をフエル
テイング装置にてマツト状に形成後、仮圧締し定
尺長さに裁断、定尺長さのマツト状木質フアイバ
ーを15mm厚のデイスタンスバーを取付けられたホ
ツトプレスにて150℃、30Kg/cm2の圧力で15分間
熱圧し、板厚15mm、比重0.4の軽量フアイバーボ
ードBを得る。 比較例 1 実施例2の接着剤として発泡剤を添加しない尿
素樹脂接着剤を用い板厚15mm、比重0.4の軽量フ
アイバーボードを得る。上記実施例および比較例
によつて得られた軽量フアイバーボードA,B及
び軟質フアイバーボードの物性を第1表に示す。
The present invention relates to a lightweight fiberboard that has a closed cell structure, is lightweight, has excellent heat insulation properties, has low water absorption and hygroscopicity, and has improved mechanical strength and dimensional stability, and a method for manufacturing the same. Traditionally, lightweight fiberboard has a specific gravity of 0.4.
Semi-rigid fiberboards with a specific gravity of less than 0.8 and soft fiberboards with a specific gravity of less than 0.4 have been made lighter by lowering their specific gravity, but in the dry fiberboard manufacturing method, fibers are bonded to each other using an additive adhesive. In order to lower the specific gravity, it is necessary to reduce the clamping pressure during hot-press molding, which reduces the contact area between the fibers, that is, the bonding area, and creates voids between the fibers. increase As a result, as the specific gravity decreases, mechanical strength and water resistance decrease, and the fiberboard's internal bonding strength, water absorption, and dimensional stability due to moisture absorption decrease significantly. As a countermeasure to prevent this, it is possible to manufacture fiberboard by increasing the amount of adhesive added, but the specific gravity increases depending on the amount added, making it possible to produce lightweight fiberboard with improved mechanical strength and water resistance. Can't get the board. In addition, the use of a large amount of adhesive increases manufacturing costs, and as the amount of adhesive used increases, moisture inevitably increases, so there is a risk of punctures due to evaporation of the moisture during hot-press molding. In order to prevent the occurrence of punctures, it is necessary to perform hot pressing at low temperatures for a long period of time, which has many problems such as decreased productivity and decreased yield due to thickness deviation, which is not practical. The present invention solves the above-mentioned problems with conventional fiberboards, and aims to provide a lightweight fiberboard with improved mechanical strength and dimensional stability, which is lightweight, highly insulating, absorbs little water and moisture, and has improved mechanical strength and dimensional stability. purpose. The details will be explained below regarding the case of, for example, wood fiber among vegetable fibers. Wood chips such as hardwoods and softwoods are steamed to loosen the bonds between fibers, and then defibrated by a refiner (defibration device) to obtain wood fibers. In addition to wood fibers, vegetable fibers such as bamboo, bamboo, rice leaves, bakasu, and knot lees, which are abundantly produced as by-products from pulp mills, can be used. Refineers include those that defibrate wood chips taken out from a steaming device using high-temperature, high-pressure steam (10 to 12 kg/cm 2 ), and those that defibrate wood chips that are directly connected to a steaming device and are under high temperature and high pressure. etc. are used. Since the wood fiber discharged from the refiner contains a large amount of water, it is put into a hot air duct from the refiner and dried while being blown. Wind speed is 10-30m/
sec, the air blowing atmosphere temperature is around 30 to 120°C, but it can be adjusted over a wide range depending on the specific gravity of the wood fiber, the amount of feed, the processing capacity of the previous and subsequent steps, etc. This hot air blowing dries the wood fiber to a moisture content of about 5 to 10%. The dried wood fibers are put into a blender (mixing device). A heat-curable adhesive to which a foaming agent, which is made of a thermoplastic synthetic resin capsule containing a volatile liquid, is mixed is mixed in a blender, and the adhesive is applied to the wood fiber. Alternatively, without using a blender, it is also possible to add a thermosetting adhesive or a foaming agent at the same time as defibration, or to spray it into an air duct and apply it to the floating wood fibers. In the blowing agent made of a thermoplastic synthetic resin capsule containing a volatile liquid used in the present invention, the volatile liquid is n-butane, n-pentane, neopentane,
n-hexane, neohexane, cyclohexane,
Chain or cyclic saturated hydrocarbons such as n-octane, iso-octane, chain or cyclic unsaturated hydrocarbons such as n-pentene, n-hexene, cyclohexene, n-octene, benzene, toluene,
Aromatic hydrocarbons such as xylene, ethyl ether,
Generally organic solvents such as ethers such as ethyl-propyl ether, ketones such as acetone and methyl ethyl ketone, acetate esters such as methyl acetate and ethyl acetate, cellosolves such as cellosolve acetate and butyl cellosolve, and alcohols such as methanol and ethanol. It mainly contains organic compounds called fluorine-based compounds or fluorine-based compounds. The thermoplastic synthetic resin constituting the capsule shell is selected to be insoluble in the volatile liquid contained therein, and to have an appropriate softening point depending on the foaming temperature. Examples of such thermoplastic synthetic resins include polyethylene, polypropylene, acrylic resin, methacrylic resin, styrene resin, vinyl chloride resin, vinylidene chloride resin, acrylonitrile resin, vinylbenzyl chloride resin, and the like. The capsule-type foaming agent is, for example, disclosed in Japanese Patent Publication No. 1973-
Details are given in Publication No. 26524. The thermosetting adhesive used in the present invention is a urea resin,
Melamine resin, urea-melamine cocondensation resin, phenolic resin, alkylphenol resin, resorcin resin, alkyl resorcin resin (including resin made of an alkyl resorcin mixture called siel oil resorcin obtained from oil mother rock etc.),
Various thermosetting synthetic resins or thermoplastic synthetic resins such as epoxy resins, urethane resins, alkyd resins, and thermosetting acrylic resins are included, and paraffin, wax, etc. may be mixed with the synthetic resins. Compositions other than the above, such as fillers such as calcium carbonate, titanium white, bentonite, talc, wood flour, wheat flour, acid or alkali curing catalysts, condensation regulators such as ε-caprolactam, urea, resorcinol, or formalin catchers, aging Inhibitors, ultraviolet absorbers, preservatives, insect repellents, waterproofing agents, flame retardants, water repellents, dyes, pigments, etc. may be mixed. The amount of heat-curable adhesive added is usually 30% or less by weight based on the wood fiber, and the resin percentage is 20 to 60%, and in general, the lower the resin percentage, the more uniform the mixing with the wood fiber. It can be done. The foaming agent is used by adding and mixing it to the adhesive in an amount of about 0.1 to 200%. First, add and mix the adhesive into a blender into which the wood fibers are placed, and then add and mix the capsule-type foaming agent, or vice versa. It may be added to and mixed with. The capsule-type foaming agent is easily mixed uniformly, and the wood fiber coated with the heat-curable adhesive mixed with the capsule-type foaming agent uniformly in this way is blown again and conveyed to the felter to form a mat-like material. None Continuous conveyance. The pine-like wood fiber is cut into a regular size and then inserted into a hot press and molded under hot pressure. The continuously conveyed pine-like wood fibers may be inserted into a continuous press such as a heated roller press, subjected to continuous hot-press molding, and then cut into regular sizes. The heat and pressure conditions (heat and pressure, temperature, time, etc.) are adjusted over a wide range depending on the foaming temperature, expansion ratio, amount of foaming agent added, adhesive curing temperature, amount of adhesive added, etc. Generally 100 to 160 if the heat-curing adhesive is urea resin
℃, 5Kg/cm 2 to 40 at a temperature of 160 to 200℃ for phenolic resin and 100 to 150℃ for resorcinol resin.
Hot pressure molding takes about 1 to 20 minutes at a pressure of about Kg/ cm2 . When trying to obtain a lightweight fiberboard, especially one with a specific gravity of 0.8 or less, hot-press molding may be performed by adjusting the spacing between hot plates using a distance bar during hot-press molding. The foaming agent in the adhesive is foamed by heating during hot-press molding, and the adhesive is heated and cured. A blowing agent consisting of a thermoplastic synthetic resin capsule containing a volatile liquid that evaporates when heated is softened by heating because the outer shell of the blowing agent is made of thermoplastic synthetic resin, and the volatile liquid contained therein evaporates. Due to the accompanying volumetric expansion, the adhesive is expanded and expanded to form closed cells, and the adhesive is cured. The internal pressure within the compressed wood fiber mat increases due to the volume expansion accompanying the foaming of the capsule-type foaming agent, and together with the pressure from the hot plate, the wood fibers come into close contact with each other, and the contact area between the wood fibers decreases. The bonding area is increased, and since the wood fibers are connected to each other by the adhesive and thermoplastic resin, the bonding area is substantially increased, the adhesive force is improved, and the mechanical strength and internal bonding force are significantly improved. Furthermore, closed synthetic resin cells derived from the capsule-type foaming agent are uniformly formed in the gaps between the wood fibers, and the gaps between the fibers are reduced, thereby improving heat insulation and moisture barrier properties. In this way, a lightweight fiberboard in which a closed foam structure is formed between the wood fibers in the fiberboard due to the foaming of the foaming agent can be easily and efficiently obtained. The present invention is a lightweight fiberboard having the above-mentioned structure, and even if it is difficult to obtain a uniform internal structure in a fiberboard, if the capsule-type foaming agent is mixed uniformly, synthetic resin bubbles can be formed in the gaps between the wood fibers. Because it has a uniform closed-cell structure consisting of
Moisture barrier properties are improved, expansion and contraction due to water absorption and moisture absorption are strongly suppressed, dimensional stability is improved, and internal destruction does not occur due to freezing of built-in water in low-temperature environments. In addition, the adhesive strength of adhesives, the adhesive strength of thermoplastic synthetic resins, mechanical cross-linked adhesion between wooden fibers due to the resin coating caused by foaming, and the contact area between wooden fibers due to internal pressure caused by foaming of foaming agents ( A high adhesion effect can be obtained by increasing the adhesion area). Example 1 Coniferous wood chips were steamed and defibrated with a single-disc stiffener, and at the same time, 1% of molten wax was added, then the air blowing speed was 15 m/sec, and the air blowing atmosphere temperature was
Dry by blowing air at 60-100℃ to a moisture content of about 5-10%. The dried wood fibers are placed in a blender. In a blender, a phenolic resin adhesive with a resin content of 30% and a foaming agent added is mixed with the wood fiber at a weight ratio of 10%. As the blowing agent, polyvinyl chloride benzyl polymer capsules (particle size 10μ) containing neoheptane are used, and 100 parts by weight of the blowing agent is added to 100 parts by weight of the adhesive. The resulting mixture is formed into a pine shape using a felting device, then temporarily pressed and cut into a specified length, and the pine-like wood fiber of the specified length is then formed using a hot press equipped with a 10 mm thick distance bar.
Heat pressed for 10 minutes at 180℃ and 30Kg/ cm2 , resulting in a plate thickness of 10
A lightweight fiberboard A with a specific gravity of 0.5 mm and a specific gravity of 0.5 is obtained. Example 2 Hardwood chips were steamed and defibrated with a double-disc stiffener, and at the same time 3% of molten wax was added, then the air blowing speed was 10 m/sec and the air blowing atmosphere temperature was 60°C.
Dry by blowing air at ~80℃ to a moisture content of about 5 to 10%. The dried wood fibers are placed in a blender. In a blender, a urea resin adhesive with a resin content of 50% and a foaming agent added is mixed with the wood fiber at a weight ratio of 15%. As the blowing agent, methyl methacrylate-styrene copolymer capsules (particle size 15 μm) containing neohexane are used, and 150 parts by weight of the blowing agent is added to 100 parts by weight of the adhesive. Further, 1% by weight of ammonium chloride is added to the adhesive as a hardening agent. The resulting mixture was formed into a pine shape using a felting device, then temporarily pressed and cut into a specified length, and the pine-like wood fibers of the specified length were formed using a hot press equipped with a 15 mm thick distance bar. Heat pressing was carried out at 150°C and a pressure of 30 kg/cm 2 for 15 minutes to obtain lightweight fiberboard B with a thickness of 15 mm and a specific gravity of 0.4. Comparative Example 1 A lightweight fiberboard with a thickness of 15 mm and a specific gravity of 0.4 was obtained using a urea resin adhesive to which no foaming agent was added as the adhesive of Example 2. Table 1 shows the physical properties of the lightweight fiberboards A and B and the soft fiberboards obtained in the above Examples and Comparative Examples.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 植物性繊維が互いに絡み合いかつ該繊維が接
着剤により接着されており、更に揮発性液体を内
蔵する熱可塑性合成樹脂カプセルが該繊維の間隙
に独立した発泡構造を保持しつつ充填されてなる
軽量フアイバーボード。 2 植物性繊維に揮発性液体を内蔵する熱可塑性
合成樹脂カプセルからなる発泡剤及び加熱硬化性
接着剤を塗布した後、該繊維をマツト状となし、
必要に応じてデイスタンスバーを有するホツトプ
レスで熱圧成型することにより、発泡剤の加熱発
泡と加熱硬化性接着剤の加熱硬化を行ない繊維間
隙に独立発泡構造を形成して繊維間交点の接着圧
を高めてなる軽量フアイバーボードの製造方法。
[Claims] 1. Vegetable fibers are intertwined with each other and the fibers are bonded with an adhesive, and a thermoplastic synthetic resin capsule containing a volatile liquid maintains an independent foam structure between the fibers. Lightweight fiberboard filled with solid wood. 2. After applying a foaming agent made of a thermoplastic synthetic resin capsule containing a volatile liquid and a thermosetting adhesive to vegetable fibers, the fibers are made into a mat shape,
If necessary, by hot-pressing molding using a hot press with a distance bar, the foaming agent is heated to foam and the heat-curable adhesive is heated to harden, forming a closed foam structure in the fiber gaps and increasing the adhesive pressure at the intersections between the fibers. A method for manufacturing lightweight fiberboard that increases the
JP15560982A 1982-09-06 1982-09-06 Light-weight fiber board and manufacture thereof Granted JPS5945140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15560982A JPS5945140A (en) 1982-09-06 1982-09-06 Light-weight fiber board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15560982A JPS5945140A (en) 1982-09-06 1982-09-06 Light-weight fiber board and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5945140A JPS5945140A (en) 1984-03-13
JPH0327366B2 true JPH0327366B2 (en) 1991-04-15

Family

ID=15609759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15560982A Granted JPS5945140A (en) 1982-09-06 1982-09-06 Light-weight fiber board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5945140A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1017881B (en) * 1987-12-16 1992-08-19 库特·赫尔德·法布里肯特 Apparatus and method for manufacturing wood plank
JP2013043357A (en) * 2011-08-24 2013-03-04 Panasonic Corp Method for manufacturing plant fiber for molding, plant fiber for molding, and method for manufacturing woody molded article
CN102514072B (en) * 2011-12-30 2014-09-03 廊坊华日家具股份有限公司 Hollow plastic capsule and fiber composite material and preparation method thereof
CN109531765B (en) * 2018-12-11 2021-12-21 吉林禾木之家科技发展有限公司 Preparation method of straw bakelite template

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855966A (en) * 1971-11-15 1973-08-06
JPS5083455A (en) * 1973-11-24 1975-07-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855966A (en) * 1971-11-15 1973-08-06
JPS5083455A (en) * 1973-11-24 1975-07-05

Also Published As

Publication number Publication date
JPS5945140A (en) 1984-03-13

Similar Documents

Publication Publication Date Title
US5134026A (en) Process for manufacturing a compression-moulded synthetic resin object and fabricated material for use in said process
EP0492016B1 (en) Thermosetting resin material and composite products from lignocellulose
CA1036737A (en) Polyisocyanate: formaldehyde binder system for cellulosic materials
US7183339B2 (en) Method for making dimensionally stable composite products from lignocelluloses
US3930110A (en) Manufacture of multilayer panels using polyisocyanate: formaldehyde binder system
RU2524819C2 (en) Chip board and method of its making
US4479912A (en) Fiber board composition
US3968294A (en) Lignocellulosic particle board cured with alkali- and acid-catalyzed phenol aldehyde thermosetting resins
US6368528B1 (en) Method of making molded composite articles
US4046952A (en) Manufacture of overlayed product with phenol-formaldehyde barrier for polyisocyanate binder
US6365077B1 (en) Process for preparing cellulosic composites
JPH0327366B2 (en)
JPH0716964A (en) Laminated material and its manufacture
JPH04336202A (en) Lignocellulose-formed board with high strength and water resistance
CA2216992C (en) Method of making organically bound wood-based materials
US4044087A (en) Method of making fast cured lignocellulosic particle board
CA1241900A (en) Composite material based on particles of a plant origin and the method of manufacturing thereof
FI130116B (en) A method of producing a moulded article
JPS59124841A (en) Light weight fiber board and manufacture thereof
JPH0331567B2 (en)
JP7300472B2 (en) Wooden board and its manufacturing method
JPH0327365B2 (en)
CA1170394A (en) Production of structural panels using isocyanate/furfural binder
Gollob et al. Wood adhesion
JPH0333840B2 (en)