JP2008235963A - Operational amplifier - Google Patents

Operational amplifier Download PDF

Info

Publication number
JP2008235963A
JP2008235963A JP2007068159A JP2007068159A JP2008235963A JP 2008235963 A JP2008235963 A JP 2008235963A JP 2007068159 A JP2007068159 A JP 2007068159A JP 2007068159 A JP2007068159 A JP 2007068159A JP 2008235963 A JP2008235963 A JP 2008235963A
Authority
JP
Japan
Prior art keywords
current
transistor
input terminal
circuit
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068159A
Other languages
Japanese (ja)
Other versions
JP4768653B2 (en
Inventor
Kazuhiro Takatori
和宏 高鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2007068159A priority Critical patent/JP4768653B2/en
Publication of JP2008235963A publication Critical patent/JP2008235963A/en
Application granted granted Critical
Publication of JP4768653B2 publication Critical patent/JP4768653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the slew rate of an operational amplifier, using few additional circuits. <P>SOLUTION: In the double differential type operational amplifier provided with a first differential input circuit comprising transistors Q1 and Q2 and a current source I1, a second differential input circuit comprising of transistors Q2 and Q4 and a current source I2, a first current mirror circuit comprising transistors Q5-Q7, a second current mirror circuit composed of transistors Q8-Q10, and a capacitor Cc, transistors QA1-QA4 are additionally connected; and when an input differential voltage ΔVIN in between a normal input terminal IN+ and an inversion input terminal IN- becomes 2V<SB>BE</SB>, the transistors QA1 and QA4 or QA2 and QA3 are turned on, and a current for charging or discharging the capacitor Cc is increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高レベルのパルス信号が入力する際に高スルーレートを実現した演算増幅器に関するものである。   The present invention relates to an operational amplifier that realizes a high slew rate when a high-level pulse signal is input.

図6に従来例の二重差動入力型の演算増幅器20の構成を示す。Q1,Q2,Q8,Q9,Q10はNPNトランジスタ、Q3,Q4,Q5,Q6,Q7はPNPトランジスタ、R1,R2,R3,R4は抵抗、Ccはコンデンサ、I1,I2は電流源(電流値I1=I2)、D1,D2,D3,D4はダイオード、X1はバッファである。V+およびV−はそれぞれ第1電源および第2電源、IN+は正転入力端子、IN−は反転入力端子、OUTは出力端子である。   FIG. 6 shows a configuration of a conventional dual differential input type operational amplifier 20. Q1, Q2, Q8, Q9, Q10 are NPN transistors, Q3, Q4, Q5, Q6, Q7 are PNP transistors, R1, R2, R3, R4 are resistors, Cc is a capacitor, I1, I2 are current sources (current value I1 = I2), D1, D2, D3, D4 are diodes, and X1 is a buffer. V + and V− are a first power supply and a second power supply, IN + is a normal input terminal, IN− is an inverting input terminal, and OUT is an output terminal.

この演算増幅器20を、図2に示すように、反転入力端子IN−を出力端子OUTに接続してボルテージホロワ回路を構成し、正転入力端子IN+に、低電圧VLと高電圧VHの間で変化するパルス信号S1を入力させたときの動作を説明する。   As shown in FIG. 2, the operational amplifier 20 is connected to the inverting input terminal IN− to the output terminal OUT to form a voltage follower circuit, and between the low voltage VL and the high voltage VH is connected to the normal input terminal IN +. The operation when the pulse signal S1 that changes in (1) is input will be described.

最初、パルス信号S1が低電圧VLの時は、両入力端子IN+とIN−は同電圧(=VL)である。次に、正転入力端子IN+に高電圧VHが任意の傾斜をもって印加されると、トランジスタQ2,Q3がオン状態となり、トランジスタQ1,Q4がオフ状態となり、電流源I1の電流I1がトランジスタQ2のコレクタに流れ、電流源I2の電流I2がトランジスタQ3のコレクタに流れる。よって、カレントミラー回路を構成するトランジスタQ5〜Q7にその電流I1が流れ、カレントミラー回路を構成するトランジスタQ8〜Q10には電流が流れないので、電流I1がコンデンサCcに充電されて、電圧Vpが上昇し、出力端子OUTの電圧VOUT(=−VIN)も上昇する。そして、VIN+=VIN−=VHになると、充電が完了する。図3にこのときの電圧VIN+とVOUT(=−VIN)の波形を、図4に電流I1の波形を示した。   Initially, when the pulse signal S1 is at a low voltage VL, both input terminals IN + and IN- are at the same voltage (= VL). Next, when the high voltage VH is applied to the normal input terminal IN + with an arbitrary slope, the transistors Q2 and Q3 are turned on, the transistors Q1 and Q4 are turned off, and the current I1 of the current source I1 is changed to that of the transistor Q2. The current I2 of the current source I2 flows to the collector of the transistor Q3. Therefore, since the current I1 flows through the transistors Q5 to Q7 constituting the current mirror circuit and no current flows through the transistors Q8 to Q10 constituting the current mirror circuit, the current I1 is charged in the capacitor Cc, and the voltage Vp is The voltage VOUT (= −VIN) at the output terminal OUT also rises. When VIN + = VIN− = VH, charging is completed. FIG. 3 shows the waveforms of the voltages VIN + and VOUT (= −VIN) at this time, and FIG. 4 shows the waveform of the current I1.

なお、パルス信号S1が高電圧VHから低電圧VLに変化する際は、トランジスタQ8〜Q10に電流I2が流れ、この電流I2がコンデンサCcの放電電流となって、電圧Vpが低下し、出力端子OUTの電圧VOUT(=−VIN)も低下する。   When the pulse signal S1 changes from the high voltage VH to the low voltage VL, a current I2 flows through the transistors Q8 to Q10, and this current I2 becomes a discharge current of the capacitor Cc, the voltage Vp decreases, and the output terminal The voltage VOUT (= −VIN) of OUT also decreases.

以上の遷移時、出力電圧VOUT(=−VIN)の変化は傾斜をもち、スルーレートSRは、電流I1がコンデンサCcを充電し、又は電流I2がコンデンサCcの電荷を放電する次の式で定義される。
SR=I1/Cc
=I2/Cc (1)
During the above transition, the change in the output voltage VOUT (= −VIN) has a slope, and the slew rate SR is defined by the following equation in which the current I1 charges the capacitor Cc or the current I2 discharges the charge in the capacitor Cc. Is done.
SR = I1 / Cc
= I2 / Cc (1)

すなわち、図6に示した従来例の演算増幅器20の回路では、パルス応答速度は(1)式で示されるように、電流I1で規定されるスルーレートによって制限されるという問題があった。   That is, in the circuit of the operational amplifier 20 of the conventional example shown in FIG. 6, there is a problem that the pulse response speed is limited by the slew rate defined by the current I1, as shown by the equation (1).

一方、特許文献1には、スルーレート増大回路が提案されている。このスルーレート増大回路は、差動入力電圧がある値より大きくなったとき、演算増幅器の動作電流を増大させるものである。
特開平6−112737号公報
On the other hand, Patent Document 1 proposes a slew rate increasing circuit. This slew rate increasing circuit increases the operating current of the operational amplifier when the differential input voltage becomes greater than a certain value.
JP-A-6-112737

ところが、上記特許文献1に記載の回路は、そのスルーレート増大回路が本来の演算増幅器に対する別の回路として構成されており、多数の回路素子を必要とし、回路構成が複雑化するという問題がある。   However, the circuit described in Patent Document 1 has a problem in that the slew rate increasing circuit is configured as another circuit for the original operational amplifier, requiring a large number of circuit elements and complicating the circuit configuration. .

本発明の目的は、少ない付加回路でスルーレートを増大できるようにした演算増幅器を提供することである。   An object of the present invention is to provide an operational amplifier capable of increasing the slew rate with a small number of additional circuits.

上記目的を達成するために、請求項1にかかる発明は、正転入力端子と反転入力端子にベースがそれぞれ接続されエミッタが第1の電流源に接続される第1の極性の第1および第2のトランジスタからなる第1の差動入力回路と、前記正転入力端子と前記反転入力端子にベースがそれぞれ接続されエミッタが第2の電流源に接続される第2の極性の第3および第4のトランジスタからなる第2の差動入力回路と、前記第1の差動入力回路の前記正転入力端子に接続された前記第2のトランジスタのコレクタ電流、又は前記第2の差動入力回路の前記反転入力端子に接続された前記第3のトランジスタのコレクタ電流をミラーして出力する第1のカレントミラー回路と、前記第2の差動入力回路の前記正転入力端子に接続された前記第4のトランジスタのコレクタ電流、又は前記第1の差動入力回路の前記反転入力端子に接続された前記第1のトランジスタのコレクタ電流をミラーして出力する第2のカレントミラー回路と、前記第1のカレントミラー回路の出力電流が吐き出し電流として供給され、前記第2のカレントミラー回路の出力電流が吸い込み電流として供給されるコンデンサと、前記正転入力端子の電圧が前記反転入力端子の電圧より所定以上高くなるとき、前記第1のカレントミラー回路の出力電流を増大させる吐き出し電流追加回路と、前記正転入力端子の電圧が前記反転入力端子の電圧より所定以上低くなるとき、前記第2のカレントミラー回路の出力電流を増大させる吸い込み電流追加回路と、を備えることを特徴とする。
請求項2にかかる発明は、請求項1に記載の発明において、前記吐き出し電流追加回路は、前記第2のトランジスタにベースが共通接続された第1の極性の第5のトランジスタと、前記第3のトランジスタにベースが共通接続されエミッタが前記第5のトランジスタのエミッタに接続された第2の極性の第6のトランジスタとからなり、前記第5又は第6のトランジスタのコレクタ電流が前記第1のカレントミラー回路の基準側電流として追加され、前記吸い込み電流追加回路は、前記第1のトランジスタにベースが共通接続された第1の極性の第7のトランジスタと、前記第4のトランジスタにベースが共通接続されエミッタが前記第7のトランジスタのエミッタに接続された第2の極性の第8のトランジスタとからなり、前記第7又は第8のコレクタ電流が前記第2のカレントミラー回路の基準側電流として追加される、ことを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載の発明において、前記各トランジスタを電界効果トランジスタに置き換え、前記ベースをゲート、前記コレクタをドレイン、前記エミッタをソースに、それぞれ置き換えたことを特徴とする。
To achieve the above object, according to a first aspect of the present invention, there is provided a first and a first polarity having a first polarity in which a base is connected to the normal input terminal and the inverting input terminal, respectively, and an emitter is connected to the first current source. A first differential input circuit composed of two transistors; a third polarity and a second polarity; a base connected to the normal input terminal and the inverting input terminal; and an emitter connected to a second current source. A second differential input circuit comprising four transistors, and a collector current of the second transistor connected to the normal input terminal of the first differential input circuit, or the second differential input circuit. A first current mirror circuit that mirrors and outputs the collector current of the third transistor connected to the inverting input terminal, and the non-inverting input terminal of the second differential input circuit. 4th tiger A second current mirror circuit that mirrors and outputs a collector current of a transistor or a collector current of the first transistor connected to the inverting input terminal of the first differential input circuit; and the first current The output current of the mirror circuit is supplied as the discharge current, the output current of the second current mirror circuit is supplied as the sink current, and the voltage of the normal input terminal is higher than the voltage of the inverting input terminal by a predetermined amount or more. The discharge current adding circuit for increasing the output current of the first current mirror circuit, and the second current mirror circuit when the voltage of the non-inverting input terminal is lower than the voltage of the inverting input terminal by a predetermined value or more. And a sink current adding circuit for increasing the output current of the circuit.
According to a second aspect of the present invention, in the first aspect of the present invention, the discharge current adding circuit includes a fifth transistor of a first polarity having a base commonly connected to the second transistor, and the third transistor. And a sixth transistor having a second polarity, the emitter of which is connected to the emitter of the fifth transistor, and the collector current of the fifth or sixth transistor is the first transistor. The sink current adding circuit is added as a reference side current of a current mirror circuit, and the sink current adding circuit has a common base to the fourth transistor and a seventh transistor of the first polarity whose base is commonly connected to the first transistor. And an eighth transistor having a second polarity and having an emitter connected to the emitter of the seventh transistor. The collector current is added as a reference side current of the second current mirror circuit, characterized in that.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein each of the transistors is replaced with a field effect transistor, the base is replaced with a gate, the collector is replaced with a drain, and the emitter is replaced with a source. Features.

本発明によれば、二重差動入力型の演算増幅器に対して、簡単な回路、例えばわずか4個のトランジスタを追加するのみで、入力差動電圧が所定値、例えば2VBEより高くなるとスルーレートが増大するので、少ない付加回路で所定以上のレベルの入力に対してスルーレート増大を実現させることができ、高速動作させることができる。また、入力差動電圧が所定値未満のときは、従来と同様に動作し、消費電流が増大することはない。 According to the present invention, a simple circuit, for example, only four transistors are added to a dual differential input type operational amplifier, and when the input differential voltage becomes higher than a predetermined value, for example, 2V BE, Since the rate increases, an increase in the slew rate can be realized with respect to an input of a predetermined level or more with a few additional circuits, and a high-speed operation can be achieved. When the input differential voltage is less than a predetermined value, the operation is the same as in the prior art, and the current consumption does not increase.

図1は本発明の実施例の二重差動入力型の演算増幅器10の構成を示す回路である。Q1,Q2,Q8,Q9,Q10、QA1,QA2はNPNトランジスタ、Q3,Q4,Q5,Q6,Q7,QA3,QA4はPNPトランジスタ、R1,R2,R3,R4は抵抗、Ccはコンデンサ、I1,I2は電流源(電流値I1=I2)、D1,D2,D3,D4はダイオード、X1はバッファである。V+およびV−はそれぞれ第1電源および第2電源、IN+は正転入力端子、IN−は反転入力端子、OUTは出力端子である。   FIG. 1 is a circuit diagram showing the configuration of a dual differential input operational amplifier 10 according to an embodiment of the present invention. Q1, Q2, Q8, Q9, Q10, QA1, QA2 are NPN transistors, Q3, Q4, Q5, Q6, Q7, QA3, QA4 are PNP transistors, R1, R2, R3, R4 are resistors, Cc is a capacitor, I1, I2 is a current source (current value I1 = I2), D1, D2, D3, and D4 are diodes, and X1 is a buffer. V + and V− are a first power supply and a second power supply, IN + is a normal input terminal, IN− is an inverting input terminal, and OUT is an output terminal.

請求項との関係では、トランジスタQ1,Q2と電流源I1は第1の差動入力回路を構成し、トランジスタQ3,Q4と電流源I2は第2の差動入力回路を構成する。また、トランジスタQ5〜Q7はウイルソン型の第1のカレントミラー回路(ミラー比=1)を構成し、トランジスタQ8〜Q10はウイルソン型の第2のカレントミラー回路(ミラー比=1)を構成する。また、トランジスタQA2、QA3,QA1,QA4は、それぞれ第5、第6、第7、第8のトランジスタを構成する。   In relation to the claims, the transistors Q1 and Q2 and the current source I1 constitute a first differential input circuit, and the transistors Q3 and Q4 and the current source I2 constitute a second differential input circuit. The transistors Q5 to Q7 constitute a Wilson-type first current mirror circuit (mirror ratio = 1), and the transistors Q8 to Q10 constitute a Wilson-type second current mirror circuit (mirror ratio = 1). Transistors QA2, QA3, QA1, and QA4 constitute fifth, sixth, seventh, and eighth transistors, respectively.

本実施例の演算増幅器10は、図6の演算増幅器20に対して、トランジスタQA1〜QA4を追加接続したものである。そして、トランジスタQA1,QA4のエミッタが共通接続され、トランジスタQA2,QA3のエミッタが共通接続されている。また、トランジスタQA1,QA3のベースは反転入力端子IN−に接続され、トランジスタQA2,QA4のベースは正転入力端子IN+に接続されている。また、トランジスタQA1のコレクタは電源V+に、トランジスタQA2のコレクタはトランジスタQ2のコレクタに、トランジスタQA3のコレクタは電源V−に、トランジスタQA4のコレクタはトランジスタQ4のコレクタに、それぞれ接続されている。   In the operational amplifier 10 of this embodiment, transistors QA1 to QA4 are additionally connected to the operational amplifier 20 of FIG. The emitters of the transistors QA1 and QA4 are commonly connected, and the emitters of the transistors QA2 and QA3 are commonly connected. The bases of the transistors QA1 and QA3 are connected to the inverting input terminal IN−, and the bases of the transistors QA2 and QA4 are connected to the normal input terminal IN +. The collector of the transistor QA1 is connected to the power supply V +, the collector of the transistor QA2 is connected to the collector of the transistor Q2, the collector of the transistor QA3 is connected to the power supply V-, and the collector of the transistor QA4 is connected to the collector of the transistor Q4.

さて、この演算増幅器10を、図2に示すように、反転入力端子IN−を出力端子OUTに接続してボルテージホロワ回路を構成し、正転入力端子IN+に、低電圧VLと高電圧VHの間で変化するパルス信号S1を入力させたときの動作を説明する。   As shown in FIG. 2, the operational amplifier 10 has a voltage follower circuit by connecting the inverting input terminal IN− to the output terminal OUT, and the low voltage VL and the high voltage VH are connected to the non-inverting input terminal IN +. The operation when the pulse signal S1 changing between the two is input will be described.

最初、パルス信号S1が低電圧VLの時は、両入力端子IN+とIN−は同電圧(=VL)である。次に、正転入力端子IN+に高電圧VHが任意の傾斜をもって印加されると、トランジスタQ2,Q3がオン状態となり、トランジスタQ1,Q4がオフ状態となり電流源I1の電流I1がトランジスタQ2のコレクタに流れ、電流源I2の電流I2がトランジスタQ3のコレクタに流れる。よって、第1のカレントミラー回路のトランジスタQ5〜Q7に電流I1が流れ、この電流I1が吐き出し電流となってコンデンサCcに供給されて電圧Vpが上昇し、出力端子OUTの電圧VOUT(=−VIN)も上昇する。   Initially, when the pulse signal S1 is at a low voltage VL, both input terminals IN + and IN- are at the same voltage (= VL). Next, when the high voltage VH is applied to the normal input terminal IN + with an arbitrary slope, the transistors Q2 and Q3 are turned on, the transistors Q1 and Q4 are turned off, and the current I1 of the current source I1 is the collector of the transistor Q2. The current I2 of the current source I2 flows to the collector of the transistor Q3. Therefore, a current I1 flows through the transistors Q5 to Q7 of the first current mirror circuit, and this current I1 becomes a discharge current and is supplied to the capacitor Cc, so that the voltage Vp rises and the voltage VOUT (= −VIN) of the output terminal OUT. ) Will also rise.

そして、入力端子IN+と入力端子IN−の端子間の入力差動電圧ΔVINが、
ΔVIN≧VBEQA2+VBEQA3=2VBE (2)
になると、トランジスタQA2,QA3がオン状態になる。VBEQA2,VBEQA3はトランジスタQA2,QA3のベース・エミッタ間電圧である。このとき、トランジスタQA2のコレクタに流れる電流ICQA2は、
CQA2=ISQA2 exp(ΔVIN/2)/V (3)
である。ISQA2はトランジスタQA2の飽和電流、Vはサーマル電圧(=kT/q)である。トランジスタQA3のコレクタにも同じ電流が流れる。
The input differential voltage ΔVIN between the input terminal IN + and the input terminal IN− is
ΔVIN ≧ V BEQA2 + V BEQA3 = 2V BE (2)
Then, the transistors QA2 and QA3 are turned on. V BEQA2 and V BEQA3 are base-emitter voltages of the transistors QA2 and QA3. At this time, the current I CQA2 flowing through the collector of the transistor QA2 is
I CQA2 = I SQA2 exp (ΔVIN / 2) / V T (3)
It is. I SQA2 is a saturation current of the transistor QA2, and V T is a thermal voltage (= kT / q). The same current also flows through the collector of transistor QA3.

以上から、第1のカレントミラー回路(トランジスタQ5〜Q7)にはICQA2が基準側電流として追加されるので、トランジスタQ7のコレクタ電流は、「I1+ICQA2 」となり、電流ICQA2分だけ増大する。したがって、このときのスルーレートは、
SR=(I1+ICQA2 )/Cc (4)
となり、前記した式(1)のスルーレートに比較して、ICQA2/Cc分だけ高くなる。そして、入力端子IN+と入力端子IN−の端子間の入力差動電圧ΔVINが、
ΔVIN<VBEQA2+VBEQA3=2VBE (5)
になると、トランジスタトランジスタQA2,QA3がオフ状態となり、スルーレートSRは式(1)に示した値に戻り、VIN+=VIN−=VHになると、充電が完了する。
From the above, since I CQA2 is added as the reference-side current to the first current mirror circuit (transistors Q5 to Q7), the collector current of the transistor Q7 becomes “I1 + I CQA2 ” and increases by the current I CQA2 . Therefore, the slew rate at this time is
SR = (I1 + I CQA2 ) / Cc (4)
Therefore , it is higher by I CQA2 / Cc than the slew rate of the above-described equation (1). The input differential voltage ΔVIN between the input terminal IN + and the input terminal IN− is
ΔVIN <V BEQA2 + V BEQA3 = 2V BE (5)
Then, the transistor transistors QA2 and QA3 are turned off, the slew rate SR returns to the value shown in the equation (1), and when VIN + = VIN− = VH, the charging is completed.

このように、本実施例の演算増幅器10は、入力差動電圧ΔVINが2VBE以上になるとコンデンサCcの充電電流が増大して高速動作を行う。トランジスタQA2,QA3がオンしない通常動作時に流れる電流の総計は、図6に示した演算増幅器20の動作時に流れる電流の総計と全く同じである。つまり、小振幅信号のパルス動作やアナログ動作を実施させるときは、図6に示した演算増幅器20と全く同様に、安定的に動作する。 As described above, the operational amplifier 10 of this embodiment performs high-speed operation because the charging current of the capacitor Cc increases when the input differential voltage ΔVIN becomes 2V BE or more. The total amount of current flowing during normal operation when the transistors QA2 and QA3 are not turned on is exactly the same as the total amount of current flowing during operation of the operational amplifier 20 shown in FIG. That is, when performing a pulse operation or an analog operation of a small amplitude signal, it operates stably in exactly the same way as the operational amplifier 20 shown in FIG.

図3にパルス信号S1が低電圧VLから高電圧VHに変化する際の図1、図6の演算増幅器10,20の入出力電圧の応答波形を、図4にコンデンサCcに供給される電流の変化を示した。図3では、入力電圧VIN+を点線で、図1の演算増幅器10の出力電圧VOUTを実線で、図6の演算増幅器20の出力電圧VOUTを破線で示した。図4では図1の演算増幅器10のコンデンサCcに供給される電流を実線で、図6の演算増幅器20のコンデンサCcに供給される電流を破線で示した。   FIG. 3 shows the response waveforms of the input and output voltages of the operational amplifiers 10 and 20 in FIGS. 1 and 6 when the pulse signal S1 changes from the low voltage VL to the high voltage VH, and FIG. 4 shows the current supplied to the capacitor Cc. Showed changes. 3, the input voltage VIN + is indicated by a dotted line, the output voltage VOUT of the operational amplifier 10 in FIG. 1 is indicated by a solid line, and the output voltage VOUT of the operational amplifier 20 in FIG. 6 is indicated by a broken line. 4, the current supplied to the capacitor Cc of the operational amplifier 10 in FIG. 1 is indicated by a solid line, and the current supplied to the capacitor Cc of the operational amplifier 20 in FIG. 6 is indicated by a broken line.

本実施例の演算増幅器10では、コンデンサCcの充電電流は、入力電圧VIN+が低電圧VLのときはゼロであるが、時刻t1で入力電圧VIN+が高電圧VHに向けて立ち上がると増大を開始し、電流I1になる。さらに、時刻t2に至り、入力差動電圧ΔVINが2VBEに達すると、トランジスタQA2,QA3がオンして、コンデンサCcの充電電流は「I1+ICQA2 」に増大し、出力電圧VOUTが高電圧VHに近づき、時刻t3に至り、入力差動電圧ΔVINが2VBE未満になると、トランジスタQA2,QA3がオフして電流I1に戻り、この後の時刻t4に至り、入力差動電圧ΔVINがゼロになると、充電電流はゼロに戻る。なお、入力電圧VIN+が低電圧VLに向けて立ち下がる時は、今度は上記と逆の動作となり、コンデンサCcの電荷が放電される。このときは、トランジスタQA1,QA4が途中で一時的にオン状態となり、吸い込み電流を増大させて、コンデンサCcの放電電流を一時的に増大させる。 In the operational amplifier 10 of this embodiment, the charging current of the capacitor Cc is zero when the input voltage VIN + is the low voltage VL, but starts to increase when the input voltage VIN + rises toward the high voltage VH at time t1. Current I1. Further, at time t2, when the input differential voltage ΔVIN reaches 2V BE , the transistors QA2 and QA3 are turned on, the charging current of the capacitor Cc increases to “I1 + I CQA2 ”, and the output voltage VOUT becomes the high voltage VH. When the input differential voltage ΔVIN becomes less than 2V BE at time t3, the transistors QA2 and QA3 are turned off and returned to the current I1. At time t4 thereafter, the input differential voltage ΔVIN becomes zero. The charging current returns to zero. Note that when the input voltage VIN + falls toward the low voltage VL, this time, the operation is the reverse of the above, and the charge of the capacitor Cc is discharged. At this time, the transistors QA1 and QA4 are temporarily turned on halfway, increasing the sink current and temporarily increasing the discharge current of the capacitor Cc.

図5に、図2のようにボルテージホロワ接続したときの演算増幅器10,20の応答特性のシミュレーション結果を示した。(a)は図1の本実施例の演算増幅器10、(b)は図6の従来の演算増幅器20についてである。いずれも、演算増幅器10,20の電圧増幅度Gv=1、抵抗RT=50Ω、抵抗RL=150Ω、コンデンサCL=10pFの条件である。(a)の応答特性が(b)に比べて高速応答を示していることが確認できる。   FIG. 5 shows a simulation result of response characteristics of the operational amplifiers 10 and 20 when the voltage follower connection is made as shown in FIG. (a) is about the operational amplifier 10 of this embodiment of FIG. 1, and (b) is about the conventional operational amplifier 20 of FIG. In either case, the operational amplifiers 10 and 20 have the voltage amplification degree Gv = 1, the resistance RT = 50Ω, the resistance RL = 150Ω, and the capacitor CL = 10 pF. It can be confirmed that the response characteristic of (a) shows a higher speed response than that of (b).

なお、以上説明した実施例の演算増幅器10は本発明の一例であり、種々変形が可能である。例えば、図1では吐き出し電流を供給する第1のカレントミラー回路(トランジスタQ5〜Q7)の基準側電流をトランジスタQ2のコレクタ電流としているが、トランジスタQ3のコレクタ電流を基準側電流としてもよい。また、図1では吸い込み電流を供給する第2のカレントミラー回路(トランジスタQ8〜Q10)の基準側電流をトランジスタQ4のコレクタ電流としているが、トランジスタQ1のコレクタ電流を基準側電流としてもよい。さらに、図1ではトランジスタQA2のコレクタ電流を第1のカレントミラー回路(トランジスタQ5〜Q7)の追加基準側電流としているが、トランジスタQA3のコレクタ電流を追加基準側電流としても良い。さらに、図1ではトランジスタQA4のコレクタ電流を第2のカレントミラー回路(トランジスタQ8〜Q10)の追加基準側電流としているが、トランジスタQA1のコレクタ電流を追加基準側電流としても良い。さらに、図1で示したバイポーラトランジスタの極性(PNP,NPN)は反対にすることができることは勿論である。また、バイポーラトランジスタに代えて電界効果トランジスタを使用することもできる。   The operational amplifier 10 of the embodiment described above is an example of the present invention, and various modifications can be made. For example, in FIG. 1, the reference side current of the first current mirror circuit (transistors Q5 to Q7) that supplies the discharge current is the collector current of the transistor Q2, but the collector current of the transistor Q3 may be the reference side current. In FIG. 1, the reference current of the second current mirror circuit (transistors Q8 to Q10) that supplies the sink current is the collector current of the transistor Q4, but the collector current of the transistor Q1 may be the reference current. Further, in FIG. 1, the collector current of the transistor QA2 is used as the additional reference side current of the first current mirror circuit (transistors Q5 to Q7), but the collector current of the transistor QA3 may be used as the additional reference side current. Further, in FIG. 1, the collector current of the transistor QA4 is used as the additional reference side current of the second current mirror circuit (transistors Q8 to Q10), but the collector current of the transistor QA1 may be used as the additional reference side current. Furthermore, it is needless to say that the polarities (PNP, NPN) of the bipolar transistor shown in FIG. 1 can be reversed. Further, a field effect transistor can be used instead of the bipolar transistor.

本発明の1つの実施例の演算増幅器の回路図である。1 is a circuit diagram of an operational amplifier according to one embodiment of the present invention. 本実施例および従来例の演算増幅器をボルテージホロワとして構成した回路図である。It is the circuit diagram which comprised the operational amplifier of a present Example and the prior art example as a voltage follower. 本実施例および従来例の演算増幅器を図2のボルテージホロワで動作させたときの応答特性図である。FIG. 3 is a response characteristic diagram when the operational amplifiers of the present example and the conventional example are operated by the voltage follower of FIG. 2. 本実施例および従来例の演算増幅器を図2のボルテージホロワで動作させたときのコンデンサCcに流れる電流の特性図である。FIG. 3 is a characteristic diagram of current flowing in a capacitor Cc when the operational amplifiers of the present example and the conventional example are operated by the voltage follower of FIG. 2. 本実施例および従来例の演算増幅器のシミュレーション結果の応答特性図である。It is a response characteristic figure of the simulation result of the operational amplifier of a present Example and a prior art example. 従来例の演算増幅器の回路図である。It is a circuit diagram of an operational amplifier of a conventional example.

符号の説明Explanation of symbols

10,20:演算増幅器   10, 20: operational amplifier

Claims (3)

正転入力端子と反転入力端子にベースがそれぞれ接続されエミッタが第1の電流源に接続される第1の極性の第1および第2のトランジスタからなる第1の差動入力回路と、
前記正転入力端子と前記反転入力端子にベースがそれぞれ接続されエミッタが第2の電流源に接続される第2の極性の第3および第4のトランジスタからなる第2の差動入力回路と、
前記第1の差動入力回路の前記正転入力端子に接続された前記第2のトランジスタのコレクタ電流、又は前記第2の差動入力回路の前記反転入力端子に接続された前記第3のトランジスタのコレクタ電流をミラーして出力する第1のカレントミラー回路と、
前記第2の差動入力回路の前記正転入力端子に接続された前記第4のトランジスタのコレクタ電流、又は前記第1の差動入力回路の前記反転入力端子に接続された前記第1のトランジスタのコレクタ電流をミラーして出力する第2のカレントミラー回路と、
前記第1のカレントミラー回路の出力電流が吐き出し電流として供給され、前記第2のカレントミラー回路の出力電流が吸い込み電流として供給されるコンデンサと、
前記正転入力端子の電圧が前記反転入力端子の電圧より所定以上高くなるとき、前記第1のカレントミラー回路の出力電流を増大させる吐き出し電流追加回路と、
前記正転入力端子の電圧が前記反転入力端子の電圧より所定以上低くなるとき、前記第2のカレントミラー回路の出力電流を増大させる吸い込み電流追加回路と、
を備えることを特徴とする演算増幅器。
A first differential input circuit comprising first and second transistors having a first polarity, each having a base connected to a normal input terminal and an inverting input terminal and an emitter connected to a first current source;
A second differential input circuit comprising third and fourth transistors of second polarity, each having a base connected to the normal input terminal and the inverting input terminal and an emitter connected to a second current source;
The collector current of the second transistor connected to the normal input terminal of the first differential input circuit, or the third transistor connected to the inverted input terminal of the second differential input circuit A first current mirror circuit that mirrors and outputs the collector current of
The collector current of the fourth transistor connected to the normal input terminal of the second differential input circuit, or the first transistor connected to the inverted input terminal of the first differential input circuit A second current mirror circuit that mirrors and outputs the collector current of
A capacitor in which an output current of the first current mirror circuit is supplied as a discharge current, and an output current of the second current mirror circuit is supplied as a sink current;
A discharge current adding circuit for increasing the output current of the first current mirror circuit when the voltage of the normal input terminal is higher than the voltage of the inverting input terminal by a predetermined value or more;
A sink current adding circuit for increasing the output current of the second current mirror circuit when the voltage of the normal input terminal is lower than the voltage of the inverting input terminal by a predetermined value or more;
An operational amplifier comprising:
前記吐き出し電流追加回路は、前記第2のトランジスタにベースが共通接続された第1の極性の第5のトランジスタと、前記第3のトランジスタにベースが共通接続されエミッタが前記第5のトランジスタのエミッタに接続された第2の極性の第6のトランジスタとからなり、前記第5又は第6のトランジスタのコレクタ電流が前記第1のカレントミラー回路の基準側電流として追加され、
前記吸い込み電流追加回路は、前記第1のトランジスタにベースが共通接続された第1の極性の第7のトランジスタと、前記第4のトランジスタにベースが共通接続されエミッタが前記第7のトランジスタのエミッタに接続された第2の極性の第8のトランジスタとからなり、前記第7又は第8のコレクタ電流が前記第2のカレントミラー回路の基準側電流として追加される、
ことを特徴とする請求項1に記載の演算増幅器。
The discharge current adding circuit includes a fifth transistor having a first polarity whose base is commonly connected to the second transistor, and a base commonly connected to the third transistor and an emitter being an emitter of the fifth transistor. And a collector current of the fifth or sixth transistor is added as a reference side current of the first current mirror circuit,
The sink current adding circuit includes a first polarity seventh transistor having a base commonly connected to the first transistor, and a base commonly connected to the fourth transistor and an emitter being an emitter of the seventh transistor. And the seventh or eighth collector current is added as a reference side current of the second current mirror circuit.
The operational amplifier according to claim 1.
前記各トランジスタを電界効果トランジスタに置き換え、前記ベースをゲート、前記コレクタをドレイン、前記エミッタをソースに、それぞれ置き換えたことを特徴とする請求項1又は2に記載の演算増幅器。   3. The operational amplifier according to claim 1, wherein each of the transistors is replaced with a field effect transistor, the base is replaced with a gate, the collector is replaced with a drain, and the emitter is replaced with a source.
JP2007068159A 2007-03-16 2007-03-16 Operational amplifier Active JP4768653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068159A JP4768653B2 (en) 2007-03-16 2007-03-16 Operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068159A JP4768653B2 (en) 2007-03-16 2007-03-16 Operational amplifier

Publications (2)

Publication Number Publication Date
JP2008235963A true JP2008235963A (en) 2008-10-02
JP4768653B2 JP4768653B2 (en) 2011-09-07

Family

ID=39908288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068159A Active JP4768653B2 (en) 2007-03-16 2007-03-16 Operational amplifier

Country Status (1)

Country Link
JP (1) JP4768653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049797A (en) * 2009-08-27 2011-03-10 New Japan Radio Co Ltd Operational amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220506A (en) * 1988-12-23 1990-09-03 Raytheon Co Differential amplifier
JPH04356816A (en) * 1990-10-09 1992-12-10 Toshiba Corp Buffer circuit
JPH0746059A (en) * 1993-07-27 1995-02-14 Murata Mfg Co Ltd Arithmetic amplifier and active filter using this
JP2004140487A (en) * 2002-10-16 2004-05-13 Rohm Co Ltd Buffer circuit and driver ic
JP2006148364A (en) * 2004-11-17 2006-06-08 Nec Electronics Corp Voltage comparator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220506A (en) * 1988-12-23 1990-09-03 Raytheon Co Differential amplifier
JPH04356816A (en) * 1990-10-09 1992-12-10 Toshiba Corp Buffer circuit
JPH0746059A (en) * 1993-07-27 1995-02-14 Murata Mfg Co Ltd Arithmetic amplifier and active filter using this
JP2004140487A (en) * 2002-10-16 2004-05-13 Rohm Co Ltd Buffer circuit and driver ic
JP2006148364A (en) * 2004-11-17 2006-06-08 Nec Electronics Corp Voltage comparator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049797A (en) * 2009-08-27 2011-03-10 New Japan Radio Co Ltd Operational amplifier

Also Published As

Publication number Publication date
JP4768653B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US8749275B2 (en) Differential circuit
JP2011142173A (en) Control circuit and laser diode driving circuit
JPH08250941A (en) Low-distortion differential amplifier circuit
JP2008544714A (en) Differential transistor vs. current switch supplied with low voltage VCC
JP2006311419A (en) Signal output circuit
TWI479800B (en) Differential amplifier
JP4768653B2 (en) Operational amplifier
US11362669B2 (en) Track and hold circuit
JP2008205738A (en) Operational amplifier
JP4723394B2 (en) Operational amplifier
JP2008211654A (en) Operational amplifier
JP2012114610A (en) Electronic circuit
JP2011182173A (en) Pulse width modulation circuit
JP5042500B2 (en) Operational amplifier
JP2006229501A (en) Amplitude setting circuit
JP5453137B2 (en) Operational amplifier
JP2008011051A (en) Differential operational amplifier
JP2009159344A (en) Oscillation circuit
JP5520192B2 (en) Voltage-current converter
JP4526030B2 (en) Feedback type pulse width modulation AD converter
JP2008042487A (en) Operational amplifier
JP2004145702A (en) Voltage generator circuit
JP2003289242A (en) Delay circuit
JP2015177368A (en) Amplifier device
JP2014127937A (en) Pulse width modulation circuit and switching amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250