JP2008235387A - Electrical and electronic equipment device with heat dissipation structure - Google Patents

Electrical and electronic equipment device with heat dissipation structure Download PDF

Info

Publication number
JP2008235387A
JP2008235387A JP2007069808A JP2007069808A JP2008235387A JP 2008235387 A JP2008235387 A JP 2008235387A JP 2007069808 A JP2007069808 A JP 2007069808A JP 2007069808 A JP2007069808 A JP 2007069808A JP 2008235387 A JP2008235387 A JP 2008235387A
Authority
JP
Japan
Prior art keywords
heat dissipation
fins
cooling fan
heat sink
intake side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007069808A
Other languages
Japanese (ja)
Inventor
Hikari Hirashima
光 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2007069808A priority Critical patent/JP2008235387A/en
Publication of JP2008235387A publication Critical patent/JP2008235387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrical and electronic equipment device with a heat dissipation structure which can provide a sufficient heat dissipation effect by reducing a difference in temperature between the air intake side and the air exhaust side by air cooling with a cooling fan. <P>SOLUTION: The electrical and electronic equipment device has a forced air-cooling heat dissipation structure which includes a heat sink 20 having a cooling fan and a plurality of fins 21 for heat dissipation and which cools a plurality of objects to be cooled by sending air with the cooling fan toward the inside of the heat sink. In the heat dissipation structure, the plurality of objects to be cooled are arranged consecutively on a base surface 22 of the heat sink from the air intake side toward the air exhaust side of the cooling fan. The fins are so disposed that the surface area of each fin may become gradually or continuously smaller from the air exhaust side toward the air intake side of the cooling fan. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷却ファンと放熱用の複数のフィンを有するヒートシンクとを備え、前記冷却ファンが前記ヒートシンク内に向けて送風することにより連設する複数の冷却対象物を冷却する強制空冷式の放熱構造を備えた電気電子機器装置に関するものである。   The present invention includes a cooling fan and a heat sink having a plurality of fins for heat dissipation, and the forced cooling by which the cooling fan cools a plurality of cooling objects connected by blowing air toward the heat sink. The present invention relates to an electric and electronic equipment device having a structure.

従来から、図6に示すように、ヒートシンク20を構成する同形状のフィン21を複数有し、これら複数のフィン21が冷却ファン10の風向方向と平行になるように配置し、冷却ファン10がヒートシンク20に向けて送風することにより冷却対象物30を冷却する強制空冷式の放熱構造は存在する(特許文献1参照)。
特開平06−038546号公報
Conventionally, as shown in FIG. 6, a plurality of fins 21 of the same shape constituting the heat sink 20 are provided, and the plurality of fins 21 are arranged so as to be parallel to the airflow direction of the cooling fan 10. There is a forced air-cooling type heat dissipation structure that cools the cooling object 30 by blowing air toward the heat sink 20 (see Patent Document 1).
Japanese Patent Laid-Open No. 06-038354

しかし、単に複数の同形状のフィン21を冷却ファン10の風向方向と平行に配置した場合、空気温度が徐々に上昇するため、冷却ファン10の吸気側から遠ざかる程放熱効果が低下するという課題を有する。   However, when the plurality of fins 21 having the same shape are simply arranged in parallel to the airflow direction of the cooling fan 10, the air temperature gradually rises, so that the heat dissipation effect decreases as the distance from the intake side of the cooling fan 10 increases. Have.

そこで、上記課題を解決すべく、図7に示すように隣り合う冷却対象物間に隙間を設け、この隙間a、bを吸気側から排気側へ向かうほど広げていく(a<b)手段が採用された。   Therefore, in order to solve the above-described problem, there is provided means for providing a gap between adjacent cooling objects as shown in FIG. 7, and widening the gaps a and b from the intake side toward the exhaust side (a <b). Adopted.

しかし、この手段は、ヒートシンクの全体の体積が増加するという課題を有しており、隣り合う冷却対象物間の隙間が十分確保できる場合には冷却効果が得られるが、冷却対象物間の隙間が各冷却対象物の大きさに比べて狭い場合には、前記手段と同様に、吸気側から遠ざかる程放熱効果が低下するという課題を有する。   However, this means has a problem that the entire volume of the heat sink increases, and a cooling effect can be obtained when a sufficient gap between adjacent cooling objects can be secured. However, when the cooling object is narrower than the size of each object to be cooled, there is a problem that the heat dissipating effect decreases as the distance from the intake side increases.

本発明は、上記問題に鑑みてなされたものであり、ヒートシンクの体積を増加させることなく、冷却ファンの吸気側と排気側との温度差を減少させ、十分な放熱効果が得られる放熱構造を備えた電気電子機器装置を提供する。   The present invention has been made in view of the above problems, and reduces the temperature difference between the intake side and the exhaust side of the cooling fan without increasing the volume of the heat sink, and provides a heat dissipation structure that can obtain a sufficient heat dissipation effect. Provided is an electrical and electronic equipment device.

上記課題を解決するために、本発明に係る放熱構造を備えた電気電子機器装置は、冷却ファンと放熱用の複数のフィンを有するヒートシンクとを備え、前記冷却ファンが前記ヒートシンク内に向けて送風することにより複数の冷却対象物を冷却する強制空冷式の放熱構造を備えた電気電子機器装置であって、前記複数の冷却対象物を前記ヒートシンクのベース面に、且つ、前記冷却ファンの吸気側から排気側への方向に連設し、前記冷却ファンの排気側から吸気側へ向けて前記フィンの表面積が段階的又は連続的に小さくなるように、前記フィンを配置してあることを特徴とする。   In order to solve the above-described problems, an electrical and electronic apparatus device having a heat dissipation structure according to the present invention includes a cooling fan and a heat sink having a plurality of fins for heat dissipation, and the cooling fan blows air into the heat sink. An electric and electronic equipment device having a forced air cooling type heat dissipation structure that cools a plurality of cooling objects by performing the plurality of cooling objects on a base surface of the heat sink, and on an intake side of the cooling fan The fins are arranged in a direction from the exhaust side to the exhaust side, and the fins are arranged so that the surface area of the fins decreases stepwise or continuously from the exhaust side to the intake side of the cooling fan. To do.

前記フィンは奥行きの長さが異なるものが複数種存在し、異なった奥行きのフィンを前記冷却ファンの排気側から吸気側へ向けて平行に配置してあることを特徴とする。
また、前記冷却ファンの排気側から吸気側へ向けて前記フィンの表面積が段階的又は連続的に小さくなるように、前記フィンの吸気側の一部を切欠してあることを特徴とする。
There are a plurality of types of fins having different depth lengths, and fins having different depths are arranged in parallel from the exhaust side to the intake side of the cooling fan.
Further, a part of the fin on the intake side is cut away so that the surface area of the fin decreases stepwise or continuously from the exhaust side to the intake side of the cooling fan.

本発明によれば、冷却ファンの排気側から吸気側へ向けてフィンの表面積が段階的に小さくなるように、フィンを配置してあるので、吸気側から排気側に向かうほどフィンの放熱面積が向上する。また流路断面積が減少することにより風速が増すため、ヒートシンクの放熱効果が向上する。これによりヒートシンク20内の空気温度が徐々に上昇しても、排気側の放熱効果を向上させているため、吸気側の冷却対象物と排気側の冷却対象物との温度差が著しく減少し、ヒートシンクの体積を増加させることなく、排気側の冷却対象物も放熱効果を十分に得ることができる。   According to the present invention, since the fins are arranged so that the surface area of the fins decreases stepwise from the exhaust side to the intake side of the cooling fan, the heat dissipation area of the fins increases from the intake side toward the exhaust side. improves. Further, since the wind speed increases by reducing the cross-sectional area of the flow path, the heat dissipation effect of the heat sink is improved. Thereby, even if the air temperature in the heat sink 20 gradually increases, the heat dissipation effect on the exhaust side is improved, so the temperature difference between the cooling object on the intake side and the cooling object on the exhaust side is significantly reduced, Without increasing the volume of the heat sink, the cooling object on the exhaust side can also obtain a sufficient heat dissipation effect.

また、上記構成より、ファンの近傍の障害物である複数のフィン21が減少するため、ファンの動作風量低下が最小限に抑えられ、従来構造と比較しヒートシンク内を流れる風量が増加しヒートシンク全体の温度上昇を抑えることができる。   In addition, since the plurality of fins 21 that are obstacles in the vicinity of the fan are reduced from the above configuration, a reduction in the fan's operating airflow is minimized, and the airflow flowing through the heatsink is increased as compared with the conventional structure, and the entire heatsink. Temperature rise can be suppressed.

発明を実施するための最良の形態に係る構成説明図を図1及び図2に示す。なお、図1は本実施例に係る電気電子機器装置における放熱構造の外観を示し、図2は本実施例に係る電気電子機器装置の放熱構造の内部断面図を示す。本実施例では、図1に示すように、冷却ファン10と、図2に示すように放熱用の複数のフィン21を有するヒートシンク20とを備えてある。具体的には、電気電子機器装置を構成するヒートシンク20内の一端に冷却ファン10を備え、複数のフィン21をヒートシンク20内に備えてある。フィン21の具体的構成については後述する。ヒートシンク20のベース面22には、冷却ファン10の吸気側から排気側への方向に複数の冷却対象物30を連設してある。なお、本実施例では冷却対象物30として半導体素子を備えたモジュール(以下「モジュール30」とする。)で構成してある。また、複数のモジュール30を冷却ファン10の排気から吸気への方向に等間隔で備えてある。このような構成により、冷却ファン10がヒートシンク20に向けて送風することにより連設する複数のモジュール30を冷却するように構成してある。   An explanatory diagram of a configuration according to the best mode for carrying out the invention is shown in FIGS. FIG. 1 shows the appearance of the heat dissipation structure in the electrical / electronic equipment apparatus according to the present embodiment, and FIG. 2 shows an internal cross-sectional view of the heat dissipation structure of the electrical / electronic equipment apparatus according to the present embodiment. In this embodiment, as shown in FIG. 1, a cooling fan 10 and a heat sink 20 having a plurality of fins 21 for heat dissipation as shown in FIG. 2 are provided. Specifically, the cooling fan 10 is provided at one end of the heat sink 20 constituting the electric / electronic device, and the plurality of fins 21 are provided in the heat sink 20. A specific configuration of the fin 21 will be described later. A plurality of cooling objects 30 are connected to the base surface 22 of the heat sink 20 in the direction from the intake side to the exhaust side of the cooling fan 10. In this embodiment, the cooling object 30 is constituted by a module (hereinafter referred to as “module 30”) provided with a semiconductor element. A plurality of modules 30 are provided at equal intervals in the direction from the exhaust to the intake of the cooling fan 10. With such a configuration, the cooling fan 10 is configured to cool the plurality of modules 30 connected in series by blowing air toward the heat sink 20.

続いて、フィン21の構造について説明する。本実施例に係るフィン21は、冷却ファン10の排気側から吸気側へ向けてフィン21の表面積が段階的に小さくなるように、奥行きの長さが異なるフィン21が複数種、本実施例においては2種類存在する。奥行きが長いフィン21aは冷却ファンの排気側から吸気側まで奥行きを有する。一方、奥行きが短いフィン21bは奥行きが長いフィン21aと同様に冷却ファン10の排気側から存在し、奥行きの長さは奥行きの長いフィン21aに比べて約半分の長さにしてある。また、これら奥行きの長いフィン21aと奥行きの短いフィン21bを交互に且つ平行に配置してある。これにより、冷却ファン10の排気側におけるフィン21の単位長さあたりの表面積は、冷却ファン10の吸気側におけるフィン21の単位長さあたりの表面積の2倍となる。   Next, the structure of the fin 21 will be described. The fin 21 according to the present embodiment includes a plurality of types of fins 21 having different depth lengths so that the surface area of the fin 21 decreases stepwise from the exhaust side to the intake side of the cooling fan 10. There are two types. The fin 21a having a long depth has a depth from the exhaust side to the intake side of the cooling fan. On the other hand, the fin 21b with a short depth exists from the exhaust side of the cooling fan 10 like the fin 21a with a long depth, and the depth is about half that of the fin 21a with a long depth. Further, these long fins 21a and short fins 21b are arranged alternately and in parallel. Thereby, the surface area per unit length of the fin 21 on the exhaust side of the cooling fan 10 is twice the surface area per unit length of the fin 21 on the intake side of the cooling fan 10.

以上のように構成してある電気電子機器装置を構成するヒートシンク20のベース面22に配置したモジュール30を以下のように冷却する。なお、図3に動作説明を示す。先ず、冷却ファン10がヒートシンク20内に向けて送風することにより連設する複数のモジュール30を冷却する。この際、本実施例の電気電子機器装置はフィン21の厚みと排気側のフィン21間の隙間寸法が同一と仮定すると吸気側のフィン21間を流れる空気の流路断面積が排気側の1.5倍となることから、空気の風速は排気側の風速の2/3になり放熱量を1/√1.5に抑えられる。またフィン21の表面積が排気側の表面積の1/2と少ないため、ヒートシンク20の放熱量を1/2に抑えられる。これにより吸気側のヒートシンク20の温度上昇は高くなるが、吸気側のヒートシンク20内の空気温度上昇を抑えられ、排気側のフィン21へ与える吸気側の温度上昇の影響を抑えることができる。   The module 30 arranged on the base surface 22 of the heat sink 20 constituting the electric / electronic equipment apparatus configured as described above is cooled as follows. FIG. 3 shows the operation description. First, the cooling fan 10 cools the plurality of modules 30 connected in series by blowing air toward the heat sink 20. At this time, in the electrical and electronic apparatus according to the present embodiment, assuming that the thickness of the fins 21 and the gap size between the fins 21 on the exhaust side are the same, the cross-sectional area of the air flow between the fins 21 on the intake side is 1 on the exhaust side. Therefore, the wind speed of the air is 2/3 of the wind speed on the exhaust side, and the heat radiation amount can be suppressed to 1 / √1.5. Further, since the surface area of the fin 21 is as small as 1/2 of the surface area on the exhaust side, the heat dissipation amount of the heat sink 20 can be suppressed to 1/2. As a result, the temperature rise of the heat sink 20 on the intake side increases, but the rise in the air temperature in the heat sink 20 on the intake side can be suppressed, and the influence of the temperature rise on the intake side applied to the fins 21 on the exhaust side can be suppressed.

一方、排気側では、フィン21間の流路断面積が吸気側の2/3のため、空気の風速は吸気側の風速の1.5倍になり放熱量を√1.5倍することができる。また、放熱するフィン21の数が吸気側に比べて2倍であるため、フィン21の表面積が吸気側の2倍となり、放熱量も吸気側に比べて2倍となる。これにより、排気側の温度上昇を抑えることができ、吸気側、排気側のヒートシンク20の温度差が従来のものと比較して減少させることができる。このことから、従来のような隣り合うモジュール30間に隙間を設け、この隙間を吸気側から排気側へ向かうほど広げる必要もなく、ヒートシンク20の体積を増加させることなく、吸気側、排気側共に、モジュール30を冷却することができる。   On the other hand, on the exhaust side, the cross-sectional area of the flow path between the fins 21 is 2/3 on the intake side, so that the air wind speed is 1.5 times the air speed on the intake side, and the heat dissipation amount can be increased by √1.5. it can. In addition, since the number of fins 21 that dissipate heat is twice that of the intake side, the surface area of the fins 21 is double that of the intake side, and the amount of heat dissipation is also double that of the intake side. Thereby, the temperature rise on the exhaust side can be suppressed, and the temperature difference between the heat sink 20 on the intake side and the exhaust side can be reduced as compared with the conventional one. Therefore, it is not necessary to provide a gap between adjacent modules 30 as in the prior art, and to widen the gap from the intake side toward the exhaust side, and without increasing the volume of the heat sink 20, both on the intake side and the exhaust side. The module 30 can be cooled.

また吸気側のフィン21による空気の障害を少なくできるため、冷却ファン10の動作風量の低下が最小限に抑えられ、従来構造と比較しヒートシンク20内を流れる風量が増加しヒートシンク20全体の温度上昇を抑えることができる。   Further, since the air obstruction caused by the fins 21 on the intake side can be reduced, the reduction in the operating air volume of the cooling fan 10 can be minimized, the air volume flowing through the heat sink 20 is increased as compared with the conventional structure, and the temperature of the entire heat sink 20 is increased. Can be suppressed.

続いて、別の実施例の内部構造を図4に示す。この実施例におけるフィン21の構成は、排気側からヒートシンク20の中央部分までにおいては、フィン21をヒートシンク20と平行に全面的に配置し、ヒートシンク20の中央部分から吸気側までにおいては、フィン21を斜めに切欠させてある。このような構成より、吸気側からヒートシンク20の中央部分までは連続的に表面積が増加し、ヒートシンク20の中央部分を超えると表面積が一定になるように構成してある。また、ヒートシンク20の中央部より吸気側と中央部より排気側とでは、吸気側の表面積が排気側の表面積の2倍となる。   Subsequently, an internal structure of another embodiment is shown in FIG. In the configuration of the fins 21 in this embodiment, the fins 21 are disposed entirely in parallel with the heat sink 20 from the exhaust side to the central part of the heat sink 20, and the fins 21 are disposed from the central part of the heat sink 20 to the intake side. Is cut diagonally. With such a configuration, the surface area continuously increases from the intake side to the central portion of the heat sink 20, and the surface area is constant beyond the central portion of the heat sink 20. Further, the surface area on the intake side is twice as large as the surface area on the exhaust side, from the central portion of the heat sink 20 to the intake side and from the central portion to the exhaust side.

以上のように構成してある電気電子機器装置を構成するヒートシンク20のベース面22に配置したモジュール30を以下のように冷却する。先ず、冷却ファン10がヒートシンク20内に向けて送風することにより連設する複数のモジュール30を冷却する。この際、本実施例の電気電子機器装置は吸気側からヒートシンク21中央部分に空気が流れるにつれてフィン21間を流れる空気の風速は、流路断面積が連続的に減少するに従い、連続的に上昇する。このとき、中央部より吸気側の流路断面積の平均値は排気側の2倍であるため、風速の平均値は1/2となり放熱量を1/√2に抑えられる。またフィン21の中央部より吸気側の表面積は排気側の表面積の1/2と少ないため、ヒートシンク20の放熱量を1/2に抑えられる。これにより吸気側のヒートシンク20の温度上昇は高くなるが、吸気側のヒートシンク20内の空気温度上昇を抑えられ、排気側のフィン21へ与える吸気側の温度上昇の影響を抑えることができる。   The module 30 arranged on the base surface 22 of the heat sink 20 constituting the electric / electronic equipment apparatus configured as described above is cooled as follows. First, the cooling fan 10 cools the plurality of modules 30 connected in series by blowing air toward the heat sink 20. At this time, in the electric / electronic device according to the present embodiment, as the air flows from the intake side to the central portion of the heat sink 21, the air velocity of the air flowing between the fins 21 continuously increases as the flow path cross-sectional area continuously decreases. To do. At this time, since the average value of the channel cross-sectional area on the intake side from the central part is twice that on the exhaust side, the average value of the wind speed becomes ½, and the heat radiation amount can be suppressed to 1 / √2. Further, since the surface area on the intake side from the central portion of the fin 21 is as small as 1/2 of the surface area on the exhaust side, the heat radiation amount of the heat sink 20 can be suppressed to 1/2. As a result, the temperature rise of the heat sink 20 on the intake side increases, but the rise in the air temperature in the heat sink 20 on the intake side can be suppressed, and the influence of the temperature rise on the intake side applied to the fins 21 on the exhaust side can be suppressed.

一方、ヒートシンク20の中央部分を過ぎると、フィン21間の流路断面積がヒートシンク20の中央部より吸気側の平均値の1/2になるため、風速は吸気側の2倍になり放熱量を√2倍にすることができる。また、放熱するフィン21の表面積が中央部より吸気側の表面積の平均値の2倍になることにより、放熱量も吸気側に比べて2倍になる。これにより、排気側の温度上昇を抑えることができるため、吸気側、排気側のヒートシンク20の温度差が従来のものと比較して減少させることができる。このことから、吸気側に設けたモジュール30と排気側に設けたモジュール30との温度差が従来のものに比べて少なくなるため、従来のような隣り合うモジュール30間に隙間を設け、この隙間を吸気側から排気側へ向かうほど広げる必要もなく、ヒートシンク20の体積を増加させることなく、吸気側、排気側共に、モジュール30を冷却することができる。   On the other hand, after passing through the central portion of the heat sink 20, the cross-sectional area of the flow path between the fins 21 is ½ of the average value on the intake side from the central portion of the heat sink 20, so the wind speed is twice that on the intake side and the heat dissipation amount. Can be multiplied by √2. Further, since the surface area of the fin 21 that dissipates heat is twice the average value of the surface area on the intake side from the central portion, the heat dissipation amount is also doubled compared to the intake side. Thereby, since the temperature rise on the exhaust side can be suppressed, the temperature difference between the heat sink 20 on the intake side and the exhaust side can be reduced as compared with the conventional one. Therefore, since the temperature difference between the module 30 provided on the intake side and the module 30 provided on the exhaust side is smaller than that of the conventional one, a gap is provided between the adjacent modules 30 as in the prior art. The module 30 can be cooled on both the intake side and the exhaust side without increasing the volume of the heat sink 20 from the intake side to the exhaust side.

また吸気側のフィン21による空気の障害を少なくできるため、冷却ファン10の動作風量の低下が最小限に抑えられ、従来構造と比較しヒートシンク20内を流れる風量が増加しヒートシンク20全体の温度上昇を抑えることができる。   Further, since the air obstruction caused by the fins 21 on the intake side can be reduced, the reduction in the operating air volume of the cooling fan 10 can be minimized, the air volume flowing through the heat sink 20 is increased as compared with the conventional structure, and the temperature of the entire heat sink 20 is increased. Can be suppressed.

続いて、さらに別の実施例の内部構造を図5に示す。この実施例におけるフィン21の構成は、冷却ファン10の排気側からヒートシンク20の中央部分までにおいてのみ、複数のフィン21を配置してある。これにより、冷却ファン10の吸気側からヒートシンク20の中央部分まではヒートシンク20の表面のみが冷却面となる。これに対して、冷却ファン10の排気側からヒートシンク20の中央部分までは複数のフィン21が冷却面となる。なお、冷却作用については、図2図示実施例とほぼ同様であるため、説明を省略する。   Subsequently, the internal structure of still another embodiment is shown in FIG. In the configuration of the fins 21 in this embodiment, a plurality of fins 21 are arranged only from the exhaust side of the cooling fan 10 to the central portion of the heat sink 20. As a result, only the surface of the heat sink 20 becomes the cooling surface from the intake side of the cooling fan 10 to the central portion of the heat sink 20. On the other hand, a plurality of fins 21 serve as cooling surfaces from the exhaust side of the cooling fan 10 to the central portion of the heat sink 20. The cooling action is substantially the same as in the embodiment shown in FIG.

なお、本発明は、冷却ファン10の排気側から吸気側へ向けてフィン21の表面積が段階的又は連続的に小さくなるように、フィン21を配置してあれば、フィン20の具体的構成は問わない。また、図1はベース面22を両側に配置するヒートシンク形状となっているが、ベース面22が片側のみのヒートシンク形状でもよい。   In the present invention, if the fins 21 are arranged so that the surface area of the fins 21 decreases stepwise or continuously from the exhaust side to the intake side of the cooling fan 10, the specific configuration of the fins 20 is as follows. It doesn't matter. Further, FIG. 1 shows a heat sink shape in which the base surface 22 is arranged on both sides, but the base surface 22 may have a heat sink shape with only one side.

本発明によれば、冷却ファンの排気側から吸気側へ向けてフィンの表面積が段階的に小さくなるように、フィンを配置してあるので、吸気側から排気側に向かうほどフィンの放熱面積が向上し且つ風速が増すため、ヒートシンクの放熱効果が向上する。これにより吸気側の冷却対象物と排気側の冷却対象物との温度差が著しく減少し、排気側の冷却対象物も放熱効果を十分に得ることができ、産業上利用可能である。   According to the present invention, since the fins are arranged so that the surface area of the fins decreases stepwise from the exhaust side to the intake side of the cooling fan, the heat radiation area of the fins increases from the intake side toward the exhaust side. Since the wind speed is improved and the heat dissipation effect of the heat sink is improved. Thereby, the temperature difference between the cooling object on the intake side and the cooling object on the exhaust side is remarkably reduced, and the cooling object on the exhaust side can sufficiently obtain a heat dissipation effect and can be used industrially.

また、上記構成より、ファンの近傍の障害物である複数のフィン21が減少するため、ファンの動作風量低下が抑えられ、風速を向上させることができる。このことによりフィン全体の放熱効果が向上し、吸気側、排気側共に冷却対象物の温度上昇を抑えることができ、産業上利用可能である。   Moreover, since the several fin 21 which is an obstruction in the vicinity of a fan reduces from the said structure, the fall of the operation | movement air volume of a fan can be suppressed and a wind speed can be improved. As a result, the heat dissipation effect of the entire fin is improved, and the temperature rise of the object to be cooled can be suppressed on both the intake side and the exhaust side, which is industrially applicable.

本発明に係る電気電子機器装置における発明を実施するための最良の形態の放熱構造の外観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the heat dissipation structure of the best form for implementing invention in the electric and electronic equipment apparatus which concerns on this invention. 図1図示実施例における放熱構造の内部断面図である。1 is an internal cross-sectional view of a heat dissipation structure in the embodiment shown in FIG. 図1図示実施例における動作説明図である。It is operation | movement explanatory drawing in the Example shown in FIG. 図2図示実施例とは別の実施例における放熱構造の内部断面図である。2 is an internal cross-sectional view of a heat dissipation structure in an embodiment different from the embodiment shown in FIG. 前記実施例とは別の実施例における放熱構造の内部断面図である。It is an internal sectional view of a heat dissipation structure in an embodiment different from the above embodiment. 従来の電気電子機器装置における放熱構造の内部断面図である。It is an internal sectional view of the heat dissipation structure in the conventional electric and electronic equipment device. 従来の電気電子機器装置における放熱構造の外観図である。It is an external view of the heat dissipation structure in the conventional electric and electronic equipment apparatus.

符号の説明Explanation of symbols

10 冷却ファン
20 ヒートシンク
21,21a,21b フィン
22 ベース面
30 冷却対象物(モジュール)
DESCRIPTION OF SYMBOLS 10 Cooling fan 20 Heat sink 21,21a, 21b Fin 22 Base surface 30 Cooling object (module)

Claims (3)

冷却ファンと放熱用の複数のフィンを有するヒートシンクとを備え、前記冷却ファンが前記ヒートシンク内に向けて送風することにより複数の冷却対象物を冷却する強制空冷式の放熱構造を備えた電気電子機器装置であって、
前記複数の冷却対象物を前記ヒートシンクのベース面に、且つ、前記冷却ファンの吸気側から排気側への方向に連設し、前記冷却ファンの排気側から吸気側へ向けて前記フィンの表面積が段階的又は連続的に小さくなるように、前記フィンを配置してあることを特徴とする放熱構造を備えた電気電子機器装置。
An electric and electronic device comprising a cooling fan and a heat sink having a plurality of fins for heat dissipation, and a forced air-cooling heat dissipation structure that cools a plurality of objects to be cooled when the cooling fan blows air into the heat sink A device,
The plurality of objects to be cooled are connected to the base surface of the heat sink and in the direction from the intake side to the exhaust side of the cooling fan, and the fin has a surface area from the exhaust side to the intake side. An electrical and electronic equipment device provided with a heat dissipation structure, wherein the fins are arranged so as to be reduced stepwise or continuously.
前記フィンは奥行きの長さが異なるものが複数種存在し、異なった奥行きのフィンを前記冷却ファンの排気側から吸気側へ向けて平行に配置してあることを特徴とする請求項1記載の放熱構造を備えた電気電子機器装置。 2. The fin according to claim 1, wherein a plurality of types of fins having different depth lengths exist, and fins having different depths are arranged in parallel from the exhaust side to the intake side of the cooling fan. Electrical and electronic equipment with a heat dissipation structure. 前記冷却ファンの排気側から吸気側へ向けて前記フィンの表面積が段階的又は連続的に小さくなるように、前記フィンの吸気側の一部を切欠してあることを特徴とする請求項1又は2記載の放熱構造を備えた電気電子機器装置。 2. A part of the intake side of the fin is cut away so that the surface area of the fin decreases stepwise or continuously from the exhaust side to the intake side of the cooling fan. An electrical and electronic equipment device comprising the heat dissipation structure according to 2.
JP2007069808A 2007-03-19 2007-03-19 Electrical and electronic equipment device with heat dissipation structure Pending JP2008235387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069808A JP2008235387A (en) 2007-03-19 2007-03-19 Electrical and electronic equipment device with heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069808A JP2008235387A (en) 2007-03-19 2007-03-19 Electrical and electronic equipment device with heat dissipation structure

Publications (1)

Publication Number Publication Date
JP2008235387A true JP2008235387A (en) 2008-10-02

Family

ID=39907880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069808A Pending JP2008235387A (en) 2007-03-19 2007-03-19 Electrical and electronic equipment device with heat dissipation structure

Country Status (1)

Country Link
JP (1) JP2008235387A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257128A (en) * 2010-06-11 2011-12-22 Hamilton Sundstrand Corp Surface cooling device and method of manufacturing the same
CN102883585A (en) * 2012-08-14 2013-01-16 陕西黄河集团有限公司 Multi-step-shaped cooling-fin-type closed cooling device
US20130250028A1 (en) * 2012-03-23 2013-09-26 Kyocera Document Solutions Inc. Image forming device and exposure device
CN103687449A (en) * 2013-12-11 2014-03-26 华为技术有限公司 Electronic equipment and data center
WO2014125883A1 (en) * 2013-02-15 2014-08-21 住友重機械工業株式会社 Power transmission apparatus
JP2016086018A (en) * 2014-10-23 2016-05-19 ダイヤモンド電機株式会社 heat sink
JP2016184639A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Heat radiation device
CN113035805A (en) * 2021-03-04 2021-06-25 阳光电源股份有限公司 Liquid cooling plate and power module
WO2022018851A1 (en) * 2020-07-22 2022-01-27 三菱電機株式会社 Electronic device
JP2022117678A (en) * 2021-02-01 2022-08-12 レノボ・シンガポール・プライベート・リミテッド Electronic device and cooling module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677677A (en) * 1992-08-25 1994-03-18 Hitachi Ltd Forced-cooling type inverter device
JPH07249885A (en) * 1994-03-10 1995-09-26 Nemitsuku Ramuda Kk Cooling structure
JPH0964568A (en) * 1995-08-18 1997-03-07 Toshiba Corp Radiator
JP2002280779A (en) * 2001-03-16 2002-09-27 Tdk Corp Cooler for electronic apparatus
JP2003142637A (en) * 2001-11-02 2003-05-16 Furukawa Electric Co Ltd:The Cooling structure of heat sink and heating element
JP2004273876A (en) * 2003-03-11 2004-09-30 Toshiba Corp Heating body cooling device and power electronics device equipped therewith
JP2006100347A (en) * 2004-09-28 2006-04-13 Hitachi Kokusai Electric Inc Amplifying apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677677A (en) * 1992-08-25 1994-03-18 Hitachi Ltd Forced-cooling type inverter device
JPH07249885A (en) * 1994-03-10 1995-09-26 Nemitsuku Ramuda Kk Cooling structure
JPH0964568A (en) * 1995-08-18 1997-03-07 Toshiba Corp Radiator
JP2002280779A (en) * 2001-03-16 2002-09-27 Tdk Corp Cooler for electronic apparatus
JP2003142637A (en) * 2001-11-02 2003-05-16 Furukawa Electric Co Ltd:The Cooling structure of heat sink and heating element
JP2004273876A (en) * 2003-03-11 2004-09-30 Toshiba Corp Heating body cooling device and power electronics device equipped therewith
JP2006100347A (en) * 2004-09-28 2006-04-13 Hitachi Kokusai Electric Inc Amplifying apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257128A (en) * 2010-06-11 2011-12-22 Hamilton Sundstrand Corp Surface cooling device and method of manufacturing the same
US8770269B2 (en) 2010-06-11 2014-07-08 Hs Marston Aerospace Ltd. Three phase fin surface cooler
US8842148B2 (en) * 2012-03-23 2014-09-23 Kyocera Document Solutions Inc. Image forming device with fins having increasing height
US20130250028A1 (en) * 2012-03-23 2013-09-26 Kyocera Document Solutions Inc. Image forming device and exposure device
CN102883585A (en) * 2012-08-14 2013-01-16 陕西黄河集团有限公司 Multi-step-shaped cooling-fin-type closed cooling device
US9756759B2 (en) 2013-02-15 2017-09-05 Sumitomo Heavy Industries, Ltd. Power transmission apparatus
WO2014125883A1 (en) * 2013-02-15 2014-08-21 住友重機械工業株式会社 Power transmission apparatus
CN103687449A (en) * 2013-12-11 2014-03-26 华为技术有限公司 Electronic equipment and data center
JP2016086018A (en) * 2014-10-23 2016-05-19 ダイヤモンド電機株式会社 heat sink
JP2016184639A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Heat radiation device
WO2022018851A1 (en) * 2020-07-22 2022-01-27 三菱電機株式会社 Electronic device
JP2022117678A (en) * 2021-02-01 2022-08-12 レノボ・シンガポール・プライベート・リミテッド Electronic device and cooling module
JP7235782B2 (en) 2021-02-01 2023-03-08 レノボ・シンガポール・プライベート・リミテッド Electronics
CN113035805A (en) * 2021-03-04 2021-06-25 阳光电源股份有限公司 Liquid cooling plate and power module

Similar Documents

Publication Publication Date Title
JP2008235387A (en) Electrical and electronic equipment device with heat dissipation structure
JP2008140802A (en) Heat sink
WO2015198642A1 (en) Heat sink and method for dissipating heat using heat sink
JP6349161B2 (en) Liquid cooling system
JP6279980B2 (en) Liquid cooling system
JP2008177314A (en) Motor controller
JP2016207928A (en) Heat sink for cooling multiple heating components
JP6315081B2 (en) Power converter
JP2008112870A (en) Heatsink and base station device using heatsink, and method for manufacturing base station device
US20030168208A1 (en) Electronic component cooling apparatus
JP2003338595A (en) Cooling device for electronic component
TWI588437B (en) Heat dissipator and heat dissipating device
JP2009295826A (en) Cooling device
JP2014036050A (en) Heat radiator and heat radiation system
JP2010093034A (en) Cooling device for electronic component
US20140284030A1 (en) Interleaved heat sink and fan assembly
TW201433252A (en) Cooling apparatus and heat sink thereof
JP5400690B2 (en) heatsink
JP2011135649A (en) Inverter device
JP2005166923A (en) Cooler for electronic apparatus
JP2006237366A (en) Heat sink
TWI603443B (en) Heat dissipation device
JP2012023146A (en) Heat sink
JP2006294784A (en) Heat dissipation fin
JP5939329B1 (en) Cooling structure and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091105

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Effective date: 20110307

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110701

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20110805

Free format text: JAPANESE INTERMEDIATE CODE: A912