JP2008231510A - Composite of aluminum alloy with silicon carbide - Google Patents

Composite of aluminum alloy with silicon carbide Download PDF

Info

Publication number
JP2008231510A
JP2008231510A JP2007073194A JP2007073194A JP2008231510A JP 2008231510 A JP2008231510 A JP 2008231510A JP 2007073194 A JP2007073194 A JP 2007073194A JP 2007073194 A JP2007073194 A JP 2007073194A JP 2008231510 A JP2008231510 A JP 2008231510A
Authority
JP
Japan
Prior art keywords
aluminum alloy
silicon carbide
carbide composite
fatty acid
higher fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073194A
Other languages
Japanese (ja)
Other versions
JP5132962B2 (en
Inventor
Tomoshi Hikuma
智志 日隈
Takeshi Iwamoto
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007073194A priority Critical patent/JP5132962B2/en
Publication of JP2008231510A publication Critical patent/JP2008231510A/en
Application granted granted Critical
Publication of JP5132962B2 publication Critical patent/JP5132962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite of aluminum alloy with silicon carbide which has excellent solder wettability and can be suitably used for a base plate of a circuit board. <P>SOLUTION: The composite of aluminum alloy with silicon carbide is characterized in that: nickel plating is applied to the surface of a composite of aluminum alloy with silicon carbide; the surface is further coated thereon with a 10 to 20 C higher fatty acid; and the coating weight of the higher fatty acid is 0.01 to 3.0 g/m<SP>2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回路基板のベース板として好適なアルミニウム合金-炭化珪素質複合体に関する。   The present invention relates to an aluminum alloy-silicon carbide composite suitable as a base plate of a circuit board.

高絶縁性、高熱伝導性を有する窒化アルミニウム基板や窒化珪素基板等のセラミックス基板の表面に、銅製又はアルミニウム製の金属回路を、また裏面には銅製又はアルミニウム製の金属放熱板が接合されてなる回路基板は、パワーモジュール用基板として使用されている。今日、半導体素子の高集積化、小型化に伴い、発熱量は増加の一途をたどっており、いかに効率よく放熱するかが課題となっている。   A metal circuit made of copper or aluminum is joined to the surface of a ceramic substrate such as an aluminum nitride substrate or a silicon nitride substrate having high insulation and high thermal conductivity, and a metal heat sink made of copper or aluminum is joined to the back surface. The circuit board is used as a power module substrate. Today, as the integration and size of semiconductor elements increase, the amount of generated heat continues to increase, and the issue is how to efficiently dissipate heat.

従来の回路基板の放熱構造は、回路基板裏面の金属放熱板にベース板がはんだ付けされており、ベース板としては銅、アルミニウムが一般的であった。しかしながら、この構造においては、半導体装置に熱負荷がかかった際に、ベース板と回路基板の熱膨張係数差に起因するクラックが上記はんだに発生し、放熱が不十分となって、半導体を誤作動させたり、破損させたりする場合があった。   In a conventional heat dissipation structure for a circuit board, a base plate is soldered to a metal heat sink on the back of the circuit board, and copper and aluminum are generally used as the base plate. However, in this structure, when a thermal load is applied to the semiconductor device, cracks due to the difference in the thermal expansion coefficient between the base plate and the circuit board are generated in the solder, resulting in insufficient heat dissipation and erroneously handling the semiconductor. In some cases, it could be activated or damaged.

そこで、熱膨張係数を回路基板に近づけたベース板として、アルミニウム合金-炭化珪素質複合体が提案されている(特許文献1)。
特表平05−507030号公報
Therefore, an aluminum alloy-silicon carbide composite has been proposed as a base plate having a thermal expansion coefficient close to that of a circuit board (Patent Document 1).
JP 05-507030 Gazette

半導体搭載用のセラミックス基板とニッケルめっきを施したアルミニウム合金-炭化珪素質複合体を接合する際に、ニッケルめっき層が酸化すると半田濡れ性が悪くなり基板とベース板の接合不良が起こり、放熱が不十分になるという課題があった。   When joining a ceramic substrate for semiconductor mounting and a nickel-plated aluminum alloy-silicon carbide composite, if the nickel plating layer oxidizes, solder wettability deteriorates, resulting in poor bonding between the substrate and the base plate, resulting in heat dissipation. There was a problem of becoming insufficient.

本発明の目的は、上記課題に鑑み、疎水基を有する高級脂肪酸をニッケルめっき表面にコーティングすることでニッケルめっき層の酸化を抑制し、半田濡れ性が良好なアルミニウム合金-炭化珪素質複合体を提供することである。 In view of the above problems, an object of the present invention is to provide an aluminum alloy-silicon carbide composite having good solder wettability by suppressing oxidation of a nickel plating layer by coating a nickel-plated surface with a higher fatty acid having a hydrophobic group. Is to provide.

即ち、本発明は、ニッケルめっきを施したアルミニウム合金-炭化珪素質複合体の表面に、炭素数が12〜20の高級脂肪酸をコーティングしてなることを特徴とするアルミニウム合金-炭化珪素質複合体であり、高級脂肪酸のコーティング量が、0.01〜3.0g/m2であることを特徴とするアルミニウム合金-炭化珪素質複合体であり、高級脂肪酸がステアリン酸及び/又はパルミチン酸であるアルミニウム合金-炭化珪素質複合体である。 That is, the present invention provides an aluminum alloy-silicon carbide composite comprising a nickel-plated aluminum alloy-silicon carbide composite coated with a higher fatty acid having 12 to 20 carbon atoms. And a coating amount of the higher fatty acid is 0.01 to 3.0 g / m 2. The aluminum alloy-silicon carbide composite, wherein the higher fatty acid is stearic acid and / or palmitic acid. It is an aluminum alloy-silicon carbide composite.

更には、フラックスレスでの半田濡れ率が90%以上であるアルミニウム合金-炭化珪素質複合体であり、熱伝導率が180W/mK以上及び熱膨張係数が10×10−6/K以下であるアルミニウム合金-炭化珪素質複合体であり、高圧鍛造法で製造されることを特徴とするアルミニウム合金-炭化珪素質複合体であり、アルミニウム合金-炭化珪素質複合体に、半導体搭載用セラミックス基板を接合してなる放熱部品である。 Further, it is an aluminum alloy-silicon carbide composite having a solderless rate of 90% or more in a fluxless manner, having a thermal conductivity of 180 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / K or less. An aluminum alloy-silicon carbide composite, which is an aluminum alloy-silicon carbide composite manufactured by high-pressure forging, and a ceramic substrate for mounting a semiconductor on the aluminum alloy-silicon carbide composite. It is a heat dissipation component formed by bonding.

本発明のアルミニウム合金-炭化珪素質複合体は、ニッケルめっき層の表面にステアリン酸やパルミチン酸等の疎水基を有する高級脂肪酸をコーティングしてニッケルめっき層の酸化を抑制するため、半田濡れ性が良好であり、高信頼性を要求される半導体部品搭載用パワーモジュールのベース板等として好適である。 Since the aluminum alloy-silicon carbide composite of the present invention is coated with a higher fatty acid having a hydrophobic group such as stearic acid or palmitic acid on the surface of the nickel plating layer, it suppresses oxidation of the nickel plating layer, so that the solder wettability is improved. It is favorable and suitable as a base plate for a power module for mounting a semiconductor component that requires high reliability.

本発明に用いるアルミニウム合金-炭化珪素質複合体の製造方法については、炭化珪素質多孔体にアルミニウム合金を含浸する含浸法であれば特に問題はなく、常圧で行う方法、溶湯鍛造法やダイキャスト法等の高圧鍛造法などの公知の方法で製造することができるが、生産性等の点から溶湯鍛造法が好適である。   The method for producing the aluminum alloy-silicon carbide composite used in the present invention is not particularly limited as long as it is an impregnation method in which a silicon carbide porous body is impregnated with an aluminum alloy. Although it can be produced by a known method such as a high-pressure forging method such as a casting method, the molten metal forging method is preferred from the viewpoint of productivity and the like.

本発明の炭化珪素質多孔体(以後、プリフォームという)の成形方法は、特に限定されるものではなく、プレス成形、押し出し成形、鋳込み成形等の公知の方法が使用できる。プリフォームに強度を与える為、シリカ或いはアルミナ等を結合材として添加してもよく、更に成形直後の保形性を高めるため、必要に応じてシリカ或いはアルミナ等の結合材に有機バインダーを併用してもかまわない。ただし結合材を過剰に用いるとプリフォームの熱伝導率を低下させる要因となるので、結合材を用いる場合は、0.5〜5.0質量%の範囲で用いることが好ましい。 The method for molding the silicon carbide based porous material (hereinafter referred to as preform) of the present invention is not particularly limited, and known methods such as press molding, extrusion molding, and casting molding can be used. In order to give strength to the preform, silica or alumina or the like may be added as a binder, and in order to improve shape retention immediately after molding, an organic binder may be used in combination with a binder such as silica or alumina as necessary. It doesn't matter. However, excessive use of the binder causes a decrease in the thermal conductivity of the preform. Therefore, when the binder is used, it is preferably used in the range of 0.5 to 5.0% by mass.

本発明に係る成形体は、有機バインダーを併用した場合には脱脂処理と焼成処理が施され、プリフォームとなる。脱脂は、大気中、100〜400℃の温度で1時間以上保持する条件で行われるのが一般的である。焼成温度は、3MPa以上の曲げ強度のプリフォームを得るため、800℃以上とすることが好ましい。曲げ強度が3MPa未満であると、取り扱い時や含浸中に割れる恐れがある。焼成温度が高いほど、プリフォームは高強度となるが、炭化珪素質粉末は、酸化性雰囲気下で焼成すると酸化する場合があるので、酸化性雰囲気下では1100℃以下の温度で焼成することが好ましい。焼成温度及び時間は、プリフォームの大きさ、炉への投入量、雰囲気等の条件に合わせて、適宜決められる。 When the organic binder is used in combination, the molded body according to the present invention is subjected to a degreasing process and a baking process to become a preform. In general, degreasing is performed in the atmosphere under a condition of holding at a temperature of 100 to 400 ° C. for 1 hour or more. The firing temperature is preferably 800 ° C. or higher in order to obtain a preform having a bending strength of 3 MPa or higher. If the bending strength is less than 3 MPa, it may break during handling or during impregnation. The higher the firing temperature, the higher the strength of the preform. However, since silicon carbide powder may be oxidized when fired in an oxidizing atmosphere, it may be fired at a temperature of 1100 ° C. or lower in an oxidizing atmosphere. preferable. The firing temperature and time are appropriately determined according to conditions such as the size of the preform, the amount charged into the furnace, and the atmosphere.

本発明に係る炭化珪素質粉末は特に限定されず、気相法、アチソン法等公知の製造方法によって製造された粉末を用いることができる。炭化珪素質粉末の平均粒子径は、特に限定されるものではないが、平均粒子径が10〜100μmのものが好ましい。平均粒子径が100μmよりも大きいと強度発現性に乏しく、一方、平均粒子径が10μm未満であると、アルミニウム合金-炭化珪素質複合体の熱伝導率が低くなる場合がある。炭化珪素質粉末の平均粒子径が10〜100μmの範囲において、粗い粒子の割合が多くなるように調整すると、熱伝導率が高くなる傾向がある。 The silicon carbide powder according to the present invention is not particularly limited, and a powder produced by a known production method such as a gas phase method or an Atchison method can be used. The average particle size of the silicon carbide-based powder is not particularly limited, but those having an average particle size of 10 to 100 μm are preferable. When the average particle diameter is larger than 100 μm, the strength development is poor, while when the average particle diameter is less than 10 μm, the thermal conductivity of the aluminum alloy-silicon carbide composite may be lowered. When the average particle diameter of the silicon carbide powder is adjusted to increase the ratio of coarse particles in the range of 10 to 100 μm, the thermal conductivity tends to increase.

本発明におけるプリフォームは、プリフォーム中の炭化珪素質成分が55〜75体積%であることが好ましい。プリフォーム中の炭化珪素質成分が75体積%を超えると、30MPa以上の高圧をかけてもアルミニウム合金がプリフォーム中に含浸せず、気孔が残り熱伝導の妨げとなるので、良好な熱伝導性を得ることが困難になる。一方、プリフォーム中の炭化珪素質成分が55体積%より低い場合は、熱膨張係数を10×10−6/K以下とすることが困難である。 In the preform in the present invention, the silicon carbide component in the preform is preferably 55 to 75% by volume. If the silicon carbide component in the preform exceeds 75% by volume, the aluminum alloy will not be impregnated in the preform even when a high pressure of 30 MPa or more is applied, and pores remain to hinder heat conduction. It becomes difficult to get sex. On the other hand, when the silicon carbide component in the preform is lower than 55% by volume, it is difficult to make the thermal expansion coefficient 10 × 10 −6 / K or less.

プリフォームの積層は金属製の簡易治具を用いて行うのが一般的である。プリフォームの両端を離型板で交互に挟み込み一つのブロックとする。離型板は、予備加熱やアルミニウム合金含浸時に、プリフォームやアルミニウム合金と反応しない材質であれば特に限定されず、鉄、ステンレス、チタン等の金属板が好適に用いられる。離型性を高めるため、カーボンや窒化ホウ素等を離型板にコーティングしておくことが好ましい。前記ブロックを500〜700℃で予備加熱後、高圧容器内に1個または2個以上配置し、ブロックの温度低下を防ぐためできるだけ速やかにアルミニウム合金の溶湯を30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、全面にアルミニウム合金層を有するアルミニウム合金-炭化珪素質複合体のブロックが得られる。尚、含浸時の歪み除去の目的でアニール処理を行うこともある。アニール処理には、アルミニウム合金層と炭化珪素質複合体との接合をより強固にするという効果もある。 The preform is generally laminated using a simple metal jig. The both ends of the preform are alternately sandwiched between release plates to form one block. The release plate is not particularly limited as long as it is a material that does not react with the preform or the aluminum alloy at the time of preheating or impregnation with an aluminum alloy, and a metal plate such as iron, stainless steel, or titanium is preferably used. In order to improve the release property, it is preferable to coat the release plate with carbon, boron nitride or the like. After preheating the block at 500 to 700 ° C., one or more of them are placed in a high-pressure vessel, and in order to prevent the temperature of the block from decreasing, the molten aluminum alloy is pressurized as quickly as possible with a pressure of 30 MPa or more. Is impregnated into the voids of the preform to obtain an aluminum alloy-silicon carbide composite block having an aluminum alloy layer on the entire surface. An annealing process may be performed for the purpose of removing distortion during impregnation. The annealing treatment also has an effect of strengthening the bonding between the aluminum alloy layer and the silicon carbide composite.

本発明のアルミニウム合金-炭化珪素質複合体に用いるアルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを7〜25質量%含有したアルミニウム合金が挙げられる。更にマグネシウムを含有させることは、炭化珪素質粒子と金属部分との結合がより強固になり好ましく、含有量は0.5質量%以上が好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば、銅等が含まれていてもよい場合がある。 The aluminum alloy used for the aluminum alloy-silicon carbide composite of the present invention preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated. Examples of such an aluminum alloy include an aluminum alloy containing 7 to 25% by mass of silicon. Further, the inclusion of magnesium is preferable because the bond between the silicon carbide particles and the metal portion becomes stronger, and the content is preferably 0.5% by mass or more. The metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.

含浸時の歪み除去の為に行うアニール処理は、含浸に用いたアルミニウム合金の溶融温度未満の温度でアニール処理を行うことが好ましい。アニール処理は、400〜550℃の温度で10分以上行うのが一般的である。アニール温度が400℃未満であると、複合体内部の歪みが十分に開放されずその後の工程で反りが大きく変化してしまう場合がある。一方、アニール温度が550℃を超えると、含浸に用いたアルミニウム合金が溶融する場合がある。アニール時間が10分未満であると、アニール温度が400℃〜550℃であっても複合体内部の歪みが十分に除去できない場合がある。 It is preferable that the annealing treatment for removing strain during the impregnation is performed at a temperature lower than the melting temperature of the aluminum alloy used for the impregnation. The annealing treatment is generally performed at a temperature of 400 to 550 ° C. for 10 minutes or more. If the annealing temperature is less than 400 ° C., the distortion inside the composite may not be sufficiently released, and the warpage may change greatly in the subsequent steps. On the other hand, when the annealing temperature exceeds 550 ° C., the aluminum alloy used for impregnation may melt. If the annealing time is less than 10 minutes, the distortion inside the composite may not be sufficiently removed even if the annealing temperature is 400 ° C to 550 ° C.

本発明のアルミニウム合金-炭化珪素質複合体の用途の一つであるベース板は、放熱フィンと接合して用いることが多いので、その接合部分の形状や反りもまた重要な特性として挙げられる。予めベース板に凸型の反りを付けたものを用いる場合もある。 Since the base plate, which is one of the uses of the aluminum alloy-silicon carbide composite of the present invention, is often used by being joined to a heat radiating fin, the shape and warpage of the joined portion are also important characteristics. In some cases, a base plate with a convex warp is used in advance.

本発明のアルミニウム合金-炭化珪素質複合体は、両主面にアルミニウム合金からなるアルミニウム層を有する。このアルミニウム層は、めっき処理を施す際のめっき密着性を確保するために必要であり、アルミニウム層の厚みは平均厚みが10μm〜150μmであることが好ましい。平均厚みが10μm未満では、めっき前処理等の表面処理時に部分的に炭化珪素が露出し、その部分にめっき未着が発生したり、めっき密着性が低下したりする場合がある。一方、アルミニウム層の平均厚みが150μmを超えると、得られるベース板自体の熱膨張率が大きくなり過ぎて、接合部の信頼性が低下する場合がある。   The aluminum alloy-silicon carbide based composite of the present invention has an aluminum layer made of an aluminum alloy on both main surfaces. This aluminum layer is necessary for ensuring plating adhesion when performing the plating treatment, and the aluminum layer preferably has an average thickness of 10 μm to 150 μm. If the average thickness is less than 10 μm, silicon carbide may be partially exposed during surface treatment such as pre-plating treatment, and plating may not adhere to the portion, or plating adhesion may be reduced. On the other hand, when the average thickness of the aluminum layer exceeds 150 μm, the thermal expansion coefficient of the obtained base plate itself becomes too large, and the reliability of the joint portion may be lowered.

本発明のアルミニウム合金-炭化珪素質複合体をパワーモジュール用ベース板として用いる場合、セラミックス回路基板と半田付けにより接合して用いられる。このため、ベース板表面にはニッケルめっきを施すことが必要である。めっき処理方法は特に限定されず、無電解めっき処理、電気めっき処理法のいずれでもよい。ニッケルめっきの厚みは1〜15μmであることが好ましい。めっき厚みが1μm未満では、部分的にめっきのピンホールが発生し、半田付け時に半田ボイド(空隙)が発生し、回路基板からの放熱性が低下する場合がある。一方、ニッケルめっきの厚みが15μmを超えると、ニッケルめっき膜とアルミニウム合金との熱膨張係数の違いによりめっき剥離が発生する場合がある。ニッケルめっき膜の純度に関しては、半田濡れ性に支障をきたさない程度であれば特に制限はなく、リン、ホウ素等を含有してもよい。   When the aluminum alloy-silicon carbide composite of the present invention is used as a power module base plate, it is used by being joined to a ceramic circuit board by soldering. For this reason, it is necessary to apply nickel plating to the surface of the base plate. The plating method is not particularly limited, and any of electroless plating and electroplating may be used. The thickness of the nickel plating is preferably 1 to 15 μm. If the plating thickness is less than 1 μm, plating pinholes are partially generated, solder voids (voids) are generated during soldering, and heat dissipation from the circuit board may be reduced. On the other hand, if the thickness of the nickel plating exceeds 15 μm, plating peeling may occur due to a difference in thermal expansion coefficient between the nickel plating film and the aluminum alloy. The purity of the nickel plating film is not particularly limited as long as it does not hinder solder wettability, and may contain phosphorus, boron, or the like.

本発明のアルミニウム合金-炭化珪素質複合体のニッケルめっき膜表面に撥水性の有機化合物をコーティングすることは、大気中の水分やニッケルめっき処理時に使用する水分に対して撥水性を示すため、ニッケルめっき膜表面の酸化を抑制することに効果的である。撥水性の有機化合物としては、炭素数が12〜20の高級脂肪酸が好ましい。炭素数が12未満だと、高級脂肪酸の疎水基(Cn2n+1)が少ないため撥水効果が低下し、ニッケルめっき膜の酸化抑制効果が低下する場合がある。一方、炭素数が20より大きいと、親水性が低下するため、ニッケルめっき膜表面の高級脂肪酸が配向しにくくなり、酸化抑制効果が低下する場合がある。高級脂肪酸の純度に関しては、半田濡れ性に支障をきたさない程度であれば特に制限はないが、90%以上が好ましい。 Since the surface of the nickel plating film of the aluminum alloy-silicon carbide composite of the present invention is coated with a water-repellent organic compound, it exhibits water repellency against moisture in the atmosphere and moisture used during nickel plating treatment. It is effective in suppressing oxidation of the plating film surface. As the water repellent organic compound, a higher fatty acid having 12 to 20 carbon atoms is preferable. When the number of carbon atoms is less than 12, the hydrophobic group (C n H 2n + 1 ) of the higher fatty acid is small, so that the water repellency effect is lowered and the oxidation suppressing effect of the nickel plating film may be lowered. On the other hand, when the number of carbon atoms is larger than 20, the hydrophilicity is lowered, so that the higher fatty acid on the surface of the nickel plating film becomes difficult to be oriented, and the oxidation inhibiting effect may be lowered. The purity of the higher fatty acid is not particularly limited as long as it does not hinder solder wettability, but 90% or more is preferable.

高級脂肪酸のコーティング方法は特に限定されず、高級脂肪酸を含む水溶液中にアルミニウム合金-炭化珪素質複合体を浸漬するか、或いは、高級脂肪酸を含む水溶液をアルミニウム合金-炭化珪素質複合体にスプレー等で吹き付けてもよい。コーティング量は撥水性が発現する0.01〜3.0g/m2でコーティングすることが好ましい。高級脂肪酸を溶剤に溶かして使用することもできるが、廃棄処理上の観点から水に分散させる方が好ましい。高級脂肪酸を水に分散させる方法としては、水に界面活性剤を添加した後に高級脂肪酸を加え、10〜30分間程度攪拌することが一般的である。 The coating method of the higher fatty acid is not particularly limited, and the aluminum alloy-silicon carbide composite is immersed in the aqueous solution containing the higher fatty acid, or the aqueous solution containing the higher fatty acid is sprayed on the aluminum alloy-silicon carbide composite. You may spray with. The coating amount is preferably 0.01 to 3.0 g / m 2 where water repellency is exhibited. Higher fatty acids can be dissolved in a solvent and used, but it is preferable to disperse them in water from the viewpoint of disposal. As a method for dispersing higher fatty acid in water, it is common to add a higher fatty acid after adding a surfactant to water and stir for about 10 to 30 minutes.

高級脂肪酸をコーティングすることで撥水性を発現させるためには、疎水基(Cn2n+1)のn数が12〜20かつ、飽和脂肪酸であることが好ましい。飽和脂肪酸として、ステアリン酸(炭素数17)やパルミチン酸(炭素数15)が好適に用いられる。 In order to express water repellency by coating with a higher fatty acid, it is preferable that the n number of the hydrophobic group (C n H 2n + 1 ) is 12 to 20 and is a saturated fatty acid. As saturated fatty acid, stearic acid (carbon number 17) and palmitic acid (carbon number 15) are preferably used.

(実施例1)
炭化珪素粉末A(太平洋ランダム社製:NG−220、平均粒径:100μm)69g、炭化珪素粉末B(屋久島電工社製:GC−1000F、平均粒径:10μm)31g、及びシリカゾル(日産化学社製:スノーテックス0 固形分濃度20%)21gを秤取し、攪拌混合機で30分間混合した後、185mm×135mm×4.8mmの寸法の平板状に圧力10MPaでプレス成形した。
得られた成形体を、大気中、温度900℃で2時間焼成して、プリフォーム中の炭化珪素質成分が64体積%のプリフォームを得た。
(Example 1)
69 g of silicon carbide powder A (manufactured by Taiheiyo Random: NG-220, average particle size: 100 μm), 31 g of silicon carbide powder B (manufactured by Yakushima Electric: GC-1000F, average particle size: 10 μm), and silica sol (Nissan Chemical Co., Ltd.) (Product: Snowtex 0, solid content concentration 20%) 21 g was weighed and mixed with a stirrer / mixer for 30 minutes, and then pressed into a flat plate having dimensions of 185 mm × 135 mm × 4.8 mm at a pressure of 10 MPa.
The obtained molded body was fired in the atmosphere at a temperature of 900 ° C. for 2 hours to obtain a preform having a 64% by volume silicon carbide component in the preform.

得られたプリフォームを溶湯が流入できる湯口がついた185mm×135mm×5mmの鉄製枠にプリフォームを入れ、両面をカーボンコートしたSUS板(200mm×150mm×1mm)で鉄製枠を挟んで一体としたものを20個積層し、電気炉で600℃に予備加熱した。次にそれをあらかじめ加熱しておいた内径300mmのプレス型内に収め、シリコンを12質量%、マグネシウムを0.5質量%含有するアルミニウム合金(融点580℃)の溶湯を注ぎ、80MPaの圧力で30分間加圧してプリフォームにアルミニウム合金を含浸させた。アルミニウム合金-炭化珪素質複合体ブロックを室温まで冷却した後、湿式バンドソーにて枠等を切断し、両面に挟んだ離型板をはがした後に、含浸時のひずみ除去の為に530℃で3時間アニール処理を行いアルミニウム合金-炭化珪素質複合体を得た。 Put the preform into an 185mm x 135mm x 5mm steel frame with a pouring spout through which the molten metal can flow, and sandwich the steel frame with a SUS plate (200mm x 150mm x 1mm) coated with carbon on both sides. 20 of these were stacked and preheated to 600 ° C. in an electric furnace. Next, it was put in a pre-heated press mold having an inner diameter of 300 mm, and a molten aluminum alloy (melting point 580 ° C.) containing 12% by mass of silicon and 0.5% by mass of magnesium was poured at a pressure of 80 MPa. The preform was impregnated with an aluminum alloy by applying pressure for 30 minutes. After cooling the aluminum alloy-silicon carbide composite block to room temperature, the frame is cut with a wet band saw, the release plate sandwiched between both sides is peeled off, and the strain is removed at 530 ° C. at the time of impregnation. An annealing treatment was performed for 3 hours to obtain an aluminum alloy-silicon carbide composite.

得られたアルミニウム合金-炭化珪素質複合体の縁周部4隅に直径8mmの加工穴を設け、端部に付着したアルミニウム合金を除去した。アルミニウム合金-炭化珪素質複合体の表面を、ブラスト表面研磨機を用いてアルミナ砥粒で表面研磨した後(圧力:0.4MPa、搬送速度:1.0m/min)、めっき処理を行った。なお、前記めっきは、無電解Ni-P(6μm)、無電解Ni-B(2μm)の2層とした。めっき処理したアルミニウム合金-炭化珪素質複合体を高級脂肪酸(ステアリン酸70質量%、パルミチン酸30質量%)を0.1質量%含有する水溶液中(界面活性剤を10質量%含有)に2分間浸漬し、イオン交換水で洗浄、乾燥した。高級脂肪酸のコーティング量は0.05g/m2であった。
(使用材料)
ステアリン酸:花王社製、商品名「ルナックS-20」
パルミチン酸:花王社製、商品名「ルナックP-95」
界面活性剤:花王社製、商品名「アンヒトール-24B」
Processed holes with a diameter of 8 mm were provided at the four corners of the peripheral edge of the obtained aluminum alloy-silicon carbide composite, and the aluminum alloy adhering to the ends was removed. The surface of the aluminum alloy-silicon carbide composite was polished with alumina abrasive grains using a blast surface polishing machine (pressure: 0.4 MPa, transport speed: 1.0 m / min), and then subjected to plating treatment. The plating was made of two layers of electroless Ni—P (6 μm) and electroless Ni—B (2 μm). 2 minutes in an aqueous solution containing 10% by mass of higher fatty acid (70% by mass of stearic acid, 30% by mass of palmitic acid) of the plated aluminum alloy-silicon carbide composite for 2 minutes. It was immersed, washed with ion exchange water and dried. The coating amount of higher fatty acid was 0.05 g / m 2 .
(Materials used)
Stearic acid: product name “Lunac S-20” manufactured by Kao Corporation
Palmitic acid: product name “Lunac P-95” manufactured by Kao Corporation
Surfactant: Product name “Amphitole-24B” manufactured by Kao Corporation

(実施例2)
高級脂肪酸を0.01g/mコーティングしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製した。
(Example 2)
An aluminum alloy-silicon carbide composite was produced in the same manner as in Example 1 except that 0.01 g / m 2 of higher fatty acid was coated.

(実施例3)
高級脂肪酸を3.0g/mコーティングしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製した。
(Example 3)
An aluminum alloy-silicon carbide composite was produced in the same manner as in Example 1 except that 3.0 g / m 2 of higher fatty acid was coated.

(実施例4)
高級脂肪酸を0.005g/mコーティングしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製した。
Example 4
An aluminum alloy-silicon carbide composite was produced in the same manner as in Example 1 except that higher fatty acid was coated at 0.005 g / m 2 .

(実施例5)
高級脂肪酸を3.5g/mコーティングしたこと以外は実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製した。
(Example 5)
An aluminum alloy-silicon carbide composite was produced in the same manner as in Example 1 except that higher fatty acid was coated at 3.5 g / m 2 .

(比較例1)
高級脂肪酸をコーティングしなかったこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製した。
(Comparative Example 1)
An aluminum alloy-silicon carbide composite was produced in the same manner as in Example 1 except that the higher fatty acid was not coated.

実施例及び比較例で作製したアルミニウム合金-炭化珪素質複合体の外観評価を行った。外観評価後に、半田濡れ評価用試験体(50mm×50mm×5mm)を作製した。この試験片を230℃の半田バス(千住金属(株)製:H63A-B20半田)に20秒間浸漬後、10秒かけて取り出してフラックスレスでの半田濡れ性評価を行った。半田濡れ性は、光学顕微鏡を用いて、一定面積内(20mm×20mm)の半田が濡れた面積の割合を求めた。半田広がり率は、千住金属(株)製のフラックス入り半田SPARKLETSURU 22F2RH60-1.0A(Sn60%-Pb40%)を0.100g、棒(Φ3mm)に巻き付けて、230℃のホットプレートで加熱した試料にのせ、30秒放置した後の半田広がり率を算出した(JIS-Z3197の4.11項)。 The appearance of the aluminum alloy-silicon carbide composites produced in the examples and comparative examples was evaluated. After the appearance evaluation, a test specimen for solder wettability evaluation (50 mm × 50 mm × 5 mm) was prepared. This test piece was immersed in a 230 ° C. solder bath (manufactured by Senju Metal Co., Ltd .: H63A-B20 solder) for 20 seconds, taken out over 10 seconds, and evaluated for solder wettability without flux. For the solder wettability, the ratio of the area where the solder within a certain area (20 mm × 20 mm) was wet was obtained using an optical microscope. Solder spreading rate is 0.100 g of flux-filled solder SPARKLETSURU 22F2RH60-1.0A (Sn60% -Pb40%) manufactured by Senju Metal Co., Ltd., wrapped around a rod (Φ3mm) and heated on a 230 ° C hot plate. The solder spread ratio after standing for 30 seconds was calculated (4.11 of JIS-Z3197).

Figure 2008231510
Figure 2008231510

高級脂肪酸のコーティング量が0.005g/mだと撥水性が乏しくなるため、半田濡れ性の向上は見られない。コーティング量が3.5g/mだと半田濡れ性は良好だが、外観不良(変色)が発生する場合がある。アルミニウム合金-炭化珪素質複合体のめっき表面に高級脂肪酸をコーティングすることで半田濡れ性の向上が確認できた。
When the coating amount of the higher fatty acid is 0.005 g / m 2 , the water repellency becomes poor, and thus the solder wettability is not improved. When the coating amount is 3.5 g / m 2 , the solder wettability is good, but an appearance defect (discoloration) may occur. It was confirmed that solder wettability was improved by coating higher fatty acid on the plating surface of aluminum alloy-silicon carbide composite.

Claims (7)

アルミニウム合金-炭化珪素質複合体の表面にニッケルめっきを施し、さらにその上に、炭素数が12〜20の高級脂肪酸をコーティングしてなることを特徴とするアルミニウム合金-炭化珪素質複合体。 An aluminum alloy-silicon carbide composite, wherein the surface of the aluminum alloy-silicon carbide composite is nickel-plated and further coated with a higher fatty acid having 12 to 20 carbon atoms. 高級脂肪酸のコーティング量が、0.01〜3.0g/m2であることを特徴とする請求項1項記載のアルミニウム合金-炭化珪素質複合体。 2. The aluminum alloy-silicon carbide composite according to claim 1, wherein the coating amount of the higher fatty acid is 0.01 to 3.0 g / m < 2 >. 高級脂肪酸がステアリン酸及び/又はパルミチン酸であることを特徴とする請求項1又は請求項2記載のアルミニウム合金-炭化珪素質複合体。   3. The aluminum alloy-silicon carbide composite according to claim 1, wherein the higher fatty acid is stearic acid and / or palmitic acid. フラックスレスでの半田濡れ率が90%以上であることを特徴とする請求項1〜3のうちいずれか一項記載のアルミニウム合金-炭化珪素質複合体。   The aluminum alloy-silicon carbide based composite according to any one of claims 1 to 3, wherein a solder wetting ratio in a fluxless state is 90% or more. 熱伝導率が180W/mK以上、並びに、熱膨張係数が10×10−6/K以下であることを特徴とする請求項1〜4のうちいずれか一項記載のアルミニウム合金-炭化珪素質複合体。 5. The aluminum alloy-silicon carbide composite according to claim 1, wherein the thermal conductivity is 180 W / mK or more and the thermal expansion coefficient is 10 × 10 −6 / K or less. body. アルミニウム合金-炭化珪素質複合体が高圧鍛造法で製造されることを特徴とする請求項1〜5のうちいずれか一項記載のアルミニウム合金-炭化珪素質複合体。 6. The aluminum alloy-silicon carbide composite according to claim 1, wherein the aluminum alloy-silicon carbide composite is manufactured by a high-pressure forging method. 請求項1〜6のうちいずれか一項記載のアルミニウム合金-炭化珪素質複合体に、半導体搭載用セラミックス基板を接合してなる放熱部品。

A heat dissipating component obtained by joining a ceramic substrate for semiconductor mounting to the aluminum alloy-silicon carbide composite according to any one of claims 1 to 6.

JP2007073194A 2007-03-20 2007-03-20 Aluminum alloy-silicon carbide composite Active JP5132962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073194A JP5132962B2 (en) 2007-03-20 2007-03-20 Aluminum alloy-silicon carbide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073194A JP5132962B2 (en) 2007-03-20 2007-03-20 Aluminum alloy-silicon carbide composite

Publications (2)

Publication Number Publication Date
JP2008231510A true JP2008231510A (en) 2008-10-02
JP5132962B2 JP5132962B2 (en) 2013-01-30

Family

ID=39904668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073194A Active JP5132962B2 (en) 2007-03-20 2007-03-20 Aluminum alloy-silicon carbide composite

Country Status (1)

Country Link
JP (1) JP5132962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033204A (en) * 2009-07-29 2011-02-17 Kowa Co Ltd Cleaning device for air conditioner, and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208760A (en) * 2001-01-09 2002-07-26 Denki Kagaku Kogyo Kk Circuit board and method for manufacturing it
JP2006117491A (en) * 2004-10-25 2006-05-11 Denki Kagaku Kogyo Kk Aluminum alloy-ceramic composite and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208760A (en) * 2001-01-09 2002-07-26 Denki Kagaku Kogyo Kk Circuit board and method for manufacturing it
JP2006117491A (en) * 2004-10-25 2006-05-11 Denki Kagaku Kogyo Kk Aluminum alloy-ceramic composite and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033204A (en) * 2009-07-29 2011-02-17 Kowa Co Ltd Cleaning device for air conditioner, and air conditioner

Also Published As

Publication number Publication date
JP5132962B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP7144405B2 (en) CERAMIC CIRCUIT BOARD, MANUFACTURING METHOD THEREOF, AND MODULE USING THE SAME
JP5988977B2 (en) Heat dissipation parts for semiconductor elements
JP5021636B2 (en) Aluminum-silicon carbide composite and processing method thereof
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
JP6742073B2 (en) Ceramics circuit board
JP6099453B2 (en) Electronic component mounting substrate and manufacturing method thereof
JPWO2006030676A1 (en) Aluminum-silicon carbide composite
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
JPWO2016017689A1 (en) Aluminum-silicon carbide composite and method for producing the same
JP2011139000A (en) Power module structure and method of manufacturing the same
JP3907620B2 (en) Ceramic circuit board integrated aluminum-silicon carbide composite and manufacturing method thereof
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JP2022048812A (en) Heat dissipation member and method for manufacturing the same
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
CN110325310A (en) The manufacturing method of the manufacturing method of conjugant, the manufacturing method of insulate electrical substrate and the insulate electrical substrate having heat radiating fins
JP5132962B2 (en) Aluminum alloy-silicon carbide composite
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP4191124B2 (en) Aluminum alloy-ceramic composite and method for producing the same
JP2023086688A (en) Copper/ceramic jointed body and insulated circuit board
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP2001217362A (en) Laminated heat dissipating member, power semiconductor device using it, and method of production
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JP4127379B2 (en) Method for producing aluminum-silicon carbide composite
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5132962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250