JP2012144767A - Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member - Google Patents

Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member Download PDF

Info

Publication number
JP2012144767A
JP2012144767A JP2011003265A JP2011003265A JP2012144767A JP 2012144767 A JP2012144767 A JP 2012144767A JP 2011003265 A JP2011003265 A JP 2011003265A JP 2011003265 A JP2011003265 A JP 2011003265A JP 2012144767 A JP2012144767 A JP 2012144767A
Authority
JP
Japan
Prior art keywords
layer
composite member
substrate
composite
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011003265A
Other languages
Japanese (ja)
Inventor
Isao Iwayama
功 岩山
Taichiro Nishikawa
太一郎 西川
Toshiya Ikeda
利哉 池田
Shigeki Koyama
茂樹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Allied Material Corp
Original Assignee
Sumitomo Electric Industries Ltd
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Allied Material Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011003265A priority Critical patent/JP2012144767A/en
Publication of JP2012144767A publication Critical patent/JP2012144767A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a composite member superior in adhesion with solder; a heat radiation member comprising the composite members; a semiconductor device including the heat radiation member; and a method of manufacturing the composite member.SOLUTION: A composite member 1 includes a substrate 20 made of a composite material in which magnesium or magnesium alloy is combined with SiC, and a metal covered layer 10 having multilayer structure that is formed on the surface of the substrate 20. The metal covered layer 10 includes, in order from the side of the substrate 20: an underlayer 11 having the same composition as a matrix metal of the substrate 20; a zinc layer 12 formed by zincate treatment; a copper plating layer 13; and a nickel plating layer 14. The copper plating layer 13 is comparatively thick, exceeding 1 μm in thickness. Due to such a structure, peeling strength between the composite member 1 and solder is high, and semiconductor elements or the like are hard to be peeled off from the composite member 1 when they are bonded thereto.

Description

本発明は、マグネシウム(いわゆる純マグネシウム)又はマグネシウム合金とSiCとが複合された複合部材、この複合部材から構成される放熱部材、この放熱部材を具える半導体装置、及び複合部材の製造方法に関するものである。特に、はんだとの密着性に優れる複合部材に関するものである。   The present invention relates to a composite member in which magnesium (so-called pure magnesium) or a magnesium alloy and SiC are combined, a heat radiating member composed of the composite member, a semiconductor device including the heat radiating member, and a method for manufacturing the composite member It is. In particular, the present invention relates to a composite member having excellent adhesion with solder.

半導体素子の放熱部材(ヒートスプレッダ)の構成材料として、Al-SiCといった、金属と非金属無機材料(代表的にはセラミックス)との複合材料が利用されている。近年、放熱部材の軽量化を主目的として、アルミニウム(Al)よりも軽量であるマグネシウム(Mg)やその合金をマトリクス金属とするマグネシウム基複合材料が検討されている(特許文献1参照)。   As a constituent material of a heat radiating member (heat spreader) of a semiconductor element, a composite material of a metal and a non-metallic inorganic material (typically ceramics) such as Al—SiC is used. In recent years, a magnesium-based composite material using magnesium (Mg), which is lighter than aluminum (Al), or an alloy thereof as a matrix metal has been studied mainly for the purpose of reducing the weight of a heat dissipation member (see Patent Document 1).

半導体素子を十分に冷却することが望まれる場合、放熱部材と半導体素子同士をはんだにより接合することがある。特許文献1では、はんだとの濡れ性を高めるためにニッケルめっきを均一的に施すにあたり、複合材料からなる基板の表面にマグネシウムといった金属層を設けることを提案している。   When it is desired to sufficiently cool the semiconductor element, the heat radiating member and the semiconductor element may be joined by solder. Patent Document 1 proposes to provide a metal layer such as magnesium on the surface of a substrate made of a composite material in order to uniformly apply nickel plating in order to improve wettability with solder.

特開2010-106362号公報JP 2010-106362 A

上記放熱部材とはんだとの間の密着性を高めることが望まれる。上記密着性を高めることで、放熱部材とはんだとの接合箇所の信頼性を高められる。上記密着性を高めるためには、上述したニッケルめっきと基板との間の密着性を高めることが効果的である。上述したマグネシウム基複合材料からなる基板の上にマグネシウムといった金属層を形成することで、ニッケルめっきを均一的に施せるものの、当該金属層だけでは、ニッケルめっきと基板との間の密着性を更に高めることが難しい。その結果、放熱部材とはんだとの間の密着性を更に高めることが難しい。また、従来、上記密着性を更に高めるための構成について十分検討されていない。   It is desired to improve the adhesion between the heat dissipation member and the solder. By increasing the adhesion, the reliability of the joint between the heat dissipation member and the solder can be increased. In order to increase the adhesion, it is effective to increase the adhesion between the nickel plating and the substrate. Although nickel plating can be applied uniformly by forming a metal layer such as magnesium on a substrate made of the above-described magnesium-based composite material, the adhesion between the nickel plating and the substrate is further enhanced with only the metal layer. It is difficult. As a result, it is difficult to further improve the adhesion between the heat dissipation member and the solder. Conventionally, a structure for further improving the adhesion has not been sufficiently studied.

そこで、本発明の目的の一つは、はんだとの密着性に優れる複合部材を提供することにある。また、本発明の他の目的は、上記複合部材からなる放熱部材、この放熱部材を具える半導体装置を提供することにある。更に、本発明の他の目的は、上記複合部材の製造方法を提供することにある。   Then, one of the objectives of this invention is providing the composite member excellent in adhesiveness with a solder. Another object of the present invention is to provide a heat radiating member composed of the above composite member and a semiconductor device including the heat radiating member. Furthermore, the other object of this invention is to provide the manufacturing method of the said composite member.

本発明者らは、はんだとの密着性を高めるために、めっきの前処理として汎用されているジンケート処理をニッケルめっきの前に施すことを検討した。その結果、密着性の向上がみられたものの、十分とは言えなかった。そこで、ジンケート処理に加えて、銅めっきを施すことを検討したところ、密着性の向上がみられた。特に、詳しいメカニズムは定かでないが、一般的なストライクめっきのような厚さが薄いめっき、より具体的にはナノオーダーのめっきではなく、比較的厚い銅めっきとすることで、複合材料からなる基板とめっきとの密着性を非常に高められる、との知見を得た。本発明は、上記知見に基づくものである。   In order to improve the adhesiveness with the solder, the present inventors studied to perform a zincate treatment, which is widely used as a pretreatment for plating, before nickel plating. As a result, although the adhesion was improved, it was not sufficient. Then, in addition to the zincate process, when copper plating was examined, the adhesiveness was improved. In particular, although the detailed mechanism is not clear, a substrate made of a composite material by using a thin plating such as general strike plating, more specifically, a relatively thick copper plating rather than a nano-order plating. It was found that the adhesion between aluminum and plating can be greatly improved. The present invention is based on the above findings.

本発明複合部材は、マグネシウム又はマグネシウム合金とSiCとが複合された複合材料からなる基板を具え、上記複合材料がSiCを50体積%以上含有し、当該複合部材の熱膨張係数が4ppm/K以上15ppm/K以下である。上記基板の対向する一対の面のうちの少なくとも一面に、その少なくとも一部を覆う金属被覆層を具える。この金属被覆層は、上記基板側から順に、下地層、亜鉛層、銅めっき層、最表面層となるニッケルめっき層を具え、上記銅めっき層の厚さが1μm超である。   The composite member of the present invention comprises a substrate made of a composite material in which magnesium or a magnesium alloy and SiC are composited. The composite material contains 50% by volume or more of SiC, and the thermal expansion coefficient of the composite member is 4 ppm / K or more. 15 ppm / K or less. A metal coating layer covering at least a part of at least one of the pair of opposing surfaces of the substrate is provided. The metal coating layer includes, in order from the substrate side, a base layer, a zinc layer, a copper plating layer, and a nickel plating layer serving as an outermost surface layer, and the thickness of the copper plating layer is more than 1 μm.

本発明複合部材は、下地層を具えることでその表面が平滑である。ここで、上記複合部材の表面が平滑でなく凹凸が存在する場合、めっき後においても複合部材表面の凹凸が残存する。その結果、凹み部分に存在する気体(主として空気)がはんだ付け時に凹み部分から泡となって吹き出し、はんだ付け不良の原因となる。これに対し、本発明複合部材は、上述のように表面が平滑であることで、上記泡が吹き出し難く、はんだ付け不良が起こり難い上、表面性状や外観に優れる。また、上記下地層は金属で構成されていることで、上記めっき層の形成にあたり、下地層を導通箇所として電気めっきを利用でき、上記めっき層を生産性よく形成できる。   The composite member of the present invention has a smooth surface by providing an underlayer. Here, when the surface of the composite member is not smooth and has unevenness, the unevenness on the surface of the composite member remains even after plating. As a result, the gas (mainly air) present in the recessed portion is blown out as bubbles from the recessed portion during soldering, causing defective soldering. On the other hand, the composite member of the present invention has a smooth surface as described above, so that the bubbles are difficult to blow out, poor soldering is difficult to occur, and is excellent in surface properties and appearance. In addition, since the base layer is made of metal, electroplating can be used with the base layer as a conductive portion in forming the plating layer, and the plating layer can be formed with high productivity.

そして、本発明複合部材は、詳しいメカニズムが不明であるが、銅めっき層が比較的厚いことで基板とニッケルめっき層とが強固に密着する。そのため、ニッケルめっき層の上にはんだを塗布し、所望の部材を接合した場合に当該部材がはんだやニッケルめっき層から剥離し難く、はんだとの接合箇所の信頼性を高められる。また、基板とニッケルめっき層との密着力が高いことで、当該めっき層がはんだを塗布することなく耐食層などに利用される場合でも、当該めっき層が剥離し難いことで、耐食性などにも優れる。   And although a detailed mechanism is unknown about this invention composite member, a board | substrate and a nickel plating layer closely_contact | adhere firmly because a copper plating layer is comparatively thick. Therefore, when a solder is applied on the nickel plating layer and a desired member is joined, the member is hardly peeled off from the solder or the nickel plating layer, and the reliability of the joint portion with the solder can be improved. In addition, since the adhesion between the substrate and the nickel plating layer is high, even when the plating layer is used as a corrosion-resistant layer without applying solder, the plating layer is difficult to peel off, so that the corrosion resistance and the like are also improved. Excellent.

その他、本発明複合部材は、半導体素子やその周辺部品の熱膨張係数(4ppm/K〜8ppm/K程度)と同等程度、或いは差が小さい熱膨張係数を有するため、半導体素子の放熱部材に利用した場合にヒートサイクルを受けても熱伸縮により半導体素子やその周辺部品が剥離し難い。従って、本発明複合部材を用いた放熱部材は、半導体素子の熱を効率よく放出でき、半導体素子の放熱部材に好適に利用できる。   In addition, the composite member of the present invention has a thermal expansion coefficient that is about the same as that of the semiconductor element and its peripheral parts (about 4 ppm / K to 8 ppm / K), or a small difference in thermal expansion coefficient. In such a case, even when subjected to a heat cycle, the semiconductor element and its peripheral parts are difficult to peel off due to thermal expansion and contraction. Therefore, the heat radiating member using the composite member of the present invention can efficiently release the heat of the semiconductor element and can be suitably used for the heat radiating member of the semiconductor element.

本発明の一形態として、上記下地層がマグネシウムから構成された形態が挙げられる。   As one form of this invention, the form by which the said base layer was comprised from magnesium is mentioned.

上記下地層の構成材料には、種々の金属を利用できるが、基板の金属成分の主成分と同じであるマグネシウムとすることで、下地層と基板との密着性に優れる。そのため、ひいては、基板とニッケルめっき層との剥離強度の向上に寄与すると期待される。   Although various metals can be used as the constituent material of the base layer, the adhesion between the base layer and the substrate is excellent by using magnesium which is the same as the main component of the metal component of the substrate. Therefore, it is expected to contribute to an improvement in peel strength between the substrate and the nickel plating layer.

本発明の一形態として、上記下地層の構成金属と、上記複合材料の金属成分とが連続する組織から構成された形態が挙げられる。   As one form of this invention, the form comprised from the structure | tissue where the constituent metal of the said base layer and the metal component of the said composite material continue is mentioned.

上記形態の複合部材は、例えば、複合材料からなる基板を溶浸法で製造する場合に基板の製造と同時に下地層を形成することで得られる。即ち、上記形態によれば、基板の製造工程と下地層の製造工程とを一工程にでき、製造性に優れる上に、基板の構成材料と下地層の構成材料とが連続した組織であることで、両者の密着性にも優れる。そのため、ひいては、基板とニッケルめっき層との剥離強度の向上に寄与すると期待される。また、この形態において上記金属成分がマグネシウムの場合、マグネシウム合金である場合と比較して、(1)基板及び下地層の熱伝導性を高められる、(2)凝固時に晶析出物が不均一に生成され難いため、均一的な組織にし易い、といった利点を有する。   The composite member of the above form can be obtained, for example, by forming a base layer simultaneously with the manufacture of a substrate when a substrate made of a composite material is manufactured by an infiltration method. That is, according to the above embodiment, the manufacturing process of the substrate and the manufacturing process of the base layer can be made into one process, and the manufacturing process is excellent, and the structure material of the substrate and the constituent material of the base layer are continuous. And it is excellent also in the adhesiveness of both. Therefore, it is expected to contribute to an improvement in peel strength between the substrate and the nickel plating layer. Also, in this embodiment, when the metal component is magnesium, compared to the case of a magnesium alloy, (1) the thermal conductivity of the substrate and the underlayer can be increased, and (2) crystal precipitates are nonuniform during solidification. Since it is difficult to generate, it has an advantage that it is easy to form a uniform structure.

本発明の一形態として、上記複合部材の熱伝導率が180W/m・K以上である形態が挙げられる。   As one form of the present invention, a form in which the thermal conductivity of the composite member is 180 W / m · K or more can be mentioned.

上記形態によれば、熱膨張係数が半導体素子及びその周辺機器の値と同等程度或いは近い値である上に熱伝導率が十分に高いことで、半導体素子の放熱部材に好適に利用できる。   According to the said form, it can utilize suitably for the heat radiating member of a semiconductor element because a thermal expansion coefficient is a value comparable as or near the value of a semiconductor element and its peripheral device, and thermal conductivity is high enough.

本発明複合部材の利用形態として、当該複合部材により構成された放熱部材、この放熱部材と、当該放熱部材に搭載される半導体素子とを具える半導体装置が挙げられる。   A utilization form of the composite member of the present invention includes a heat radiating member constituted by the composite member, a semiconductor device including the heat radiating member, and a semiconductor element mounted on the heat radiating member.

上述のように本発明複合部材によれば、半導体素子やその周辺機器の熱膨張係数に適した熱膨張係数を有し、放熱性にも優れることで、放熱部材や半導体装置の構成部材に好適に利用できる。   As described above, according to the composite member of the present invention, it has a thermal expansion coefficient suitable for the thermal expansion coefficient of the semiconductor element and its peripheral devices, and is excellent in heat dissipation. Available to:

上記マグネシウム基複合材料からなる基板と、多層構造の金属被覆層とを具える本発明複合部材は、例えば、以下の本発明製造方法により製造することができる。本発明の複合部材の製造方法は、マグネシウム又はマグネシウム合金とSiCとを複合して、複合材料からなる板状の複合部材を製造する方法に係るものであり、以下の素材準備工程、ジンケート処理工程、銅めっき工程、及びニッケルめっき工程を具え、これらの工程を上記順番に経て、熱膨張係数が4ppm/K以上15ppm/K以下である複合部材を製造する。
素材準備工程:SiCの含有量が50体積%以上であるマグネシウム基複合材料からなる基板と、この基板の対向する一対の面のうち、少なくとも一面の少なくとも一部に金属からなる下地層とを具える素材を準備する工程。
ジンケート処理工程:上記下地層の上にジンケート処理を施して亜鉛層を形成する工程。
銅めっき工程:上記亜鉛層の上に銅めっきを施して、厚さが1μm超の銅めっき層を形成する工程。
ニッケルめっき工程:上記銅めっき層の上にニッケルめっきを施して、ニッケルめっき層を形成する工程。
The composite member of the present invention comprising the substrate made of the magnesium-based composite material and the metal coating layer having a multilayer structure can be manufactured by, for example, the following manufacturing method of the present invention. The manufacturing method of the composite member of the present invention relates to a method of manufacturing a plate-shaped composite member made of a composite material by combining magnesium or a magnesium alloy and SiC, and the following material preparation step, zincate processing step And a copper plating step and a nickel plating step, and through these steps in the above order, a composite member having a thermal expansion coefficient of 4 ppm / K or more and 15 ppm / K or less is manufactured.
Material preparation step: A substrate made of a magnesium-based composite material with a SiC content of 50% by volume or more and a base layer made of metal on at least a part of at least one of a pair of opposing surfaces of the substrate. The process of preparing materials that can be obtained.
Zincate treatment step: A step of forming a zinc layer by performing a zincate treatment on the base layer.
Copper plating step: A step of forming a copper plating layer having a thickness of more than 1 μm by performing copper plating on the zinc layer.
Nickel plating step: a step of forming a nickel plating layer by performing nickel plating on the copper plating layer.

本発明製造方法の一形態として、上記ジンケート処理を施す前に、上記素材に加熱温度:200℃以上、上記基板中のマグネシウム又はマグネシウム合金の融点以下、加熱時間:5分以上の条件で熱処理を施す工程を具える形態が挙げられる。   As one form of the production method of the present invention, before performing the zincate treatment, the material is subjected to heat treatment under the conditions of a heating temperature of 200 ° C. or more, a melting point of magnesium or a magnesium alloy in the substrate, a heating time of 5 minutes or more. The form which comprises the process to give is mentioned.

上述のように銅めっき層を比較的厚めにすることで、基板と金属被覆層(特にニッケルめっき層)との密着力が高い複合部材とすることができる。更に、本発明者らが調べたところ、はんだを塗布する際に金属被覆層に膨れ(局所的な剥離)が生じることがある、との知見を得た。この局所的な剥離を低減するために種々検討した結果、上述のようにジンケート処理前に熱処理を施すことが効果的である、との知見を得た。この詳細な理由は定かではないが、以下のように推測される。上記膨れは、ジンケート処理の前処理として下地層にエッチングを施した場合にエッチングによる浸食度合いにばらつきがあり、深く浸食された箇所が溝或いは孔(以下、単に溝と呼ぶ)となり、この溝部分を覆うようにジンケート処理やめっきが施されることで、はんだを塗布する際の熱により、上記溝部分の空気が膨張し、この膨張により下地層とジンケート処理による亜鉛層との界面で剥離が生じた、と考えられる。このエッチングによる浸食度合いのばらつきは、下地層に局所的に存在し得る欠陥などにより生じたと考えられる。そして、この欠陥が上記熱処理により是正されたことで、エッチング時の浸食度合いのばらつきを低減でき、上記溝の生成が抑制されたことで膨れを低減できた、と考えられる。この熱処理条件として、上記特定の条件を提案する。   By making the copper plating layer relatively thick as described above, a composite member having high adhesion between the substrate and the metal coating layer (particularly the nickel plating layer) can be obtained. Furthermore, as a result of investigations by the present inventors, it was found that swelling (local peeling) may occur in the metal coating layer when solder is applied. As a result of various studies to reduce the local peeling, it was found that it is effective to perform heat treatment before the zincate treatment as described above. Although this detailed reason is not certain, it estimates as follows. When the underlayer is etched as a pretreatment for the zincate process, the swelling is uneven in the degree of erosion due to etching, and the deeply eroded portion becomes a groove or a hole (hereinafter simply referred to as a groove). By applying zincate treatment or plating so as to cover the air, the air in the groove portion expands due to the heat at the time of applying the solder, and this expansion causes peeling at the interface between the base layer and the zinc layer by the zincate treatment. It is thought that it occurred. This variation in the degree of erosion due to etching is considered to be caused by defects that may exist locally in the underlayer. Then, it is considered that this defect was corrected by the heat treatment, so that variation in the degree of erosion during etching could be reduced, and swelling was reduced by suppressing the formation of the groove. The specific conditions are proposed as the heat treatment conditions.

本発明複合部材、本発明放熱部材、及び本発明半導体装置は、ニッケルめっき層が剥離し難く、はんだとの密着性に優れる。   In the composite member of the present invention, the heat dissipation member of the present invention, and the semiconductor device of the present invention, the nickel plating layer is hardly peeled off and is excellent in adhesiveness with the solder.

図1は、実施形態の複合部材の断面模式図である。FIG. 1 is a schematic cross-sectional view of a composite member according to an embodiment. 図2は、実施形態の複合部材(試料No.5)において、金属被覆層部分の顕微鏡写真である。FIG. 2 is a micrograph of a metal coating layer portion in the composite member (sample No. 5) of the embodiment. 図3は、膨れが生じた複合部材において、金属被覆層部分の顕微鏡写真である。FIG. 3 is a photomicrograph of the metal coating layer portion in the swollen composite member.

以下、本発明をより詳細に説明する。
≪複合部材≫
まず、複合部材の主たる構成要素である、マトリクス金属と非金属無機材料との複合材料からなる基板を説明する。
〔基板〕
[マトリクス金属:マグネシウム又はマグネシウム合金]
上記基板の金属成分は、99.8質量%以上のMg及び不純物からなるいわゆる純マグネシウム、又は添加元素と残部がMg及び不純物からなるマグネシウム合金とする。金属成分が純マグネシウムである場合、上述のように熱伝導性の向上、組織の均一性といった利点を有し、マグネシウム合金である場合、液相線温度の低下による溶融温度の低下、基板の耐食性や機械的特性(強度など)の向上といった利点を有する。添加元素は、Li,Ag,Ni,Ca,Al,Zn,Mn,Si,Cu,Zr,Be,Sr,Y,Sn,Ce,希土類元素(Y,Ceを除く)の少なくとも1種が挙げられる。これらの元素は、含有量が多くなると熱伝導率の低下を招くため、合計で20質量%以下(合金全体を100質量%とする。以下、添加元素の含有量について同様)が好ましい。特に、Alは3質量%以下、Znは5質量%以下、その他の元素はそれぞれ10質量%以下が好ましい。Liを添加すると、複合部材の軽量化、及び加工性の向上の効果がある。公知のマグネシウム合金、例えば、AZ系,AS系,AM系,ZK系,ZC系,LA系,WE系などでもよい。所望の組成となるようにマトリクス金属の原料を用意する。
Hereinafter, the present invention will be described in more detail.
≪Composite material≫
First, a substrate made of a composite material of a matrix metal and a nonmetallic inorganic material, which is a main component of the composite member, will be described.
〔substrate〕
[Matrix metal: Magnesium or magnesium alloy]
The metal component of the substrate is so-called pure magnesium composed of 99.8% by mass or more of Mg and impurities, or a magnesium alloy composed of additive elements and the balance Mg and impurities. When the metal component is pure magnesium, it has the advantages of improving the thermal conductivity and the uniformity of the structure as described above. When the metal component is a magnesium alloy, the melting temperature is lowered due to the lowering of the liquidus temperature, and the corrosion resistance of the substrate. And an improvement in mechanical properties (strength, etc.). The additive element includes at least one of Li, Ag, Ni, Ca, Al, Zn, Mn, Si, Cu, Zr, Be, Sr, Y, Sn, Ce, and rare earth elements (excluding Y and Ce). . Since these elements cause a decrease in thermal conductivity when the content increases, the total content is preferably 20% by mass or less (the total alloy is 100% by mass; the same applies to the content of additive elements). In particular, Al is preferably 3% by mass or less, Zn is 5% by mass or less, and other elements are each preferably 10% by mass or less. Addition of Li has the effect of reducing the weight of the composite member and improving the workability. Known magnesium alloys such as AZ, AS, AM, ZK, ZC, LA, and WE may be used. A matrix metal raw material is prepared so as to have a desired composition.

[非金属無機材料:SiC]
<組成>
SiCは、(1)熱膨張係数が3ppm/K〜4ppm/K程度であり半導体素子やその周辺部品の熱膨張係数に近い、(2)非金属無機材料の中でも熱伝導率が特に高い(単結晶:390W/m・K〜490W/m・K程度)、(3)種々の形状、大きさの粉末や焼結体が市販されている、(4)機械的強度が高い、といった優れた効果を奏する。従って、本発明複合部材では、SiCを構成要素とする。その他、熱膨張係数がMgよりも小さく、熱伝導性に優れ、かつMgと反応し難い非金属無機材料、例えば、Si3N4、Si、MgO、Mg2Si、MgB2、Al2O3、AlN、ダイヤモンド、グラファイトの少なくとも1種を含有することができる。
[Non-metallic inorganic material: SiC]
<Composition>
SiC (1) has a thermal expansion coefficient of about 3 ppm / K to 4 ppm / K and is close to the thermal expansion coefficient of semiconductor devices and peripheral components. (2) Among non-metallic inorganic materials, it has a particularly high thermal conductivity. (Crystal: about 390W / m · K to 490W / m · K), (3) Various shapes and sizes of powders and sintered bodies are commercially available, and (4) High mechanical strength. Play. Therefore, in the composite member of the present invention, SiC is a constituent element. Other non-metallic inorganic materials having a thermal expansion coefficient smaller than that of Mg, excellent thermal conductivity, and difficult to react with Mg, such as Si 3 N 4 , Si, MgO, Mg 2 Si, MgB 2 , Al 2 O 3 At least one of AlN, diamond, and graphite can be contained.

<存在状態>
上記SiCの存在状態は、代表的には、マトリクス金属中にばらばらに分散した形態(以下、分散形態と呼ぶ)、SiC同士を結合するネットワーク部により連結された形態(以下、結合形態と呼ぶ)が挙げられる。分散形態では、代表的には粉末を利用することができ、上記ネットワーク部の形成が不要で生産性に優れ、コストの低減を図ることができる。結合形態では、SiCが連続することで、熱伝導の経路が連続することから、熱伝導率が高い基板となり易い。特に、SiCの全体がネットワーク部により連結され、SiC間にマトリクス金属が充填された形態や、この構成に加えて閉気孔が少ない形態(基板中のSiCの全体積に対して閉気孔が10体積%以下、好ましくは3体積%以下)であると、マトリクス金属が十分に存在することで、熱伝導性に更に優れる。ネットワーク部は、代表的には、SiCにより構成される形態が挙げられる。その他、ネットワーク部は、上述したSiC以外の非金属無機材料により構成される形態も有り得る。基板中のネットワーク部の存在や閉気孔の割合は、例えば、当該基板の断面を光学顕微鏡や走査型電子顕微鏡(SEM)で観察することで確認したり、測定したりすることができる。
<Presence state>
The presence state of the SiC is typically a dispersed form in a matrix metal (hereinafter referred to as a dispersed form), a form connected by a network unit that bonds SiC (hereinafter referred to as a bonded form). Is mentioned. In the dispersion form, powder can be typically used, and the formation of the network part is unnecessary, the productivity is excellent, and the cost can be reduced. In the bonded form, since SiC is continuous, the heat conduction path is continuous, so that the substrate is likely to have a high thermal conductivity. In particular, the entire SiC is connected by the network part, and the matrix metal is filled between the SiC, and there are few closed pores in addition to this configuration (the closed pore is 10 volumes with respect to the total volume of SiC in the substrate). % Or less, preferably 3% by volume or less), since the matrix metal is sufficiently present, the thermal conductivity is further improved. A typical example of the network unit is a configuration composed of SiC. In addition, the network part may be configured by a non-metallic inorganic material other than SiC described above. The presence of the network portion and the ratio of closed pores in the substrate can be confirmed or measured by observing the cross section of the substrate with an optical microscope or a scanning electron microscope (SEM), for example.

<含有量>
上記基板中のSiCの含有量は、基板を100体積%とするとき50体積%以上とする。SiCが50体積%以上であることで、基板の熱膨張係数が3.5ppm程度〜15ppm程度となり、後述する金属被覆層をも含めた複合部材の熱膨張係数が4ppm/K以上15ppm/K以下の複合部材とすることができる。SiCの含有量が多いほど熱伝導率が高まる上、熱膨張係数が小さくなり易く、熱特性を考慮すると、60体積%以上、更に65体積%以上が好ましい。特に、60体積%以上90体積%以下、更に65体積%以上85体積%以下であると、上述のように熱特性に優れる上に、基板の工業生産性にも優れる。
<Content>
The content of SiC in the substrate is 50% by volume or more when the substrate is 100% by volume. When SiC is 50 volume% or more, the thermal expansion coefficient of the substrate is about 3.5 ppm to about 15 ppm, and the thermal expansion coefficient of the composite member including the metal coating layer described later is 4 ppm / K or more and 15 ppm / K or less. It can be a composite member. The higher the SiC content, the higher the thermal conductivity and the smaller the thermal expansion coefficient. In consideration of the thermal characteristics, it is preferably 60% by volume or more, and more preferably 65% by volume or more. In particular, when it is 60% by volume or more and 90% by volume or less, and further 65% by volume or more and 85% by volume or less, the thermal characteristics are excellent as described above, and the industrial productivity of the substrate is also excellent.

[基板の厚さ]
上記基板の厚さは、適宜選択できるが、半導体素子の放熱部材として利用する場合、10mm以下、特に6mm以下が好ましい。
[Thickness of substrate]
The thickness of the substrate can be selected as appropriate, but is preferably 10 mm or less, particularly 6 mm or less when used as a heat dissipation member for a semiconductor element.

[基板の熱特性]
上記基板は、SiCを50体積%以上含有することで、基板のみでは上述のように熱膨張係数が小さい。また、熱伝導率も高く、例えば、180W/m・K以上、更に200W/m・K以上、特に220W/m・K以上という基板とすることができる。
[Thermal characteristics of the substrate]
Since the substrate contains 50% by volume or more of SiC, the thermal expansion coefficient is small with the substrate alone as described above. Further, the substrate has a high thermal conductivity, for example, 180 W / m · K or more, 200 W / m · K or more, particularly 220 W / m · K or more.

〔金属被覆層〕
次に、基板の上に具える金属被覆層を説明する。
上記基板の対向する一対の面のうち、少なくとも一方の面の少なくとも一部に、特定の金属からなる多層構造の金属被覆層を具える点が、本発明複合部材の特徴の一つである。この金属被覆層を具えることで、はんだを塗布する場合に、はんだとの濡れ性を高められる。また、後述するように特定の組成及び厚さとすることで、基板と後述するニッケルめっき層との剥離強度が高く、その結果、本発明複合部材とはんだとが強固に密着することができる。その他、金属被覆層を具えることで、(1)外観や表面性状に優れる、(2)耐食性を向上できる、といった効果も期待できる。
(Metal coating layer)
Next, the metal coating layer provided on the substrate will be described.
One of the features of the composite member of the present invention is that at least part of at least one of the pair of opposing surfaces of the substrate is provided with a metal coating layer having a multilayer structure made of a specific metal. By providing this metal coating layer, the wettability with solder can be improved when solder is applied. Moreover, by setting it as a specific composition and thickness so that it may mention later, the peeling strength of a board | substrate and the nickel plating layer mentioned later is high, As a result, this invention composite member and solder can adhere | attach firmly. In addition, the provision of a metal coating layer can also be expected to have effects such as (1) excellent appearance and surface properties and (2) improved corrosion resistance.

[下地層]
上記金属被覆層の最下層、即ち、上記基板の直上に具える下地層は、複合材料からなる基板の表面を平滑にして後述する銅めっき層やニッケルめっき層を均一的な厚さに形成し易くしたり、上記めっき層を電気めっきで形成する場合の導通箇所として利用したりすることができる。下地層は、このような機能を有することが可能な適宜な金属により構成される。例えば、マトリクス金属と同一組成から構成される形態、或いはマトリクス金属の主成分(マグネシウム)と同一組成から構成される形態とすることができる。特に、下地層は、マトリクス金属と連続する組織から構成された形態であると、生産性に優れて好ましい。下地層が上記連続する組織から構成される形態(この場合、下地層は、マトリクス金属と同様の鋳造組織を有する)は、上述のようにSiCとマトリクス金属との複合化と同時に下地層を形成することで得られる。従って、この形態は、複合材料からなる基板と下地層とを一つの工程で製造でき、生産性に優れる。或いは、下地層はマトリクス金属と異なる組成から構成される形態とすることができる。具体的には、例えば、純度が99%以上のAl,Cu,Ni、及びAl,Cu,Niを主成分とする合金(Al,Cu,Niを50質量%超含有する合金)からなる群から選択される1種の金属により下地層が構成される形態が挙げられる。
[Underlayer]
The lowermost layer of the metal coating layer, that is, the foundation layer provided immediately above the substrate, smoothes the surface of the substrate made of a composite material and forms a copper plating layer and a nickel plating layer, which will be described later, with a uniform thickness. It can be made easier, or can be used as a conduction point when the plating layer is formed by electroplating. The underlayer is made of an appropriate metal capable of having such a function. For example, it is possible to adopt a form composed of the same composition as the matrix metal or a form composed of the same composition as the main component (magnesium) of the matrix metal. In particular, it is preferable that the underlayer is formed of a structure continuous with the matrix metal because of excellent productivity. The form in which the underlayer is composed of the above continuous structure (in this case, the underlayer has a cast structure similar to that of the matrix metal) forms the underlayer simultaneously with the composite of SiC and the matrix metal as described above. It is obtained by doing. Therefore, in this embodiment, the substrate made of the composite material and the base layer can be manufactured in one process, and the productivity is excellent. Alternatively, the underlayer can be formed from a composition different from that of the matrix metal. Specifically, for example, from the group consisting of Al, Cu, Ni having a purity of 99% or more and alloys containing Al, Cu, Ni as the main component (alloys containing more than 50% by mass of Al, Cu, Ni) A form in which the base layer is composed of one selected metal is exemplified.

上記下地層の厚さは、1μm以上が好ましく、厚過ぎると、金属被覆層を含む複合部材全体の熱膨張係数の増加や複合部材の熱伝導率の低下を招くことから、2.5mm以下、特に1mm以下、更に0.5mm(500μm)以下が好ましい。   The thickness of the underlayer is preferably 1 μm or more, and if it is too thick, it causes an increase in the thermal expansion coefficient of the entire composite member including the metal coating layer and a decrease in the thermal conductivity of the composite member. It is preferably 1 mm or less, more preferably 0.5 mm (500 μm) or less.

[亜鉛層]
上記下地層の上に具える亜鉛層は、後述するジンケート処理により形成された層であり、後述する銅めっき層を形成し易くする機能を有する。ジンケート処理により形成された亜鉛層は、1nm〜100nm程度といったナノオーダーの非常に薄い層である。このような薄い層であることが、ジンケート処理により形成されたことを示す指標の一つとなる。
[Zinc layer]
The zinc layer provided on the base layer is a layer formed by a zincate process described later, and has a function of easily forming a copper plating layer described later. The zinc layer formed by the zincate treatment is a very thin layer on the order of 1 nm to 100 nm. Such a thin layer is one of the indicators showing that the thin layer is formed by the zincate process.

[銅めっき層]
上記亜鉛層の上に銅めっき層を具え、その厚さが1μm超と比較的厚いことが本発明複合部材の最大の特徴である。上述のように銅めっき層が比較的厚いことで、本発明複合部材は、特にニッケルめっき層の剥離強度を高め、はんだと接合した場合に亜鉛層や銅めっき層、ニッケルめっき層が剥離し難い。銅めっき層の厚さは、厚過ぎると、複合部材の熱膨張係数の増加や重量の増加、生産性の低下を招くことから、50μm以下、とりわけ10μm以下が好ましく、1μm以上10μm以下がより好ましい。なお、銅めっき層は、銅合金から構成される形態でも同様の効果が期待できる。また、厚さが上記範囲にあり、かつ上述のようにナノオーダーといった非常に薄い亜鉛層が下層に存在することが、当該亜鉛層の上の銅層がめっきにより形成されたことを示す指標の一つとなる。
[Copper plating layer]
The greatest feature of the composite member of the present invention is that a copper plating layer is provided on the zinc layer, and the thickness thereof is relatively thick, more than 1 μm. Since the copper plating layer is relatively thick as described above, the composite member of the present invention particularly increases the peeling strength of the nickel plating layer, and the zinc layer, the copper plating layer, and the nickel plating layer are difficult to peel off when bonded to solder. . If the thickness of the copper plating layer is too thick, it causes an increase in the coefficient of thermal expansion of the composite member, an increase in weight, and a decrease in productivity. Therefore, it is preferably 50 μm or less, particularly preferably 10 μm or less, and more preferably 1 μm or more and 10 μm or less. . In addition, the copper plating layer can be expected to have the same effect even in the form of a copper alloy. In addition, the presence of a very thin zinc layer such as a nano-order in the lower layer as described above in the above range is an index indicating that the copper layer on the zinc layer has been formed by plating. Become one.

[ニッケルめっき層]
上記銅めっき層の上に具えるニッケルめっき層は、金属被覆層の最表面を形成する層であり、本発明複合部材の代表的な形態では、当該複合部材の少なくとも一部の最表面はニッケルめっき層により形成される。ニッケルめっき層は、主として、はんだとの濡れ性を高める機能を有する他、外観や耐食性の向上に寄与する。ニッケルめっき層の厚さは、厚過ぎると、複合部材の熱膨張係数の増加や熱伝導率の低下、生産性の低下を招くことから、50μm以下、とりわけ10μm以下が好ましく、1μm以上10μm以下がより好ましい。なお、ニッケルめっき層は、ニッケル合金から構成される形態でも同様の効果が期待できる。
[Nickel plating layer]
The nickel plating layer provided on the copper plating layer is a layer that forms the outermost surface of the metal coating layer. In a typical form of the composite member of the present invention, at least a part of the outermost surface of the composite member is nickel. It is formed by a plating layer. The nickel plating layer mainly has a function of improving the wettability with the solder and contributes to an improvement in appearance and corrosion resistance. If the thickness of the nickel plating layer is too thick, it causes an increase in the coefficient of thermal expansion of the composite member, a decrease in thermal conductivity, and a decrease in productivity, so 50 μm or less, particularly 10 μm or less is preferable, and 1 μm or more and 10 μm or less. More preferred. In addition, the nickel plating layer can be expected to have the same effect even when the nickel plating layer is formed of a nickel alloy.

[金属被覆層の形成領域]
基板における上記金属被覆層の形成領域は適宜選択することができる。例えば、本発明複合部材を半導体素子の放熱部材に利用する場合、上記基板の対向する一対の面のうち、一面は半導体素子が実装される実装面、他面は冷却装置に接触する冷却面として利用される。通常、上記実装面にはんだが塗布されるため、実装面の少なくともはんだが塗布される領域に金属被覆層を具えることが好ましい。上記実装面の全体、上記実装面及び冷却面の双方の全体に金属被覆層を具えていてもよい。金属被覆層の合計厚さは、10μm以上1000μm以下が好ましい。
[Metal coating layer formation area]
The formation region of the metal coating layer on the substrate can be appropriately selected. For example, when the composite member of the present invention is used as a heat radiating member for a semiconductor element, one of the opposing surfaces of the substrate is a mounting surface on which the semiconductor element is mounted, and the other surface is a cooling surface that contacts the cooling device. Used. Usually, since solder is applied to the mounting surface, it is preferable to provide a metal coating layer at least on the mounting surface of the mounting surface. A metal coating layer may be provided on the entire mounting surface, and both the mounting surface and the cooling surface. The total thickness of the metal coating layer is preferably 10 μm or more and 1000 μm or less.

〔放熱部材の熱特性〕
本発明複合部材は、上記金属被覆層を具えることで、熱膨張係数が、上記マグネシウム基複合材料からなる基板だけの状態に比べて大きくなる傾向にあるものの、4ppm/K以上15ppm/K以下を満たし、半導体素子及びその周辺機器との熱膨張係数の整合性に優れる。また、本発明複合部材は、SiCを特定量含有することで、熱伝導率が高く、例えば、180W/m・K以上を満たす。上述のようにSiCの充填率を高めたり、ネットワーク部を有したり、金属被覆層の厚さ(各層の厚さ)を薄めにしたりすることで、熱膨張係数がより小さく、熱伝導率がより高い複合部材とすることができる。例えば、200W/m・K以上、特に250W/m・K以上、更に300W/m・K以上の熱伝導率を有する複合部材とすることができる。このように熱伝導性に優れる複合部材を放熱部材に利用することで、放熱部材の信頼性を高められる上に、放熱部材を小型にでき、ひいては半導体装置の小型化にも寄与することができる。なお、金属被覆層を具える複合部材では、市販の装置により熱膨張係数や熱伝導率を測定できる他、当該複合部材を構成する各材料の剛性などを考慮して複合則により熱膨張係数を算出できる。
[Thermal characteristics of heat dissipation member]
Although the composite member of the present invention has the metal coating layer, the thermal expansion coefficient tends to be larger than that of the substrate made of the magnesium-based composite material, but it is 4 ppm / K or more and 15 ppm / K or less. The thermal expansion coefficient consistency with the semiconductor element and its peripheral devices is excellent. In addition, the composite member of the present invention contains a specific amount of SiC, so that the thermal conductivity is high, and satisfies, for example, 180 W / m · K or more. As mentioned above, by increasing the filling rate of SiC, having a network part, or by reducing the thickness of the metal coating layer (thickness of each layer), the thermal expansion coefficient is smaller and the thermal conductivity is lower. A higher composite member can be obtained. For example, a composite member having a thermal conductivity of 200 W / m · K or more, particularly 250 W / m · K or more, and further 300 W / m · K or more can be obtained. By using the composite member having excellent thermal conductivity as the heat radiating member in this manner, the reliability of the heat radiating member can be improved, and the heat radiating member can be made smaller, which can contribute to the miniaturization of the semiconductor device. . In addition, in a composite member having a metal coating layer, the thermal expansion coefficient and thermal conductivity can be measured by a commercially available device, and the thermal expansion coefficient is determined by a composite law in consideration of the rigidity of each material constituting the composite member. It can be calculated.

≪放熱部材≫
上述のように半導体素子及びその周辺機器との熱膨張係数の整合性に優れる上に放熱性に優れる本発明複合部材は、そのままで半導体素子用の放熱部材に利用できる。その他、この放熱部材は、冷却装置に固定するためのボルトといった固定部材が挿通される貫通孔を適宜な箇所(代表的は基板の角部や周縁の近傍)に具えた形態とすることができる。貫通孔は、例えば、レーザーや放電加工を用いることで複合材料部分にも形成できるが、貫通孔部分が金属により構成された形態とすると、孔あけ加工が行い易い。例えば、基板の適宜な箇所に金属部分を具えるように基板の製造にあたり金属片を鋳型に配置して、複合時に金属片も同時に鋳ぐるみ、得られた基板の金属片部分に孔あけ加工を行ったり、適宜な金属管を用意して複合時に当該金属管も同時に鋳ぐるんだりすることで、貫通孔を具える複合部材が得られる。上記金属片は、基板の金属成分と同じ金属、即ち、マグネシウム又はマグネシウム合金でもよいし、少なくとも一部が異なる金属、例えば、ステンレス鋼や、カーボンなどの非金属高強度材料(繊維状のものも含む)を含むものでもよい。少なくとも一部が上記高強度材料で構成された貫通孔は、ヒートサイクルを受けても、ボルトの軸力の低下による固定状態の緩みが生じ難く、本発明放熱部材を固定対象に強固に固定した状態を安定して維持できる。貫通孔は、ねじ加工されたねじ孔でもねじ加工がなされていない形態のいずれでもよく、更に、皿もみ加工が施された形態とすることができる。
≪Heat dissipation material≫
As described above, the composite member of the present invention, which has excellent thermal expansion coefficient matching with the semiconductor element and its peripheral devices and excellent heat dissipation, can be used as it is as a heat dissipation member for semiconductor elements. In addition, the heat dissipating member can be provided with a through-hole through which a fixing member such as a bolt for fixing to the cooling device is inserted at an appropriate location (typically near the corner or periphery of the substrate). . The through-hole can be formed in the composite material portion by using, for example, laser or electric discharge machining. However, if the through-hole portion is made of a metal, it is easy to perform drilling. For example, when manufacturing a substrate so that the metal portion is provided at an appropriate place on the substrate, the metal piece is placed in a mold, and the metal piece is cast simultaneously at the time of compounding, and the metal piece portion of the obtained substrate is punched. Or by preparing an appropriate metal tube and casting the metal tube at the same time during compounding, a composite member having a through hole can be obtained. The metal piece may be the same metal as the metal component of the substrate, i.e., magnesium or a magnesium alloy, or at least a part of a different metal, for example, stainless steel, non-metallic high-strength material such as carbon (including fibrous materials). May be included). At least a part of the through-hole made of the high-strength material is less likely to loosen due to a decrease in the axial force of the bolt even when subjected to a heat cycle, and the heat radiating member of the present invention is firmly fixed to the fixing target. The state can be maintained stably. The through hole may be either a threaded screw hole or a form that is not threaded, and may be a form that is countersunk.

≪製造方法≫
次に、上記金属被覆層を具える複合部材の製造方法を工程順に説明する。
〔素材準備工程〕
この工程では、SiCを含有するマグネシウム基複合材料からなる基板の上に下地層を具える素材を作製する。基板の製造には、溶浸法を好適に利用することができる。溶浸法は、鋳型に収納したSiC集合体に、溶融したマグネシウムまたはマグネシウム合金を溶浸させて複合させる方法である。その他、粉末冶金法や溶融法などを利用することができる。下地層は、基板の製造に溶浸法を利用する場合、上述のように複合時に同時に形成することができる。その他、蒸着、下地層を形成するための金属板を適宜用意し、この金属板を、ロウ付け、超音波接合、鋳ぐるみ、圧延(クラッド圧延)、ホットプレス、酸化物ソルダー法、無機接着剤による接合の少なくとも1つの手法を利用して基板に接合することで下地層を形成できる。下地層の組成をマトリクス金属と異なる組成とする場合、上記金属板を用いた手法を利用するとよい。
≪Manufacturing method≫
Next, the manufacturing method of the composite member provided with the said metal coating layer is demonstrated in order of a process.
[Material preparation process]
In this step, a material including an underlayer is produced on a substrate made of a magnesium-based composite material containing SiC. An infiltration method can be suitably used for manufacturing the substrate. The infiltration method is a method in which molten magnesium or a magnesium alloy is infiltrated into a SiC aggregate housed in a mold and combined. In addition, a powder metallurgy method, a melting method, etc. can be utilized. When the infiltration method is used for manufacturing the substrate, the underlayer can be formed simultaneously with the composite as described above. In addition, a metal plate for forming vapor deposition and an underlayer is appropriately prepared. This metal plate is brazed, ultrasonic bonded, cast-in, rolled (clad rolling), hot press, oxide solder method, inorganic adhesive. The base layer can be formed by bonding to the substrate using at least one technique of bonding by the above. When the composition of the underlayer is different from that of the matrix metal, a technique using the metal plate may be used.

[原料]
マトリクス金属には、純マグネシウム又はマグネシウム合金のインゴットを好適に利用できる。SiC集合体の原料には、代表的にはSiC粉末が利用できる。特に、粒子状や繊維状のSiC粉末であって、平均粒径(繊維状の場合、平均短径)が1μm以上3000μm以下、特に5μm以上200μm以下であると、粉末の集合体を製造し易い。平均粒径が異なる複数種の粉末を組み合わせて用いると、SiCの充填率を高め易い。
[material]
As the matrix metal, an ingot of pure magnesium or a magnesium alloy can be suitably used. As a raw material for the SiC aggregate, typically, SiC powder can be used. In particular, it is a particulate or fibrous SiC powder, and the average particle diameter (in the case of a fiber, the average short diameter) is 1 μm or more and 3000 μm or less, particularly 5 μm or more and 200 μm or less, and it is easy to produce a powder aggregate. . When a plurality of types of powders having different average particle sizes are used in combination, it is easy to increase the filling rate of SiC.

原料に用いたSiCといった非金属無機材料は、複合材料からなる基板中にほぼそのままの状態で存在することから、基板中のSiCや気孔の体積割合、ネットワーク部の存在状態は、用いた原料に依存し、当該原料に実質的に等しい。従って、基板が所望の熱特性を有するように、原料の材質や量を適宜選択する。また、基板が所定の形状、大きさとなるように、原料の粉末を充填してSiC集合体を形成する金型の形状や大きさ、SiC集合体とマトリクス金属とを複合する鋳型の形状や大きさを適宜選択する。   Since non-metallic inorganic materials such as SiC used as a raw material exist almost as they are in the substrate made of composite material, the volume ratio of SiC and pores in the substrate and the existence state of the network part depend on the raw material used. Depending on and substantially equal to the raw material. Therefore, the material and amount of the raw material are appropriately selected so that the substrate has desired thermal characteristics. Also, the shape and size of the mold that forms the SiC aggregate by filling the raw material powder so that the substrate has a predetermined shape and size, and the shape and size of the mold that combines the SiC aggregate and the matrix metal The size is appropriately selected.

[SiC集合体]
上記SiC集合体の形態には、ハンドリングが困難な形態(例えば、タッピングにより形成したもの)と、ハンドリングが可能な形態(代表的には粉末成形体、更に粉末成形体を焼結した焼結体)とが挙げられる。粉末成形体は、例えば、スリップキャスト(原料の粉末と水及び分散材とを用いたスラリーを成形後、乾燥させる)、加圧成形(乾式プレス、湿式プレス、一軸加圧成形、CIP(静水圧プレス)、押出成形など)、及びドクターブレード法(原料の粉末と溶媒、消泡剤、樹脂などとを用いたスラリーをドクターブレードに流した後、溶媒を蒸発させる)のいずれか一つにより形成した形態、これらの形態或いはタッピングによる形態を更に焼結した焼結体(代表的にはネットワーク部を有するSiC多孔体)が挙げられる。基板中のSiCの含有量を例えば70体積%以上に高める場合、粉末成形体の形成には、スリップキャスト、加圧成形、ドクターブレード法が好適に利用できる。基板中のSiCの含有量が低い場合には、タッピングを利用すると容易にSiC集合体が得られる。この場合、複合に用いる鋳型に原料のSiCを直接充填する。
[SiC aggregate]
In the form of the SiC aggregate, there are forms that are difficult to handle (for example, those formed by tapping) and forms that can be handled (typically powder compacts, and sintered compacts obtained by sintering powder compacts) ). The powder compact is, for example, slip cast (slurry using raw material powder and water and a dispersion material and then dried), pressure molding (dry press, wet press, uniaxial pressure molding, CIP (hydrostatic pressure). Press), extrusion molding, etc.) and doctor blade method (flowing slurry using raw material powder and solvent, antifoaming agent, resin, etc. to doctor blade, then evaporating solvent) And a sintered body (typically, a SiC porous body having a network portion) obtained by further sintering the above-described forms, or these forms or forms by tapping. When the content of SiC in the substrate is increased to, for example, 70% by volume or more, slip casting, pressure molding, and a doctor blade method can be suitably used for forming a powder compact. When the SiC content in the substrate is low, a SiC aggregate can be easily obtained by using tapping. In this case, the raw material SiC is directly filled in the mold used for the composite.

上記焼結体は、(1)上記粉末成形体よりも強度が高く、鋳型に収納する際などで欠けなどが生じ難く扱い易い、(2)多孔体を容易に作製できる、(3)焼結温度や保持時間を調節することで、焼結体を緻密化させてSiCの充填率を向上し易い、といった利点がある。焼結条件は、例えば、(1)真空雰囲気、加熱温度:800℃〜1300℃未満、保持時間:10分〜2時間程度、(2)大気雰囲気、加熱温度:800℃〜1500℃、保持時間:10分〜2時間程度が挙げられる。条件(1),(2)では、ネットワーク部を有していないSiC集合体が得られる傾向にある。一方、真空雰囲気、加熱温度:1300℃以上2500℃以下、保持時間:2時間〜100時間の条件で焼結すると、SiC同士を直接結合させられ、ネットワーク部がSiCにより形成されたSiC多孔体が得られる。ネットワーク部を有するSiC集合体(代表的にはSiC多孔体)を原料に利用することで、ネットワーク部を有する基板が容易に得られる。上記SiC集合体として、市販のSiC焼結体(開気孔を有するもの)を利用してもよい。ネットワーク部を有するSiC集合体を利用する場合、閉気孔が少なく(SiC集合体の全体積に対して10体積%以下、好ましくは3体積%以下)かつ開気孔を有する多孔体を原料に用いると、多孔体にマトリクス金属の溶湯が十分に溶浸することができ、熱特性に優れる複合部材が得られる。   The sintered body is (1) higher in strength than the powder molded body, is less likely to be chipped when stored in a mold and is easy to handle, (2) a porous body can be easily manufactured, (3) sintered By adjusting the temperature and holding time, there is an advantage that the sintered body can be densified and the filling rate of SiC can be easily improved. The sintering conditions are, for example, (1) vacuum atmosphere, heating temperature: 800 ° C. to less than 1300 ° C., holding time: about 10 minutes to 2 hours, (2) air atmosphere, heating temperature: 800 ° C. to 1500 ° C., holding time : About 10 minutes to 2 hours. Under conditions (1) and (2), an SiC aggregate having no network part tends to be obtained. On the other hand, when sintered in a vacuum atmosphere, heating temperature: 1300 ° C or higher and 2500 ° C or lower, holding time: 2 hours to 100 hours, SiC is directly bonded to each other, and the SiC porous body in which the network part is formed of SiC is formed. can get. By using a SiC aggregate having a network part (typically, a SiC porous body) as a raw material, a substrate having a network part can be easily obtained. A commercially available SiC sintered body (having open pores) may be used as the SiC aggregate. When using a SiC aggregate having a network part, if a porous body having few closed pores (10% by volume or less, preferably 3% by volume or less with respect to the total volume of the SiC aggregate) and having open pores is used as a raw material The molten metal of the matrix metal can be sufficiently infiltrated into the porous body, and a composite member having excellent thermal characteristics can be obtained.

[酸化膜の形成]
更に、上記SiC集合体として、その表面に酸化膜を具えるものを利用すると、SiC集合体とマトリクス金属との濡れ性が高められ、SiC間の隙間が非常に小さい場合であっても、毛管現象によりマトリクス金属の溶湯が浸透し易い。酸化膜は、SiC粉末に形成してもよいし、上述した粉末成形体や焼結体に形成してもよい。上記酸化膜の形成条件は、粉末の場合も焼結体などの場合も同様であり、加熱温度は、700℃以上、特に750℃以上、更に800℃以上が好ましく、とりわけ850℃以上、更に875℃以上1000℃以下が好ましい。
[Formation of oxide film]
Further, when the SiC aggregate having an oxide film on its surface is used, the wettability between the SiC aggregate and the matrix metal is enhanced, and even if the gap between SiC is very small, the capillary Due to the phenomenon, the matrix metal melt easily penetrates. The oxide film may be formed on SiC powder, or may be formed on the above-described powder molded body or sintered body. The conditions for forming the oxide film are the same for powders and sintered bodies, and the heating temperature is preferably 700 ° C. or higher, particularly preferably 750 ° C. or higher, more preferably 800 ° C. or higher, especially 850 ° C. or higher, and further 875 It is preferably at least 1000 ° C.

[複合]
溶浸法を利用する場合、鋳型に上記SiC集合体を収納して、マトリクス金属溶湯を溶浸させた後、当該マトリクス金属を凝固させることで、マグネシウム基複合材料からなる基板が得られる。複合は、0.1×10-5MPa以上大気圧(概ね0.1MPa(1atm))以下の雰囲気で行うと、溶湯を取り扱い易い上に、雰囲気中のガスの取り込みによる気孔が生じ難い。また、複合は、Arといった不活性雰囲気で行うと、Mg成分と雰囲気ガスとの反応を防止でき、反応生成物の存在に伴う熱特性の劣化を抑制できる。溶浸温度は、マトリクス金属がマグネシウム(純Mg)の場合、650℃以上が好ましく、溶浸温度が高いほど濡れ性が高まるため、700℃以上、特に800℃以上、更に850℃以上が好ましい。但し、1000℃超とすると、引け巣やガスホールといった欠陥が生じたり、Mgが沸騰する恐れがあるため、溶浸温度は1000℃以下が好ましい。また、過剰な酸化や晶出物の生成を抑制するために900℃以下がより好ましい。更に、凝固時、複合物の冷却方向や冷却速度を制御することで、内部欠陥や表面欠陥の少ない基板や下地層が得られると期待される。具体的には、SiC集合体において溶湯が供給される側と反対側から一方向に冷却する、即ち、溶湯が既に供給された側から、これから供給される側に向かって冷却すると、既に凝固した部分の体積減少分を未凝固の溶湯が補填しながら冷却が進んでいくため、上記欠陥の発生を低減し易い。冷却速度は、例えば、0.1℃/mm以上、特に0.5℃/mm以上の温度勾配が設けられるように調整することが好ましい。或いは、冷却速度(複合物におけるある地点の温度THと所定の温度TL(<TH)との差:TH−TLを、温度THから温度TLに降下するまでに要した時間tで除した値:(TH−TL)/tとする)を0.5℃/min以上、より好ましくは3℃/min以上、特に10℃/min以上、更に50℃/min以上と高速で冷却することでも、上記欠陥をより低減し易い。
[composite]
When using the infiltration method, a substrate made of a magnesium-based composite material is obtained by housing the SiC aggregate in a mold, infiltrating the matrix metal melt, and then solidifying the matrix metal. When the compounding is performed in an atmosphere of 0.1 × 10 −5 MPa or more and atmospheric pressure (generally 0.1 MPa (1 atm)), the molten metal is easy to handle and pores due to gas uptake in the atmosphere hardly occur. Further, when compounding is performed in an inert atmosphere such as Ar, the reaction between the Mg component and the atmospheric gas can be prevented, and the deterioration of the thermal characteristics due to the presence of the reaction product can be suppressed. When the matrix metal is magnesium (pure Mg), the infiltration temperature is preferably 650 ° C. or higher, and the higher the infiltration temperature, the higher the wettability. Therefore, 700 ° C. or higher, particularly 800 ° C. or higher, and further 850 ° C. or higher is preferable. However, if the temperature exceeds 1000 ° C., defects such as shrinkage cavities and gas holes may occur, and Mg may boil. Therefore, the infiltration temperature is preferably 1000 ° C. or less. Moreover, 900 degrees C or less is more preferable in order to suppress excessive oxidation and the production | generation of a crystallization thing. Furthermore, it is expected that a substrate or an underlayer with few internal defects and surface defects can be obtained by controlling the cooling direction and cooling rate of the composite during solidification. Specifically, in the SiC aggregate, cooling is performed in one direction from the side opposite to the side where the molten metal is supplied, that is, when the molten metal is cooled from the side where the molten metal is already supplied toward the side where the molten metal is supplied, it has already solidified. Since the cooling proceeds while the volume decrease of the portion is compensated by the unsolidified molten metal, it is easy to reduce the occurrence of the defects. The cooling rate is preferably adjusted so as to provide a temperature gradient of, for example, 0.1 ° C./mm or more, particularly 0.5 ° C./mm or more. Alternatively, the cooling rate (difference between the temperature T H at a certain point in the composite and the predetermined temperature T L (<T H ): required to decrease T H −T L from the temperature T H to the temperature T L. Value divided by time t: (T H −T L ) / t) is 0.5 ° C / min or more, more preferably 3 ° C / min or more, especially 10 ° C / min or more, and further 50 ° C / min or more. It is easy to reduce the above-mentioned defects even by cooling with.

上記複合時に下地層の形成を同時に行う場合、例えば、鋳型とSiC集合体との間に下地層を形成するための金属板を配置して鋳ぐるむことで、金属板を下地層とする複合部材が得られる。或いは、鋳型とSiC集合体との間に所定の隙間が設けられるようにスペーサなどを配置し、この隙間にマトリクス金属の溶湯が流入されるようにすると、当該流入された溶湯により、基板のマトリクス金属と同じ組成で、当該マトリクス金属と連続する組織を有する下地層を形成できる。上述した焼結体などのように鋳型内で自立可能な程度の強度を有するSiC集合体を利用する場合、上記スペーサを用いなくても所定の隙間を維持できる。但し、所定の隙間が設けられるようにSiC集合体や鋳型の大きさを選択する。   When the base layer is formed at the same time as the above composite, for example, a composite that uses the metal plate as the base layer by placing and casting a metal plate for forming the base layer between the mold and the SiC aggregate. A member is obtained. Alternatively, if a spacer or the like is disposed so that a predetermined gap is provided between the mold and the SiC aggregate, and the molten metal of the matrix metal flows into the gap, the molten matrix flows into the matrix of the substrate. An underlayer having the same composition as the metal and a structure continuous with the matrix metal can be formed. In the case of using a SiC aggregate having such a strength that it can stand on its own in the mold, such as the above-described sintered body, a predetermined gap can be maintained without using the spacer. However, the size of the SiC aggregate and the mold is selected so that a predetermined gap is provided.

上記スペーサは、ナフタレンなどのように複合時の熱で昇華により除去できるものや、カーボン、鉄、ステンレス鋼(例えば、SUS430)といった耐熱性に優れるものが利用できる。このスペーサは、下地層に埋設させたままにしてもよいし、スペーサ部分を切削などにより除去してもよい。スペーサの形状は特に問わないが、例えば、形成する下地層よりも若干細径の線状体や薄い板状体を利用できる。上述のように焼結体などを利用する場合、上記線状体によりSiC集合体を鋳型に固定するなどして、SiC集合体と鋳型との間に線状体の径に応じた隙間を設けると、当該線状体の大部分を下地層に埋設させることができる。上述したボルト孔を設けるための金属片や金属管の大きさを調整して(例えば、焼結体の厚さよりも下地層の厚さ分だけ長いものを用いる)、隙間が設けられるようにしてもよい。   As the spacer, naphthalene or the like that can be removed by sublimation with heat at the time of compounding, or a material having excellent heat resistance such as carbon, iron, or stainless steel (for example, SUS430) can be used. This spacer may be left embedded in the underlayer, or the spacer portion may be removed by cutting or the like. The shape of the spacer is not particularly limited. For example, a linear body or a thin plate-like body having a slightly smaller diameter than the base layer to be formed can be used. When using a sintered body as described above, a gap corresponding to the diameter of the linear body is provided between the SiC aggregate and the mold by fixing the SiC aggregate to the mold with the linear body. And most of the said linear body can be embed | buried underlayer. Adjust the size of the metal piece or metal tube for providing the above-described bolt hole (for example, use a material longer than the thickness of the sintered body by the thickness of the base layer) so that a gap is provided. Also good.

[前処理]
得られた下地層を具える基板(素材)に、ジンケート処理を施すにあたり、研磨やエッチングといった前処理を施して、下地層の表面の清浄化、平滑化を行うことが好ましい。下地層は、SiCといった高硬度材を実質的に含まず、金属から構成されることで研磨が行い易い。
[Preprocessing]
When the zincate treatment is performed on the substrate (material) having the obtained underlayer, it is preferable to perform pretreatment such as polishing and etching to clean and smooth the surface of the underlayer. The underlayer does not substantially contain a high-hardness material such as SiC, and is easily polished by being made of metal.

〔熱処理工程〕
上記素材に上述のように特定の熱処理を施すことで、基板と、特に、亜鉛層〜ニッケルめっき層との密着力を高められる。加熱温度は、上述のように200℃以上、基板のマトリクス金属が溶融しないように、マトリクス金属の融点以下が好ましく、300℃以上450℃以下がより好ましい。450℃以下とすると、マトリクス金属(マグネシウム成分)が燃焼し難いため、加熱雰囲気を大気雰囲気とすることができ、作業性、経済性に優れる。加熱時間は、上述のように5分以上が好ましく、60分以上3000分以下がより好ましい。この熱処理を行う場合、当該熱処理は、上記前処理の前に施すとよい。
[Heat treatment process]
By subjecting the material to a specific heat treatment as described above, the adhesion between the substrate and, in particular, the zinc layer to the nickel plating layer can be increased. As described above, the heating temperature is preferably 200 ° C. or higher, preferably not higher than the melting point of the matrix metal, and more preferably 300 ° C. or higher and 450 ° C. or lower so that the matrix metal of the substrate does not melt. When the temperature is 450 ° C. or lower, the matrix metal (magnesium component) is difficult to burn, so the heating atmosphere can be an air atmosphere, and workability and economy are excellent. As described above, the heating time is preferably 5 minutes or more, more preferably 60 minutes or more and 3000 minutes or less. When this heat treatment is performed, the heat treatment is preferably performed before the pretreatment.

〔ジンケート処理工程〕
上記素材にジンケート処理を施し、亜鉛層を形成する。ジンケート処理には、市販のジンケート処理液を利用できる。このジンケート処理により、上記下地層の表面に亜鉛を析出させて、亜鉛層を形成する。
[Jincate treatment process]
Zincate treatment is applied to the material to form a zinc layer. A commercially available zincate treatment solution can be used for the zincate treatment. By this zincate treatment, zinc is deposited on the surface of the base layer to form a zinc layer.

〔銅めっき工程・ニッケルめっき工程〕
上記亜鉛層の上に銅めっきを施して銅めっき層を形成し、その上にニッケルめっきを施してニッケルめっき層を形成する。これらのめっき層の形成には、一般的な銅めっきやニッケルめっきに利用されているめっき法や条件を利用でき、電気めっき、無電解めっきのいずれも利用できる。銅めっき層及びニッケルめっき層の双方を電気めっきにより連続して形成すると、生産性に優れて好ましい。電気めっきを利用する場合、通電時間などを調整することで、各めっき層の厚さを調整できる。また、電気めっきを利用する場合、下地層を導通箇所に利用できる。
[Copper plating process / Nickel plating process]
A copper plating layer is formed on the zinc layer to form a copper plating layer, and a nickel plating layer is formed thereon to form a nickel plating layer. For the formation of these plating layers, plating methods and conditions used for general copper plating and nickel plating can be used, and both electroplating and electroless plating can be used. It is preferable that both the copper plating layer and the nickel plating layer are continuously formed by electroplating because of excellent productivity. When using electroplating, the thickness of each plating layer can be adjusted by adjusting the energization time and the like. Moreover, when utilizing electroplating, a base layer can be utilized for a conduction | electrical_connection location.

〔その他の工程〕
その他、ニッケルめっき層を形成後に熱処理を施してもよい。この熱処理は、加熱温度:150℃〜450℃、加熱時間:5分〜240分が挙げられる。この熱処理によって、剥離強度および硬度を高められる。
[Other processes]
In addition, you may heat-process after forming a nickel plating layer. As for this heat processing, heating temperature: 150 degreeC-450 degreeC, heating time: 5 minutes-240 minutes are mentioned. This heat treatment can increase the peel strength and hardness.

[試験例]
純マグネシウムとSiCとを複合した複合材料からなる基板の上に、多層構造の金属被覆層を具える複合部材を作製し、剥離強度及び熱特性を調べた。
[Test example]
A composite member including a metal coating layer having a multilayer structure was fabricated on a substrate made of a composite material in which pure magnesium and SiC were combined, and peel strength and thermal characteristics were examined.

各試料は、以下のようにして作製した。
原料として、99.8質量%以上のMg及び不純物からなる純マグネシウムのインゴット(市販品)、及びSiC集合体として市販の板状のSiC焼結体(ネットワーク部がSiCから構成されたSiC多孔体。相対密度80%)を用意した。ここでは、用意したSiC集合体に875℃×2時間の酸化処理を施して酸化膜を形成した。
Each sample was produced as follows.
Pure magnesium ingot (commercially available) consisting of 99.8% by mass or more of Mg and impurities as raw materials, and a commercially available plate-like SiC sintered body (SiC porous body in which the network part is composed of SiC. Density 80%) was prepared. Here, the prepared SiC aggregate was subjected to an oxidation treatment at 875 ° C. for 2 hours to form an oxide film.

上記SiC集合体を鋳型に収納して、溶融した純マグネシウムをSiC集合体に溶浸させた後、純マグネシウムを凝固する。   The SiC aggregate is housed in a mold, molten pure magnesium is infiltrated into the SiC aggregate, and then the pure magnesium is solidified.

上記鋳型は、ここでは、カーボン製で、一方が開口した直方体状の箱体とした。この鋳型の内部空間がSiC集合体の収納空間として利用される。鋳型は、一体成形されたものを利用してもよいが、複数の分割片を組み合わせて一体に形成されるものを利用すると、鋳物(ここでは下地層を具える基板(素材))が取り出し易い。また、ここでは、スペーサとして厚さ0.5mmの一対のカーボンシート(SiC集合体の対向する二面よりも面積が十分に小さいもの)を用意し、上記鋳型として、SiC集合体と鋳型との間に当該スペーサが配置可能な大きさの内部空間を有するものを用意した。   Here, the mold was made of carbon and was a rectangular parallelepiped box having one opened. The internal space of this mold is used as a storage space for the SiC aggregate. The mold may be integrally molded, but if a mold that is integrally formed by combining a plurality of divided pieces is used, it is easy to take out the casting (here, the substrate (material) including the underlayer). . In addition, here, a pair of carbon sheets with a thickness of 0.5 mm are prepared as spacers (those having an area sufficiently smaller than the two opposite surfaces of the SiC aggregate), and the above-mentioned mold is used between the SiC aggregate and the mold. And having an internal space large enough to arrange the spacer.

そして、上記鋳型にSiC集合体を収納すると共に、板状のSiC集合体の対向する二面を挟むように上記カーボンシートを配置する。すると、SiC集合体の対向する一対の面のそれぞれにおいてカーボンシートが接触しない箇所と鋳型との間に当該カーボンシートの厚さに応じた隙間(ここでは0.5mmの隙間)が設けられる。なお、カーボンシートなどのスペーサを利用する場合、SiC集合体に対するスペーサの配置位置がずれることを防止するために、低融点ガラスや低融点塩、水ガラスなどでスペーサをSiC集合体に接着してもよい。   Then, the SiC aggregate is housed in the mold, and the carbon sheet is disposed so as to sandwich two opposing surfaces of the plate-like SiC aggregate. Then, a gap corresponding to the thickness of the carbon sheet (here, a gap of 0.5 mm) is provided between a portion where the carbon sheet is not in contact with each other on each of a pair of opposed surfaces of the SiC aggregate. When using a spacer such as a carbon sheet, the spacer is bonded to the SiC aggregate with low melting point glass, low melting point salt, water glass, etc. in order to prevent the spacer from being displaced with respect to the SiC aggregate. Also good.

なお、ここでは、鋳型の内周面においてSiC集合体が接触する箇所には、市販の離型剤を塗布してから上記SiC集合体を鋳型に収納した。離型剤を塗布することで、上記素材を取り出し易くすることができる。この離型剤の塗布工程は、省略してもよい。   Here, the SiC aggregate was stored in the mold after a commercially available release agent was applied to a location where the SiC aggregate was in contact with the inner peripheral surface of the mold. By applying a release agent, the material can be easily taken out. This step of applying the release agent may be omitted.

上記鋳型は、開口部の周縁に連結されるインゴット載置部を有しており、このインゴット載置部に用意した上記インゴットを配置し、この鋳型を所定の温度に加熱することで当該インゴットを溶融する。鋳型の加熱は、加熱可能な雰囲気炉に鋳型を装入することで行う。   The mold has an ingot mounting part connected to the periphery of the opening, the ingot prepared in the ingot mounting part is disposed, and the ingot is heated by heating the mold to a predetermined temperature. Melt. The mold is heated by inserting the mold into a heatable atmosphere furnace.

ここでは、溶浸温度:875℃、Ar雰囲気、雰囲気圧力:大気圧となるように上記雰囲気炉を調整する。溶融した純マグネシウムは、鋳型の開口部から鋳型の内部空間に流入して、当該内部空間に配置されたSiC集合体に溶浸されると共に、スペーサにより設けられた鋳型とSiC集合体との間の隙間に流れ込む。上記加熱状態を保持して(ここでは2時間)、SiC集合体と上記溶融した純マグネシウムとを複合化した後、Ar雰囲気下で冷却を行い(ここでは水冷)、純マグネシウムを凝固した。   Here, the atmosphere furnace is adjusted so that the infiltration temperature is 875 ° C., the Ar atmosphere, and the atmosphere pressure is atmospheric pressure. The molten pure magnesium flows into the inner space of the mold from the opening of the mold and is infiltrated into the SiC aggregate arranged in the inner space, and between the mold provided by the spacer and the SiC aggregate. Flows into the gap. While maintaining the heating state (here, 2 hours), the SiC aggregate and the molten pure magnesium were combined, and then cooled in an Ar atmosphere (water cooling here) to solidify the pure magnesium.

上記工程により、Mg-SiC複合材料からなる基板20の対向する二面のそれぞれに、純マグネシウムからなる下地層を具える素材(合計厚さ5mm)が得られる。なお、上記スペーサの配置によっては、基板の上記二面を連結する四つの側面の少なくとも一面も、基板のマトリクス金属と同様の金属(ここでは、マグネシウム)により覆われた形態とすることができる。   By the above process, a material (total thickness: 5 mm) having an underlayer made of pure magnesium is obtained on each of two opposing surfaces of the substrate 20 made of Mg—SiC composite material. Note that depending on the arrangement of the spacers, at least one of the four side surfaces connecting the two surfaces of the substrate may be covered with a metal (here, magnesium) similar to the matrix metal of the substrate.

得られた素材に対して、以下の各工程を順に行った。
試料No.1(熱処理せず、銅めっきせず)
研磨→エッチング→ジンケート処理→ニッケルめっき
試料No.2〜4(熱処理せず、銅めっき有り)
研磨→エッチング→ジンケート処理→銅めっき→ニッケルめっき
試料No.(熱処理有り、銅めっき有り)
熱処理→研磨→エッチング→ジンケート処理→銅めっき→ニッケルめっき
The following steps were sequentially performed on the obtained material.
Sample No.1 (No heat treatment, no copper plating)
Polishing → Etching → Zincate treatment → Nickel plating Sample No. 2 to 4 (No heat treatment, with copper plating)
Polishing → Etching → Zincate treatment → Copper plating → Nickel plating Sample No. (with heat treatment, with copper plating)
Heat treatment → Polishing → Etching → Zincate treatment → Copper plating → Nickel plating

上記熱処理は、450℃×540分(大気雰囲気)とした。上記研磨は、湿式研磨とし、エッチング・ジンケート処理は、市販のエッチング液及び市販のジンケート処理液を用いて行った。また、上記めっきはいずれも、マグネシウムからなる下地層を導通箇所に利用して、電気めっきにより施した。めっき条件は、一般的な銅めっき、ニッケルめっきに利用されている条件とした。電気めっきにあたり、通電時間や電流量を調整することで、銅めっき層の厚さを変化させた。   The heat treatment was performed at 450 ° C. × 540 minutes (air atmosphere). The polishing was wet polishing, and the etching / zincate treatment was performed using a commercially available etching solution and a commercially available zincate treatment solution. Moreover, all the said plating was performed by electroplating using the base layer which consists of magnesium for a conduction | electrical_connection location. The plating conditions were those used for general copper plating and nickel plating. In electroplating, the thickness of the copper plating layer was changed by adjusting the energization time and the amount of current.

上記工程により、図1に示すように、SiC-Mg複合材料からなる基板20と、基板20の対向する一対の面のそれぞれについて、各面全体を実質的に覆う多層構造の金属被覆層10とを具えるマグネシウム基複合部材1が得られる(試料No.3〜5)。金属被覆層10は、基板20側から順に下地層11・亜鉛層12・銅めっき層13・ニッケルめっき層14を具える。試料No.2の複合部材は、銅めっき層が試料No.3〜5よりも薄く、試料No.1の複合部材は、銅めっき層を有していない。   Through the above steps, as shown in FIG. 1, a substrate 20 made of a SiC-Mg composite material and a metal coating layer 10 having a multilayer structure that substantially covers the entire surface of each of a pair of opposing surfaces of the substrate 20 and A magnesium-based composite member 1 having the above (samples Nos. 3 to 5) is obtained. The metal coating layer 10 includes a base layer 11, a zinc layer 12, a copper plating layer 13, and a nickel plating layer 14 in this order from the substrate 20 side. The composite member of Sample No. 2 has a copper plating layer thinner than Samples Nos. 3 to 5, and the composite member of Sample No. 1 does not have a copper plating layer.

得られた各試料No.1〜5の複合部材について、銅めっき層及びニッケルめっき層の厚さ、剥離強度(MPa)、熱膨張係数(ppm/K)、熱伝導率(W/m・K)を調べた。その結果を表1に示す。   About the obtained composite member of each sample No. 1-5, the thickness of copper plating layer and nickel plating layer, peel strength (MPa), thermal expansion coefficient (ppm / K), thermal conductivity (W / m ) Was investigated. The results are shown in Table 1.

各めっき層の厚さは、各試料にCP(Cross-section Polisher)加工を施して厚さ方向の断面をとり、この断面を走査型電子顕微鏡(2000倍)により観察し、顕微鏡写真に画像処理を施して各めっき層を抽出し、当該写真中の複数点の厚さを測定し、その平均厚さを表1に示す。なお、同様にして下地層の厚さを測定したところ、概ね0.5mm(500μm)であり、上述したスペーサの厚さに実質的に一致していることが確認できた。   For the thickness of each plating layer, each sample is subjected to CP (Cross-section Polisher) processing to obtain a cross-section in the thickness direction, and this cross-section is observed with a scanning electron microscope (2000x), and image processing is performed on the micrograph. Each plating layer was extracted by applying, and the thickness of a plurality of points in the photograph was measured, and the average thickness is shown in Table 1. When the thickness of the underlayer was measured in the same manner, it was about 0.5 mm (500 μm), and it was confirmed that it substantially coincided with the spacer thickness described above.

剥離強度は、各試料のニッケルめっき層の上に溶融したはんだを塗布して固化した後、市販のバンププルテスト装置を用い、ツィーザーズによりはんだを垂直方向に引っ張り、はんだが剥離されたときの強度を測定し、この強度を表1に示す。   Peel strength is the strength when solder is peeled off by applying molten solder on the nickel plating layer of each sample and solidifying it, then pulling the solder vertically with a tweezers using a commercially available bump pull test device. Are measured and the strength is shown in Table 1.

熱膨張係数及び熱伝導率は、各試料から試験片を切り出し、市販の測定器を用いて測定した。熱膨張係数は、30℃〜150℃の範囲について測定した。   The thermal expansion coefficient and the thermal conductivity were measured using a commercially available measuring device after cutting a test piece from each sample. The thermal expansion coefficient was measured in the range of 30 ° C to 150 ° C.

表1に示すように、ジンケート処理を施した後、銅めっき層を形成することで、剥離強度が向上していることが分かる。特に、銅めっき層が1μm超である試料No.3〜5は、剥離強度が20MPa以上であり、実用上必要とされる10MPa以上よりも非常に高く、複合部材とはんだとの接合箇所の信頼性を高められると期待される。更に、ジンケート処理前に熱処理を施すことで、剥離強度をより高められることが分かる。また、試料No.3〜5はいずれも、熱膨張係数が4ppm/K以上15ppm/K以下を満たし、熱伝導率も250W/m・K以上と非常に高いことが分かる。   As shown in Table 1, it can be seen that the peel strength is improved by forming the copper plating layer after the zincate treatment. In particular, Sample Nos. 3 to 5 with a copper plating layer of more than 1 μm have a peel strength of 20 MPa or more, much higher than the practically required 10 MPa or more, and the reliability of the joint location between the composite member and solder It is expected to improve the sex. Furthermore, it turns out that peeling strength can be raised more by performing heat processing before a zincate process. In addition, it can be seen that Sample Nos. 3 to 5 all have a thermal expansion coefficient of 4 ppm / K or more and 15 ppm / K or less, and the thermal conductivity is as high as 250 W / m · K or more.

図2は、試料No.5の顕微鏡写真である。図2に示すように試料No.5は、下地層11の表面に均一的に亜鉛層12が形成され、更にその上に形成された銅めっき層13、ニッケルめっき層14が均一的な厚さで形成されていることが分かる。また、試料No.5は、下地層11の表面が滑らかであり、欠陥が実質的に存在していないことが分かる。   FIG. 2 is a photomicrograph of Sample No. 5. As shown in FIG. 2, in sample No. 5, the zinc layer 12 is uniformly formed on the surface of the base layer 11, and the copper plating layer 13 and the nickel plating layer 14 formed on the zinc layer 12 have a uniform thickness. It can be seen that it is formed. In Sample No. 5, it can be seen that the surface of the underlayer 11 is smooth and substantially free of defects.

図3は、試料No.4と同様にして作製した試料の顕微鏡写真である。この試料は、図3に示すように、下地層11の表面に大きな溝が複数存在しており、各溝の上に形成された亜鉛層12が下地層11から剥離していることが分かる。このように下地層11の表面に欠陥が存在する場合、はんだを塗布する際の加熱などにより、亜鉛層12〜めっき層13,14が下地層11と亜鉛層12との界面で局所的に剥離する恐れがある。これに対して、ジンケート処理前に上記特定の熱処理を施すことで、図2に示すように下地層11の表面欠陥を是正できることが分かる。   FIG. 3 is a photomicrograph of a sample produced in the same manner as Sample No. 4. As shown in FIG. 3, this sample has a plurality of large grooves on the surface of the base layer 11, and it can be seen that the zinc layer 12 formed on each groove is peeled off from the base layer 11. As described above, when there is a defect on the surface of the underlayer 11, the zinc layer 12 to the plating layers 13 and 14 are locally peeled off at the interface between the underlayer 11 and the zinc layer 12 by heating at the time of applying the solder. There is a fear. On the other hand, it can be seen that by performing the specific heat treatment before the zincate treatment, the surface defects of the base layer 11 can be corrected as shown in FIG.

更に、得られた試料No.3〜5の複合部材の成分をEDX装置により調べたところ、基板20:Mg及びSiC、残部:不純物、金属被覆層10は、基板20側から順に、Mg及び不純物からなる層(下地層11)、Zn及び不純物からなる層(亜鉛層12)、Cu及び不純物からなる層(銅めっき層13)、Ni及び不純物からなる層(ニッケルめっき層14)であった。また、試料No.3〜5の複合部材にCP加工を施して厚さ方向の断面をとり、この断面をSEM観察により調べたところ、基板20中のSiCは網目状であり、SiC同士がSiCにより結合された多孔体、即ち、ネットワーク部がSiCにより構成された多孔体となっており、用いた原料の焼結体と同様であった。更に、上記断面を光学顕微鏡で観察したところ、SiC間の隙間に純マグネシウムが溶浸されていること、基板20の表面に形成された下地層11が基板20のマトリクス金属と連続した組織であることが確認できた。   Furthermore, when the components of the composite members of the obtained sample Nos. 3 to 5 were examined with an EDX apparatus, the substrate 20: Mg and SiC, the remainder: impurities, and the metal coating layer 10 were Mg and impurities sequentially from the substrate 20 side. A layer made of Zn (underlayer 11), a layer made of Zn and impurities (zinc layer 12), a layer made of Cu and impurities (copper plating layer 13), and a layer made of Ni and impurities (nickel plating layer 14). In addition, CP processing was performed on the composite members of sample Nos. 3 to 5, and a cross section in the thickness direction was taken. When this cross section was examined by SEM observation, the SiC in the substrate 20 was network-like, and the SiCs were SiC. The porous body bonded by the above, that is, a porous body in which the network portion is composed of SiC, was the same as the sintered material used. Furthermore, when the cross section was observed with an optical microscope, pure magnesium was infiltrated into the gaps between the SiC, and the underlying layer 11 formed on the surface of the substrate 20 was a structure continuous with the matrix metal of the substrate 20. I was able to confirm.

また、得られた試料No.3〜5の複合部材の基板20部分のSiCの含有量を測定したところ、80体積%であった。SiCの含有量は、上述のようにCP加工を施して複合部材の厚さ方向の断面をとり、この断面において基板部分を光学顕微鏡(50倍)で観察し、この観察像を市販の画像解析装置で画像処理して、この基板部分中のSiCの合計面積を求め、この合計面積を体積割合に換算した値をこの断面に基づく体積割合とし(面積割合≒体積割合)、n=3の断面の体積割合を求め、これらの平均値とした。   Further, when the content of SiC in the substrate 20 part of the obtained composite members of Sample Nos. 3 to 5 was measured, it was 80% by volume. The content of SiC is CP processed as described above to take a cross-section in the thickness direction of the composite member, and the substrate portion is observed with an optical microscope (50x) in this cross-section, and this observation image is analyzed by commercial image analysis. The total area of SiC in this substrate part is obtained by image processing with an apparatus, and the value obtained by converting this total area into a volume ratio is defined as a volume ratio based on this cross section (area ratio ≒ volume ratio), and n = 3 cross section The volume ratio was determined and used as the average value.

以上から、得られた試料No.3〜5の複合部材は、熱膨張係数が4ppm/K程度の半導体素子やその周辺部品との整合性に優れる上に、熱伝導率も高く、熱特性に優れることが分かる。かつ、これらの複合部材は、ニッケルめっき層の上にはんだを塗布した場合、はんだとの密着性に優れる。従って、これらの複合部材を半導体素子の放熱部材に利用した場合、放熱性に優れる上に、はんだとの接合箇所の信頼性を高められると期待される。   From the above, the obtained composite members of Sample Nos. 3 to 5 are excellent in consistency with semiconductor elements having a thermal expansion coefficient of about 4 ppm / K and its peripheral parts, and also have high thermal conductivity and thermal characteristics. It turns out that it is excellent. And these composite members are excellent in adhesiveness with a solder, when applying a solder on a nickel plating layer. Therefore, when these composite members are used as a heat radiating member of a semiconductor element, it is expected that the heat radiating property is excellent and the reliability of the joint portion with the solder can be improved.

なお、この試験例では、SiC集合体として市販のSiC焼結体を利用したが、焼結しない粉末成形体(スリップキャストによる成形体など)や、タッピングなどにより鋳型にSiC粉末を充填したSiC集合体を利用することができる。   In this test example, a commercially available SiC sintered body was used as the SiC aggregate, but a powder compact that was not sintered (such as a slip cast compact), or a SiC aggregate that was filled with SiC powder by tapping or the like. The body can be used.

また、この試験例では、基板の両面に金属被覆層を具える形態を説明したが、基板の片面のみに金属被覆層を具える形態とすることができる。   Moreover, in this test example, although the form which provides a metal coating layer on both surfaces of a board | substrate was demonstrated, it can be set as the form which provides a metal coating layer only on the single side | surface of a board | substrate.

SiCの含有量を50体積%〜78体積%の範囲で変化させて、上記試験例の試料No.5と同様にして、基材の両面に多層構造の金属被覆層を有するマグネシウム基複合部材を作製した。ここでは、SiC含有量、熱膨張係数、熱伝導率がそれぞれ(78%、6.0ppm/K、240W/mK)、(73%、7.0ppm/K、235W/mK)、(63%、8.0ppm/K、225W/mK)、(55%、9.0ppm/K、220W/mK)、(50%、9.3ppm/K、210W/mK)である複合部材を作製した。得られた各複合部材について、上記試験例と同様に剥離強度を調べたところ、いずれも20MPa以上であり、はんだとの密着性に優れていた。また、得られた各複合部材は熱伝導性にも優れていた。   A magnesium-based composite member having a multilayered metal coating layer on both sides of the substrate was prepared in the same manner as Sample No. 5 in the above test example by changing the SiC content in the range of 50% to 78% by volume. Produced. Here, SiC content, thermal expansion coefficient, and thermal conductivity are (78%, 6.0ppm / K, 240W / mK), (73%, 7.0ppm / K, 235W / mK), (63%, 8.0ppm, respectively) / K, 225 W / mK), (55%, 9.0 ppm / K, 220 W / mK), (50%, 9.3 ppm / K, 210 W / mK) composite members were produced. The obtained composite members were examined for peel strength in the same manner as in the above test examples. As a result, all were 20 MPa or more, and the adhesiveness to the solder was excellent. Moreover, each obtained composite member was excellent also in thermal conductivity.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、基板中のSiCの含有量、SiCの存在形態、マトリクス金属の組成(例えば、マグネシウム合金)、複合部材の大きさ・厚さ、金属被覆層を構成する各層の厚さ、下地層の材質・厚さ、金属被覆層の形成領域、複合時の条件を適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the content of SiC in the substrate, the presence form of SiC, the composition of the matrix metal (for example, magnesium alloy), the size and thickness of the composite member, the thickness of each layer constituting the metal coating layer, the material of the underlayer -Thickness, the formation area of a metal coating layer, and the conditions at the time of a composite can be changed suitably.

本発明複合部材は、半導体素子のヒートスプレッダ(本発明放熱部材)に好適に利用することができる。本発明半導体装置は、各種の電子機器の部品に好適に利用することができる。本発明複合部材の製造方法は、上記本発明複合部材の製造に好適に利用することができる。   The composite member of the present invention can be suitably used for a heat spreader of the semiconductor element (the heat dissipation member of the present invention). The semiconductor device of the present invention can be suitably used for parts of various electronic devices. The manufacturing method of this invention composite member can be utilized suitably for manufacture of the said this invention composite member.

1 複合部材 20 基板 10 金属被覆層
11 下地層 12 亜鉛層 13 銅めっき層 14 ニッケルめっき層
1 Composite material 20 Substrate 10 Metal coating layer
11 Underlayer 12 Zinc layer 13 Copper plating layer 14 Nickel plating layer

Claims (8)

マグネシウム又はマグネシウム合金とSiCとが複合された複合材料からなる基板を具える複合部材であって、
前記複合材料は、SiCを50体積%以上含有し、
前記複合部材の熱膨張係数が4ppm/K以上15ppm/K以下であり、
前記基板の対向する一対の面のうち、少なくとも一面には、その少なくとも一部を覆う金属被覆層を具え、
前記金属被覆層は、前記基板側から順に、下地層、亜鉛層、銅めっき層、最表面層となるニッケルめっき層を具え、
前記銅めっき層の厚さが1μm超であることを特徴とする複合部材。
A composite member comprising a substrate made of a composite material in which magnesium or a magnesium alloy and SiC are combined,
The composite material contains 50% by volume or more of SiC,
The thermal expansion coefficient of the composite member is 4 ppm / K or more and 15 ppm / K or less,
Of the pair of opposing surfaces of the substrate, at least one surface comprises a metal coating layer covering at least a part thereof,
The metal coating layer comprises, in order from the substrate side, a base layer, a zinc layer, a copper plating layer, a nickel plating layer that becomes an outermost surface layer,
A composite member, wherein the copper plating layer has a thickness of more than 1 μm.
前記下地層は、マグネシウムから構成されていることを特徴とする請求項1に記載の複合部材。   2. The composite member according to claim 1, wherein the base layer is made of magnesium. 前記下地層の構成金属と、前記複合材料の金属成分とが連続する組織から構成されていることを特徴とする請求項1又は2に記載の複合部材。   3. The composite member according to claim 1, wherein the composite member is composed of a structure in which a constituent metal of the base layer and a metal component of the composite material are continuous. 前記複合部材の熱伝導率が180W/m・K以上であることを特徴とする請求項1〜3のいずれか1項に記載の複合部材。   The composite member according to any one of claims 1 to 3, wherein the composite member has a thermal conductivity of 180 W / m · K or more. 請求項1〜4のいずれか1項に記載の複合部材により構成されることを特徴とする放熱部材。   A heat radiating member comprising the composite member according to any one of claims 1 to 4. 請求項5に記載の放熱部材と、この放熱部材に搭載される半導体素子とを具えることを特徴とする半導体装置。   6. A semiconductor device comprising: the heat radiating member according to claim 5; and a semiconductor element mounted on the heat radiating member. マグネシウム又はマグネシウム合金とSiCとを複合して、複合材料からなる板状の複合部材を製造する複合部材の製造方法であって、
SiCの含有量が50体積%以上であるマグネシウム基複合材料からなる基板と、この基板の対向する一対の面のうち、少なくとも一面の少なくとも一部に金属からなる下地層とを具える素材を準備する工程と、
前記下地層の上にジンケート処理を施して亜鉛層を形成する工程と、
前記亜鉛層の上に銅めっきを施して、厚さが1μm超の銅めっき層を形成する工程と、
前記銅めっき層の上にニッケルめっきを施して、ニッケルめっき層を形成する工程とを具え、
熱膨張係数が4ppm/K以上15ppm/K以下である複合部材を製造することを特徴とする複合部材の製造方法。
A composite member manufacturing method for manufacturing a plate-shaped composite member made of a composite material by combining magnesium or a magnesium alloy and SiC,
Preparing a material comprising a substrate made of a magnesium-based composite material with an SiC content of 50% by volume or more and a base layer made of metal on at least a part of at least one of a pair of opposing surfaces of the substrate And a process of
Forming a zinc layer by applying a zincate treatment on the underlayer;
Applying copper plating on the zinc layer to form a copper plating layer having a thickness of more than 1 μm;
Providing nickel plating on the copper plating layer, and forming a nickel plating layer,
A method for producing a composite member, comprising producing a composite member having a coefficient of thermal expansion of 4 ppm / K or more and 15 ppm / K or less.
前記ジンケート処理を施す前に、
前記素材に加熱温度:200℃以上、前記基板中のマグネシウム又はマグネシウム合金の融点以下、加熱時間:5分以上の条件で熱処理を施す工程を具えることを特徴とする請求項7に記載の複合部材の製造方法。
Before applying the zincate treatment,
8. The composite according to claim 7, comprising a step of performing a heat treatment on the material at a heating temperature of 200 ° C. or more, a melting point of magnesium or a magnesium alloy in the substrate or less, and a heating time of 5 minutes or more. Manufacturing method of member.
JP2011003265A 2011-01-11 2011-01-11 Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member Pending JP2012144767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003265A JP2012144767A (en) 2011-01-11 2011-01-11 Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003265A JP2012144767A (en) 2011-01-11 2011-01-11 Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member

Publications (1)

Publication Number Publication Date
JP2012144767A true JP2012144767A (en) 2012-08-02

Family

ID=46788628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003265A Pending JP2012144767A (en) 2011-01-11 2011-01-11 Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member

Country Status (1)

Country Link
JP (1) JP2012144767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074993A (en) * 2013-10-07 2015-04-20 株式会社豊田自動織機 Exhaust emission control device
EP3190613A4 (en) * 2014-09-02 2018-05-02 A.L.M.T. Corp. Heat dissipation member and method for producing heat dissipation member
WO2020203014A1 (en) 2019-04-02 2020-10-08 住友電気工業株式会社 Composite member and heat radiation member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074993A (en) * 2013-10-07 2015-04-20 株式会社豊田自動織機 Exhaust emission control device
EP3190613A4 (en) * 2014-09-02 2018-05-02 A.L.M.T. Corp. Heat dissipation member and method for producing heat dissipation member
US10553519B2 (en) 2014-09-02 2020-02-04 A.L.M.T. Corp Heat radiating member and method for producing the same
WO2020203014A1 (en) 2019-04-02 2020-10-08 住友電気工業株式会社 Composite member and heat radiation member
CN113795376A (en) * 2019-04-02 2021-12-14 住友电气工业株式会社 Composite member and heat-dissipating member
EP3950316A4 (en) * 2019-04-02 2022-05-04 Sumitomo Electric Industries, Ltd. Composite member and heat radiation member
US11890831B2 (en) 2019-04-02 2024-02-06 Sumitomo Electric Industries, Ltd. Composite member and heat radiation member
JP7469295B2 (en) 2019-04-02 2024-04-16 住友電気工業株式会社 Composite material and heat dissipation material

Similar Documents

Publication Publication Date Title
WO2010038483A1 (en) Composite member
EP2690186B1 (en) Composite member provided with substrate formed from composite material
KR101986860B1 (en) Heat dissipating component for semiconductor element
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
WO2000027776A1 (en) Carbon-based metal composite material, method for preparation thereof and use thereof
JP5739873B2 (en) Magnesium-based composite member, heat dissipation member, and semiconductor device
JP6038389B2 (en) Laminated body and manufacturing method thereof
CN112981164B (en) Preparation method of diamond reinforced metal matrix composite material with high reliability and high thermal conductivity
TW201621060A (en) Heat dissipation component for semiconductor element
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JP2012158783A (en) Aluminum-diamond composite, and method for production thereof
TWI682026B (en) Aluminum-diamond composite body and heat dissipation parts using the same
US11919288B2 (en) Method for producing heat radiation member
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP7196193B2 (en) Heat dissipation material
JP4594433B1 (en) Heat dissipation member
JP5513058B2 (en) Composite member manufacturing method, composite member, heat dissipation member, and semiconductor device
JP5503474B2 (en) Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member
JP2013245374A (en) Composite material, method for producing the same, and semiconductor device