JP2014001439A - Composite member, method for manufacturing composite member and semiconductor device - Google Patents

Composite member, method for manufacturing composite member and semiconductor device Download PDF

Info

Publication number
JP2014001439A
JP2014001439A JP2012138986A JP2012138986A JP2014001439A JP 2014001439 A JP2014001439 A JP 2014001439A JP 2012138986 A JP2012138986 A JP 2012138986A JP 2012138986 A JP2012138986 A JP 2012138986A JP 2014001439 A JP2014001439 A JP 2014001439A
Authority
JP
Japan
Prior art keywords
metal layer
substrate
metal
composite member
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012138986A
Other languages
Japanese (ja)
Inventor
Isao Iwayama
功 岩山
Taichiro Nishikawa
太一郎 西川
Toshiya Ikeda
利哉 池田
Shigeki Koyama
茂樹 小山
Tadashi Okamoto
匡史 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Allied Material Corp
Original Assignee
Sumitomo Electric Industries Ltd
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Allied Material Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012138986A priority Critical patent/JP2014001439A/en
Publication of JP2014001439A publication Critical patent/JP2014001439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite member which has a metal layer usable for a substrate for soldering and can construct a heat dissipation structure excellent in heat dissipation properties, a method for manufacturing a composite member capable of manufacturing the composite member with high productivity and a semiconductor device having the composite member.SOLUTION: The composite member comprises: a substrate composed of a composite material that combines 50 vol.% or more of SiC, magnesium or a magnesium alloy; and a metal layer provided on at least a part of a surface of the substrate. The metal layer is formed in direct contact with at least a metal composition of the substrate and has a thickness of 0.001 mm or more and less than 0.5 mm and a surface roughness Ra of 10 μm or less. A metal layer that is thin and has a smooth surface can be directly and easily formed on the substrate by using a cold spray method. The composite material has a smooth metal layer and can bond a semiconductor element or the like by uniformly disposing a solder, and further can construct a heat dissipation structure excellent in heat dissipation properties because the metal layer is thin.

Description

本発明は、SiCといった非金属無機材料とマグネシウム(いわゆる純マグネシウム)又はマグネシウム合金とが複合された複合材料からなる基板と、半田の下地として機能する金属層とを具える複合部材及びその製造方法、この複合部材からなる放熱部材を具える半導体装置に関するものである。特に、放熱性に優れる上に、生産性にも優れる複合部材、及びその製造方法に関するものである。   The present invention relates to a composite member comprising a substrate made of a composite material in which a non-metallic inorganic material such as SiC and magnesium (so-called pure magnesium) or a magnesium alloy are combined, and a metal layer that functions as a solder base, and a method for manufacturing the same The present invention relates to a semiconductor device including a heat radiating member made of this composite member. In particular, the present invention relates to a composite member excellent in heat dissipation and productivity, and a method for manufacturing the same.

パワーデバイスといった半導体素子の放熱部材の構成材料として、Al-SiCといった複合材料が利用されている。特許文献1は、アルミニウムよりも軽量であるマグネシウム又はマグネシウム合金(以下、Mg等と呼ぶ)とSiCとの複合材料を開示している。Mg-SiC複合材料は、上述のように軽量である上に、熱伝導率が高く、かつ発熱対象(代表的には半導体素子)やその周辺部品の熱膨張率との整合性に優れる(差が小さい)ことから、半導体素子の放熱部材の素材に好適に利用することができる。   A composite material such as Al-SiC is used as a constituent material of a heat radiating member of a semiconductor element such as a power device. Patent Document 1 discloses a composite material of SiC, which is lighter than aluminum or magnesium alloy (hereinafter referred to as Mg or the like) and SiC. The Mg-SiC composite material is lightweight as described above, has high thermal conductivity, and is excellent in consistency with the thermal expansion coefficient of the heat generation target (typically a semiconductor element) and its peripheral components (difference). Therefore, it can be suitably used as a material for a heat dissipation member of a semiconductor element.

半導体素子を十分に冷却する場合などでは、放熱部材と半導体素子同士や、放熱部材と冷却装置同士を半田で接合する。複合材料は、半田との濡れ性に劣ることから、特許文献1では、複合材料からなる基板の上に、半田との濡れ性が高い金属、例えばNiやCuなどからなる金属層を形成することを提案している。   In a case where the semiconductor element is sufficiently cooled, the heat radiating member and the semiconductor element, or the heat radiating member and the cooling device are joined together by solder. Since the composite material is inferior in wettability with solder, in Patent Document 1, a metal layer made of metal having high wettability with solder, such as Ni or Cu, is formed on a substrate made of composite material. Has proposed.

上記NiやCuなどの金属層の形成方法として、特許文献1は、例えば、電気めっき法を挙げている。また、特許文献1は、複合材料の形成時に、溶融したMg等によって基板の表面を覆うMg等層を同時に形成して、このMg等層を電気めっきの導通箇所に利用することを提案している。通常、Mg等に対して電気めっきを行う場合、前処理としてジンケート処理を行う。この場合、複合材料からなる基板と半田との間には、Mg等層、ジンケート層、NiやCuなどの金属層が存在する。   As a method for forming the metal layer such as Ni or Cu, Patent Document 1 mentions, for example, an electroplating method. Patent Document 1 proposes to simultaneously form an Mg equivalent layer that covers the surface of the substrate with molten Mg or the like when forming the composite material, and to use this Mg equivalent layer as a conductive portion of electroplating. Yes. Usually, when electroplating is performed on Mg or the like, a zincate treatment is performed as a pretreatment. In this case, there is a Mg layer, a zincate layer, and a metal layer such as Ni or Cu between the substrate made of the composite material and the solder.

別の形成方法として、特許文献1は、NiやCuからなる板材を鋳ぐるみやホットプレス法によって接合する方法を挙げている。この場合、複合材料からなる基板に上記板材を直接接合できるため、上述のMg等層やジンケート層を省略できる。   As another forming method, Patent Document 1 mentions a method of joining plate materials made of Ni or Cu by casting or hot pressing. In this case, since the plate material can be directly bonded to the substrate made of a composite material, the above-mentioned Mg layer or zincate layer can be omitted.

特開2010-106362号公報JP 2010-106362 A

パワーデバイスが組み付けられるパワーモジュールの大容量化・小型化の要望が年々高まってきている。そのため、放熱性により優れる放熱構造を構築可能であり、かつ、生産性にも優れる素材の開発が望まれる。   The demand for larger capacity and smaller power modules to which power devices can be assembled is increasing year by year. Therefore, it is desired to develop a material that can construct a heat dissipation structure that excels in heat dissipation and that is also excellent in productivity.

上述のジンケート層が介在する形態では、工程が多い上に、溶液を使用するプロセスであるために溶液の濃度や温度などの管理が煩雑であり、生産性の向上が望まれる。また、この形態では、ジンケート層を構成するZnと、Mg等層を構成するMgとが合金をつくる恐れがある。ジンケート層は非常に薄いため、上記合金が生成されたとしても極微量であると考えられるが、この合金は、熱伝導率が低い。そのため、放熱性の更なる向上及び生産性を考慮すると、ジンケート層を設けない構成が望まれる。   In the form in which the above-described zincate layer is interposed, there are many processes, and since the process uses a solution, management of the concentration and temperature of the solution is complicated, and improvement in productivity is desired. Further, in this embodiment, there is a risk that Zn constituting the zincate layer and Mg constituting the Mg equivalent layer form an alloy. Since the zincate layer is very thin, even if the above alloy is produced, it is considered that the amount of the zincate layer is extremely small. However, this alloy has low thermal conductivity. Therefore, in consideration of further improvement in heat dissipation and productivity, a configuration in which a zincate layer is not provided is desired.

上述の鋳ぐるみやホットプレス法を用いる形態では、生産性に優れるものの、加熱することで、上述のNiやCuなどからなる金属板と複合材料との界面に熱による変成相が生成される恐れがある。この変成相も熱伝導率が低く、放熱性の低下を招き得る。ここで、この金属板が薄いほど、半導体素子などと放熱部材(複合材料)との距離が短くなるため、放熱性に優れる放熱構造を構築できると期待される。しかし、この手法では、ある程度厚さの厚い金属板を利用する必要があり、薄くすることに限界がある。また、厚い金属板を利用することで、複合材料との合計厚さが厚くなり、放熱部材の大型化(厚肉化)、重量の増大を招き、薄型化・小型化の要求に反する。   In the form using the above-described cast-hole or hot press method, although it is excellent in productivity, by heating, a metamorphic phase due to heat may be generated at the interface between the metal plate made of Ni or Cu and the composite material. There is. This metamorphic phase also has a low thermal conductivity and may cause a reduction in heat dissipation. Here, the thinner the metal plate, the shorter the distance between the semiconductor element and the heat radiating member (composite material), so it is expected that a heat radiating structure with excellent heat radiating properties can be constructed. However, in this method, it is necessary to use a metal plate that is thick to some extent, and there is a limit to making it thin. In addition, by using a thick metal plate, the total thickness with the composite material is increased, leading to an increase in the size (thickening) and an increase in weight of the heat radiating member, which is contrary to the demand for thickness reduction and size reduction.

例えば、厚い金属板を接合した後に研磨などの切削加工を施して、板部分の厚さを薄くする場合を考える。しかし、この場合、研磨によって除去する厚さ、即ち、研磨量が多くなり、研磨時の摩擦熱や、接合していた金属板の内部応力が研磨時に開放されることによって、複合材料部分が反る恐れがある。ここで、Mg-SiC複合材料は、SiCといった非金属無機材料の含有によって熱膨張率が小さくなっているため、金属板の熱膨張率との差が大きい。従って、複合材料(特に厚さが薄いもの(10mm以下、更に5mm以下))の表面に具える金属板に研磨を施すと、研磨時の摩擦熱や内部応力の開放によって反りが生じ得る。このような反りが生じたものを半導体素子の放熱部材に用いると、放熱部材の表面に半田が均一的に載らず、半導体素子と放熱部材同士などが十分に密着できなかったり、半導体素子の載置領域を十分に確保できなくなったりする恐れがある。更に、研磨量が多い場合、歩留まりの低下、研磨時間の長大化によって、生産性の低下も招く。   For example, consider a case in which a thick metal plate is joined and then subjected to cutting such as polishing to reduce the thickness of the plate portion. However, in this case, the thickness to be removed by polishing, that is, the amount of polishing is increased, and frictional heat during polishing and internal stress of the bonded metal plates are released during polishing, so that the composite material portion is warped. There is a risk. Here, the Mg—SiC composite material has a small difference from the thermal expansion coefficient of the metal plate because the thermal expansion coefficient is small due to the inclusion of a nonmetallic inorganic material such as SiC. Therefore, when a metal plate provided on the surface of a composite material (particularly a thin material (10 mm or less, further 5 mm or less)) is polished, warping may occur due to release of frictional heat or internal stress during polishing. If such a warped member is used for a heat dissipation member of a semiconductor element, the solder is not uniformly placed on the surface of the heat dissipation member, and the semiconductor element and the heat dissipation member cannot be sufficiently adhered to each other. There is a risk that a sufficient storage area cannot be secured. Further, when the polishing amount is large, the yield is lowered and the productivity is lowered due to the lengthening of the polishing time.

一方、放熱部材において半田が載せられる面(以下、塗布面と呼ぶ)は、平滑であるほど、塗布面に半田を均一的に載せられる上に均一的な溶融を行える。その結果、半導体素子と放熱部材同士などを良好に密着できる。従って、塗布面を研磨によって平滑にすることは好ましいといえる。しかし、半田の塗布状態や半導体素子などの載置領域の確保、及び生産性を考慮すると、できる限り研磨が少ないこと、具体的には、研磨によって除去する厚さが0.3mm以下程度であることが好ましい。   On the other hand, the smoother the surface on which the solder is placed in the heat radiating member (hereinafter referred to as the coated surface), the more uniform the solder can be placed on the coated surface and the more uniform melting can be performed. As a result, the semiconductor element and the heat dissipation member can be satisfactorily adhered to each other. Therefore, it can be said that the coated surface is preferably smoothed by polishing. However, considering the solder application state, securing the mounting area for semiconductor elements, etc., and productivity, the polishing should be as little as possible, specifically, the thickness removed by polishing should be about 0.3 mm or less. Is preferred.

そこで、本発明の目的の一つは、半田の下地として機能する金属層を具える複合部材であって、放熱性及び生産性に優れる複合部材を提供することにある。また、本発明の別の目的は、上記複合部材を生産性よく製造できる複合部材の製造方法を提供することにある。   Therefore, one of the objects of the present invention is to provide a composite member having a metal layer that functions as a solder base, and having excellent heat dissipation and productivity. Another object of the present invention is to provide a composite member manufacturing method capable of manufacturing the composite member with high productivity.

Mg-SiC複合材料と半田の下地に利用する金属層とを具える複合部材に対して、放熱性を更に向上するためには、上述した放熱性の低下を招く合金や変成相が存在せず、かつ、研磨が極力少なくてよい平滑で薄い金属層を具えることが望ましいといえる。そこで、このような金属層の形成方法として、上述の合金や変成相が生成されない手法を検討した結果、金属層の固相成膜が可能なコールドスプレー法が好ましい、との知見を得た。   In order to further improve the heat dissipation of the composite member comprising the Mg-SiC composite material and the metal layer used for the solder base, there is no alloy or metamorphic phase that causes a decrease in the heat dissipation described above. In addition, it can be said that it is desirable to have a smooth and thin metal layer that requires as little polishing as possible. Therefore, as a method for forming such a metal layer, as a result of examining a method in which the above-described alloy or metamorphic phase is not generated, the inventors have found that a cold spray method capable of solid-phase film formation of the metal layer is preferable.

コールドスプレー法とは、金属粉末をその融点以下又は軟化点以下の温度に加熱したキャリアガスによってスプレーガンに導入し、このスプレーガンから上記金属粉末を放出して被覆対象に吹き付け、上記金属粉末を被覆対象に堆積することで金属層を形成する成膜方法である。加熱したガスによって金属粉末を構成する各金属粒子は、塑性変形性が高められ、被覆対象に塑性変形した金属粒子が堆積していくことで金属層を形成する。   In the cold spray method, a metal powder is introduced into a spray gun by a carrier gas heated to a temperature below its melting point or softening point, and the metal powder is discharged from the spray gun and sprayed onto an object to be coated. In this film forming method, a metal layer is formed by depositing on a coating target. Each metal particle constituting the metal powder by the heated gas is improved in plastic deformability, and a metal layer is formed by depositing the metal particles plastically deformed on the object to be coated.

コールドスプレー法は、金属粉末の大きさや成膜時間などを調整することで、0.5mm未満といった薄い金属層を形成できる。また、コールドスプレー法によって形成された金属層は、塑性変形した金属粒子が堆積されて構成されているため、いわば等方的な組織で構成されており、金属板の代表的な形態である圧延板のような配向性がない。従って、この金属層は、研磨し易く、上述の研磨に起因する反りが生じ難いといえる。更に、コールドスプレー法によって形成された金属層は、その表面が塑性変形した金属粒子によって一様な金属面で構成されており、平滑である(金属層の表面粗さは、高々、塑性変形する前の金属粒子の粒径以下に過ぎない)。そのため、この金属層は、研磨を施す場合に研磨量が少なくても、具体的には除去する厚さが0.3mm以下であっても、非常に平滑にできる、との知見を得た。本発明は、上記知見に基づくものである。   In the cold spray method, a thin metal layer of less than 0.5 mm can be formed by adjusting the size of the metal powder and the film formation time. In addition, the metal layer formed by the cold spray method is configured by depositing plastically deformed metal particles, so it is configured by an isotropic structure, and rolling is a typical form of a metal plate. There is no orientation like a board. Therefore, it can be said that this metal layer is easy to polish and is less likely to be warped due to the above-described polishing. Furthermore, the metal layer formed by the cold spray method is composed of a uniform metal surface with metal particles whose surface is plastically deformed, and is smooth (the surface roughness of the metal layer is plastically deformed at most. Just below the particle size of the previous metal particles). Therefore, it has been found that this metal layer can be made very smooth even when the amount of polishing is small when it is polished, specifically, even when the thickness to be removed is 0.3 mm or less. The present invention is based on the above findings.

本発明の複合部材は、非金属無機材料と、金属成分としてマグネシウム又はマグネシウム合金とが複合された複合材料からなる基板と、この基板の表面の少なくとも一部に設けられた金属層とを具える。上記複合材料は、上記非金属無機材料として、SiCを50体積%以上含有する。そして、上記金属層は、以下の(1)〜(4)を満たす。
(1) 上記複合材料中の金属成分とは異なる金属から構成されている。
(2) 上記基板の表面を構成する材料のうち、少なくとも上記金属成分に直接接触して形成されている。
(3) 上記金属層の厚さが0.001mm以上0.5mm未満である。
(4) 上記金属層の表面粗さがRaで10μm以下である。
The composite member of the present invention comprises a nonmetallic inorganic material, a substrate made of a composite material in which magnesium or a magnesium alloy is combined as a metal component, and a metal layer provided on at least a part of the surface of the substrate. . The composite material contains 50% by volume or more of SiC as the non-metallic inorganic material. The metal layer satisfies the following (1) to (4).
(1) It is made of a metal different from the metal component in the composite material.
(2) Of the material constituting the surface of the substrate, it is formed in direct contact with at least the metal component.
(3) The metal layer has a thickness of 0.001 mm or more and less than 0.5 mm.
(4) The surface roughness of the metal layer is 10 μm or less in terms of Ra.

上述の薄く、平滑な金属層が基板の表面に直接形成された本発明の複合部材は、例えば、以下の本発明の複合部材の製造方法によって製造することができる。本発明の複合部材の製造方法は、非金属無機材料と、金属成分としてマグネシウム又はマグネシウム合金とが複合された複合材料からなる基板の表面の少なくとも一部に金属層を形成して、上記金属層を具える複合部材を製造する方法に係るものであり、以下の準備工程と、被覆工程とを具える。
準備工程:上記非金属無機材料として、SiCを50体積%以上含有する複合材料からなる基板を用意する工程。
被覆工程:上記複合材料中の金属成分とは異なる金属からなる粉末を用意し、上記基板の表面の少なくとも一部に、コールドスプレー法によって、以下の金属層を形成する工程。
上記金属層は、厚さが0.001mm以上0.5mm未満、かつ表面粗さがRaで10μm以下である。
The composite member of the present invention in which the above-described thin and smooth metal layer is directly formed on the surface of the substrate can be produced, for example, by the following method for producing a composite member of the present invention. The method for producing a composite member of the present invention comprises forming a metal layer on at least a part of a surface of a substrate made of a composite material in which a nonmetallic inorganic material and magnesium or a magnesium alloy are combined as a metal component, And the following preparation process and covering process.
Preparatory step: A step of preparing a substrate made of a composite material containing 50% by volume or more of SiC as the non-metallic inorganic material.
Coating step: a step of preparing a powder made of a metal different from the metal component in the composite material and forming the following metal layer on at least a part of the surface of the substrate by a cold spray method.
The metal layer has a thickness of 0.001 mm or more and less than 0.5 mm, and a surface roughness Ra of 10 μm or less.

本発明の複合部材は、複合材料からなる基板の表面に、薄く、平滑な金属層が接触して設けられており、この金属層を半田の下地に利用できる。従って、本発明の複合部材を半導体素子の放熱部材の素材に利用する場合、以下の効果を奏する。
(1) 基板に直接金属層を具えることで、ジンケート層などが介在する場合に比較して、基板と半田との間の介在物を低減でき、間隔を狭くできる。
(2) 基板に直接金属層を具えており、基板と半田との間にMg-Zn合金や熱による変成相が存在しない。
(3) 金属層自体が薄いため、放熱部材と半田との間を小さく(薄く)できる。
(4) 金属層自体が平滑であるため、半田を均一的に載せられる上に、均一的に溶融できるため、半田を介して、放熱部材と半導体素子や冷却装置とを密着できる。
以上の点から、本発明の複合部材は、放熱性に優れる放熱構造を構築できる。
In the composite member of the present invention, a thin and smooth metal layer is provided in contact with the surface of a substrate made of a composite material, and this metal layer can be used as a solder base. Therefore, when the composite member of the present invention is used as a material for a heat dissipation member of a semiconductor element, the following effects are obtained.
(1) By providing the metal layer directly on the substrate, inclusions between the substrate and the solder can be reduced and the interval can be narrowed compared to the case where a zincate layer or the like is interposed.
(2) The substrate has a metal layer directly, and there is no Mg-Zn alloy or heat metamorphic phase between the substrate and the solder.
(3) Since the metal layer itself is thin, the space between the heat dissipation member and the solder can be made small (thin).
(4) Since the metal layer itself is smooth, the solder can be uniformly placed and can be melted uniformly, so that the heat dissipation member and the semiconductor element or the cooling device can be in close contact via the solder.
From the above points, the composite member of the present invention can construct a heat dissipation structure with excellent heat dissipation.

また、本発明の複合部材は、基板に金属層が直接接触していることから、ジンケート処理などが不要である上に、金属層自体が薄く平滑であるため、研磨が不要である、又は研磨を行っても研磨量が少ない軽い研磨でよい。従って、本発明の複合部材は、生産性にも優れる。また、研磨量が少ない軽い研磨でよいため、本発明の複合部材は、研磨を行った場合でも、反りなどに起因する半田の塗布不良や半導体素子などの載置面積の低減などが実質的に生じない。更に、本発明の複合部材は、軽い研磨を行うことで、更に平滑な表面になり、半田がより良好に載置及び溶融されて、半導体素子などと密着できることから、放熱性により優れる放熱構造を構築できると期待される。   Moreover, since the metal layer is in direct contact with the substrate, the composite member of the present invention does not require a zincate treatment or the like, and the metal layer itself is thin and smooth. Even if it performs, it may be light polishing with a small polishing amount. Therefore, the composite member of the present invention is excellent in productivity. In addition, since the light polishing with a small amount of polishing may be used, the composite member of the present invention is substantially free of solder application due to warpage or the like and a reduction in the mounting area of a semiconductor element, etc. even when polishing is performed. Does not occur. Furthermore, the composite member of the present invention has a smoother surface by performing light polishing, and since the solder is placed and melted better and can be in close contact with a semiconductor element or the like, a heat dissipation structure with better heat dissipation is provided. Expected to build.

更に、本発明の複合部材は、Mg-SiC複合材料からなる基板を具えることで、特許文献1に記載されるようにSiCの含有量をより多くすること(例えば、70体積%以上)で放熱性により優れる。特に、SiC同士がSiCによって連結されたSiC焼結体を具える形態であると、熱伝導率が180W/m・K以上、更に250W/m・K以上、特に300W/m・K程度といった非常に高い熱伝導性を有することができ、放熱性により優れる。また、SiCの含有量がより多い場合(好ましくはSiC焼結体を具える形態)、熱膨張率も小さく熱変形し難く、半導体素子やその周辺機器の熱膨張率との整合性にも優れる。従って、本発明の複合部材は、半導体素子の放熱部材の素材として、好ましい熱特性を有する。   Furthermore, the composite member of the present invention includes a substrate made of an Mg-SiC composite material, thereby increasing the SiC content as described in Patent Document 1 (for example, 70% by volume or more). Excellent heat dissipation. In particular, when the SiC has a SiC sintered body in which SiCs are connected by SiC, the thermal conductivity is 180 W / m · K or more, more than 250 W / m · K, especially about 300 W / m · K. It has a high thermal conductivity and is excellent in heat dissipation. In addition, when the SiC content is higher (preferably with a SiC sintered body), the coefficient of thermal expansion is small and it is difficult to be thermally deformed, and it is excellent in consistency with the coefficient of thermal expansion of the semiconductor element and its peripheral devices. . Therefore, the composite member of the present invention has preferable thermal characteristics as a material for the heat dissipation member of the semiconductor element.

本発明の複合部材の製造方法は、上述のように薄く、平滑な金属層を具える複合部材を製造でき、この複合部材は、上述の(1)〜(4)の点から放熱性に優れる。また、本発明の複合部材の製造方法は、電気めっき法などによって金属層を形成する場合と比較して、ジンケート処理などが不要であり、工程数を低減できる上に、Mg-Zn合金を生成することがない。更に、本発明の複合部材の製造方法は、鋳ぐるみやホットプレスの場合と異なり、複合材料からなる基板は、室温程度の温度に維持された状態で金属層を形成することから、変成相を生成し難く、又は実質的に生成することなく、金属層を形成できる。加えて、本発明の複合部材の製造方法は、薄く、平滑な金属層を形成できることから、後工程の研磨を不要にできる、又は、研磨を行う場合でも研磨量が少ない軽い研磨でよい。加えて、本発明の複合部材の製造方法は、電気めっき法などによってCuやNiなどのめっき層を形成した場合に比較して、純度が高い金属層、つまり、熱伝導性により優れる金属層を形成可能である。以上の点から、本発明の複合部材の製造方法は、放熱性に優れる放熱構造を構築可能な複合部材を生産性よく製造できるといえる。   The method for producing a composite member of the present invention can produce a composite member having a thin and smooth metal layer as described above, and this composite member is excellent in heat dissipation from the above points (1) to (4). . Also, the composite member manufacturing method of the present invention does not require a zincate treatment, etc., compared to the case of forming a metal layer by electroplating or the like, and can reduce the number of processes and produce an Mg-Zn alloy. There is nothing to do. Furthermore, the method for producing a composite member of the present invention differs from the case of casting or hot pressing in that a substrate made of a composite material forms a metal layer in a state maintained at a temperature of about room temperature. The metal layer can be formed with little or substantially no formation. In addition, the method for producing a composite member of the present invention can form a thin and smooth metal layer, so that polishing in a subsequent step can be dispensed with, or light polishing with a small polishing amount can be performed even when polishing is performed. In addition, the composite member manufacturing method of the present invention is a metal layer having a higher purity than a case where a plating layer such as Cu or Ni is formed by an electroplating method, that is, a metal layer that is superior in thermal conductivity. It can be formed. From the above points, it can be said that the composite member manufacturing method of the present invention can manufacture a composite member capable of constructing a heat dissipation structure excellent in heat dissipation with high productivity.

本発明の複合部材の一形態として、上記金属層が、ニッケル、ニッケル合金、銅、銅合金、金、金合金、銀及び銀合金から選択される1種の金属から構成される形態が挙げられる。   As one form of the composite member of the present invention, there is a form in which the metal layer is composed of one kind of metal selected from nickel, nickel alloy, copper, copper alloy, gold, gold alloy, silver and silver alloy. .

列挙した金属はいずれも、半田との馴染みがよく、各金属から構成された金属層は、半田の下地として良好に機能することができる。   All of the listed metals are familiar with solder, and a metal layer made of each metal can function well as a solder base.

本発明の複合部材の一形態として、上記金属層は、上記基板の表面を構成する上記非金属無機材料及び上記金属成分の双方に直接接触して形成された形態が挙げられる。   As one form of the composite member of the present invention, the metal layer may be formed in direct contact with both the non-metallic inorganic material and the metal component constituting the surface of the substrate.

本発明の複合部材に具える基板は、その表面全体が非金属無機材料と金属成分との双方によって構成された形態と、その表面のうち、対向する二面(表裏面)の少なくとも一部が金属成分のみにより構成された形態、代表的には、特許文献1に記載されるように、金属成分からなる表面層を具える形態が挙げられる。前者の形態では、金属層は、上述のように非金属無機材料と金属成分との双方に直接接触している。この形態は、表面層がある後者の形態よりも基板全体の熱伝導率が高くなる傾向にある上に、基板全体の熱膨張率を小さくし易い。また、この形態は、表面層の形成が不要であり、基板の生産性に優れる上に、薄型化・軽量化を図ることができる。一方、表面層を具える形態は、複合材料中の金属成分と表面層を構成する金属とが同種の金属であるため、複合材料と表面層との間に異種金属接合が少なく、又は実質的に無いことから、複合材料と表面層との界面において異種金属腐食が生じ難い。また、この形態は、Mg等からなる一様な表面を有することで、平滑性に優れる。   The substrate provided in the composite member of the present invention has a form in which the entire surface is composed of both a non-metallic inorganic material and a metal component, and at least a part of two opposite surfaces (front and back surfaces) of the surface. A form constituted only by a metal component, typically a form provided with a surface layer made of a metal component, as described in Patent Document 1. In the former form, the metal layer is in direct contact with both the non-metallic inorganic material and the metal component as described above. In this form, the thermal conductivity of the entire substrate tends to be higher than that of the latter form with the surface layer, and the thermal expansion coefficient of the entire substrate can be easily reduced. In addition, this form does not require the formation of a surface layer, so that the productivity of the substrate is excellent, and the thickness and weight can be reduced. On the other hand, in the form including the surface layer, since the metal component in the composite material and the metal constituting the surface layer are the same type of metal, there is little or substantially no dissimilar metal bonding between the composite material and the surface layer. Therefore, it is difficult for different metal corrosion to occur at the interface between the composite material and the surface layer. Moreover, this form is excellent in smoothness by having the uniform surface which consists of Mg etc.

本発明の複合部材の一形態として、上記基板の熱伝導率が180W/m・K以上、上記基板の熱膨張率が10ppm/K以下である形態が挙げられる。   As one form of the composite member of the present invention, there is a form in which the thermal conductivity of the substrate is 180 W / m · K or more and the thermal expansion coefficient of the substrate is 10 ppm / K or less.

上記形態は、熱伝導性に優れる上に、熱膨張率が小さく熱変形し難く、半導体素子やその周辺部品の熱膨張率との整合性にも優れる。従って、上記形態は、半導体素子の放熱部材の素材として、より好ましい熱特性を有する。この熱特性は、非金属無機材料の材質にも依るが、上記に列挙したいずれの材質についても、含有量が多いほど、半導体素子の放熱部材の素材として好ましい傾向にある。   The above form is excellent in thermal conductivity, has a small coefficient of thermal expansion and is difficult to thermally deform, and is excellent in consistency with the coefficient of thermal expansion of the semiconductor element and its peripheral components. Therefore, the said form has a more preferable thermal characteristic as a raw material of the thermal radiation member of a semiconductor element. This thermal characteristic depends on the material of the non-metallic inorganic material, but for any of the above-listed materials, the higher the content, the more preferable the material as the material for the heat dissipation member of the semiconductor element.

本発明の半導体装置として、本発明の複合部材によって構成された放熱部材と、上記放熱部材に載置される半導体素子とを具えるものが挙げられる。   Examples of the semiconductor device of the present invention include a device having a heat radiating member constituted by the composite member of the present invention and a semiconductor element placed on the heat radiating member.

本発明の半導体装置は、半田の下地に利用できる金属層を具える本発明の複合部材からなる放熱部材を具えることで、半導体素子や半導体素子の冷却装置と上記放熱部材とを、半田を介して密着できるため、放熱性に優れる。また、上述のように本発明の複合部材は、基板と金属層との間に熱伝導性に劣るMg-Zn合金や熱変成相が存在しないことからも、本発明の半導体装置は、放熱性に優れる。   The semiconductor device of the present invention includes a heat radiating member made of the composite member of the present invention including a metal layer that can be used as a solder base, so that the semiconductor element, the cooling device for the semiconductor element, and the heat radiating member can be soldered. The heat dissipation is excellent. Further, as described above, since the composite member of the present invention does not have an Mg-Zn alloy or a thermal metamorphic phase inferior in thermal conductivity between the substrate and the metal layer, the semiconductor device of the present invention has a heat dissipation property. Excellent.

本発明の複合部材の製造方法の一形態として、更に、上記金属層の表面を研磨する研磨工程を具え、上記研磨工程において、研磨によって除去する厚さが0.3mm以下である形態が挙げられる。   One embodiment of the method for producing a composite member of the present invention further includes a polishing step for polishing the surface of the metal layer, and the thickness removed by polishing in the polishing step is 0.3 mm or less.

上記形態は、研磨工程を具えることで、より平滑な表面を有する複合部材を製造できる。また、研磨によって除去する厚さ:研磨量が少ないことで、得られた複合部材は、反りが生じ難く平坦なままであり(平坦性に優れ)、上記複合部材の表面に半田を均一的に載せられ、かつ均一的に溶融できる上に、半導体素子の載置面積を適切に確保できることから、所望の半導体素子を十分に密着できる。更に、上記形態は、研磨工程を具えるものの、上述のように研磨量が少ないため、歩留まりの低下の抑制や研磨時間の短縮によって、生産性の低下も招き難い。従って、上記形態は、放熱性により優れる放熱構造を構築可能な複合部材を生産性よく製造できる。   The said form can manufacture the composite member which has a smoother surface by providing a grinding | polishing process. In addition, the thickness removed by polishing: the amount of polishing is small, the resulting composite member is less likely to warp and remains flat (excellent flatness), and solder is uniformly applied to the surface of the composite member. In addition to being able to be mounted and melted uniformly, the mounting area of the semiconductor element can be appropriately secured, so that a desired semiconductor element can be sufficiently adhered. Furthermore, although the above-described embodiment includes a polishing step, the amount of polishing is small as described above. Therefore, it is difficult to cause a decrease in productivity by suppressing a decrease in yield and shortening a polishing time. Therefore, the said form can manufacture the composite member which can construct | assemble the heat dissipation structure which is excellent by heat dissipation with sufficient productivity.

本発明の複合部材は、放熱性及び生産性に優れる。本発明の複合部材の製造方法は、放熱性に優れる放熱構造を構築可能な複合部材を生産性よく製造できる。   The composite member of the present invention is excellent in heat dissipation and productivity. The method for producing a composite member of the present invention can produce a composite member capable of constructing a heat dissipation structure excellent in heat dissipation with high productivity.

複合材料からなる基板の上に、コールドスプレー法による金属層を具える複合部材の断面(一部)を示す顕微鏡写真である。It is a microscope picture which shows the cross section (part) of the composite member which comprises the metal layer by a cold spray method on the board | substrate which consists of composite materials.

以下、本発明をより詳細に説明する。
[複合部材]
本発明の複合部材は、金属成分としてMg等を含み、この金属成分と非金属無機材料との複合材料からなる基板と、この基板の表面を構成する材料に接して設けられた金属層とを具える。基板は、その表面全体が実質的に非金属無機材料と金属成分とで構成された形態(以下、混在形態と呼ぶ)、表面の一部(代表的には、対向する表裏面のうちの一部)が金属成分のみで構成された形態(以下、被覆形態と呼ぶ)を取り得る。
Hereinafter, the present invention will be described in more detail.
[Composite material]
The composite member of the present invention comprises Mg as a metal component, a substrate made of a composite material of this metal component and a non-metallic inorganic material, and a metal layer provided in contact with the material constituting the surface of the substrate. Have. The substrate has a form in which the entire surface is substantially composed of a nonmetallic inorganic material and a metal component (hereinafter referred to as a mixed form), a part of the surface (typically one of the front and back surfaces facing each other). Part) may be formed of only a metal component (hereinafter referred to as a coated form).

〔基板〕
<金属成分>
複合材料中の金属成分は、99.8質量%以上のMg及び不可避不純物からなるいわゆる純マグネシウム、又は添加元素と残部がMg及び不可避不純物からなるマグネシウム合金とする。金属成分が純マグネシウムである複合材料は、熱伝導率が高く、マグネシウム合金である複合材料は、耐食性や機械的特性(例えば強度)に優れる。添加元素は、Li,Ag,Ni,Ca,Al,Zn,Mn,Si,Cu,Zrなどから選択される1種以上の元素が挙げられる。添加元素が多過ぎると熱伝導性の低下を招くため、添加元素の含有量は、合計で20質量%以下(金属成分を100質量%とする。以下、添加元素の含有量について同様)が好ましい。特に、Alは3質量%以下、Znは5質量%以下、その他の元素はそれぞれ10質量%以下がより好ましい。Liを含有する場合、複合部材の軽量化、及び加工性の向上効果がある。Alを含有する場合、機械的特性・耐食性に優れる。金属成分は、公知のマグネシウム合金、例えば、ASTM記号におけるAZ系,AS系,AM系,ZK系,ZC系,LA系などにすることができる。複合材料中の金属成分が所望の組成となるように原料の金属を用意する。
〔substrate〕
<Metal component>
The metal component in the composite material is so-called pure magnesium composed of 99.8% by mass or more of Mg and inevitable impurities, or a magnesium alloy composed of Mg and inevitable impurities with the additive element and the balance. A composite material in which the metal component is pure magnesium has high thermal conductivity, and a composite material that is a magnesium alloy is excellent in corrosion resistance and mechanical properties (for example, strength). Examples of the additive element include one or more elements selected from Li, Ag, Ni, Ca, Al, Zn, Mn, Si, Cu, Zr, and the like. Too much additive element causes a decrease in thermal conductivity, so the total content of additive elements is preferably 20% by mass or less (the metal component is 100% by mass. The same applies to the content of additive elements). . In particular, Al is more preferably 3% by mass or less, Zn is 5% by mass or less, and other elements are each preferably 10% by mass or less. When Li is contained, there is an effect of reducing the weight of the composite member and improving workability. When Al is contained, it has excellent mechanical properties and corrosion resistance. The metal component can be a known magnesium alloy, for example, AZ, AS, AM, ZK, ZC, LA, etc. in the ASTM symbol. A raw material metal is prepared so that the metal component in the composite material has a desired composition.

<非金属無機材料>
《材質》
複合材料中の非金属無機材料がSiCである場合、後述する粉末形態、及びネットワーク形態のいずれの形態においても、放熱性に優れるMg-SiC複合材料を構築でき、特にネットワーク形態では放熱性により優れる。そこで、本発明では、非金属無機材料をSiCとする。
<Non-metallic inorganic material>
<Material>
When the non-metallic inorganic material in the composite material is SiC, an Mg-SiC composite material with excellent heat dissipation can be constructed in both the powder form and the network form described below, and in particular, the network form is more excellent in heat dissipation. . Therefore, in the present invention, the non-metallic inorganic material is SiC.

《形状》
複合材料中の非金属無機材料は、複数の粒子がそれぞれ独立して存在する粉末形態、非金属無機材料が網目状に連続して存在するネットワーク形態、粉末形態とネットワーク形態との混合形態が挙げられる。複合材料中の非金属無機材料の材質・形状・大きさ・含有量は、原料を実質的に維持する。従って、粉末形態は、原料に非金属無機材料の粉末を用いることで、ネットワーク形態は、原料に非金属無機材料からなる網目状の成形体、つまり、開気孔を有する多孔体(好ましくは実質的に開気孔のみを有する多孔体)、代表的には、焼結体を用いることで製造できる。粉末形態は、(1)上述のように原料に粉末を利用することから、形状の自由度が高い、(2)基板中に粒子がばらばらに分散して存在するため、研磨などの加工を施す場合に加工性に優れる、といった効果を奏する。ネットワーク形態は、(1)熱伝導性に優れる非金属無機材料が連続して存在することで、粉末形態に比較して、熱伝導率が高く、かつ半導体素子などの熱膨張率との整合性にも優れる、(2)上述のように原料に成形体を利用することから、ハンドリング性に優れ、成形型に収納し易い、といった効果を奏する。
"shape"
Nonmetallic inorganic materials in composite materials include powder forms in which a plurality of particles are present independently, network forms in which nonmetallic inorganic materials are continuously present in a network, and mixed forms of powder forms and network forms. It is done. The material, shape, size, and content of the nonmetallic inorganic material in the composite material substantially maintain the raw material. Therefore, the powder form uses a powder of a non-metallic inorganic material as a raw material, and the network form forms a network-shaped formed body made of a non-metallic inorganic material as a raw material, that is, a porous body having open pores (preferably substantially Can be produced by using a sintered body, typically a porous body having only open pores. The powder form is (1) since powder is used as a raw material as described above, and the degree of freedom of shape is high. (2) Since the particles are dispersed in the substrate, processing such as polishing is performed. In some cases, the processability is excellent. The network form is (1) non-metallic inorganic material with excellent thermal conductivity is continuously present, which has higher thermal conductivity than the powder form and consistency with the thermal expansion coefficient of semiconductor elements, etc. (2) Since the molded body is used as a raw material as described above, there are effects such as excellent handling and easy storage in a mold.

粉末形態の場合、各粒子の形状は、球状又は若干凹凸がある略球状や立方体に近い形状、細長い繊維状、平たい薄片状などのいずれでもよい。また、原料に用いる粉末の平均粒径(繊維状の場合、短径の平均)が1μm以上1000μm以下(好ましくは、粒径:5μm以上200μm以下)であると、(1)金属成分中に各粒子を均一的に分散させ易い、(2)成形体を形成し易い、といった効果を奏する。特に、原料に、微細な粉末(好ましくは平均粒径:40μm以下)と粗大な粉末(好ましくは平均粒径:40μm超200μm以下)との混合粉末を利用すると、粗大な粒子間に微細な粒子を介在できるため、充填率を高め易く、非金属無機材料の含有量がより多い複合材料を得易い。   In the case of a powder form, the shape of each particle may be any of a spherical shape, a substantially spherical shape with some irregularities, a shape close to a cube, an elongated fiber shape, a flat flake shape, and the like. In addition, when the average particle size of the powder used as a raw material (in the case of a fiber, the average of the short diameter) is 1 μm or more and 1000 μm or less (preferably, the particle size is 5 μm or more and 200 μm or less), (1) There are effects such as easy dispersion of particles and (2) easy formation of a molded product. In particular, when a mixed powder of fine powder (preferably average particle size: 40 μm or less) and coarse powder (preferably average particle size: more than 40 μm to 200 μm or less) is used as a raw material, fine particles are obtained between coarse particles. Therefore, it is easy to increase the filling rate and to obtain a composite material having a higher content of non-metallic inorganic material.

複合材料中の非金属無機材料の形状(ネットワークの有無、粒子の形状)、粒子の粒径などは、例えば、複合材料のMg等(金属成分)を塩酸などの酸によって除去して非金属無機材料のみを抽出し、単離した非金属無機材料を走査型電子顕微鏡:SEMや光学顕微鏡などで観察したり、市販のレーザー回折式粒度分布測定器を用いたりすることで確認・測定できる。その他、非金属無機材料の形状は、例えば、複合材料の断面をとり、断面をSEMなどで観察することでも確認できる。   The shape of the non-metallic inorganic material in the composite material (the presence / absence of the network, the shape of the particle), the particle size of the particle, etc. can be determined by removing Mg, etc. (metal component) of the composite material with an acid such as hydrochloric acid. It can be confirmed and measured by extracting only the material and observing the isolated non-metallic inorganic material with a scanning electron microscope: SEM or optical microscope, or using a commercially available laser diffraction particle size distribution analyzer. In addition, the shape of the non-metallic inorganic material can be confirmed by, for example, taking a cross section of the composite material and observing the cross section with an SEM or the like.

《含有量》
複合材料中の非金属無機材料の含有量は50体積%以上とする。非金属無機材料の含有量は、多いほど、熱伝導率が高く、かつ熱膨張率が小さい複合材料になる傾向にあり、55体積%以上、60体積%以上、更に70体積%以上とすることができる。80体積%を超えると、非金属無機材料を成形型に充填するための所要時間が長くなったり、大型の設備が必要になったりすることから、工業的な生産性を考慮すると、非金属無機材料の含有量は、90体積%以下、更に85体積%以下、特に80体積%以下が好ましい。所望の熱特性の複合材料が得られるように、原料の非金属無機材料の添加量を調整する。
"Content"
The content of the nonmetallic inorganic material in the composite material is 50% by volume or more. The higher the non-metallic inorganic material content, the higher the thermal conductivity and the smaller the coefficient of thermal expansion. There is a tendency for the composite material to be 55 vol% or more, 60 vol% or more, and 70 vol% or more. Can do. If it exceeds 80% by volume, the time required to fill the mold with the non-metallic inorganic material becomes long, and large-scale equipment is required. The content of the material is preferably 90% by volume or less, more preferably 85% by volume or less, and particularly preferably 80% by volume or less. The amount of the non-metallic inorganic material added as a raw material is adjusted so that a composite material having desired thermal characteristics can be obtained.

<外形>
基板の平面形状は、代表的には、矩形状が挙げられる。つまり、基板は、矩形板が代表的であるが、平面形状が円形、楕円形、種々の多角形、その他、適宜切断などすることで所望の形状とすることができる。平面積は、本発明の複合部材を放熱部材の素材に利用する場合、載置する対象(代表的には半導体素子)の大きさによって選択することができ、上記対象の載置領域を少なくとも有すればよい。
<Outline>
A typical example of the planar shape of the substrate is a rectangular shape. That is, the substrate is typically a rectangular plate, but the planar shape may be a circle, an ellipse, various polygons, or other desired shapes by cutting appropriately. When the composite member of the present invention is used as a material for a heat dissipation member, the plane area can be selected depending on the size of a target (typically a semiconductor element) to be mounted, and has at least a target mounting region. do it.

<厚さ>
基板の厚さは適宜選択することができる。本発明の複合部材を半導体素子の放熱部材に利用する場合、基板の厚さが薄いほど、半導体素子と冷却装置との間の距離を短くでき、放熱性に優れる放熱構造を構築できる。従って、基板の厚さ(表面層を具える被覆形態では、表面層を含む厚さ)は、10mm以下、特に5mm以下が好ましい。
<Thickness>
The thickness of the substrate can be appropriately selected. When the composite member of the present invention is used as a heat radiating member for a semiconductor element, the distance between the semiconductor element and the cooling device can be shortened and the heat radiating structure excellent in heat radiating property can be constructed as the substrate is thinner. Therefore, the thickness of the substrate (in the covering form including the surface layer, the thickness including the surface layer) is preferably 10 mm or less, particularly preferably 5 mm or less.

<熱特性>
基板の熱特性は、非金属無機材料の材質、含有量や形態(粉末又はネットワーク)、金属成分によって変化するものの、代表的には、熱伝導率が180W/m・K以上、熱膨張率が10ppm/K(10×10-6/K)以下を満たすものが挙げられる。この基板は、熱伝導性に優れる上に、半導体素子やその周辺部品の熱膨張率(半導体素子:4ppm/K〜7ppm/K程度(例えば、Si:4.2ppm/K、GaAs:6.5ppm/K)、パッケージや絶縁基板などの周辺部品:ステンレス鋼(20ppm/K前後)、鋼(11ppm/K〜12ppm/K)、Al2O3(6.5ppm/K)など)との整合性に優れることから、半導体素子の放熱部材の素材に好適に利用できる。非金属無機材料の含有量が多いほど、熱伝導率が高く、熱膨張率が小さい傾向にあり、例えば、熱膨張率が3.5ppm/K以上8ppm/K以下、熱伝導率が200W/m・K以上を満たす形態が挙げられる。更に、粉末形態よりもネットワーク形態の方が熱伝導率が高く、熱膨張率が小さい傾向にあり、例えば、熱膨張率が5ppm/K以下、熱伝導率が250W/m・K以上、更に280W/m・K以上、特に300W/m・K以上を満たす形態が挙げられる。
<Thermal characteristics>
Although the thermal characteristics of the substrate vary depending on the material, content and form (powder or network) of the non-metallic inorganic material, and the metal component, typically, the thermal conductivity is 180 W / m Examples include those satisfying 10 ppm / K (10 × 10 −6 / K) or less. In addition to excellent thermal conductivity, this substrate has a coefficient of thermal expansion of semiconductor elements and their peripheral components (semiconductor elements: about 4 ppm / K to 7 ppm / K (e.g., Si: 4.2 ppm / K, GaAs: 6.5 ppm / K ), Peripheral components such as packages and insulating substrates: Excellent compatibility with stainless steel (around 20 ppm / K), steel (11 ppm / K to 12 ppm / K), Al 2 O 3 (6.5 ppm / K), etc. Therefore, it can be suitably used as a material for a heat dissipation member of a semiconductor element. The higher the non-metallic inorganic material content, the higher the thermal conductivity and the lower the thermal expansion coefficient.For example, the thermal expansion coefficient is 3.5 ppm / K or more and 8 ppm / K or less, and the thermal conductivity is 200 W / m The form which satisfy | fills K or more is mentioned. In addition, the network form has a higher thermal conductivity and the thermal expansion coefficient tends to be smaller than the powder form. For example, the thermal expansion coefficient is 5 ppm / K or less, the thermal conductivity is 250 W / m · K or more, and further 280 W. / m · K or higher, particularly 300 W / m · K or higher.

<表面層>
被覆形態では、基板の表面の少なくとも一部が金属成分(Mg等)のみからなる表面層を具える。代表的には、基板の対向する二面(表裏面)のうち、一面全面、又は二面全面が表面層から構成された形態が挙げられる。被覆形態は、表面層と複合材料との界面における異種金属腐食が生じ難い上に、基板の表面が平滑で凹凸が少なく、良好な外観を有することができる。表面層は、例えば、特許文献1に記載されるように適宜なスペーサを利用するなどして成形型に隙間を設けたり、特定の分割タイプの成形型(後述)を利用したりすることで、複合時に同時に製造できる。表面層は、半田の下地として機能する金属層(後述)に対して、この金属層の更に下地になるため、金属層の形成面積を確保できれば、基板の一面全面に具えていなくてもよい。上述の成形型に隙間を設けたり、特定の成形型を利用して製造する場合には、一面全面に金属層を具える形態の方が、容易に製造でき、生産性に優れる。基板の側面(端面)にも表面層を具える形態とすることもできる。
<Surface layer>
In the covering form, at least a part of the surface of the substrate includes a surface layer made of only a metal component (Mg or the like). Typically, of the two opposing surfaces (front and back surfaces) of the substrate, the entire surface of one surface or the entire surface of the two surfaces may be formed of a surface layer. The coating form is unlikely to cause corrosion of different metals at the interface between the surface layer and the composite material, and has a good appearance with a smooth and smooth surface of the substrate. The surface layer, for example, by using a suitable spacer as described in Patent Document 1, by providing a gap in the mold, or by using a specific split type mold (described later), Can be manufactured simultaneously when compounding. Since the surface layer is a further layer of the metal layer (described later) that functions as a solder base, it may not be provided on the entire surface of the substrate as long as the formation area of the metal layer can be secured. In the case where a gap is provided in the above-described mold or a specific mold is used for manufacturing, a form having a metal layer on the entire surface can be manufactured more easily and has excellent productivity. The side surface (end surface) of the substrate may be provided with a surface layer.

上述のように複合時に同時に製造された表面層は、非金属無機材料と複合されている金属成分と同じ組成及び同じ組織(金属成分と連続する鋳造組織)から構成される。特に、金属成分及び表面層が純マグネシウムで構成される場合、Mgのヤング率が低いため、表面層を有していても、基板全体の熱膨張率が変化し難く、低熱膨張率の基板になり易い。   As described above, the surface layer produced at the time of compounding is composed of the same composition and the same structure (a cast structure continuous with the metal component) as the metal component compounded with the nonmetallic inorganic material. In particular, when the metal component and the surface layer are made of pure magnesium, the Young's modulus of Mg is low, so even if it has a surface layer, the thermal expansion coefficient of the entire substrate is unlikely to change, and the substrate has a low thermal expansion coefficient. It is easy to become.

表面層は、厚過ぎると、基板の熱伝導率の低下、かつ熱膨張率の増加を招く。そのため、基板の一面に具える表面層の厚さは、1mm以下、更に0.5mm以下、特に0.05mm(50μm)以上0.1mm(100μm)以下が好ましく、対向する表裏面にそれぞれ表面層を具える場合、二層の合計厚さは、2mm以下、更に1mm以下が好ましい。なお、表面層を具える基板の熱膨張率は、基板から試験片を作製して、市販の装置により測定できるが、基板を構成する各材料の剛性などを考慮して複合則により算出することもできる。   If the surface layer is too thick, the thermal conductivity of the substrate is lowered and the coefficient of thermal expansion is increased. Therefore, the thickness of the surface layer provided on one surface of the substrate is preferably 1 mm or less, more preferably 0.5 mm or less, particularly preferably 0.05 mm (50 μm) or more and 0.1 mm (100 μm) or less. In this case, the total thickness of the two layers is preferably 2 mm or less, more preferably 1 mm or less. Note that the coefficient of thermal expansion of a substrate with a surface layer can be measured with a commercially available device after preparing a test piece from the substrate, but it should be calculated according to the composite law in consideration of the rigidity of each material constituting the substrate. You can also.

<その他>
基板は、一部に溝、貫通孔、突起などを有することができる。また、基板は、その厚さ方向の全域に亘って金属のみから構成される箇所を有することができる。この金属は、例えば、複合材料の金属成分と同じMg等、異種の金属(例えば、ステンレス鋼など)が挙げられる。基板の厚さ方向に、Mg等と異種の金属とが積層された形態でもよい。この金属のみから構成される箇所に上記溝、貫通孔、突起などを具える形態とすることができる。例えば、貫通孔は、固定用のボルト孔などに利用する。
<Others>
The substrate can have a groove, a through hole, a protrusion, or the like in part. Moreover, the board | substrate can have the location comprised only from a metal over the whole area of the thickness direction. Examples of the metal include different metals (for example, stainless steel) such as Mg, which is the same as the metal component of the composite material. A form in which Mg or the like and a dissimilar metal are laminated in the thickness direction of the substrate may be employed. It can be set as the form which provides the said groove | channel, a through-hole, a processus | protrusion, etc. in the location comprised only from this metal. For example, the through hole is used as a fixing bolt hole.

〔金属層〕
上述の複合材料からなる基板の表面の少なくとも一部に金属層を具える。非金属無機材料が表面に存在する混在形態の基板では、金属層は、基板の表面を構成する非金属無機材料とMg等との双方に直接接して形成され、金属成分からなる表面層を具える被覆形態の基板では、表面層に直接接して、つまり、Mg等にのみ直接接して金属層が形成されることを特徴の一つとする。
[Metal layer]
A metal layer is provided on at least a part of the surface of the substrate made of the composite material described above. In a mixed-type substrate in which a nonmetallic inorganic material is present on the surface, the metal layer is formed in direct contact with both the nonmetallic inorganic material constituting the surface of the substrate and Mg, etc., and has a surface layer made of a metal component. One of the features of the substrate having a coating form is that the metal layer is formed in direct contact with the surface layer, that is, in direct contact with only Mg or the like.

<材質>
金属層は、基板を構成する金属成分とは異なる金属から構成されるものとする。金属層は、半田の下地に利用することから、その構成金属は、半田との密着性に優れるものが好ましく、具体的には、ニッケル(Ni)、ニッケル合金、銅(Cu)、銅合金、金(Au)、金合金、銀(Ag)、銀合金が挙げられる。特に、ニッケルや銅及びその合金は、金や銀及びその合金よりも軽く、重量の増加を抑制して、軽量な複合部材とすることができる上に、低コストである。金や銀及びその合金は、重いものの、熱伝導率が高く、放熱性に優れる複合部材とすることができる。また、上記で列挙した金属はいずれも、後述するコールドスプレー法による成膜が可能である。その他、金属層の構成金属にアルミニウム(Al)やその合金を利用することができる。この場合、ジンケート処理した後、その上に、ニッケルや銅及びその合金からなる金属層を別途設ける。なお、基板の表裏面の双方にそれぞれ金属層を具える場合、各面の金属層がいずれも同種の金属から構成される形態、異種の金属から構成される形態のいずれでもよい。
<Material>
The metal layer is made of a metal different from the metal component constituting the substrate. Since the metal layer is used for the base of the solder, the constituent metal is preferably excellent in adhesiveness with the solder, specifically, nickel (Ni), nickel alloy, copper (Cu), copper alloy, Examples thereof include gold (Au), gold alloy, silver (Ag), and silver alloy. In particular, nickel, copper, and alloys thereof are lighter than gold, silver, and alloys thereof, can suppress weight increase, and can be made into a lightweight composite member, and are low in cost. Although gold, silver, and alloys thereof are heavy, a composite member having high thermal conductivity and excellent heat dissipation can be obtained. Further, any of the metals listed above can be formed by the cold spray method described later. In addition, aluminum (Al) or an alloy thereof can be used as a constituent metal of the metal layer. In this case, after the zincate treatment, a metal layer made of nickel, copper, or an alloy thereof is separately provided thereon. In addition, when providing both the front and back of a board | substrate with a metal layer, respectively, the form in which all the metal layers of each surface are comprised from the same kind of metal, and the form comprised from a different kind of metal may be sufficient.

<厚さ>
金属層は、その厚さが0.001mm(1μm)以上0.5mm(500μm)未満であることを特徴の一つとする。厚さが0.001mm以上であることで、半田の下地として十分に機能でき、0.5mm未満であることで、金属層を具えることによる熱特性の劣化を招き難い。金属層の厚さは、0.003mm(3μm)以上0.2mm(200μm)以下がより好ましい。
<Thickness>
One of the features of the metal layer is that the thickness is 0.001 mm (1 μm) or more and less than 0.5 mm (500 μm). When the thickness is 0.001 mm or more, it can sufficiently function as a solder base, and when it is less than 0.5 mm, it is difficult to cause deterioration of thermal characteristics due to the provision of a metal layer. The thickness of the metal layer is more preferably 0.003 mm (3 μm) or more and 0.2 mm (200 μm) or less.

<表面粗さ>
金属層は、その表面粗さがRaで10μm以下であることを特徴の一つとする。表面粗さがRaで10μm以下であることで、半田を均一的に塗布できる上に、半田を均一的に溶融できるため、半田を介して、本発明の複合部材と半導体素子などの接合対象とを密着できる。また、表面粗さが十分に小さいことで、更に研磨を施した場合でも、研磨量が少ない軽い研磨でより平滑にすることができる。金属層は、平滑であるほど好ましく、表面粗さは、Raで3.5μm以下、更に3μm以下、2.5μm以下、1μm以下がより好ましく、特に、0.5μm以下が好ましい。
<Surface roughness>
One feature of the metal layer is that the surface roughness Ra is 10 μm or less. Since the surface roughness Ra is 10 μm or less, the solder can be uniformly applied and the solder can be uniformly melted. Can adhere. Further, since the surface roughness is sufficiently small, even when further polishing is performed, the surface can be made smoother by light polishing with a small polishing amount. The metal layer is preferably as smooth as possible, and the surface roughness Ra is 3.5 μm or less, more preferably 3 μm or less, 2.5 μm or less, or 1 μm or less, and particularly preferably 0.5 μm or less.

[製造方法]
本発明の複合部材は、基本的には、特許文献1に記載される溶浸法を利用して基板を作製し(準備工程)、この基板に、コールドスプレー法によって金属層を形成する被覆工程を経て製造することができる。その後、適宜研磨を施すことができる。
[Production method]
The composite member of the present invention is basically a coating step in which a substrate is prepared using the infiltration method described in Patent Document 1 (preparation step), and a metal layer is formed on the substrate by a cold spray method. Can be manufactured. Then, it can grind | polish suitably.

〔準備工程〕
基板は、原料の非金属無機材料を準備する工程⇒原料の非金属無機材料を成形型に充填する工程⇒成形型に充填した非金属無機材料に溶融したMg等を溶浸させて複合し、板状の複合材料(基板)を形成する工程を経て得られる。
[Preparation process]
The substrate is a step of preparing a raw material non-metallic inorganic material ⇒ a step of filling the raw material non-metallic inorganic material into a mold ⇒ a composite of infiltrating molten Mg etc. into the non-metallic inorganic material filled in the mold, It is obtained through a step of forming a plate-shaped composite material (substrate).

<原料の準備>
粉末形態の複合材料を製造する場合、所望の材質、形状、大きさ(粒径)の粒子からなる粉末を用意する(上述の基板の項を参照)。原料粉末は、上述のように微粗混合粉末であると、成形型に対する充填密度を高め易く、非金属無機材料の含有量が50体積%以上、更に60体積%以上といった複合材料を製造し易い。
<Preparation of raw materials>
When producing a composite material in the form of a powder, a powder composed of particles having a desired material, shape, and size (particle size) is prepared (see the above-mentioned substrate section). When the raw material powder is a finely mixed powder as described above, it is easy to increase the filling density of the mold, and it is easy to produce a composite material having a nonmetallic inorganic material content of 50% by volume or more, and further 60% by volume or more. .

原料粉末は、所望の材質、形状、大きさ(粒径)の市販品を用いてもよいし、市販の粉末を適宜粉砕した後、粒度分布測定装置によって分級し、所望の大きさや形状のものを用意してもよい。   The raw material powder may be a commercially available product of the desired material, shape and size (particle size), or after pulverizing the commercially available powder as appropriate, it is classified by a particle size distribution measuring device and has a desired size and shape. May be prepared.

一方、ネットワーク形態の複合材料を製造する場合、上述のように開気孔を有し、気孔率が50体積%以上である板状の多孔体、代表的には焼結体を用意する。例えば、SiC焼結体は、特許文献1に記載されるようにSiC粉末を用いて、タッピング、スリップキャスト、加圧成形、ドクターブレード法などの適宜な手法を用いて粉末成形体を作製し、この粉末成形体を焼結することで製造できる。焼結条件は、焼結温度:1300℃〜2500℃(好ましくは2000℃以上)、保持時間:2時間〜100時間程度、雰囲気:真空が挙げられる。熱処理温度が高く(例えば、2000℃以上、更に2200℃以上)、熱処理時間が長いほど(例えば、50時間以上、更に70時間以上)、ネットワークが太くなり、熱伝導率がより高いSiC焼結体とすることができる。又は、市販の多孔体(焼結体)を利用することができる。多孔体は、製造する基板の厚さに応じた厚さのものを用意する。   On the other hand, when manufacturing a composite material in a network form, a plate-like porous body having open pores and a porosity of 50% by volume or more as described above, typically a sintered body is prepared. For example, the SiC sintered body is produced by using a SiC powder as described in Patent Document 1, using a suitable method such as tapping, slip casting, pressure molding, and a doctor blade method, It can be manufactured by sintering this powder compact. Sintering conditions include sintering temperature: 1300 ° C. to 2500 ° C. (preferably 2000 ° C. or higher), holding time: about 2 hours to 100 hours, atmosphere: vacuum. A SiC sintered body having a higher heat treatment temperature (for example, 2000 ° C. or more, further 2200 ° C. or more) and a longer heat treatment time (for example, 50 hours or more, further 70 hours or more), a thicker network and higher thermal conductivity. It can be. Alternatively, a commercially available porous body (sintered body) can be used. A porous body having a thickness corresponding to the thickness of the substrate to be manufactured is prepared.

SiC粉末やSiC多孔体を利用する場合はいずれも、特許文献1に記載されるように、酸化処理を施して(加熱温度:700℃〜1000℃)、表面に酸化膜(主としてSiO2からなる膜)を具える形態とすると、SiCと溶融したMg等との濡れ性を高められる。この形態は、SiCの表面全体が酸化膜で覆われることから、後述する溶浸剤を利用する場合よりも、濡れ性をより高められる傾向にあり、例えば、溶浸温度を低下できる場合がある。酸化処理を施さなくてもよい。 When using SiC powder or SiC porous body, as described in Patent Document 1, an oxidation treatment is performed (heating temperature: 700 ° C. to 1000 ° C.), and an oxide film (mainly composed of SiO 2 ) is formed on the surface. If the form is provided with a film, the wettability between SiC and molten Mg or the like can be improved. In this form, since the entire surface of SiC is covered with an oxide film, the wettability tends to be higher than when an infiltrant described later is used, and for example, the infiltration temperature may be lowered. The oxidation treatment may not be performed.

又は、別途、SiO2からなる溶浸剤を含有させることができる。特に、SiO2からなる粉末を用いると、溶浸剤を成形型に充填し易い。SiO2粉末は、SiC粉末よりも小さいとSiC間に介在させ易く好ましい。例えば、SiO2粉末の平均粒径は、0.01μm〜3μm程度が挙げられる。溶浸剤が多過ぎるとSiO2とMgとが反応して生成するMgOやMg2Siが多く残存して熱特性の劣化を招く恐れがあり、少な過ぎると濡れ性を高める効果を十分に得られないことから、SiO2からなる溶浸剤の含有量は、原料のSiC粉末と溶浸剤との合計質量に対して、0.1%以上5%以下が好ましい。 Alternatively, an infiltrant made of SiO 2 can be included separately. In particular, when a powder made of SiO 2 is used, it is easy to fill the mold with the infiltrant. If the SiO 2 powder is smaller than the SiC powder, it is preferable because it is easily interposed between SiC. For example, the average particle diameter of the SiO 2 powder is about 0.01 μm to 3 μm. If there is too much infiltrant, a large amount of MgO and Mg 2 Si generated by the reaction of SiO 2 and Mg may remain, leading to deterioration of thermal characteristics, and if it is too little, the effect of improving wettability can be obtained sufficiently. Therefore, the content of the infiltrant made of SiO 2 is preferably 0.1% or more and 5% or less with respect to the total mass of the raw material SiC powder and the infiltrant.

<成形型への充填>
粉末形態の複合材料を製造する場合には、上述の原料粉末(SiC粉末の場合、SiC粉末のみ、酸化膜を具える被覆SiC粉末、溶浸剤を含む溶浸剤含有粉末のいずれか)を、所望の形状・厚さの複合材料を成形可能な形成空間を有する成形型にタッピングなどして充填する(特許文献1参照)。ネットワーク形態の複合材料を製造する場合、上記成形型に所望の形状・厚さの多孔体を配置する。粉末形態とネットワーク形態との混合形態とする場合には、上述の原料粉末及び所望の多孔体の双方を上記成形型に収納する。
<Filling into mold>
When manufacturing a composite material in the form of powder, the above-mentioned raw material powder (in the case of SiC powder, only SiC powder, coated SiC powder having an oxide film, or infiltrant-containing powder containing infiltrant) is desired. The composite material having the shape and thickness is filled by tapping or the like into a mold having a forming space capable of being molded (see Patent Document 1). When manufacturing a composite material in a network form, a porous body having a desired shape and thickness is placed in the mold. When the mixed form of the powder form and the network form is used, both the raw material powder and the desired porous body are stored in the mold.

表面層を具える被覆形態の基板を製造する場合には、例えば、適宜なスペーサを用意して、このスペーサも成形型に収納する。スペーサは、ナフタレンやアントラセン、カーボンやステンレス鋼(例えば、SUS430)などから構成された板状体や線状体が挙げられる。特に、原料に非金属無機材料の成形体(上述の粉末成形体、又は焼結体)を利用する場合、成形体と上記スペーサとを成形型に容易に収納でき(特許文献1参照)、生産性に優れる。又は、原料に上記成形体を利用し、上記成形体が成形型内で自立可能であれば、成形型と成形体との間に隙間(表面層の厚さに応じた大きさ)が設けられるように成形型の大きさを選択することで、スペーサを省略しても表面層を形成できる。又は、複数の分割片から構成される成形型であって、分割片の熱膨張率と、分割片を連結するボルトの熱膨張率とが異なる(ボルトの熱膨張率が大きい)という、特定の分割タイプの成形型(特許文献1参照)を利用することでも、表面層を形成できる。   When manufacturing a coated substrate having a surface layer, for example, an appropriate spacer is prepared, and this spacer is also stored in a mold. Examples of the spacer include a plate-like body and a linear body made of naphthalene, anthracene, carbon, stainless steel (for example, SUS430), or the like. In particular, when using a molded body of a non-metallic inorganic material as a raw material (the above-mentioned powder molded body or sintered body), the molded body and the spacer can be easily stored in a molding die (see Patent Document 1). Excellent in properties. Alternatively, if the molded body is used as a raw material and the molded body can be self-supporting in the mold, a gap (a size corresponding to the thickness of the surface layer) is provided between the mold and the molded body. By selecting the size of the mold as described above, the surface layer can be formed even if the spacer is omitted. Or, it is a mold composed of a plurality of divided pieces, and the thermal expansion coefficient of the divided pieces is different from the thermal expansion coefficient of the bolts connecting the divided pieces (the thermal expansion coefficient of the bolts is large). The surface layer can also be formed by using a split type mold (see Patent Document 1).

<複合>
成形型に充填された原料の非金属無機材料と、溶融したMg等とを接触させて、非金属無機材料に囲まれる空間にMg等を介在させて複合する。被覆形態では、成形型と非金属無機材料との間に形成された空間にMg等を充填して表面層も同時に形成する。溶浸時、アルゴン(Ar)や窒素(N2)といった不活性雰囲気とすると、Mg等が酸化し難い。特にAr雰囲気とすると、窒化物の形成を抑制できて好ましい。溶浸時の雰囲気圧力は、大気圧以下の真空雰囲気とすると、雰囲気中のガス成分を巻き込むことによる気孔の発生を抑制でき、緻密な複合材料を得易い。一方、雰囲気圧力を大気圧とすると、設備を簡略な構造にできる上に、Mg蒸気の飛散を抑制できて好ましい。溶浸温度は、金属成分にもよるが、650℃以上1000℃以下が好ましく、溶浸温度が高いほど濡れ性を高められ、気孔を低減できるものの、引け巣やガスホールといった欠陥やMg等の沸騰が生じ得ることから、900℃以下、更に680℃以上850℃以下程度が好ましい。
<Composite>
The raw material nonmetallic inorganic material filled in the mold is brought into contact with molten Mg or the like, and composited with Mg or the like interposed in the space surrounded by the nonmetallic inorganic material. In the covering form, the space formed between the mold and the nonmetallic inorganic material is filled with Mg or the like to form the surface layer at the same time. If an inert atmosphere such as argon (Ar) or nitrogen (N 2 ) is used during infiltration, Mg or the like is hardly oxidized. In particular, an Ar atmosphere is preferable because nitride formation can be suppressed. When the atmospheric pressure during infiltration is a vacuum atmosphere of atmospheric pressure or lower, generation of pores due to entrainment of gas components in the atmosphere can be suppressed, and a dense composite material can be easily obtained. On the other hand, it is preferable to set the atmospheric pressure to atmospheric pressure because the facility can have a simple structure and the scattering of Mg vapor can be suppressed. Although the infiltration temperature depends on the metal component, it is preferably 650 ° C or higher and 1000 ° C or lower. The higher the infiltration temperature, the higher the wettability and the reduction of pores, but defects such as shrinkage and gas holes, Mg, etc. Since boiling can occur, it is preferably 900 ° C. or lower, more preferably 680 ° C. or higher and 850 ° C. or lower.

溶融したMg等(溶融金属)の凝固は、不活性雰囲気、雰囲気圧力:大気圧以上とすると、凝固時に欠陥や酸化物などが生成されることを抑制して、高品位な複合材料が得られる。また、平面積が大きい複合材料を製造する場合、一方向(好ましくは溶融金属の溶浸方向とは逆の方向)に冷却を行うと、引け巣などの内部欠陥が形成され難く、高品位な複合材料が得られて好ましい。平面積が小さい小型な複合材料を製造する場合には、上述の一方向の冷却を行わなくてもよく、例えば、全体的に均一な冷却を行っても高品位な複合材料が得られる。凝固時の冷却速度が速いほど、内部欠陥の生成や金属成分中における晶出物の成長などを抑制でき、高品位な複合材料が得られる。冷却速度を速めるには、例えば、成形型の構成材料を熱伝導性に優れる材料(例えば、炭素、黒鉛、ステンレス鋼など)としたり、ファンなどを用いた空冷や水冷などの強制冷却を行ったりすることが挙げられる。   Solidification of molten Mg, etc. (molten metal) can be achieved by setting the inert atmosphere, atmospheric pressure: atmospheric pressure or higher to suppress the formation of defects and oxides during solidification, resulting in a high-quality composite material. . In addition, when producing a composite material having a large flat area, if cooling is performed in one direction (preferably in the direction opposite to the infiltration direction of the molten metal), internal defects such as shrinkage cavities are difficult to form, and high quality is achieved. A composite material is preferably obtained. When manufacturing a small composite material having a small plane area, it is not necessary to perform the above-described cooling in one direction. For example, a high-quality composite material can be obtained even when uniform cooling is performed as a whole. As the cooling rate during solidification increases, the generation of internal defects and the growth of crystallized substances in the metal component can be suppressed, and a high-quality composite material can be obtained. In order to increase the cooling rate, for example, the component material of the mold is made of a material having excellent thermal conductivity (for example, carbon, graphite, stainless steel, etc.), or forced cooling such as air cooling or water cooling using a fan is performed. To do.

〔被覆工程〕
そして、本発明の複合部材の製造方法では、用意した複合材料からなる基板において対向する表裏面の所望の領域(一面の一部又は全部、各面の一部又は全部)に、コールドスプレー法によって、所望の金属からなる金属層を形成することを最大の特徴とする。
[Coating process]
And, in the method for producing a composite member of the present invention, the desired regions (part or all of one surface, part or all of each surface) on the front and back surfaces of the prepared composite material substrate are subjected to a cold spray method. The greatest feature is to form a metal layer made of a desired metal.

コールドスプレー法による金属層の形成には、公知の成膜装置及び成膜条件を利用できる。成膜装置は、代表的には、搬送用ガス及びキャリアガスに利用される高圧ガスを貯蔵するボンベ部と、ボンベ部からの高圧ガスが流通されるキャリア用配管と、この配管を加熱する加熱部と、ボンベ部からの高圧ガスが流通される搬送用配管と、この配管に金属粉末を供給する粉末供給部と、キャリア用配管及び搬送用配管が接続されて搬送用ガスによって搬送される金属粉末とキャリアガスとが導入され、かつキャリアガスによって金属粉末をノズル口から放出するスプレーガンと、スプレーガンに具えるノズル口に対向するように金属層を形成する対象(ここでは上記基板)を支持する支持部とを具えるものが挙げられる。ガス種は、窒素、ヘリウム、アルゴン、空気などが挙げられる。キャリアガスの温度は、金属粉末の融点又は軟化点に応じて選択することができる。ガス圧は、金属粉末の材質や粒径などに応じて選択することができる。   A known film forming apparatus and film forming conditions can be used for forming the metal layer by the cold spray method. Typically, the film forming apparatus includes a cylinder part that stores high-pressure gas used as a carrier gas and a carrier gas, a carrier pipe through which the high-pressure gas from the cylinder part circulates, and heating that heats the pipe. , A transport pipe through which high-pressure gas from the cylinder part is circulated, a powder supply section for supplying metal powder to the pipe, a carrier pipe and a transport pipe connected to the metal transported by the transport gas A spray gun in which powder and carrier gas are introduced and metal powder is discharged from the nozzle port by the carrier gas, and an object (here, the substrate) on which the metal layer is formed so as to face the nozzle port provided in the spray gun. The thing provided with the support part to support is mentioned. Examples of the gas species include nitrogen, helium, argon, and air. The temperature of the carrier gas can be selected according to the melting point or softening point of the metal powder. The gas pressure can be selected according to the material and particle size of the metal powder.

金属層の原料となる金属粉末は、所望の金属(代表的には、上述の金属層の項参照)からなるものを選択する。金属粉末の大きさは、成膜条件(キャリアガスの温度、ガス圧、ノズル口から対象までの距離など)や金属の材質(塑性変形のし易さ)にもよるが、金属層の厚さにある程度影響を与える。金属粉末は、その平均粒径が1μm〜200μm程度、特に3μm〜50μm程度であると、厚さが0.5mm(500μm)未満、更に0.3mm(300μm)以下、特に0.2mm(200)μm以下といった薄膜であって、表面粗さがRaで10μm以下、更に8.5μm以下、特に7.5μm以下といった平滑な金属層(膜)を形成し易い。また、微細な粉末を用いて成膜した場合、成膜後、研磨する場合にも研磨し易い傾向にある。   The metal powder used as the raw material for the metal layer is selected from those made of a desired metal (typically, see the section of the metal layer described above). The size of the metal powder depends on the film formation conditions (carrier gas temperature, gas pressure, distance from the nozzle port to the target, etc.) and the metal material (ease of plastic deformation), but the thickness of the metal layer. To some extent. The metal powder has an average particle size of about 1 μm to 200 μm, particularly about 3 μm to 50 μm, and the thickness is less than 0.5 mm (500 μm), further 0.3 mm (300 μm) or less, particularly 0.2 mm (200) μm or less. It is a thin film, and it is easy to form a smooth metal layer (film) having a surface roughness Ra of 10 μm or less, further 8.5 μm or less, particularly 7.5 μm or less. In addition, when a film is formed using a fine powder, it tends to be easily polished even when polishing after film formation.

コールドスプレー法で金属層を形成すると、鋳ぐるみやホットプレス法を利用した場合と異なり、基板と金属層との間に熱による変成相が実質的に形成されない。従って、基板と金属層との間に変成相が存在しないことは、金属層がコールドスプレー法で形成されたことを示す根拠の一つになる。また、コールドスプレー法で金属層を形成すると、電気めっき法や無電解めっき法を利用した場合よりも金属の純度を高め易く、例えば、純度(質量割合)が85%以上、更に90%以上、特に95%以上の金属層を形成できる。従って、金属層を構成する金属の純度が高いことは、金属層がコールドスプレー法で形成されたことを示す根拠の一つになる。金属層における変成相の有無の確認、純度の測定には、例えば、複合部材(金属層)の断面についてのSEM観察、SEMに付属するEDX分析装置による成分分析、複合部材(金属層)の表面についてのオージェ電子分光装置による成分分析などを利用することが挙げられる。   When the metal layer is formed by the cold spray method, unlike the case of using a cast or hot press method, a metamorphic phase due to heat is not substantially formed between the substrate and the metal layer. Therefore, the absence of a metamorphic phase between the substrate and the metal layer is one of the grounds indicating that the metal layer was formed by the cold spray method. Further, when the metal layer is formed by the cold spray method, it is easier to increase the purity of the metal than when using the electroplating method or the electroless plating method, for example, the purity (mass ratio) is 85% or more, more than 90%, In particular, a metal layer of 95% or more can be formed. Therefore, the high purity of the metal constituting the metal layer is one of the grounds indicating that the metal layer was formed by the cold spray method. For confirmation of the presence or absence of metamorphic phase in the metal layer, purity measurement, for example, SEM observation of the cross-section of the composite member (metal layer), component analysis by the EDX analyzer attached to the SEM, the surface of the composite member (metal layer) For example, it is possible to use component analysis by an Auger electron spectrometer.

〔研磨工程〕
上述のようにコールドスプレー法で金属層を形成することで、研磨などの後処理を施すことなく、厚さが0.5mm未満かつ表面粗さがRaで10μm以下である金属層が得られる。更に研磨を施すことで、厚さが0.1mm以下、更に0.05mm以下、表面粗さがRaで3.5μm以下、更に0.5μm以下にすることができる。特に、本発明の複合部材の製造方法では、形成した金属層の厚さが0.5mm未満と薄いことから、研磨量が少なくても、具体的には0.1mm以下でも、上述のようにRaで3.5μm以下を達成できる。また、コールドスプレー法によって形成された金属層は、上述のように金属の圧延板と異なり、配向性が実質的に無く、等方的な組織であることから、研磨時の残留応力の開放が起き難い上に、変形が小さい。このため、研磨し易い。このように研磨量が0.1mm以下と少ない上に研磨し易いことから、研磨工程を具える場合にも、作業性に優れる。かつ、研磨量が少ない軽い研磨でよいため、研磨によって反りが生じ難い、又は実質的に生じない。従って、平坦性に優れる複合部材が得られる。研磨量が0.1mm以下の範囲では、多いほど、表面粗さをより小さくすることができ(例えば、Raで0.5μm以下)、少ないほど(例えば、0.03mm(30μm)以下)、作業時間の短縮を図ることができる。
[Polishing process]
By forming the metal layer by the cold spray method as described above, a metal layer having a thickness of less than 0.5 mm and a surface roughness of Ra of 10 μm or less can be obtained without performing post-treatment such as polishing. By further polishing, the thickness can be 0.1 mm or less, further 0.05 mm or less, and the surface roughness Ra can be 3.5 μm or less, further 0.5 μm or less. In particular, in the method for producing a composite member of the present invention, since the thickness of the formed metal layer is as thin as less than 0.5 mm, even if the polishing amount is small, specifically 0.1 mm or less, Ra 3.5μm or less can be achieved. Further, unlike the metal rolled plate, the metal layer formed by the cold spray method has substantially no orientation and isotropic structure, so that the residual stress during polishing is released. It is difficult to get up and deformation is small. For this reason, it is easy to polish. Thus, since the polishing amount is as small as 0.1 mm or less and polishing is easy, workability is excellent even when a polishing step is provided. In addition, since light polishing with a small amount of polishing may be used, warping is hardly caused by polishing or is not substantially generated. Therefore, a composite member having excellent flatness can be obtained. When the polishing amount is in the range of 0.1 mm or less, the larger the surface roughness, the smaller the surface roughness (for example, Ra 0.5 μm or less), the smaller (for example, 0.03 mm (30 μm) or less), the shorter the working time. Can be achieved.

〔その他の工程〕
その他、上記製造方法の一工程として、上記基板、又は上記金属層を具える複合部材を300℃以上、上記基板の金属成分及び金属層の構成金属の固相線温度(融点)未満の温度に加熱しながら、1ton/cm2以上の圧力で加圧する圧縮処理工程を具えることができる。このようなホットプレスを基板や複合部材に施すことで、基板中の気孔を低減して、気孔率が低い緻密な基板や複合部材とすることができ、気孔に起因する特性のばらつきや劣化を抑制できる。
[Other processes]
In addition, as one step of the above manufacturing method, the substrate or the composite member comprising the metal layer is heated to a temperature of 300 ° C. or higher and lower than the solidus temperature (melting point) of the metal component of the substrate and the constituent metal of the metal layer. A compression treatment step of applying pressure at a pressure of 1 ton / cm 2 or more while heating can be provided. By applying such a hot press to the substrate or the composite member, pores in the substrate can be reduced, and a dense substrate or composite member having a low porosity can be obtained. Can be suppressed.

[試験例]
金属成分が純マグネシウム、非金属無機材料がSiCであるMg-SiC複合材料からなる基板を作製し、この基板にコールドスプレー法で金属層を形成して、金属層を具える複合部材を作製し、表面性状、及び半田との密着性を調べた。
[Test example]
A substrate made of Mg-SiC composite material with pure magnesium as the metal component and SiC as the non-metallic inorganic material is fabricated, and a metal layer is formed on this substrate by the cold spray method, and a composite member including the metal layer is fabricated. The surface properties and the adhesion to the solder were examined.

基板は、以下のように作製した。原料の金属として、99.8質量%以上がMgであり、残部が不可避不純物からなる純マグネシウムのインゴット(市販品)を用意した。   The substrate was produced as follows. As a raw material metal, a pure magnesium ingot (commercially available product) comprising 99.8% by mass or more of Mg and the balance of inevitable impurities was prepared.

試料No.1〜No.20については、粒径が異なる2種のSiC粉末(いずれも市販品):#120(平均粒径:約110μm)、#1000(平均粒径:約15μm)と、溶浸剤として、平均粒径0.3μmのSiO2からなる粉末(市販品)とを混合した溶浸剤含有粉末を用意した。SiO2粉末の配合量は、溶浸剤含有粉末の全量に対して1.0質量%とした。 For samples No. 1 to No. 20, two types of SiC powders with different particle sizes (both commercially available): # 120 (average particle size: about 110 μm), # 1000 (average particle size: about 15 μm), As an infiltrant, an infiltrant-containing powder prepared by mixing a powder (commercial product) made of SiO 2 having an average particle size of 0.3 μm was prepared. The amount of SiO 2 powder was 1.0 wt% based on the total amount of the infiltrant-containing powder.

試料No.21〜No.40については、市販のSiC焼結体(相対密度:80%、長さ200mm×幅150mm)を用意した。試料No.21〜No.30については、厚さ5mmの焼結体、試料No.31〜No.40については、厚さ4mmの焼結体を用意した。各SiC焼結体は、1000℃×2時間の酸化処理を施し、その表面に酸化膜を形成した。   For samples No. 21 to No. 40, commercially available SiC sintered bodies (relative density: 80%, length 200 mm × width 150 mm) were prepared. For samples No. 21 to No. 30, a sintered body having a thickness of 5 mm was prepared, and for samples No. 31 to No. 40, a sintered body having a thickness of 4 mm was prepared. Each SiC sintered body was oxidized at 1000 ° C. for 2 hours to form an oxide film on the surface.

用意した原料:溶浸剤含有粉末又は酸化膜を形成したSiC焼結体を成形型(鋳型)に収納する。この試験では、成形型は、一方が開口した直方体状の箱体であって、複数の分割片を組み合わせて一体に形成されるカーボン製のものを用意した。また、成形型は、長さ200mm×幅150mm×厚さ5mm(試料No.1〜No.30)、又は厚さ6mm(試料No.31〜No.40)の矩形板が成形可能な形成空間(キャビティ)を有するものを用意した。更に、成形型は、開口部の周縁に連結されるインゴット載置部を有するものとした。インゴット載置部は、載置されたインゴットが溶融した場合、形成空間の開口部(厚さ5mm又は6mm)に流れ込むように構成されている。なお、成形型は、複数の分割片を組み合わせて一体に形成される形態ではなく、箱状に一体成形されたものを利用してもよいが、上述の分割形態は、溶浸後の複合材料を取り出し易い。   Prepared raw material: Infiltrant-containing powder or SiC sintered body on which an oxide film is formed is stored in a mold (mold). In this test, the mold was a rectangular parallelepiped box that was opened on one side, and a carbon mold that was formed integrally by combining a plurality of divided pieces was prepared. In addition, the mold is a forming space in which a rectangular plate with a length of 200 mm x width 150 mm x thickness 5 mm (sample No. 1 to No. 30) or thickness 6 mm (sample No. 31 to No. 40) can be molded. The thing which has (cavity) was prepared. Further, the mold has an ingot placement portion connected to the periphery of the opening. The ingot placing part is configured to flow into an opening (thickness 5 mm or 6 mm) in the formation space when the placed ingot is melted. In addition, although the shaping | molding die may utilize what was integrally formed in the box shape instead of the form integrally formed by combining several division | segmentation pieces, the above-mentioned division | segmentation form is the composite material after infiltration. Easy to take out.

試料No.1〜No.20については、上記成形型に振動を与えつつ(タッピングしつつ)、溶浸剤含有粉末を充填し、成形型のキャビティに対するSiC粉末の充填密度が約72%となるように粉末の量を調整した。試料No.21〜No.30については、キャビティの厚さが5mmの成形型に、厚さ5mmのSiC焼結体を収納した。試料No.21〜No.30では、キャビティの内面とSiC焼結体との間に隙間が実質的に無い。試料No.31〜No.40については、キャビティの厚さが6mmの成形型に、SiC焼結体の表裏面(200mm×150mmの二面)とキャビティの内面との間にそれぞれ1.0mmの隙間(表裏面の合計で2.0mmの隙間)が設けられるように厚さ4mmのSiC焼結体を収納した。   Samples No. 1 to No. 20 were filled with the infiltrant-containing powder while applying vibration (tapping) to the mold, so that the packing density of the SiC powder in the mold cavity was about 72%. The amount of powder was adjusted. For samples No. 21 to No. 30, a 5 mm thick SiC sintered body was housed in a mold having a cavity thickness of 5 mm. In samples No. 21 to No. 30, there is substantially no gap between the inner surface of the cavity and the SiC sintered body. For samples No. 31 to No. 40, in the mold with a cavity thickness of 6 mm, a gap of 1.0 mm is provided between the front and back surfaces of the SiC sintered body (two sides of 200 mm × 150 mm) and the inner surface of the cavity. A SiC sintered body having a thickness of 4 mm was accommodated so as to provide a gap of 2.0 mm in total on the front and back surfaces.

なお、この試験では、成形型のキャビティ(内周面)において溶融金属やSiCと接触する箇所に市販の離型剤を塗布した。離型剤を塗布することで、溶浸後、複合材料を取り出し易く、作業性に優れる。離型剤の塗布は、省略することができる。   In this test, a commercially available release agent was applied to the mold cavity (inner peripheral surface) where it was in contact with the molten metal or SiC. By applying the release agent, it is easy to take out the composite material after infiltration, and the workability is excellent. Application of the release agent can be omitted.

成形型に溶浸剤含有粉末やSiC焼結体を収納した後、上述のインゴット載置部に上記インゴットを配置し、この成形型を所定の温度に加熱して、上記インゴットを溶融する。成形型の加熱は、加熱可能な雰囲気炉に成形型を装入することで行う。SiC粉末を用いた試料No.1〜No.20については、溶浸温度:710℃、Ar雰囲気、雰囲気圧力:大気圧、SiC焼結体を用いた試料No.21〜No.40については、溶浸温度:680℃、Ar雰囲気、雰囲気圧力:大気圧となるように上記雰囲気炉を調整した。   After the infiltrant-containing powder and the SiC sintered body are stored in the mold, the ingot is placed on the ingot mounting portion, and the mold is heated to a predetermined temperature to melt the ingot. The mold is heated by inserting the mold into a heatable atmosphere furnace. For samples No. 1 to No. 20 using SiC powder, infiltration temperature: 710 ° C., Ar atmosphere, atmospheric pressure: atmospheric pressure, for samples No. 21 to No. 40 using SiC sintered bodies, The atmosphere furnace was adjusted so that the infiltration temperature was 680 ° C., Ar atmosphere, and atmospheric pressure was atmospheric pressure.

溶融した純マグネシウムは、成形型の開口部からキャビティに流入し、キャビティ内に充填されたSiC粒子間、又はSiCがつくる網目に囲まれた空間に溶浸する。試料No.31〜No.40については、溶融した純マグネシウムは、キャビティとSiC焼結体との間の隙間にも充填される。溶浸及び充填後、成形型を冷却して純マグネシウムを凝固する。ここでは、成形型の底部から開口部に向かって、即ち、溶融金属の溶浸方向とは逆の方向に、一方向に冷却されるように成形型の底部側を積極的に冷却した。   The molten pure magnesium flows into the cavity from the opening of the mold, and infiltrates between the SiC particles filled in the cavity or in a space surrounded by a mesh formed by SiC. For samples No. 31 to No. 40, the melted pure magnesium is also filled in the gap between the cavity and the SiC sintered body. After infiltration and filling, the mold is cooled to solidify the pure magnesium. Here, the bottom side of the mold was positively cooled so as to be cooled in one direction from the bottom of the mold toward the opening, that is, in the direction opposite to the infiltration direction of the molten metal.

冷却後、成形型から成形物を取り出したところ、長さ200mm×幅150mm×厚さ5mmの板状の成形物(試料No.1〜No.30)、及び厚さ6mmの板状の成形物(試料No.31〜No.40)が得られた。試料No.31〜No.40については、表裏面のそれぞれを厚さ0.5mmずつ、合計1.0mmずつ切削して除去し、厚さ5mmに調整した。   After cooling, when the molded product was taken out from the mold, it was a plate-shaped molded product with a length of 200 mm × width 150 mm × thickness 5 mm (sample No. 1 to No. 30), and a plate-shaped molded product with a thickness of 6 mm. (Sample Nos. 31 to 40) were obtained. For samples No. 31 to No. 40, each of the front and back surfaces was removed by cutting 0.5 mm in thickness, 1.0 mm in total, and adjusted to 5 mm in thickness.

上述のようにして得られた厚さ5mmの成形物の成分をEDX装置により調べた。その結果、試料No.1〜No.40のいずれも、Mg及びSiC、残部:不可避不純物であるMg-SiC複合材料であり、用いた原料と同様であることを確認した。なお、試料No.31〜No.40については、得られた成形物において、表面から厚さ方向に0.5mmまでの表層領域を除く中間領域(厚さ4mmの領域)について成分を調べた。また、試料No.31〜No.40については、表層領域の成分をEDX装置により調べたところ、Mg及び不可避不純物であり、原料に用いたインゴットと同様の組成であることを確認した。   The components of the molded product having a thickness of 5 mm obtained as described above were examined using an EDX apparatus. As a result, it was confirmed that all of samples No. 1 to No. 40 were Mg and SiC, and the rest: Mg—SiC composite material which was an inevitable impurity, and was the same as the raw material used. For samples No. 31 to No. 40, the components were examined in the intermediate region (region of thickness 4 mm) excluding the surface layer region from the surface to 0.5 mm in the thickness direction in the obtained molded product. Moreover, about the sample No.31-No.40, when the component of the surface layer area | region was investigated with the EDX apparatus, it confirmed that it was Mg and an unavoidable impurity and was the composition similar to the ingot used for the raw material.

上述のようにして得られた厚さ5mmの成形物(試料No.1〜No.30:厚さ5mmの複合材料、試料No.31〜No.40:厚さ4mmの複合材料からなる中間領域)について、CP(Cross-section Polisher)加工を施して断面を出し、SEM観察によってこの断面を調べた。その結果、試料No.1〜No.20は、粒状のSiCがバラバラに分散して存在しており、ネットワーク部が形成されておらず、用いた原料のSiC粉末と同様であった。試料No.21〜No.40は、SiC同士がSiCによって結合し、SiCが連続した網目状に存在していた。つまり、ネットワーク部が形成されており、用いた原料のSiC焼結体と同様であった。   Molded product of 5 mm thickness obtained as described above (Sample No. 1 to No. 30: Composite material of 5 mm thickness, Sample No. 31 to No. 40: Intermediate region consisting of composite material of 4 mm thickness ) Was subjected to CP (Cross-section Polisher) processing to obtain a cross section, and this cross section was examined by SEM observation. As a result, Samples No. 1 to No. 20 were present in the same manner as the raw material SiC powder, in which granular SiC was dispersed and present, the network part was not formed. In Samples No. 21 to No. 40, SiC was bonded together by SiC, and SiC existed in a continuous network. That is, a network part was formed, which was the same as the raw material SiC sintered body used.

上述のCP断面をSEM(50倍、又は100倍)で観察したところ、試料No.1〜No.40のいずれも、SiC間に純マグネシウムが溶浸されていることが確認できた。更に、試料No.1〜No.20では、粗大なSiC粒子間に微細なSiC粒子が介在されていることが確認できた。   When the above-mentioned CP cross section was observed by SEM (50 times or 100 times), it was confirmed that pure magnesium was infiltrated between SiC in any of samples No. 1 to No. 40. Further, in Samples No. 1 to No. 20, it was confirmed that fine SiC particles were interposed between coarse SiC particles.

また、試料No.31〜No.40について、上述の表層領域を含む領域のCP断面をSEM(100倍)で観察したところ、Mg-SiC複合材料からなる中間領域を覆うように、SiCを含有しない領域が存在することが確認できた。つまり、試料No.31〜No.40は、上述の成分分析と合わせて、純マグネシウムからなる表面層を具えることが確認できた。更に、この観察像によって、(1)Mg-SiC複合材料からなる領域の金属成分と、表面層を構成する金属成分とは連続する組織から構成されていること、(2)表面層の平均厚さが0.5mm程度であることが確認できた。   In addition, for sample No. 31 to No. 40, when the CP cross section of the region including the surface layer region described above was observed with SEM (100 times), SiC was contained so as to cover the intermediate region made of Mg-SiC composite material. It was confirmed that there was a non-existing area. That is, it was confirmed that Samples No. 31 to No. 40 were provided with a surface layer made of pure magnesium in combination with the component analysis described above. Furthermore, this observation image shows that (1) the metal component of the Mg-SiC composite region and the metal component constituting the surface layer are composed of a continuous structure, and (2) the average thickness of the surface layer. It was confirmed that the length was about 0.5 mm.

また、上述のようにして得られた厚さ5mmの成形物(試料No.1〜No.30:厚さ5mmの複合材料、試料No.31〜No.40:厚さ4mmの複合材料からなる中間領域)について、複合材料中のSiCの含有量を測定したところ、試料No.1〜No.20は72体積%、試料No.21〜No.40は80体積%であり、成形型への充填密度又は原料の相対密度に一致していた。各複合材料のSiCの含有量は、複合材料の任意の断面を光学顕微鏡(50倍)で観察し、この観察像を市販の画像解析装置で画像処理して、この断面中のSiCの合計面積を求め、この合計面積をこの断面に基づく体積割合とみなし(面積割合≒体積割合)、n=10の断面の体積割合を求め、これらの平均値とした。なお、断面観察は、SEMを用いてもよい。   Further, a molded product having a thickness of 5 mm obtained as described above (sample No. 1 to No. 30: a composite material having a thickness of 5 mm, sample No. 31 to No. 40: a composite material having a thickness of 4 mm. For the intermediate region), the SiC content in the composite material was measured. Sample No. 1 to No. 20 was 72% by volume, and sample No. 21 to No. 40 was 80% by volume. It matched the packing density or the relative density of the raw materials. The SiC content of each composite material is determined by observing an arbitrary cross section of the composite material with an optical microscope (50 times), and processing this observation image with a commercially available image analyzer, and calculating the total area of SiC in the cross section. The total area was regarded as the volume ratio based on this cross section (area ratio≈volume ratio), the volume ratio of the cross section with n = 10 was determined, and the average value was obtained. Note that SEM may be used for cross-sectional observation.

また、上述のようにして得られた厚さ5mmの成形物について、熱伝導率(W/m・K)、及び熱膨張率(ppm/K)を測定した。その結果を表1に示す。熱伝導率及び熱膨張率は、得られた成形物(試料No.31〜No.40は表面層を除去した状態で測定)から測定用試験片を切り出し、市販の測定器を用いて測定した。熱膨張率は、30℃〜150℃の範囲について測定した。   Further, the thermal conductivity (W / m · K) and the thermal expansion coefficient (ppm / K) of the molded product having a thickness of 5 mm obtained as described above were measured. The results are shown in Table 1. The thermal conductivity and the thermal expansion coefficient were measured using a commercially available measuring instrument by cutting out a test specimen from the obtained molded product (samples No. 31 to No. 40 were measured with the surface layer removed). . The coefficient of thermal expansion was measured in the range of 30 ° C to 150 ° C.

また、上述のようにして得られた厚さ5mmの成形物を基板とし、この基板に対して、コールドスプレー法によって金属粉末を高圧・高速のガス気流に乗せて吹き付け、目標厚さ20μm〜150μmの金属層を形成した。この工程により、Mg-SiC複合材料からなる基板と、基板の表裏面のうちの一面に設けられた金属層とを具える複合部材を得た。金属層の原料には、表1に示す材質の金属粉末(いずれも平均粒径20μmの市販品)を用意した。金属層の形成には、コールドスプレー法装置を用いた。成膜条件は、搬送用ガス及びキャリアガス:窒素(N2)、キャリアガスの加熱温度:500℃、ガス圧:3MPaとした。一部の試料については、成膜後、金属層に研磨を施して厚さを調整した(減じた)。研磨量(除去厚さ)を表1に示す。なお、研磨を施した試料はいずれも、この研磨によって反りが生じることが無かった。 In addition, a molded product having a thickness of 5 mm obtained as described above is used as a substrate, and a metal powder is sprayed onto the substrate in a high-pressure, high-speed gas stream by a cold spray method, and the target thickness is 20 μm to 150 μm. The metal layer was formed. By this step, a composite member comprising a substrate made of an Mg—SiC composite material and a metal layer provided on one surface of the front and back surfaces of the substrate was obtained. As raw materials for the metal layer, metal powders of the materials shown in Table 1 (all commercially available products having an average particle diameter of 20 μm) were prepared. A cold spray apparatus was used to form the metal layer. The film forming conditions were as follows: carrier gas and carrier gas: nitrogen (N 2 ), carrier gas heating temperature: 500 ° C., gas pressure: 3 MPa. For some samples, after the film formation, the metal layer was polished to adjust (reduce) the thickness. Table 1 shows the polishing amount (removed thickness). In addition, all the samples subjected to the polishing did not warp by this polishing.

上述のようにして得られた金属層を具える複合部材について、金属層の厚さ(μm)、表面粗さ(Ra(μm))、密着力(MPa)を調べた。その結果を表1に示す。金属層に研磨を施した試料は、研磨後に表面粗さ及び密着力を調べた。   With respect to the composite member comprising the metal layer obtained as described above, the thickness (μm), surface roughness (Ra (μm)), and adhesion (MPa) of the metal layer were examined. The results are shown in Table 1. The sample with the metal layer polished was examined for surface roughness and adhesion after polishing.

金属層の厚さは、以下のように調べた。市販のマイクロメーターを用い、コールドスプレー法による成膜前の試料(上述の成形物)の厚さ(n=10の平均厚さ)、成膜後の試料(金属層を具える複合部材)の厚さ(n=10の平均厚さ)をそれぞれ測定し、成膜前後の試料の厚さの差を金属層の厚さとした。金属層に研磨を施した試料は、研磨後の試料の厚さを上述のように測定し(n=10の平均厚さ)、研磨後の厚さと成膜前の厚さとの差を金属層の厚さとした。   The thickness of the metal layer was examined as follows. Using a commercially available micrometer, the thickness (n = 10 average thickness) of the sample before the film formation by the cold spray method (the above-mentioned molded product), the sample after the film formation (a composite member having a metal layer) The thickness (average thickness of n = 10) was measured, and the difference in thickness of the sample before and after film formation was taken as the thickness of the metal layer. For the sample with the metal layer polished, the thickness of the sample after polishing is measured as described above (n = 10 average thickness), and the difference between the thickness after polishing and the thickness before film formation is And the thickness.

金属層の表面粗さ(Ra:算術平均粗さ、JIS B 0601(2001)/ISO 4287(1997))は、市販の表面粗さ計を用いて測定した。   The surface roughness (Ra: arithmetic average roughness, JIS B 0601 (2001) / ISO 4287 (1997)) of the metal layer was measured using a commercially available surface roughness meter.

密着力は、以下のように調べた。各試料の金属層に直径φ8mmの銅の棒を半田によって接合した棒付き試料を作製する。この棒付き試料の棒を市販の引張り試験機によって引っ張り、上記棒が複合部材から剥離した時点における引張り力をMPa単位で測定し、この引張り力を密着力とした。   The adhesion was examined as follows. A sample with a rod in which a copper rod having a diameter of 8 mm is joined to the metal layer of each sample by soldering is prepared. The rod of the sample with the rod was pulled by a commercially available tensile testing machine, the tensile force at the time when the rod was peeled off from the composite member was measured in MPa, and this tensile force was defined as the adhesion force.

また、上述のようにして得られた複合部材における金属層と基板との境界近傍について、上述のようにCP断面をとり、SEM(50倍、又は100倍)で観察したところ、試料No.1〜No.30では、金属層が、純マグネシウムとSiCとの双方に直接接触していること、試料No.31〜No.40では、金属層が、純マグネシウムからなる表面層に直接接触していることを確認した。図1は、試料No.2について上述のようにCP断面をとり、このCP断面のSEM写真である。図1に示すように、Mg-SiC複合材料の表面にNiからなる金属層が密着していることが分かる。また、金属層は、粉末粒界が実質的に見られず、一様な状態であることが分かる。なお、図1に示す基板において金属層と基板との境界近傍の領域(図1において中央部分)は、イオンビームによって研磨及び平坦化されて、図1において下方部分よりも平滑に見えている。   Further, for the vicinity of the boundary between the metal layer and the substrate in the composite member obtained as described above, the CP cross section was taken as described above, and the sample was observed with SEM (50 times or 100 times). In No.30, the metal layer is in direct contact with both pure magnesium and SiC. In Samples No.31 through No.40, the metal layer is in direct contact with the surface layer made of pure magnesium. I confirmed. FIG. 1 is a SEM photograph of the CP cross section of sample No. 2 as described above. As shown in FIG. 1, it can be seen that the metal layer made of Ni is in close contact with the surface of the Mg—SiC composite material. Moreover, it turns out that a powder grain boundary is not seen substantially but a metal layer is a uniform state. In the substrate shown in FIG. 1, the region in the vicinity of the boundary between the metal layer and the substrate (the central portion in FIG. 1) is polished and flattened by the ion beam and looks smoother than the lower portion in FIG.

表1に示すよう試料No.1〜No.40に具える基板はいずれも、熱伝導性に優れる上に、一般的な半導体素子などの熱膨張率との整合性に優れることが分かる。具体的には、各基板は、熱伝導率が180W/m・K以上(試料No.1〜No.20では、200W/m・K以上、更に220W/m・K以上、試料No.21〜No.40では、250W/m・K以上、更に280W/m・K以上)、熱膨張率が10ppm/K以下(試料No.1〜No.20では、7.3ppm/K〜7.7ppm/K、試料No.21〜No.40では、4.0ppm/K〜4.4ppm/K)である。   As shown in Table 1, it can be seen that all of the substrates included in samples No. 1 to No. 40 are excellent in thermal conductivity and in consistency with thermal expansion coefficients of general semiconductor elements and the like. Specifically, each substrate has a thermal conductivity of 180 W / m · K or more (for sample No. 1 to No. 20, 200 W / m · K or more, further 220 W / m · K or more, sample No. 21 to In No.40, 250 W / m ・ K or more, and further 280 W / m ・ K or more), and coefficient of thermal expansion is 10 ppm / K or less (in sample No.1 to No.20, 7.3 ppm / K to 7.7 ppm / K, In sample No. 21 to No. 40, it is 4.0 ppm / K to 4.4 ppm / K).

そして、コールドスプレー法を用いることで、目標通り、0.5mm未満の薄い金属層を形成可能であること、この金属層は、後処理として研磨を施さなくても、表面粗さが小さい(Raで10μm以下)ことが分かる。また、この金属層に研磨を施す場合、研磨量が0.1mm(100μm)以下という少ない量であっても(軽い研磨であっても)、金属層の表面をより滑らかにできること(Raで3.5μm以下、更に0.5μm以下)が分かる。この理由の一つとして、上記金属層が等方的な組織で構成されて、研磨が施し易いことが考えられる。更に、研磨量が少ないことで、上述のように反りが生じない上に、研磨時間の短縮を図ることができ、作業性にも優れることが確認できた。   And, by using the cold spray method, it is possible to form a thin metal layer of less than 0.5 mm as intended, and this metal layer has a small surface roughness (Ra 10 μm or less). In addition, when polishing this metal layer, the surface of the metal layer can be made smoother (Ra: 3.5 μm) even if the polishing amount is as small as 0.1 mm (100 μm) or less (even light polishing). Hereinafter, it can be seen that 0.5 μm or less). One reason for this is that the metal layer has an isotropic structure and can be easily polished. Furthermore, since the amount of polishing was small, warping did not occur as described above, the polishing time could be shortened, and it was confirmed that the workability was excellent.

加えて、いずれの試料も、半田を介して複合部材と対象物(ここでは銅棒)との密着力が高く、半導体素子の放熱部材に実用上必要とされる10MPaを上回っていることが分かる。このことから、各試料の複合部材に具える金属層は、半田の下地に良好に用いることができることが確認できた。   In addition, it can be seen that all the samples have high adhesion between the composite member and the target object (here, the copper rod) through the solder, which exceeds 10 MPa that is practically required for the heat dissipation member of the semiconductor element. . From this, it was confirmed that the metal layer provided in the composite member of each sample can be used favorably for the solder base.

以上の試験から、薄く、平滑な金属層が、Mg-SiC複合材料からなる基板に直接設けられた複合部材は、金属層を半田の下地として良好に利用できることから、この複合部材と半導体素子などとを半田によって密着させることができ、放熱性に優れる放熱構造を構築できるといえる。特に、上記金属層が薄いことで、上記複合部材と半田との間の距離が短い点、上記複合部材と金属層との間に低熱伝導率の物質が介在していない点からも、上記複合部材は、放熱性に優れる放熱構造を構築できるといえる。また、このような薄く、平滑な金属層は、コールドスプレー法によって容易に形成できるといえる。   From the above test, a composite member in which a thin and smooth metal layer is directly provided on a substrate made of an Mg-SiC composite material can be used well as a base of solder. It can be said that a heat dissipation structure with excellent heat dissipation can be constructed. In particular, since the metal layer is thin, the distance between the composite member and the solder is short, and the low thermal conductivity substance is not interposed between the composite member and the metal layer. It can be said that the member can construct a heat dissipation structure with excellent heat dissipation. Moreover, it can be said that such a thin and smooth metal layer can be easily formed by a cold spray method.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、複合材料中の非金属無機材料の材質、含有量、大きさ、形状、金属成分及び表面層の組成、表面層の形成領域(基板の一面にのみ具える形態など)、金属層の組成、形成領域などを適宜変更することができる。例えば、金属層が、半田のように半導体素子などを接合可能な組成(例えば、鉛や鉛合金など)から構成されている場合、半田を別途用いることなく、半導体素子などを載置できると期待される。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the material, content, size, shape, composition of the metal component and surface layer of the non-metallic inorganic material in the composite material, surface layer formation region (forms provided only on one surface of the substrate, etc.), composition of the metal layer The formation region and the like can be changed as appropriate. For example, when the metal layer is composed of a composition that can join a semiconductor element or the like such as solder (for example, lead or lead alloy), it is expected that the semiconductor element or the like can be placed without using solder separately. Is done.

本発明の複合部材は、熱伝導率が高く、半導体素子やその周辺部品の熱膨張率との整合性に優れ、かつ半田の下地に利用可能な金属層を具えることから、半導体素子の放熱部材の素材に好適に利用することができる。本発明の複合部材の製造方法は、上記複合部材の製造に好適に利用することができる。本発明の半導体装置は、各種の電子機器の部品に好適に利用することができる。   The composite member of the present invention has a high thermal conductivity, excellent consistency with the thermal expansion coefficient of the semiconductor element and its peripheral components, and a metal layer that can be used as a solder base. It can utilize suitably for the raw material of a member. The manufacturing method of the composite member of this invention can be utilized suitably for manufacture of the said composite member. The semiconductor device of the present invention can be suitably used for parts of various electronic devices.

Claims (7)

非金属無機材料と、金属成分としてマグネシウム又はマグネシウム合金とが複合された複合材料からなる基板と、この基板の表面の少なくとも一部に設けられた金属層とを具える複合部材であって、
前記複合材料は、前記非金属無機材料として、SiCを50体積%以上含有し、
前記金属層は、
前記複合材料中の金属成分とは異なる金属から構成され、
前記基板の表面を構成する材料のうち、少なくとも前記金属成分に直接接触して形成されており、
厚さが0.001mm以上0.5mm未満であり、
表面粗さがRaで10μm以下である複合部材。
A composite member comprising a nonmetallic inorganic material, a substrate made of a composite material in which magnesium or a magnesium alloy is combined as a metal component, and a metal layer provided on at least a part of the surface of the substrate,
The composite material contains 50% by volume or more of SiC as the non-metallic inorganic material,
The metal layer is
It is composed of a metal different from the metal component in the composite material,
Of the material constituting the surface of the substrate, is formed in direct contact with at least the metal component,
The thickness is 0.001mm or more and less than 0.5mm,
A composite member with a surface roughness Ra of 10 μm or less.
前記金属層は、ニッケル、ニッケル合金、銅、銅合金、金、金合金、銀及び銀合金から選択される1種の金属から構成される請求項1に記載の複合部材。   2. The composite member according to claim 1, wherein the metal layer is composed of one kind of metal selected from nickel, nickel alloy, copper, copper alloy, gold, gold alloy, silver, and silver alloy. 前記金属層は、前記基板の表面を構成する前記非金属無機材料及び前記金属成分の双方に直接接触して形成されている請求項1又は2に記載の複合部材。   3. The composite member according to claim 1, wherein the metal layer is formed in direct contact with both the non-metallic inorganic material and the metal component constituting the surface of the substrate. 前記基板の熱伝導率が180W/m・K以上、前記基板の熱膨張率が10ppm/K以下である請求項1〜3のいずれか1項に記載の複合部材。   4. The composite member according to claim 1, wherein the substrate has a thermal conductivity of 180 W / m · K or more and a thermal expansion coefficient of the substrate of 10 ppm / K or less. 請求項1〜4のいずれか1項に記載の複合部材によって構成された放熱部材と、前記放熱部材に載置される半導体素子とを具える半導体装置。   5. A semiconductor device comprising: a heat radiating member constituted by the composite member according to claim 1; and a semiconductor element placed on the heat radiating member. 非金属無機材料と、金属成分としてマグネシウム又はマグネシウム合金とが複合された複合材料からなる基板の表面の少なくとも一部に金属層を形成して、前記金属層を具える複合部材を製造する複合部材の製造方法であって、
前記非金属無機材料として、SiCを50体積%以上含有する複合材料からなる基板を用意する準備工程と、
前記複合材料中の金属成分とは異なる金属からなる粉末を用意し、前記基板の表面の少なくとも一部に、コールドスプレー法によって、厚さが0.001mm以上0.5mm未満、かつ表面粗さがRaで10μm以下である金属層を形成する被覆工程とを具える複合部材の製造方法。
A composite member for producing a composite member comprising the metal layer by forming a metal layer on at least a part of the surface of a substrate made of a composite material in which a nonmetallic inorganic material and magnesium or a magnesium alloy are combined as a metal component A manufacturing method of
As the non-metallic inorganic material, a preparation step of preparing a substrate made of a composite material containing SiC by 50 volume% or more,
A powder made of a metal different from the metal component in the composite material is prepared, and at least a part of the surface of the substrate has a thickness of 0.001 mm to less than 0.5 mm and a surface roughness of Ra by a cold spray method. A method for producing a composite member comprising a coating step of forming a metal layer having a thickness of 10 μm or less.
更に、前記金属層の表面を研磨する研磨工程を具え、
前記研磨工程において、研磨によって除去する厚さが0.3mm以下である請求項6に記載の複合部材の製造方法。
Furthermore, comprising a polishing step for polishing the surface of the metal layer,
7. The method for producing a composite member according to claim 6, wherein the thickness removed by polishing in the polishing step is 0.3 mm or less.
JP2012138986A 2012-06-20 2012-06-20 Composite member, method for manufacturing composite member and semiconductor device Pending JP2014001439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138986A JP2014001439A (en) 2012-06-20 2012-06-20 Composite member, method for manufacturing composite member and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138986A JP2014001439A (en) 2012-06-20 2012-06-20 Composite member, method for manufacturing composite member and semiconductor device

Publications (1)

Publication Number Publication Date
JP2014001439A true JP2014001439A (en) 2014-01-09

Family

ID=50034876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138986A Pending JP2014001439A (en) 2012-06-20 2012-06-20 Composite member, method for manufacturing composite member and semiconductor device

Country Status (1)

Country Link
JP (1) JP2014001439A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140456A (en) * 2014-01-28 2015-08-03 住友電気工業株式会社 Composite material, semiconductor device, and method for manufacturing composite material
JP2015149349A (en) * 2014-02-05 2015-08-20 三菱マテリアル株式会社 Metal member with ground layer, insulating circuit board, semiconductor device, insulating circuit board with heat sink, and method of manufacturing metal member with ground layer
WO2016035796A1 (en) * 2014-09-02 2016-03-10 株式会社アライドマテリアル Heat dissipation member and method for producing heat dissipation member
US9978661B2 (en) 2015-08-13 2018-05-22 Samsung Electronics Co., Ltd. Packaged semiconductor chips having heat dissipation layers and ground contacts therein
JPWO2020203014A1 (en) * 2019-04-02 2020-10-08
WO2023053901A1 (en) * 2021-09-30 2023-04-06 株式会社タムラ製作所 Bonding material and semiconductor package

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140456A (en) * 2014-01-28 2015-08-03 住友電気工業株式会社 Composite material, semiconductor device, and method for manufacturing composite material
JP2015149349A (en) * 2014-02-05 2015-08-20 三菱マテリアル株式会社 Metal member with ground layer, insulating circuit board, semiconductor device, insulating circuit board with heat sink, and method of manufacturing metal member with ground layer
US10553519B2 (en) 2014-09-02 2020-02-04 A.L.M.T. Corp Heat radiating member and method for producing the same
CN106688092A (en) * 2014-09-02 2017-05-17 联合材料公司 Heat dissipation member and method for producing heat dissipation member
JPWO2016035796A1 (en) * 2014-09-02 2017-06-15 株式会社アライドマテリアル Heat dissipation member and method for manufacturing heat dissipation member
WO2016035796A1 (en) * 2014-09-02 2016-03-10 株式会社アライドマテリアル Heat dissipation member and method for producing heat dissipation member
US9978661B2 (en) 2015-08-13 2018-05-22 Samsung Electronics Co., Ltd. Packaged semiconductor chips having heat dissipation layers and ground contacts therein
JPWO2020203014A1 (en) * 2019-04-02 2020-10-08
WO2020203014A1 (en) * 2019-04-02 2020-10-08 住友電気工業株式会社 Composite member and heat radiation member
US11890831B2 (en) 2019-04-02 2024-02-06 Sumitomo Electric Industries, Ltd. Composite member and heat radiation member
JP7469295B2 (en) 2019-04-02 2024-04-16 住友電気工業株式会社 Composite material and heat dissipation material
WO2023053901A1 (en) * 2021-09-30 2023-04-06 株式会社タムラ製作所 Bonding material and semiconductor package
JP7536882B2 (en) 2021-09-30 2024-08-20 株式会社タムラ製作所 Bonding materials and semiconductor packages

Similar Documents

Publication Publication Date Title
WO2010038483A1 (en) Composite member
US10553519B2 (en) Heat radiating member and method for producing the same
EP2690186B1 (en) Composite member provided with substrate formed from composite material
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
US9556501B2 (en) Magnesium-based composite member, heat radiation member, and semiconductor device
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
WO2003040420A1 (en) Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2007535151A (en) Heat sink made of boron-containing diamond and copper composite
CN112981164B (en) Preparation method of diamond reinforced metal matrix composite material with high reliability and high thermal conductivity
CN112981163B (en) Preparation method of diamond-reinforced metal matrix composite with high surface precision and high reliability
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
TWI682026B (en) Aluminum-diamond composite body and heat dissipation parts using the same
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JP7196193B2 (en) Heat dissipation material
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP2013245374A (en) Composite material, method for producing the same, and semiconductor device
JP2011073950A (en) Heat-dissipating member
JP5513058B2 (en) Composite member manufacturing method, composite member, heat dissipation member, and semiconductor device
JP5503474B2 (en) Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member
JP2001217364A (en) Al-SiC COMPOSITE
JP2013245373A (en) Composite member, method for manufacturing the same, and semiconductor device
JPH05243436A (en) Manufacture of heat dissipating member for semiconductor package