JP2008227069A - 部品移載装置及び表面実装機 - Google Patents

部品移載装置及び表面実装機 Download PDF

Info

Publication number
JP2008227069A
JP2008227069A JP2007061841A JP2007061841A JP2008227069A JP 2008227069 A JP2008227069 A JP 2008227069A JP 2007061841 A JP2007061841 A JP 2007061841A JP 2007061841 A JP2007061841 A JP 2007061841A JP 2008227069 A JP2008227069 A JP 2008227069A
Authority
JP
Japan
Prior art keywords
electronic component
substrate
plane
suction
suction nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007061841A
Other languages
English (en)
Other versions
JP4999502B2 (ja
Inventor
Hiroshi Saijo
洋志 西城
Daisuke Matsushita
大輔 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2007061841A priority Critical patent/JP4999502B2/ja
Publication of JP2008227069A publication Critical patent/JP2008227069A/ja
Application granted granted Critical
Publication of JP4999502B2 publication Critical patent/JP4999502B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】電子部品を傾いた姿勢のまま基板上面に搭載しても、精度良く実装することができる表面実装機を提供する。
【解決手段】本発明の表面実装機10によると、電子部品Pが吸着ノズル52によって吸着された状態において、部品認識カメラ12により撮像された電子部品Pの下面側の撮像画像に基づいて電子部品Pの中心点のXY平面における位置を基準点位置取得手段により算出し、サイドビューカメラ13により撮像された電子部品Pの側面側の撮像画像に基づいて搭載前後における電子部品Pの中心点の位置の搭載ずれΔX、ΔYを載置ずれ算出手段により算出し、この搭載ずれΔX、ΔY及び吸着ずれ量Xa、Yaに基づいて補正位置算出手段が基板Bに対する吸着ノズル52の載置位置を補正した補正位置を算出する。
【選択図】図3

Description

本発明は、吸着ノズルにより電子部品を吸着し、吸着された電子部品を所定箇所に移載する部品移載装置及び表面実装機に関する。
この種の装置としては、例えば下記特許文献1に記載の表面実装機が知られている。この表面実装機は、吸着ノズルに吸着された電子部品を部品認識カメラにより撮像して吸着状態の検査を行う。吸着状態の検査は、正規吸着状態の撮像画像と比較することで行われ、吸着ずれ量を算出し、その吸着ずれ量に基づいて部品搭載時の搭載位置を補正するようになっている。
しかしながら、電子部品の吸着面は必ずしも水平とは限らず段差を有する場合もあり、この段差によって電子部品が傾いた状態で吸着されることもある。このような場合には、吸着状態の検査によって「傾き不良」と判定し、その電子部品については搭載処理を中止して廃棄し、再度、新たな電子部品を吸着し直すようになっている。
特開2005−322802公報
しかしながら、電子部品の吸着状態が傾き不良と判定された場合には、再度電子部品を吸着し直す必要があるため、この再吸着に要する時間分だけタクトタイムが長くなってしまう。かといって、傾いた姿勢のまま電子部品を搭載すると、傾いた姿勢における電子部品の底面の下端部側が基板上面に接触した後、その底面が基板に接触している下端部側を回動中心として弧状の軌跡を描きながら基板上面に搭載されるため、電子部品の実装位置が横にずれてしまうことになる。
本発明は上記のような事情に基づいて完成されたものであって、電子部品を傾いた姿勢のまま基板上面に搭載しても、精度良く搭載することができるようにすることを目的とする。
本発明は、電子部品を吸着する吸着ノズルと、吸着ノズルによって吸着された電子部品を下方から撮像する下方カメラと、水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、XY平面内の所定の方向から見た電子部品のXY平面に対する傾きを検知する傾き検知手段と、水平面に対してほぼ平行となるように保持された基板と吸着ノズルとのうち少なくとも一方を移動することで、基板に対して吸着ノズルを相対的にXY平面において移動可能とする駆動装置と、下方カメラにより撮像された電子部品の下面側の撮像画像に基づいて電子部品の下面あるいは電子部品の基板接触電極の先端を通過する仮想面における基準点のXY平面における位置を取得する基準点位置取得手段と、基準点のXY平面における位置の吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、傾き検知手段により検知された傾きに基づいて傾き状態にある電子部品の基準点のXY平面における位置と基板上面に載置されたとする電子部品の基準点のXY平面における位置との載置ずれ量を算出する載置ずれ算出手段と、吸着ずれ算出手段により算出された吸着ずれ量と載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、基板に対する吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、この補正位置算出手段により算出された補正位置に基づき駆動装置を駆動制御する制御装置とを備える構成としたところに特徴を有する。
このような構成によると、下方カメラにより撮像された吸着状態にある電子部品の下面側の撮像画像に基づいて電子部品の基準点のXY平面における位置を基準点位置取得手段により取得し、電子部品の基準点のXY平面における位置の吸着ずれ量及び載置ずれ量に基づいて基板に対する吸着ノズルのXY方向載置位置を補正した補正位置を算出し、この補正位置に基づいて制御装置が駆動装置を駆動制御する。したがって、電子部品が傾いた姿勢のまま基板上面に載置しても電子部品を精度良く移載することができる。
本発明の実施態様として、以下の構成が好ましい。
傾き検知手段は、側方から電子部品を撮像する側方カメラを備え、側方カメラにより撮像された電子部品の側面側の撮像画像に基づいて傾きを検知してもよい。
傾き検知手段は、下方から電子部品にレーザを照射すると共に反射光から距離を測定するレーザ高さ計測機を備え、レーザ高さ計測機により計測された距離に基づいて傾きを検知してもよい。
傾き検知手段は、下方カメラと電子部品の下面を斜め下方から撮像する傾斜カメラの2つのカメラからなるカメラユニットを備え、カメラユニットにより撮像された電子部品の下面側の撮像画像に基づいて傾きを検知してもよい。
傾き検知手段は、電子部品の下面の基板上面に対する角度あるいは仮想面の基板上面に対する角度として傾きを取得し、補正位置算出手段は、電子部品の基板上面に載置された状態でのZ方向の寸法を取得するZ方向寸法取得手段を備え、傾き検知手段により取得された角度及びZ方向の寸法に基づいて補正位置を算出してもよい。このような構成によると、電子部品の下面の基板上面に対する角度あるいは仮想面の基板上面に対する角度とZ方向の寸法とに基づいて補正位置算出手段が補正位置を算出することができる。尚、基板は、基板バックアップ機構で支持され、できるだけ水平となるようにクランプ機構で保持されているので、基板上面を基準面として電子部品の下面あるいは仮想面の傾きを検出可能である。もしくは、吸着ノズルの先端面は、できるだけ水平となるように保持されているので、吸着ノズルの先端面を基準面として電子部品の下面あるいは仮想面の傾きを検出可能である。
基準点位置取得手段は、下方カメラにより撮像された電子部品の撮像画像における中心点を基準点としてその位置を取得し、制御装置は、電子部品の撮像画像における中心点の位置と吸着ノズルの中心点の位置とのずれ量が所定のずれ基準値を越えている場合には、その電子部品を基板上面に移載しないようにしてもよい。ずれ量は、例えばXY平面におけるX軸方向、Y軸方向、及び周り方向のずれ量としてもよい。このようにすると、電子部品の中心点の位置と吸着ノズルの中心点の位置とのずれ量に基づいて、電子部品の良否を判定することができる。
吸着ノズルはZ方向に延びるZ軸に対してほぼ平行となる回動軸を中心として軸回転可能に設けられ、傾き検知手段は吸着ノズルを回転させることにより電子部品の吸着姿勢をそれぞれ異なる方向から見た傾きを検知し、補正位置算出手段は、異なる方向から見た各傾きに基づいて基板に対する吸着ノズルのXY方向載置位置を異なる方向についてそれぞれ補正してもよい。このようにすると、補正位置算出手段が異なる方向から見た各傾きに基づいて電子部品の基準点の位置を異なる方向についてそれぞれ補正することができ、1方向について補正する場合よりも精度良く電子部品を載置することができる。
本発明は、電子部品を吸着する吸着ノズルと、吸着ノズルによって吸着された電子部品を下方から撮像する下方カメラと、水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、水平面に対してほぼ平行となるように保持された基板と吸着ノズルとのうち少なくとも一方を移動することで、基板に対して吸着ノズルを相対的にXY平面において移動可能とする駆動装置と、電子部品が複数のリード端子を有する場合に、電子部品のリード端子群の位置を計測する計測手段と、その計測手段により計測されたリード端子群の位置データに基づいてリード端子群の平坦度を算出するコプラナリティ算出手段とを備えた部品移載装置において、計測手段により計測されたリード端子群の位置データを利用して電子部品のうちリード端子の先端が基板上面に接する装着面を算出すると共にこの装着面の基板に対する傾きを算出する傾き算出手段と、装着面のXY平面における所定の寸法を取得するXY寸法取得手段と、電子部品の下面あるいは装着面における基準点のXY平面における位置を取得する基準点位置取得手段と、基準点のXY平面における位置の吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、装着面の基板に対する傾き及び装着面のXY平面における所定の寸法に基づいて傾き状態にある電子部品の基準点のXY平面における位置と基板上面に載置されたとする電子部品の基準点のXY平面における位置とのずれ量を載置ずれ量として算出する載置ずれ算出手段と、吸着ずれ算出手段により算出された吸着ずれ量と載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、基板に対する吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、この補正位置算出手段により算出された補正位置に基づき駆動装置を駆動制御する制御装置とを備える構成としてもよい。このような構成によると、コプラナリティ算出手段による平坦度測定の際に計測手段によって計測されたリード端子群の位置データを利用して電子部品の下面あるいは装着面の基板に対する傾きを算出することができる。
また、本発明は、電子部品を吸着する吸着ノズルと、吸着ノズルによって吸着された電子部品を下方から撮像する下方カメラと、水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、水平面に対してほぼ平行となるように保持された基板と吸着ノズルとのうち少なくとも一方を移動することで、基板に対して吸着ノズルを相対的にXY平面において移動可能とする駆動装置と、電子部品がその下面に露出する複数の基板接触電極を有する場合に、電子部品の基板接触電極群の位置を計測する計測手段と、その計測手段により計測された基板接触電極群の位置データに基づいて基板接触電極群の平坦度を算出するコプラナリティ算出手段とを備えた部品移載装置において、計測手段により計測された基板接触電極群の位置データを利用して電子部品のうち基板接触電極の先端が基板上面に接する装着面を算出すると共にこの装着面の基板に対する傾きを算出する傾き算出手段と、装着面のXY平面における所定の寸法を取得するXY寸法取得手段と、電子部品の下面あるいは装着面における基準点のXY平面における位置を取得する基準点位置取得手段と、基準点のXY平面における位置の吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、装着面の基板に対する傾き及び装着面のXY平面における所定の寸法に基づいて傾き状態にある電子部品の基準点のXY平面における位置と基板上面に載置されたとする電子部品の基準点のXY平面における位置とのずれ量を載置ずれ量として算出する載置ずれ算出手段と、吸着ずれ算出手段により算出された吸着ずれ量と載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、基板に対する吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、この補正位置算出手段により算出された補正位置に基づき駆動装置を駆動制御する制御装置とを備える構成としてもよい。このような構成によると、コプラナリティ算出手段による平坦度測定の際に計測手段によって計測された基板接触電極群の位置データを利用して電子部品の下面あるいは装着面の基板に対する傾きを算出することができる。
計測手段は複数の計測カメラを備え、各計測カメラがそれぞれ異なる方向から電子部品を撮像し、この電子部品の撮像画像に基づいてリード端子群もしくは基板接触電極群の位置データを取得するようにしてもよい。このようにすると、計測カメラを用いてリード端子群の位置データもしくは基板接触電極群の位置データを3次元的に取得することができる。
本発明は、基台上に基板搬送手段を備え、上記部品移載装置により基板搬送手段により搬送された基板に電子部品を実装する表面実装機としてもよい。
本発明によると、電子部品が傾いた状態で吸着ノズルに吸着され、その電子部品を傾いた姿勢のまま基板上面に載置しても、電子部品を基板上面に精度良く移載することができる。
<実施形態1>
本発明の実施形態1を図1ないし図7によって説明する。
本実施形態にかかる表面実装機10は、図1及び図2に示すように、基台11上に配置されてプリント基板(本発明の「基板」に相当し、以下、略して基板という。)Bを搬送する一対のコンベア(本発明の「基板搬送手段」に相当する。)20と、両コンベア20の両側に配置された部品供給部30と、基台11の上方に設けられた電子部品実装用のヘッドユニット40とを備えている。基板Bは、基板バックアップ機構(図示せず)で支持され、できるだけ水平となるように(水平面に対する角度が所定の許容角度以下となるように)クランプ機構で保持されている。尚、以下の説明において、XY平面とは水平面に対してほぼ平行となる面とし、Z軸方向とはXY平面に対して直交する方向とする。
部品供給部30は、コンベア20に対してフロント側とリア側のそれぞれ上流部と下流部の合計4箇所に設けられている。この部品供給部30には、部品供給装置50が複数並列配置されている。部品供給装置50は、複数の電子部品Pが保持されたテープフィーダを備え、部品供給装置取付部60に対して、その並列配置方向に直交する水平方向にスライドさせて取り付けられるようになっている。
ヘッドユニット40は、図3に示すように、部品供給部30から吸着ノズル52によって電子部品Pをピックアップして基板B上に装着し得るように、部品供給部30と基板Bとの間を移動可能である。具体的には、ヘッドユニット40は、図2に示すように、X軸方向(XY平面内においてコンベア20の基板搬送方向にほぼ沿う方向)に延びるヘッドユニット支持部材42によってX軸方向に移動可能に支持され、このヘッドユニット支持部材42は、その両端部においてY軸方向(XY平面内においてX軸方向と直交する方向)に延びる一対のガイドレール43によってY軸方向に移動可能に支持されている。このヘッドユニット40は、X軸モータ44によりボールねじ軸45、及びこのボールねじ軸45に嵌合し、ヘッドユニット40に固定支持されるボールナット(図示せず)を介してX軸方向の駆動が行われる。ヘッドユニット支持部材42は、Y軸モータ46によりボールねじ軸47、及びこのボールねじ軸47に嵌合し、ヘッドユニット支持部材42に固定支持されるボールナット(図示せず)を介してY軸方向の駆動が行われるようになっている(これらの構造が本発明の駆動装置を構成する)。
また、ヘッドユニット40には、複数のヘッド41がX軸方向に並んで搭載されている。各ヘッド41は、Z軸モータ48を駆動源とする昇降機構によりZ軸方向(X軸方向及びY軸方向の双方に対して直交する方向)に延びる駆動軸に沿って駆動されると共に、R軸モータ49を駆動源とする回転駆動機構により回転方向(R軸方向)に駆動されるようになっている。尚、各ヘッド41(吸着ノズル52)の駆動軸は、Z軸に対して所定の許容角度以下となるように設定されている。
各ヘッド41の先端には、電子部品Pを吸着して基板B上面の所定の実装位置に搭載するための吸着ノズル52が設けられている。ヘッド41の内部には図外の空気圧供給手段によって、電子部品Pの吸着、電子部品Pの運搬中及びヘッド41の下降中に負圧が、電子部品Pを装着する瞬間には正圧が、それぞれ供給される。これにより各吸着ノズル52は、電子部品Pの吸着時には空気圧供給手段から負圧が供給されて、その負圧による吸引力で電子部品Pを吸着してピックアップできる。なお、基台11上には、複数種の吸着ノズル52を保管し、基板B上に載置される電子部品Pを吸着するのに適した吸着ノズル52を適宜選択可能とするノズルストッカー(図示せず)が設置されている。
基台11においてコンベア20のフロント側とリア側には、図2に示すように、部品認識カメラ12(本発明の「下方カメラ」に相当する。)が設置されている。部品認識カメラ12は、吸着ノズル52で吸着された電子部品Pの吸着姿勢をZ軸方向下方から撮像して、電子部品Pの下面側の撮像画像を得ることができる。部品認識カメラ12は詳細には、光電変換素子を含んで構成され、得られた画像をアナログ画像信号に変換する。このアナログ画像信号は、後述する画像処理部100へ出力され、画像処理部100内のA/D変換部(図示せず)によりデジタル画像信号に変換される。なお、部品認識カメラ12の近傍には、吸着ノズル52に吸着された電子部品Pを照明する照明装置91が設けられている。
ヘッドユニット支持部材42の下面側には、サイドビューカメラ(本発明の「側方カメラ」に相当する。)13が設置されている。サイドビューカメラ13は、図3に示すように、ヘッドユニット支持部材42の下面部中央から下方に垂下形成されており、その下端部において吸着ノズル52で吸着された電子部品Pの吸着姿勢をX軸方向奥側から撮像して、電子部品Pの側面側の撮像画像を得ることができる。その他の詳細な構成については、部品認識カメラ12と同様であって、得られた画像をアナログ画像信号に変換し、このアナログ画像信号が画像処理部100へ出力される。
ヘッドユニット40の外面には、一対の基板カメラ14がヘッドユニット40を間に挟んだ両側と一体に取り付けられている。両基板カメラ14はX軸方向に所定間隔を空けて配置され、ヘッドユニット40と共にX軸方向及びY軸方向に移動される。また、基板B上面における電子部品Pの実装位置によって、両基板カメラ14のうちいずれか一方が選択され、基板B上面を撮像することで基板B上面における可動領域の全範囲を撮像可能である。なお、基板カメラ14は上記部品認識カメラ12と同様の構成であって、基板カメラ14によって得られた画像がアナログ画像信号に変換され、このアナログ画像信号が画像処理部100へ出力される。
次に、本実施形態による表面実装機10のコントローラ70を中心とした電気的構成について図4を参照して説明する。コントローラ70は、演算処理部71と、実装プログラム記憶手段72と、搬送系データ記憶手段73と、モータ制御部80と、外部入出力部110と、画像処理部100とから構成されている。なお、コントローラ70は、本発明の「吸着ずれ算出手段」、「載置ずれ算出手段」、「補正位置算出手段」、「Z方向寸法取得手段」、及び「制御装置」に相当し、画像処理部100は、本発明の「基準点位置取得手段」に相当する。
モータ制御部80には、X軸モータ44、Y軸モータ46、Z軸モータ48、及びR軸モータ49が接続されている。モータ制御部80は、実装プログラム記憶手段72に記憶された実装プログラムに基づいて各モータ44、46、48、及び49を駆動する。これにより、電子部品PはX軸、Y軸、Z軸、及びR軸方向に自在に搬送される。なお、Z軸方向とは基板B上面に沿ったXY平面に対して直交する方向である。
部品認識カメラ12、サイドビューカメラ13、及び基板カメラ14は画像処理部100に接続されている。画像処理部100は、部品認識カメラ12により撮像された電子部品Pの下面側の撮像画像に基づいて電子部品PをXY平面上に投影させた場合におけるX軸方向の寸法であるX寸法X1及びY軸方向の寸法であるY寸法Y1を画像データ上で取得する。そして、画像処理部100は、電子部品PのX寸法X1及びY寸法Y1から電子部品Pの中心点C1をXY平面上の基準点として中心点座標(本発明の「電子部品の撮像画像における中心点の位置」に相当する。)を取得する。また、部品認識カメラ12は吸着ノズル52が所定の位置にあるときに電子部品Pを撮像するから、その撮像画像中における吸着ノズル52が存在するであろう位置は画像処理部100により予め把握されており、画像処理部100は吸着ノズル52の中心位置に対する電子部品Pの中心点座標のX軸方向における吸着ずれ量Xa、Y軸方向における吸着ずれ量Ya、及びXY平面上のR軸周りの吸着ずれ角度θaを算出する。
次に、本実施形態の表面実装機10により電子部品Pを基板B上面の所定の実装位置に搭載する動作方法について図5を参照して説明する。
まず、電子部品PのX軸方向の吸着ずれ量Xaの上限許容値XU、Y軸方向の吸着ずれ量Yaの上限許容値YU、R軸周りの吸着ずれ角度θaの上限許容角度θUを設定し、これらの上限許容値XU、YU、及び上限許容角度θUを入力装置(図示せず)によって入力し、実装プログラム記憶手段72あるいは搬送系データ記憶手段73に記憶させておく。
コンベア20によって運搬されてきた基板Bが所定位置において停止すると、基板カメラ14により基板Bのフィデューシャルマーク(図示せず)が認識されることで基板BのX軸方向及びY軸方向における位置が認識される。すると、モータ制御部80によりX軸モータ44、Y軸モータ46、及びZ軸モータ48が作動され、吸着ノズル52が電子部品Pを吸着可能な位置に運ばれる。このとき、吸着ノズル52はその中心が部品供給部30の所定の位置に至るように制御される。この後、ヘッド41が下降すると共に吸着ノズル52に負圧が供給され、テープフィーダに保持された電子部品Pを吸着して(S101)、ヘッド41が上昇することでテープフィーダから電子部品Pをピックアップし、部品認識カメラ12上空へ向けてX軸方向及びY軸方向に移動する。
そこで、電子部品Pが部品認識カメラ12によってZ軸方向下側から撮像され、電子部品Pの下面側が認識されると共に(S102)、電子部品Pの下面側の撮像画像データが画像処理部100へ出力される。また、部品認識カメラ12による撮像と同期して電子部品Pがサイドビューカメラ13によりX軸方向奥側から撮像されると、電子部品Pの側面側が認識されると共に(S103)、電子部品Pの側面側の撮像画像データが画像処理部100へ出力される。
そして、画像処理部100は、電子部品Pの下面側の撮像画像データに基づいて、電子部品PのX寸法X1、Y寸法Y1を取得する。そして、これらの寸法X1、Y1、及び吸着ノズル52の中心位置の座標に基づいて電子部品Pの中心点座標を取得する。これと同時に、吸着ノズル52の中心位置に対する電子部品Pの中心点座標のX軸方向の吸着ずれ量Xa、Y軸方向の吸着ずれ量Ya、及びR軸周りの吸着ずれ角度θaを取得する(S104)。
X軸方向の吸着ずれ量Xaが上限許容値XUを越えていたら(S105のNo)、その電子部品Pを廃棄し(S106)、ヘッドユニット40をテープフィーダの電子部品Pを吸着可能な位置に移動させ、再び電子部品Pの吸着動作を行う(S101)。同様に、Y軸方向の吸着ずれ量Yaが上限許容値YUを越えていた場合も(S105のNo)、その電子部品Pを廃棄し(S106)、上記同様再び電子部品Pの吸着動作を行い(S101)、R軸周りの吸着ずれ角度θaが上限許容値θUを越えていた場合も(S105のNo)、その電子部品Pを廃棄し(S106)、上記同様再び電子部品Pの吸着動作を行う(S101)。
一方、X軸方向の吸着ずれ量Xa、Y軸方向の吸着ずれ量Ya、及びR軸方向の吸着ずれ角度θaが、それぞれ上限許容値XU、YU、及び上限許容角度θU以下の場合は(S105のYes)、ヘッド41をR軸方向に90°回転させ(S107)、サイドビューカメラ13により90°回転後の電子部品Pの側面側を撮像する。すると、電子部品Pの側面側が認識されると共に(S108)、電子部品Pの側面側の撮像画像データが画像処理部100へ出力される。サイドビューカメラ13による撮像が終了すると、ヘッド41をR軸方向に逆回転させて回転前の状態に復帰させる。画像処理部100は、90°回転前後における電子部品Pの側面側の撮像画像データに基づいて電子部品Pの高さ寸法Z0、回転前における電子部品Pの下面の基板B上面に対する角度θ1、及び90°回転後における電子部品Pの下面の基板B上面に対する角度θ2を取得する(S109)。尚、角度θ1及びθ2は、本発明の「XY平面内の所定方向から見た電子部品の基板に対する傾き」に相当する。
ところで、電子部品Pの吸着面は必ずしも水平とは限らず段差を有する場合もあり、この段差によって電子部品Pが傾いた状態で吸着されることもある。電子部品Pを傾いた姿勢のまま基板B上面に搭載すると、電子部品Pは、図6及び図7に示すように、傾いた姿勢における電子部品Pの下端部P1が基板B上面に接触した後、この下端部P1を回動中心として傾いた姿勢における電子部品Pの先端P2(図6参照)及びP3(図7参照)が弧状の軌跡を描きながら基板B上面へ移動するため、搭載前の部品中心点C1に対する搭載後の部品中心点C2のX軸方向における搭載ずれ量ΔX、Y軸方向における搭載すれ量ΔYが生じることになる。このため、吸着ノズル52の中心位置に対する搭載後の電子部品Pの中心点C2のX軸方向におけるずれ量はXa+ΔXとなり、Y軸方向におけるずれ量はYa+ΔYとなる。したがって、ずれ量として吸着ずれ量Xa及びYaのみを考慮して、基板Bに対する吸着ノズル52のXY方向載置位置を補正すると、搭載後の電子部品Pの中心点C2は、電子部品Pの所定の実装位置に対してX軸方向にΔX、Y軸方向にΔYだけずれた位置に実装されることになる。尚、搭載ずれ量ΔX及びΔYは本発明の「載置ずれ量」に相当する。
この対策として、本実施形態では、図5のS109〜S111に示すように、吸着ずれ量Xa、Yaのみならず、搭載ずれ量ΔX、ΔYについても考慮して、吸着ノズル52のXY方向載置位置を補正することにより、搭載後の電子部品Pの中心点C2が所定の実装位置と一致するようにしている。具体的には、搭載ずれ量ΔX及びΔYから、吸着ずれ量Xa及びYaから差し引いた値を総ずれ量とし、この総ずれ量を吸着ノズル52のXY方向載置位置から差し引くことにより補正位置を算出している。以下、搭載ずれ量ΔX及びΔYを算出する方法について説明する。
まず、ΔXを算出する方法について説明する。画像処理部100は、図6に示すように、サイドビューカメラ13により撮像された電子部品Pの側面側の撮像画像に基づいて電子部品Pの高さ寸法(本発明の「Z方向の寸法」に相当する。)Z0、X軸方向の寸法X0、及び角度θ1を取得する。なお、高さ寸法Z0は予め実装プログラム記憶手段72あるいは搬送系データ記憶手段73に記憶された電子部品Pのサイズ情報を用いてもよい。角度θ1は、Y軸方向から見たときにおける傾き状態にある電子部品Pの基板接触電極が基板Bに接する仮想面(電子部品Pの下面)V1の基板B上面に対する角度である。中心点C1は、傾き状態にある電子部品Pの中心を通る軸線S5と仮想面V1との交点として把握することができる。また、中心点C2は、基板B上面に搭載された電子部品Pの中心を通る軸線S6と仮想面V1との交点として把握することができる。ΔXは、図6の一番右の寸法線をS1として、式1に示すように、寸法線S1からC2までのX軸方向における距離{Δ1+(X0)/2}と、寸法線S1からC1までのX軸方向における距離{(X1)/2}との差として求めることができる。
<式1> ΔX={Δ1+(X0)/2}−{(X1)/2}
Δ1は、式2に示すように、Z軸方向の傾きθ1とZ軸方向の寸法Z0とから算出される。
<式2> Δ1=Z0sinθ1
また、X1は、式3に示すように、X0とθ1とΔ1とから算出される。
<式3> X1=X0cosθ1+Δ1
よって、式2と式3を式1に代入すると、
ΔX={Z0sinθ1+(X0)/2}−{(X0cosθ1+Z0sinθ1)/2}
={Z0sinθ1−X0cosθ1+X0}/2
ここで、θ1が0に近ければ、cosθ1を1と近似することができるので、
ΔX≒{Z0sinθ1}/2=Δ1/2 となる。
すなわち、ΔXはΔ1の半分の数値として算出することができる。
一方、ΔYについては、電子部品Pが吸着された吸着ノズル52をR軸方向に90°回転させた後に、サイドビューカメラ13によって電子部品Pの側面側を撮像し、図7に示す撮像画像を取得することにより算出することができる。角度θ2は、X軸方向から見たときにおける電子部品Pの基板接触電極が基板Bに接する仮想面(電子部品Pの下面)V1の基板B上面に対する角度である。ΔYの算出方法については、ΔXの算出方法と同様であるため、詳細な説明を省略するものの、上記と同様の計算式により、ΔYについては、
ΔY={Z0sinθ2−X0cosθ2+X0}/2
となり、θ2が0に近ければ、cosθ1を1と近似することができるので、
ΔY≒{Z0sinθ2}/2=Δ2/2 となる。
すなわち、ΔYはΔ2の半分の数値として算出することができる。
このようにして、電子部品Pの高さ寸法Z0、角度θ1、及び角度θ2に基づいて搭載ずれ量ΔX、ΔYが算出される(S110)。そして、上記X軸方向の吸着ずれ量XaからΔXを差し引くと共に上記Y軸方向の吸着ずれ量YaからΔYを差し引くことにより、吸着ずれ量と搭載ずれ量の両方のずれ量を考慮した総ずれ量を算出する(S111)。そして、この総ずれ量(Xa−ΔX)及び(Ya−ΔY)に基づいて基板Bに対する吸着ノズル52のXY方向載置位置を補正した補正位置を算出し、この補正位置に向けてヘッドユニット40をX軸方向及びY軸方向に移動し、ヘッド41を基板B上面に向けてZ軸方向に下降させる。
空気圧供給手段により吸着ノズル52に正圧が供給され、電子部品Pが吸着ノズル52から離脱し、傾いた姿勢における電子部品Pの下端部P1が基板B上面に接触すると、電子部品Pの下端部P1を回動中心として先端P2及びP3が弧状の軌跡を描きながら基板B上面に向けて移動し、電子部品Pが基板B上面の所定の実装位置に搭載される(S112)。電子部品Pが基板B上面に搭載されたら、ヘッド41を上昇させて、ヘッドユニット40を原点位置に復帰させる。こうして電子部品Pの部品搭載動作が終了すると(S113)、ヘッドユニット40は、次に搭載される電子部品Pがある場合には、再びヘッドユニット40を部品供給部30のテープフィーダへ移動し、次に搭載される電子部品Pの吸着を行う(S101)。
以上のように本実施形態では、以下の効果を奏することができる。
1.吸着ずれ量Xa及びYaを考慮するのみならず電子部品Pの傾き姿勢に起因して生じる搭載ずれ量ΔX及びΔYをも考慮することにより、電子部品Pを傾いた姿勢のまま基板B上面に搭載しても電子部品Pを精度良く実装することができる。
2.サイドビューカメラ13による撮像画像を用いて電子部品PのZ方向の寸法Z0を算出しているから、寸法Z0をより高い精度で取得することができる。
3.吸着ノズル52の中心位置に対する電子部品Pの中心点C1の吸着ずれ量Xa、Ya、及び吸着ずれ角度θaに基づいて、電子部品Pの良否を判定することができる。
4.X軸方向及びY軸方向のそれぞれについて補正することができるから、いずれか一方のみについて補正する場合よりも精度良く電子部品Pを実装することができる。
<実施形態2>
次に、本発明の実施形態2を図8ないし図15によって説明する。
実施形態2の表面実装機210は、実施形態1の表面実装機10におけるサイドビューカメラ13を3Dセンサ(本発明の「計測手段」に相当する。)220に変更したものであって、その他の共通する構成については同じ符号を用いると共に、重複する説明を省略する。なお、本実施形態では、電子部品Pとして複数のリード端子Tを有するパッケージ型の実装用部品Pを例として説明するものの、本実施形態に適用可能な電子部品はパッケージ型の実装用部品Pに限られず、両側に電極を有するチップ部品であってもよいし、あるいは下面に露出した電極を有するBGA(Ball Grid Array)やCSP(Chip Size Package)等であってもよい。
ヘッドユニット40の可動範囲内には、3Dセンサ220が設けられ、この3Dセンサ220により吸着ノズル52に吸着された実装用部品Pの下面側が撮像される。3Dセンサ220は、図9に示すように、基台11に対して固定されるベースプレート221を備えている。このベースプレート221の上端部には、吸着ノズル52に吸着された実装用部品Pの下面側に斜め下方から撮像用の光を照射する第1の照明手段230と、実装用部品Pの下面にZ軸方向下側から撮像用の光を照射する第2の照明手段231とが固定されている。
第1及び第2の照明手段230,231は、複数のLED232を光源として構成されている。第1の照明手段230のLED232は、ベースプレート221のX軸方向の略中央位置の上方に搬送された実装用部品Pの下面に向けて出射された自然光が実装用部品Pの下面で反射する反射点を基準とするYZ平面に対して略40°の入射角及び反射角となるようにベースプレート221に固定されている。また、各LED232の自然光Sの照射経路上には、屈折レンズ233が設けられている。
屈折レンズ233は、各LED232から照射された自然光Sを所定の平面(例えば、ベースプレート221や、屈折レンズ233のLED232側表面の先端部どうしを結ぶ平面)に略直交する平行光あるいは略平行光になるように屈折させる。この屈折レンズ233におけるLED232とは反対側の表面は、かまぼこ状に凸に形成されており、図10に示すように、平行光あるいは略平行光は、屈折レンズ233から出射するときに、Y軸方向には平行あるいは略平行を維持したまま屈曲されて、平面状屈曲光HとなりY軸方向の直線状の集光位置SIに集光される。
この集光位置SIに実装用部品Pの下面位置が一致するように、ヘッド41のZ軸方向位置が調整される。また、図10に示すように、集光位置SI上において、LED232のY軸方向の配置ピッチに対応した高集光部SI1、SI2、SI3、…が形成され、Y軸方向に明るい部位と、相対的に暗い部位とが交互に生じることになるので、屈折レンズ233と実装用部品Pとの間には、平面状屈曲光HをY軸方向にのみ拡散させるディフューザ234が配設され、このディフューザ234により各平面状屈曲光Hは、実装用部品P側へ向かうにつれてY軸方向で扇状に広がり、Y軸方向において略均一な明るさとなる。
すなわち、屈折レンズ233及びディフューザ234により照明手段230の各LED232から照射された自然光Sの平面状屈曲光Hに屈曲され、これら平面状屈曲光Hが実装用部品Pの下面に集光されると共に、それぞれY軸方向へ拡散することによって、各平面状屈曲光Hが実装用部品Pの下面でY軸方向へ延びる集光位置SIに対して照射されることとなる。第1の照明手段230から集光位置SIへ照射された各平面状屈曲光Hは、当該集光位置SIを基準とするYZ平面の面対称となる左側へ反射し、この反射光Rはミラー235により下方側へ反射されることとなる。一方、第2の照明手段231からの光は実装用部品Pの下面によって下方へ反射する。
ミラー235によって反射した光は第1のカメラ236が受光し、第2の照明手段231の光は実装用部品Pによって下方へ反射した後に第2のカメラ237が受光する。これらの第1及び第2のカメラ236,237は、撮像素子としてラインセンサ(図示せず)を使用しており、それぞれベースプレート221に固定されている。なお、第1及び第2のカメラ236,237によって本発明でいう計測カメラが構成されている。また、本実施形態では、第1のカメラ236が第2のカメラ237の下方に位置付けられているが、これらのカメラ236,237の位置は光路を遮ることがない位置であれば適宜変更することができる。これらの第1及び第2の照明手段230,231の点灯・消灯の切換えと、第1及び第2のカメラ236,237の撮像動作はコントローラ70が制御する。
次に、本実施形態による表面実装機210のコントローラ70を中心とした電気的構成について図12を参照して説明する。コントローラ70は、演算処理部80と、実装プログラム記憶手段72と、搬送系データ記憶手段73と、モータ制御部80と、外部入出力部110と、画像処理部100とから構成されており、上記3Dセンサ220は画像処理部100に接続されている。なお、コントローラ70は、本発明の「コプラナリティ算出手段」、「傾き算出手段」、「吸着ずれ算出手段」、「載置ずれ算出手段」、「補正位置算出手段」、及び「制御装置」に相当し、画像処理手段100は、本発明の「基準点位置取得手段」及び「XY寸法取得手段」に相当する。
続いて、本実施形態の表面実装機210により実装用部品Pを基板B上面の所定の実装位置に搭載する動作方法について図13を参照して説明する。
まず、実装用部品PのX軸方向の吸着ずれ量Xaの上限許容値XU、Y軸方向の吸着ずれ量Yaの上限許容値YU、及びR軸周りの吸着ずれ傾きθaの上限許容値θUを設定し、これらの上限許容値XU、YU、及び上限許容角度θUを入力装置(図示せず)によって入力し、実装プログラム記憶手段72あるいは搬送系データ記憶手段73に記憶させておく。
コンベア20によって運搬されてきた基板Bが所定位置において停止すると、基板カメラ14により基板Bのフィデューシャルマーク(図示せず)が認識されることで基板BのX軸方向及びY軸方向における位置が認識される。すると、モータ制御部80によりX軸モータ44、Y軸モータ46、及びZ軸モータ48が作動され、吸着ノズル52が実装用部品Pを吸着可能な位置に運ばれる。このとき、吸着ノズル52はその中心が部品供給部30の所定の位置に至るように制御される。この後、ヘッド41が下降すると共に吸着ノズル52に負圧が供給され、トレーフィーダに保持された実装用部品Pを吸着して(S201)、ヘッド41が上昇することでトレーフィーダから実装用部品Pをピックアップし、部品認識カメラ12上空へ向けてX軸方向及びY軸方向に移動する。
そこで、実装用部品Pが部品認識カメラ12によってZ軸方向下側から撮像されると、実装用部品Pの下面側が認識されると共に(S202)、実装用部品Pの下面側の撮像画像データが画像処理部100へ出力される。画像処理部100は、実装用部品Pの下面側の撮像画像データに基づいて、実装用部品PをXY平面上に投影させた場合におけるX軸方向の寸法であるX寸法X1、Y軸方向の寸法であるY寸法Y1を取得する。そして、これらの寸法X1、Y1、及び吸着ノズル52の中心位置の座標に基づいて実装用部品Pの中心点座標を取得する。これと同時に、吸着ノズル52の中心位置に対する実装用部品Pの中心点座標のX軸方向の吸着ずれ量Xa、Y軸方向の吸着ずれ量Ya、及びR軸周りの吸着ずれ角度θaを取得する(S203)。
X軸方向の吸着ずれ量Xaが上限許容値XUを越えていたら(S204のNo)、その実装用部品Pを廃棄し(S205)、ヘッドユニット40をトレーフィーダの実装用部品Pを吸着可能な位置に移動させ、再び実装用部品Pの吸着動作を行う(S201)。同様に、Y軸方向の吸着ずれ量Yaが上限許容値YUを越えていた場合も(S204のNo)、その実装用部品Pを廃棄し(S205)、上記同様再び実装用部品Pの吸着動作を行い(S201)、R軸周りの吸着ずれ角度θaが上限許容角度θUを越えていた場合も(S204のNo)、その実装用部品Pを廃棄し(S205)、上記同様再び実装用部品Pの吸着動作を行う(S201)。
一方、X軸方向の吸着ずれ量Xa、Y軸方向の吸着ずれ量Ya、及びR軸方向の吸着ずれ角度θaが、それぞれ上限許容値XU、YU、及び上限許容角度θU以下の場合は(S204のYes)、3Dセンサ220による部品認識が行われる。この部品認識は以下の手順で行われる。
実装用部品Pは、ヘッド41により、集光位置SIに実装用部品Pの下面位置が一致するようにZ軸方向に移動される。そして、ヘッドユニット40により、図11に示すように、3Dセンサ220の上空において実装用部品Pのリード端子列aが集光位置SIを矢印の方向に沿って通過するように実装用部品Pを搬送させる。このとき、第1及び第2のカメラ236,237によって取得された各撮像画像データは画像処理部100へ出力される。これにより、リード端子列aの各リード端子Tが画像処理部100によって認識され(S206)、リード端子群Tの位置データが取得される。
次に、ヘッド41をR軸方向に90°回転させ(S208)、実装用部品Pの次のリード端子列bが集光位置SIを通過するように実装用部品Pを搬送させることにより、リード端子列bの各リード端子Tが画像処理部100によって認識され(S209)、リード端子群Tの位置データが取得される。そして、全てのリード端子列a〜dについて認識が完了したか否かを確認し、完了していなければ(S207のNo)、ヘッド41を90°回転させることにより(S208)、残りのリード端子列c,dの認識を順次行い(S209)、全ての各リード端子Tの位置データを取得する。
この後、リード端子群Tの位置データに基づいてリード端子群Tの平坦度が算出される。この平坦度が所定の基準値を上回ると、その実装用部品Pについては廃棄される。なお、装着面V2は、リード端子群Tのうち最も突出した3つのリード端子Tを選択し、これら3点のリード端子Tの先端を結んで構成される3次元空間における仮想平面として算出される。
この平坦度測定に加えて、画像処理部100は、リード端子群Tの平坦度を測定する際に算出されたリード端子群Tの位置データを利用してリード端子Tの先端が基板B上面に接する装着面V2が算出され、この装着面V2の基板B上面に対する角度θ3、θ4(本発明の「装着面の基板に対する傾き」に相当する。)を取得する(S210)。ここで、中心点C1は、傾き状態にある電子部品Pの中心を通る軸線S7と装着面V2との交点として把握することができる。また、中心点C2は、基板B上面に搭載された電子部品Pの中心を通る軸線S8と装着面V2との交点として把握できる。以下、角度θ3、θ4の算出方法について説明する。
角度θ3は、図14に示すように、中心点C1を通るXZ平面と装着面V2とが交わる直線L1を算出し、この直線L1をXY平面上に投影させた直線L2を算出し、この直線L2に対する直線L1の傾きとして算出される。角度θ4は、図15に示すように、上記と同様にして、中心点C1を通るYZ平面と装着面V2とが交わる直線L3を算出し、この直線L3をXY平面上に投影させた直線L4を算出し、この直線L4に対する直線L3の傾きとして算出される。
ところで、吸着ノズル52による実装用部品Pの吸着姿勢は必ずしも水平とは限らず、あるいは、吸着姿勢は水平でも装着面V2は必ずしも水平であるとは限らない場合がある。このような場合、実装用部品Pの装着面V2が基板B上面に対して傾いた姿勢のまま搭載されると、実装用部品Pは、図14及び図15に示すように、傾いた姿勢における実装用部品Pの下端部P1が基板B上面に接触した後、この下端部P1を回動中心として傾いた姿勢における実装用部品Pの先端P2(図14参照)及びP3(図15参照)が弧状の軌跡を描きながら基板B上面へ移動するため、搭載前の部品中心点C1に対する搭載後の部品中心点C2のX軸方向における搭載ずれ量ΔX、Y軸方向における搭載ずれ量ΔYが生じることになる。このため、吸着ノズル52の中心位置に対する搭載後の実装用部品Pの中心点C2のX軸方向におけるずれ量はXa+ΔXとなり、Y軸方向におけるずれ量はYa+ΔYとなる。したがって、ずれ量として吸着ずれ量Xa及びYaのみを考慮して、基板Bに対する吸着ノズル52のXY方向載置位置を補正すると、搭載後の実装用部品Pの中心点C2は、実装用部品Pの所定の実装位置に対してX軸方向にΔX、Y軸方向にΔYだけずれた位置に実装されることになる。尚、搭載ずれ量ΔX及びΔYは本発明の「載置ずれ量」に相当する。
この対策として、本実施形態では、図13のS210〜S212に示すように、吸着ずれ量Xa、Yaのみならず、搭載ずれ量ΔX、ΔYについても考慮して、吸着ノズル52のXY方向載置位置を補正することにより、搭載後の実装用部品Pの中心点C2が所定の実装位置と一致するようにしている。具体的には、搭載ずれ量ΔX及びΔYから、吸着ずれ量Xa及びYaから差し引いた値を総ずれ量とし、この総ずれ量を吸着ノズル52のXY方向載置位置から差し引くことにより補正位置を算出している。以下、搭載ずれ量ΔX及びΔYを算出する方法について説明する。
まず、ΔXを算出する方法について説明する。傾いた姿勢における実装用部品PのX軸方向の寸法X1は、実施形態1と同様にして、部品認識カメラ12による実装用部品Pの下面側の撮像画像に基づいて算出される。また、XZ平面上の傾きθ3は、上述のように、3Dセンサ220及びコントローラ70により取得される。ΔXは、図14の一番左の寸法線をS3として、寸法線S3から中心点C2までのX軸方向における距離{(X0)/2}と、寸法線S3から中心点C1までのX軸方向における距離{(X1)/2}との差として求めることができる。…式4
<式4> ΔX={(X0)/2}−{(X1)/2}
=(X0−X1)/2
一方、X0はX1とθ3とから算出される。…式5
<式5> X0=(X1)/cosθ3
よって、ΔX=X1{(1/cosθ3)−1}/2 となる。
一方、ΔYの算出方法については、ΔXの算出方法と同様であるため、詳細な説明を省略するものの、上記と同様の計算式により、ΔYについては、
ΔY=Y1{(1/cosθ4)−1}/2 となる。
このようにして、実装用部品PのX寸法X1、Y寸法Y1、Z軸方向の傾きθ3、θ4に基づいて搭載ずれ量ΔX、ΔYが算出される(S211)。そして、上記X軸方向の吸着ずれ量XaからΔXを差し引くと共に上記Y軸方向の吸着ずれ量YaからΔYを差し引くことにより、吸着ずれ量と搭載ずれ量の両方のずれ量を考慮したずれ量を算出する(S212)。そして、このずれ量(Xa−ΔX)及び(Ya−ΔY)に基づいて基板Bに対する吸着ノズル52のXY方向載置位置を補正した補正位置を算出し、この補正位置に向けてヘッドユニット40をX軸方向及びY軸方向に移動し、ヘッド41を基板B上面に向けてZ軸方向に下降させる。
空気圧供給手段により吸着ノズル52に正圧が供給され、実装用部品Pが吸着ノズル52から離脱し、傾いた姿勢における実装用部品Pの下端部P1が基板B上面に接触すると、実装用部品Pの下端部P1を回動中心として先端P2及びP3が弧状の軌跡を描きながら基板B上面に移動し、実装用部品Pが基板B上面の所定の実装位置に搭載される(S213)。電子部品Pが基板B上面に搭載されたら、ヘッド41を上昇させて、ヘッドユニット40を原点位置に復帰させる。こうして実装用部品Pの部品搭載動作が終了すると(S214)、ヘッドユニット40は、次に搭載される実装用部品Pがある場合には、再びヘッドユニット40を部品供給部30のトレーフィーダへ移動し、次に搭載される実装用部品Pの吸着を行う(S201)。
以上のように本実施形態では、以下の効果を奏することができる。
1.吸着ずれ量Xa及びYaを考慮するのみならず実装用部品Pの傾き姿勢に起因して生じる搭載ずれ量ΔX及びΔYをも考慮することにより、実装用部品Pを傾いた姿勢のまま基板B上面に搭載されても実装用部品Pを精度良く実装することができる。
2.リード端子群Tの平坦度測定の際に取得されたリード端子群Tの位置データを利用して装着面V2を算出し、この装着面V2の基板B上面に対する角度θ3及びθ4から搭載ずれ量Δ3及びΔ4を求めることができる。したがって、既存の計測手段(3Dセンサ220)を用いて搭載ずれ量Δ3、Δ4を算出することができるから、新たな計測手段を設ける必要がない。
3.吸着ノズル52の中心位置に対する実装用部品Pの中心点C1の吸着ずれ量Xa、Ya、及び吸着ずれ角度θaに基づいて、実装用部品Pの良否を判定することができる。
4.X軸方向及びY軸方向のそれぞれについて補正することができるから、いずれか一方のみについて補正する場合よりも精度良く実装用部品Pを搭載することができる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)本実施形態では、電子部品Pの基準点のXY平面における座標として電子部品Pの中心点C1の座標を算出しているものの、本発明によると、電子部品Pの基準点のXY平面における座標は、他の場所であってもよく、例えば電子部品Pの傾いた姿勢における下端部P1をXY平面に投影させた点の座標としてもよい。
(2)本実施形態では、吸着ずれ量Xa、Ya及び搭載ずれ量ΔX、ΔYに基づいて吸着ノズル52側の位置を補正しているものの、本発明によると、吸着ずれ量Xa、Ya及び搭載ずれ量ΔX、ΔYに基づいて基板B側の位置を補正してもよい。
(3)実施形態1では、角度θ1、θ2、及び高さ寸法Z0に基づいて搭載ずれ量ΔX及びΔYを算出しているものの、本発明によると、角度θ1及びθ2が小さいときには、電子部品Pの側面側の撮像画像に基づいてΔ1及びΔ2を画像処理部100により取得し、Δ1及びΔ2の半分の値として搭載ずれ量ΔX及びΔYを算出してもよい。
(4)実施形態1では、傾き検知手段としてサイドビューカメラ13を用いて電子部品Pの側面側の撮像画像に基づいて電子部品Pの高さ寸法Z0を算出するものを例示しているものの、本発明によると、予め搬送系データ記憶手段73に記憶させた電子部品Pの高さ寸法Z0を用いてもよい。
(5)実施形態1では、角度θ1及びθ2をサイドビューカメラ13による撮像画像に基づいて仮想面V1の基板B上面に対する角度として取得しているものの、本発明によると、電子部品PのXY平面に対する傾きを取得するものであれば他の方法によって取得してもよい。すなわち、サイドビューカメラ13の撮像画像には予めXY平面と平行となる基準線を組み込んでおき、この基準線に基づいて角度θ1及びθ2を取得するか、撮像画像中の吸着ノズル52の先端面(ほぼ水平となるように設定されている。)を基準線として角度θ1及びθ2を取得する。あるいは、撮像画像中の吸着ノズル52から、中心線を求め、さらにこの中心線と直交するXY平面と平行な基準線を求め、この基準線に基づいて角度θ1及びθ2を取得する。
(6)実施形態1では、サイドビューカメラ13による撮像画像に基づいて角度θ1及びθ2を取得しているものの、本発明によると、傾き検知手段として、下方から電子部品Pにレーザを照射すると共に反射光から距離を測定するレーザ高さ計測機を用いて角度θ1及びθ2を取得してもよい。
具体的には、レーザ高さ計測機は、投光部(図示せず)と受光部(図示せず)と光位置検出素子(図示せず)とを備え、図示はしないものの、部品認識カメラ12の近傍において基台11上に設置されている。投光部14から出射されたレーザ光は、投光部の真上に位置する電子部品Pの基板接触電極の先端で反射し、この反射光が受光部に進入して光位置検出素子によって投光部からのZ軸方向の距離が検出される。したがって、投光部の真上で電子部品PをX軸方向およびY軸方向に移動させると、X軸方向への移動量に対するZ軸方向の変位量及びY軸方向への移動量に対するZ軸方向の変位量を計測することができる。よって、X軸方向の移動量、Y軸方向の移動量、及びZ軸方向の変位量に基づいて角度θ1及びθ2を算出することができる。
(7)実施形態1では、サイドビューカメラ13による撮像画像に基づいて角度θ1及びθ2を取得しているものの、本発明によると、傾き検知手段として、下方カメラと電子部品Pの下面を斜め下方から撮像する傾斜カメラからなるカメラユニットを用いて角度θ1及びθ2を取得してもよい。このカメラユニットを具体化したものが実施形態2における3Dセンサ220であるため、その構造説明については省略する。このカメラユニットを用いて電子部品Pの下面を撮像すると、電子部品Pの形状を立体的に把握することができるから、この立体画像に基づいて電子部品Pの下面のX軸方向におけるX寸法、Y軸方向におけるY寸法、及びZ軸方向におけるZ寸法を算出し、これらの寸法に基づいて角度θ1及びθ2を算出することができる。
(8)実施形態1では、ヘッド41を90°回転させることにより、電子部品Pの側面側を異なる2方向(X軸方向及びY軸方向)から撮像してそれぞれの方向について補正を行っているものの、本発明によると、例えば電子部品Pの側面側をY軸方向から撮像しX軸方向のみを補正してもよい。また、ヘッド41の回転角度は、必ずしも90°である必要はなく、例えば60°であってもよい。
(9)実施形態2では、計測手段として、3Dセンサ220を例示しているものの、本発明によれば、計測手段としてレーザ高さ計測機等を用いてZ軸方向の高さ位置データを取得し、部品認識カメラ12による撮像画像に基づいてXY方向の位置データを取得してもよい。
(10)実施形態2では、QFP等のリード端子Tを有する実装用部品Pを例示しているものの、本発明によると、BGAやCSP等の下面電極を備えた電子部品についても適用可能である。
(11)本実施形態では、本発明の部品移載装置として表面実装機10、210に適用したものを例示しているものの、本発明によると、IC部品を検査するために部品を検査ソケットに順次運搬載置する、所謂ICハンドラーと呼ばれる部品検査装置に適用したものであってもよい。
実施形態1の表面実装機の正面図 その表面実装機の平面図 その電子部品を部品認識カメラによって下方から撮像する様子を示す概略図 その表面実装機の電気的構成を示すブロック図 その表面実装機により電子部品を基板上面の所定の実装位置に搭載する動作方法を示すフローチャート その電子部品のX軸方向における搭載ずれを考慮して所定の実装位置に搭載する様子を示した概略図 その電子部品のY軸方向における搭載ずれを考慮して所定の実装位置に搭載する様子を示した概略図 実施形態2の電子部品を部品認識カメラ及び3Dセンサによって下方から撮像する様子を示す概略図 その3Dセンサの内部構造を側方から見た状態を示す側面図 その屈折レンズを通過した平行光が直線状の集光位置に集光される様子を示した概略図 その実装用部品の各リード端子列が集光位置を通過するように搬送して各リード端子の位置データを取得する様子を示した平面図 その表面実装機の電気的構成を示すブロック図 その表面実装機により電子部品を基板上面の所定の実装位置に搭載する動作方法を示すフローチャート その実装用部品のX軸方向における搭載ずれを考慮して所定の実装位置に搭載する様子を示した概略図 その実装用部品のY軸方向における搭載ずれを考慮して所定の実装位置に搭載する様子を示した概略図
符号の説明
10、210…表面実装機(部品移載装置)
11…基台
12…部品認識カメラ(下方カメラ)
13…サイドビューカメラ(側方カメラ)
20…コンベア(基板搬送手段)
52…吸着ノズル
70…コントローラ(吸着ずれ算出手段、載置ずれ算出手段、補正位置算出手段、制御装置、コプラナリティ算出手段、傾き算出手段)
100…画像処理部(基準点位置取得手段、Z方向寸法取得手段、XY寸法取得手段)
220…3Dセンサ(計測手段)
236…第1のカメラ(計測カメラ)
237…第2のカメラ(計測カメラ)
B…プリント基板
C1…搭載前の電子部品の中心点
C2…搭載後の電子部品の中心点
P…電子部品(実装用部品)
V1…仮想面
V2…装着面
X1…X軸方向の寸法(XY平面における所定の寸法)
Xa…X軸方向の吸着ずれ量
XU…Xaの上限許容値
Y1…Y軸方向の寸法(XY平面における所定の寸法)
Ya…Y軸方向の吸着ずれ量
YU…Yaの上限許容値
Z0…電子部品の高さ寸法(Z方向の寸法)
ΔX…X軸方向の搭載ずれ量
ΔY…Y軸方向の搭載ずれ量
θ1、θ2…仮想面(装着面)の基板上面に対する角度
θa…R軸周りの吸着ずれ角度
θU…θaの上限許容角度

Claims (11)

  1. 電子部品を吸着する吸着ノズルと、
    前記吸着ノズルによって吸着された前記電子部品を下方から撮像する下方カメラと、
    水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、前記XY平面内の所定の方向から見た前記電子部品の前記XY平面に対する傾きを検知する傾き検知手段と、
    前記水平面に対してほぼ平行となるように保持された基板と前記吸着ノズルとのうち少なくとも一方を移動することで、前記基板に対して前記吸着ノズルを相対的に前記XY平面において移動可能とする駆動装置と、
    前記下方カメラにより撮像された前記電子部品の下面側の撮像画像に基づいて前記電子部品の下面あるいは前記電子部品の基板接触電極の先端を通過する仮想面における基準点の前記XY平面における位置を取得する基準点位置取得手段と、
    前記基準点の前記XY平面における位置の前記吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、
    前記傾き検知手段により検知された前記傾きに基づいて傾き状態にある前記電子部品の前記基準点の前記XY平面における位置と前記基板上面に載置されたとする前記電子部品の前記基準点の前記XY平面における位置との載置ずれ量を算出する載置ずれ算出手段と、
    前記吸着ずれ算出手段により算出された吸着ずれ量と前記載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、前記基板に対する前記吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、
    この補正位置算出手段により算出された補正位置に基づき前記駆動装置を駆動制御する制御装置とを備える部品移載装置。
  2. 前記傾き検知手段は、側方から前記電子部品を撮像する側方カメラを備え、前記側方カメラにより撮像された前記電子部品の側面側の撮像画像に基づいて前記傾きを検知する請求項1に記載の部品移載装置。
  3. 前記傾き検知手段は、下方から前記電子部品にレーザを照射すると共に反射光から距離を測定するレーザ高さ計測機を備え、前記レーザ高さ計測機により計測された前記距離に基づいて前記傾きを検知する請求項1に記載の部品移載装置。
  4. 前記傾き検知手段は、前記下方カメラと前記電子部品の下面を斜め下方から撮像する傾斜カメラの2つのカメラからなるカメラユニットを備え、前記カメラユニットにより撮像された前記電子部品の下面側の撮像画像に基づいて前記傾きを検知する請求項1に記載の部品移載装置。
  5. 前記傾き検知手段は、前記電子部品の下面の前記基板上面に対する角度あるいは前記仮想面の前記基板上面に対する角度として前記傾きを取得し、前記補正位置算出手段は、前記電子部品の前記基板上面に載置された状態でのZ方向の寸法を取得するZ方向寸法取得手段を備え、前記傾き検知手段により取得された前記角度及び前記Z方向の寸法に基づいて前記補正位置を算出する請求項1又は請求項2に記載の部品移載装置。
  6. 前記基準点位置取得手段は、前記下方カメラにより撮像された前記電子部品の撮像画像における中心点を前記基準点としてその位置を取得し、前記制御装置は、前記電子部品の撮像画像における中心点の位置と前記吸着ノズルの中心点の位置とのずれ量が所定のずれ基準値を越えている場合には、その電子部品を前記基板上面に移載しないようにする請求項1ないし請求項5のいずれか一項に記載の部品移載装置。
  7. 前記吸着ノズルはZ方向に延びるZ軸に対してほぼ平行となる回動軸を中心として軸回転可能に設けられ、前記傾き検知手段は前記吸着ノズルを回転させることにより前記電子部品の吸着姿勢をそれぞれ異なる方向から見た傾きを検知し、前記補正位置算出手段は、前記異なる方向から見た各傾きに基づいて前記基板に対する前記吸着ノズルのXY方向載置位置を前記異なる方向についてそれぞれ補正する請求項1ないし請求項6のいずれか一項に記載の部品移載装置。
  8. 電子部品を吸着する吸着ノズルと、
    前記吸着ノズルによって吸着された前記電子部品を下方から撮像する下方カメラと、
    水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、前記水平面に対してほぼ平行となるように保持された基板と前記吸着ノズルとのうち少なくとも一方を移動することで、前記基板に対して前記吸着ノズルを相対的に前記XY平面において移動可能とする駆動装置と、
    前記電子部品が複数のリード端子を有する場合に、前記電子部品のリード端子群の位置を計測する計測手段と、
    その計測手段により計測された前記リード端子群の位置データに基づいて前記リード端子群の平坦度を算出するコプラナリティ算出手段とを備えた部品移載装置において、
    前記計測手段により計測された前記リード端子群の位置データを利用して前記電子部品のうち前記リード端子の先端が前記基板上面に接する装着面を算出すると共にこの装着面の前記基板に対する傾きを算出する傾き算出手段と、
    前記装着面の前記XY平面における所定の寸法を取得するXY寸法取得手段と、
    前記電子部品の下面あるいは前記装着面における基準点の前記XY平面における位置を取得する基準点位置取得手段と、
    前記基準点の前記XY平面における位置の前記吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、
    前記装着面の前記基板に対する傾き及び前記装着面の前記XY平面における所定の寸法に基づいて傾き状態にある前記電子部品の前記基準点の前記XY平面における位置と前記基板上面に載置されたとする前記電子部品の前記基準点の前記XY平面における位置とのずれ量を載置ずれ量として算出する載置ずれ算出手段と、
    前記吸着ずれ算出手段により算出された吸着ずれ量と前記載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、前記基板に対する前記吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、
    この補正位置算出手段により算出された補正位置に基づき前記駆動装置を駆動制御する制御装置とを備える部品移載装置。
  9. 電子部品を吸着する吸着ノズルと、
    前記吸着ノズルによって吸着された前記電子部品を下方から撮像する下方カメラと、
    水平面に対してほぼ平行となる面をXY平面と定義し、そのXY平面に対して直交する方向をZ方向と定義したときに、前記水平面に対してほぼ平行となるように保持された基板と前記吸着ノズルとのうち少なくとも一方を移動することで、前記基板に対して前記吸着ノズルを相対的に前記XY平面において移動可能とする駆動装置と、
    前記電子部品がその下面に露出する複数の基板接触電極を有する場合に、前記電子部品の前記基板接触電極群の位置を計測する計測手段と、
    その計測手段により計測された前記基板接触電極群の位置データに基づいて前記基板接触電極群の平坦度を算出するコプラナリティ算出手段とを備えた部品移載装置において、
    前記計測手段により計測された前記基板接触電極群の位置データを利用して前記電子部品のうち前記基板接触電極の先端が前記基板上面に接する装着面を算出すると共にこの装着面の前記基板に対する傾きを算出する傾き算出手段と、
    前記装着面の前記XY平面における所定の寸法を取得するXY寸法取得手段と、
    前記電子部品の下面あるいは前記装着面における基準点の前記XY平面における位置を取得する基準点位置取得手段と、
    前記基準点の前記XY平面における位置の前記吸着ノズルに対する吸着ずれ量を算出する吸着ずれ算出手段と、
    前記装着面の前記基板に対する傾き及び前記装着面の前記XY平面における所定の寸法に基づいて傾き状態にある前記電子部品の前記基準点の前記XY平面における位置と前記基板上面に載置されたとする前記電子部品の前記基準点の前記XY平面における位置とのずれ量を載置ずれ量として算出する載置ずれ算出手段と、
    前記吸着ずれ算出手段により算出された吸着ずれ量と前記載置ずれ算出手段により算出された載置ずれ量との両方のずれ量から、前記基板に対する前記吸着ノズルのXY方向載置位置を補正した補正位置を算出する補正位置算出手段と、
    この補正位置算出手段により算出された補正位置に基づき前記駆動装置を駆動制御する制御装置とを備える部品移載装置。
  10. 前記計測手段は複数の計測カメラを備え、前記各計測カメラがそれぞれ異なる方向から前記電子部品を撮像し、この電子部品の撮像画像に基づいて前記リード端子群もしくは前記基板接触電極群の位置データを取得する請求項8又は請求項9に記載の部品移載装置。
  11. 基台上に基板搬送手段を備え、請求項1ないし請求項10のいずれか一項に記載した部品移載装置により前記基板搬送手段により搬送された基板に前記電子部品を実装する表面実装機。
JP2007061841A 2007-03-12 2007-03-12 部品移載装置及び表面実装機 Active JP4999502B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061841A JP4999502B2 (ja) 2007-03-12 2007-03-12 部品移載装置及び表面実装機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061841A JP4999502B2 (ja) 2007-03-12 2007-03-12 部品移載装置及び表面実装機

Publications (2)

Publication Number Publication Date
JP2008227069A true JP2008227069A (ja) 2008-09-25
JP4999502B2 JP4999502B2 (ja) 2012-08-15

Family

ID=39845349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061841A Active JP4999502B2 (ja) 2007-03-12 2007-03-12 部品移載装置及び表面実装機

Country Status (1)

Country Link
JP (1) JP4999502B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153861A (ja) * 2014-02-13 2015-08-24 ヤマハ発動機株式会社 部品認識装置、部品移載装置および部品実装装置
JP2016143729A (ja) * 2015-01-30 2016-08-08 Tdk株式会社 電子部品の実装システムと実装方法
WO2020075256A1 (ja) * 2018-10-11 2020-04-16 株式会社Fuji 作業機
CN112739977A (zh) * 2018-10-05 2021-04-30 株式会社富士 测定装置及元件安装机
EP4027763A4 (en) * 2019-09-02 2022-09-07 Fuji Corporation COMPONENT HOLDING DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332794A (ja) * 2002-05-09 2003-11-21 Ishikawa Kinzoku Kk 位置マークを備えた回路部品および実装方法
JP2004235671A (ja) * 1996-04-23 2004-08-19 Matsushita Electric Ind Co Ltd 電子部品実装装置
JP2005322802A (ja) * 2004-05-10 2005-11-17 Yamagata Casio Co Ltd 部品搭載装置
JP2005340648A (ja) * 2004-05-28 2005-12-08 Yamaha Motor Co Ltd 部品認識方法、部品認識装置、表面実装機および部品検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235671A (ja) * 1996-04-23 2004-08-19 Matsushita Electric Ind Co Ltd 電子部品実装装置
JP2003332794A (ja) * 2002-05-09 2003-11-21 Ishikawa Kinzoku Kk 位置マークを備えた回路部品および実装方法
JP2005322802A (ja) * 2004-05-10 2005-11-17 Yamagata Casio Co Ltd 部品搭載装置
JP2005340648A (ja) * 2004-05-28 2005-12-08 Yamaha Motor Co Ltd 部品認識方法、部品認識装置、表面実装機および部品検査装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153861A (ja) * 2014-02-13 2015-08-24 ヤマハ発動機株式会社 部品認識装置、部品移載装置および部品実装装置
JP2016143729A (ja) * 2015-01-30 2016-08-08 Tdk株式会社 電子部品の実装システムと実装方法
CN112739977A (zh) * 2018-10-05 2021-04-30 株式会社富士 测定装置及元件安装机
WO2020075256A1 (ja) * 2018-10-11 2020-04-16 株式会社Fuji 作業機
JPWO2020075256A1 (ja) * 2018-10-11 2021-03-11 株式会社Fuji 作業機
EP4027763A4 (en) * 2019-09-02 2022-09-07 Fuji Corporation COMPONENT HOLDING DEVICE

Also Published As

Publication number Publication date
JP4999502B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5445509B2 (ja) 画像形成装置および画像形成方法ならびに部品実装装置
JP6224348B2 (ja) 判定装置、表面実装機
JP2001136000A (ja) 装着装置の装着精度検出治具および装着精度検出方法
JPH11330798A (ja) 電気部品装着方法およびシステム
JPWO2015128945A1 (ja) 部品装着装置
JP4999502B2 (ja) 部品移載装置及び表面実装機
JP4804295B2 (ja) 部品認識方法、部品認識装置、表面実装機及び部品検査装置
US7058216B2 (en) Apparatus for detecting lead coplanarity, apparatus for detecting condition of electronic component, and system for mounting electronic component
JP2003298294A (ja) 電子回路部品装着システム
JP5296387B2 (ja) 電気回路部品高さ方向情報取得方法およびシステム
US8881380B2 (en) Component mounting apparatus and method for photographing component
JP5296749B2 (ja) 部品認識装置および表面実装機
JP6475165B2 (ja) 実装装置
JP2008153458A (ja) 電子部品の移載装置及び表面実装機
JP6476294B2 (ja) 挿入部品位置決め検査方法及び挿入部品実装方法並びに挿入部品位置決め検査装置及び挿入部品実装装置
JP2007225317A (ja) 部品の三次元測定装置
JP2005340648A (ja) 部品認識方法、部品認識装置、表面実装機および部品検査装置
JP4562275B2 (ja) 電気部品装着システムおよびそれの精度検査方法
JP5040829B2 (ja) 部品実装装置および部品実装方法
JP4901451B2 (ja) 部品実装装置
JP2011179885A (ja) キャリブレーション装置及びキャリブレーション方法及び位置検出用治具及び部品検査装置
JP6752706B2 (ja) 判定装置、及び、表面実装機
WO2023079606A1 (ja) 部品実装機および部品実装位置ずれ判定方法
JP4386425B2 (ja) 表面実装機
JP3498074B2 (ja) 電気部品装着システム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250