JP2008223373A - Wave-absorbing concrete block - Google Patents

Wave-absorbing concrete block Download PDF

Info

Publication number
JP2008223373A
JP2008223373A JP2007064623A JP2007064623A JP2008223373A JP 2008223373 A JP2008223373 A JP 2008223373A JP 2007064623 A JP2007064623 A JP 2007064623A JP 2007064623 A JP2007064623 A JP 2007064623A JP 2008223373 A JP2008223373 A JP 2008223373A
Authority
JP
Japan
Prior art keywords
wave
leg
gravity
center
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007064623A
Other languages
Japanese (ja)
Inventor
Hiroo Moritaka
裕生 盛高
Masahito Yamamoto
方人 山本
Ichiro Nishiwaki
一郎 西脇
Mitsuho Iwanami
光保 岩波
Hiroshi Yokota
弘 横田
Ema Kato
絵万 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Fudo Tetra Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp, National Institute of Maritime Port and Aviation Technology filed Critical Fudo Tetra Corp
Priority to JP2007064623A priority Critical patent/JP2008223373A/en
Priority to PCT/JP2008/054307 priority patent/WO2008111561A1/en
Priority to CNA2008100920198A priority patent/CN101265698A/en
Priority to KR1020080023326A priority patent/KR20080084679A/en
Publication of JP2008223373A publication Critical patent/JP2008223373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/129Polyhedrons, tetrapods or similar bodies, whether or not threaded on strings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • E02B3/08Structures of loose stones with or without piles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly general-purpose wave-absorbing concrete block having sufficient structural strength and capable of improving stability and percentage of void exponentially. <P>SOLUTION: This concrete block 1 having such a shape that a plurality of leg parts 3 protrude radially toward an outer side centered on a basic part 2 is constituted in such a way that the thickest part M (the part where area of cross section crossing an axial line A orthogonally is the largest) is positioned on an outer side more than the thinnest part N (the part where area of cross section crossing the axial line A orthogonally is the smallest), the dimension m on the axial line A from the center of gravity G to the thickest part M is larger than 0.6 times the dimension L on the axial line A from the center of gravity G to a tip of the leg part 3, and the dimension n on the axial line A from the center of gravity G to the thinnest part N is smaller than 0.4 times the dimension L on the axial line A from the center of gravity G to the tip of the leg part 3 in at least one leg part 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、港湾、海岸、河川等に設置される消波ブロックに関し、特に、従来の汎用的な消波ブロックと比べ、安定性と空隙率を飛躍的に向上させた消波ブロックに関する。   The present invention relates to a wave-dissipating block installed in a port, coast, river, or the like, and more particularly, to a wave-dissipating block that dramatically improves stability and porosity compared to conventional general-purpose wave-dissipating blocks.

従来より、テトラポッド(登録商標)などの4脚ブロックを始めとして、様々な形状のコンクリート製消波ブロックが知られている。消波ブロックには、波力等に対し十分な安定性を有していること、十分な構造強度を有していること、及び、波のエネルギーを減殺できるように、積み上げた際、適度な空隙率が得られること、が要求される。   Conventionally, concrete wave-dissipating blocks of various shapes including a tetrapod block such as Tetrapod (registered trademark) are known. The wave-dissipating block has sufficient stability against wave power, etc., has sufficient structural strength, and is moderate when stacked so that the wave energy can be reduced. It is required that a porosity is obtained.

消波ブロックに求められる安定性、強度、及び、空隙率は、相互に密接な関連性を有しており、一つの要素のみを重視すると、他の面で問題が生じることがある。例えば、積み上げた際の相互のかみ合わせが良好な形状の消波ブロックは、安定性は高くなるものの、構造強度の面で問題があったり、空隙率が小さく、充分な消波効果を期待できないことがある。また、強度のみを重視し過ぎると、充分な安定性が得られない場合もある。従って、汎用性の高い消波ブロックを設計しようとするときは、各要素のバランスが重要となってくる。
特公昭47−48734号公報 実公昭48−1143号公報
The stability, strength, and porosity required for the wave-dissipating block are closely related to each other, and if only one element is emphasized, problems may occur in other aspects. For example, a wave-dissipating block that has a good shape with each other when stacked has high stability, but there is a problem in terms of structural strength, and the porosity is small so that a sufficient wave-dissipating effect cannot be expected. There is. Moreover, if only the strength is emphasized too much, sufficient stability may not be obtained. Therefore, when trying to design a highly versatile wave-dissipating block, the balance of each element becomes important.
Japanese Patent Publication No. 47-48734 Japanese Utility Model Publication No. 48-1143

ところで、従来の汎用的な消波ブロックは、脚部が先細りとなっているか、寸胴の(付根部分から先端まで脚部の太さが均一である)ものが多い。これらは、安定性、強度、及び、空隙率という各要素について、脚部の本数、形状、寸法、角度等を工夫することにより、それぞれ一定の水準をクリアしているが、本発明の発明者(ら)は、永年にわたる研究の結果、従来の汎用的な消波ブロックにおいては、安定性と空隙率について一定の限界が存在していること、脚部が先細り或いは寸胴となっている限り、この限界を超えることは難しいということ、反対に、先太りの脚部を有する消波ブロックであれば、そのような限界を超えて、安定性と空隙率を飛躍的に向上させることができる可能性がある、という知見を得るに至った。   By the way, many conventional general-purpose wave-dissipating blocks have a tapered leg portion or a slim cylinder (the thickness of the leg portion is uniform from the root portion to the tip). These have cleared certain levels by devising the number, shape, dimensions, angle, etc. of the legs for each element of stability, strength, and porosity, but the inventor of the present invention. As a result of many years of research, in the conventional general-purpose wave-dissipating block, there are certain limits on stability and porosity, as long as the legs are tapered or cylindrical, It is difficult to exceed this limit, and conversely, if it is a wave-dissipating block with a tapered leg, stability and porosity can be dramatically improved beyond such limit It came to the knowledge that there is sex.

本発明は、かかる知見のもと、上記のような従来技術の問題を解決すべくなされたものであって、十分な構造強度を有するとともに、安定性と空隙率を飛躍的に向上させた汎用性の高い消波ブロックを提供することを目的とする。   Based on such knowledge, the present invention has been made to solve the above-described problems of the prior art, has a sufficient structural strength, and has improved stability and porosity. An object is to provide a highly efficient wave-dissipating block.

本発明に係る消波ブロックは、基部を中心として複数の脚部が外側へ向かって放射状に突出した形状のブロックであって、複数の脚部のうち少なくとも一つの脚部において、最太部(脚部の軸線と直交する断面の面積(断面の輪郭線の内側の面積)が最も大きくなる部分)が、最細部(軸線と直交する断面の面積(断面の輪郭線の内側の面積)が最も小さくなる部分)よりも外側(重心を基準として外側)に位置し、重心から前記最太部までの軸線上の寸法が、重心から前記脚部の先端までの軸線上の寸法の0.6倍よりも大きく、重心から前記最細部までの軸線上の寸法が、重心から前記脚部の先端までの軸線上の寸法の0.4倍よりも小さくなるように構成されていることを特徴としている。   The wave-dissipating block according to the present invention is a block having a shape in which a plurality of leg portions project radially outward from a base portion, and at least one leg portion among the plurality of leg portions is the thickest portion ( The area of the cross section perpendicular to the axis of the leg (the area where the area inside the outline of the cross section is the largest) is the most detailed (the area of the cross section orthogonal to the axis (the area inside the outline of the cross section) is the most. It is located outside (smaller part) (outside with respect to the center of gravity), and the axial dimension from the center of gravity to the thickest part is 0.6 times the axial dimension from the center of gravity to the tip of the leg. The axial dimension from the center of gravity to the most detailed portion is smaller than 0.4 times the axial dimension from the center of gravity to the tip of the leg. .

尚、本発明に係る消波ブロックにおいては、最太部における脚部断面の面積が、最細部における脚部断面の面積の2.1倍よりも大きくなるように構成することが好ましい。   The wave-dissipating block according to the present invention is preferably configured such that the area of the leg section at the thickest part is larger than 2.1 times the area of the leg section at the most detail.

本発明の消波ブロックは、従来の消波ブロックと比べ、積み上げ時における空隙率の向上を期待することができ、その結果、ブロックの製造に使用するコンクリートの量を縮減できるため、堤体の構築に際し、施工コストを低く抑えることができる。また、脚部が先太りとなっているため、積み上げた際、隣接するブロック間相互のかみ合わせが良好となり、高い安定性を得ることができる。   The wave-dissipating block of the present invention can be expected to improve the porosity during stacking compared to conventional wave-dissipating blocks, and as a result, the amount of concrete used to manufacture the block can be reduced. In construction, construction costs can be kept low. In addition, since the leg portions are tapered, when they are stacked, the adjacent blocks are well meshed with each other, and high stability can be obtained.

以下、添付図面に沿って本発明の実施形態について説明する。図1は、本発明の第1の実施形態に係る消波ブロック1の斜視図であり、図2はその側面図である。図示されているように、この消波ブロック1は、中央の基部2と、基部2を中心として放射状に外側へ突出した四つの脚部3(3a〜3d)とによって構成されている。尚、図2に示す3本の太線(A)は、脚部3a〜3cの各軸線であり、Gは、この消波ブロック1の重心位置を示している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view of a wave-dissipating block 1 according to the first embodiment of the present invention, and FIG. 2 is a side view thereof. As shown in the figure, the wave-dissipating block 1 includes a central base 2 and four legs 3 (3a to 3d) projecting radially outward with the base 2 as a center. Note that the three thick lines (A) shown in FIG. 2 are the axes of the leg portions 3 a to 3 c, and G indicates the position of the center of gravity of the wave-dissipating block 1.

四つの脚部3a〜3dは、いずれも同一形状、同一寸法となっており、天端面の形状、及び、軸線Aと直交する断面の概略形状は、いずれも正三角形である。また、図示されているように、これらの脚部3a〜3dは、最太部M(軸線Aと直交する断面の面積(断面の輪郭線の内側の面積)が最も大きくなる部分)が、最細部N(軸線Aと直交する断面の面積(断面の輪郭線の内側の面積)が最も小さくなる部分)よりも外側(重心Gを基準として外側)に位置しており、その結果、重心Gに近い側(いわゆる「付根」部分)から先端にかけて次第に太くなるような構成となっている。   The four leg portions 3a to 3d have the same shape and the same dimensions, and the shape of the top end surface and the schematic shape of the cross section orthogonal to the axis A are all equilateral triangles. Further, as shown in the drawing, these leg portions 3a to 3d have the thickest portion M (the portion where the cross-sectional area orthogonal to the axis A (the area inside the cross-sectional outline) is the largest). It is located outside the detail N (the portion where the area of the cross section perpendicular to the axis A (the area inside the outline of the cross section) is the smallest) (outside with respect to the center of gravity G). The structure is such that the thickness gradually increases from the near side (so-called “root” portion) to the tip.

従来の消波ブロックにおいて、本実施形態の消波ブロック1のように、脚部が先太りとなっているものは知られていない。この点で本実施形態の消波ブロック1は特徴的であると言える。そして、本実施形態の消波ブロック1は、次のような条件を満たしている点で更なる特徴を有している。   A conventional wave-dissipating block is not known that has a leg portion that is tapered like the wave-dissipating block 1 of the present embodiment. In this respect, it can be said that the wave-dissipating block 1 of the present embodiment is characteristic. And the wave-dissipating block 1 of this embodiment has the further characteristic in the point which satisfy | fills the following conditions.

永年にわたる研究の結果、本発明の発明者(ら)は、下記に示すL、m、n、P、Qの各項目が、下記の条件(1)〜(3)のいずれをも満たしている場合に、安定性と空隙率を向上させようとするうえで理想的な消波ブロックを得ることができる、との知見を得るに至った。
L:脚部3の軸線Aの長さ寸法(重心Gから脚部3の先端までの寸法)
m:重心Gから最太部Mまでの寸法(軸線A上の寸法)(最太部Mが軸線A方向に一定の幅を有している場合においては、重心Gから、最太部Mの最も手前側の部分までの寸法)
n:重心Gから最細部Nまでの寸法(軸線A上の寸法)(最細部Nが軸線A方向に一定の幅を有している場合においては、重心Gから、最細部Nの最も外側の部分までの寸法)
P:最太部Mにおける脚部3の断面の面積
Q:最細部Nにおける脚部3の断面の面積
(1)m>0.6L
(2)n<0.4L
(3)P>2,1Q
As a result of research over many years, the inventors of the present invention (e.g., the present inventors) satisfy the following conditions (1) to (3) for each of the items L, m, n, P, and Q shown below. In this case, the inventors have found that an ideal wave-dissipating block can be obtained in order to improve stability and porosity.
L: Length dimension of the axis A of the leg 3 (dimension from the center of gravity G to the tip of the leg 3)
m: dimension from the center of gravity G to the thickest part M (dimension on the axis A) (when the thickest part M has a certain width in the direction of the axis A, Dimensions up to the foremost part)
n: dimension from the center of gravity G to the finest detail N (dimension on the axis A) (when the finest detail N has a certain width in the direction of the axis A, the outermost part of the finest detail N Dimension to the part)
P: Area of the cross section of the leg 3 at the thickest part M Q: Area of the cross section of the leg 3 at the most detailed N (1) m> 0.6L
(2) n <0.4L
(3) P> 2, 1Q

上記の条件(1)は、脚部3の最太部Mが、軸線A上において、重心Gから軸線Aの60%の位置よりも外側に位置していることを規定するものである。本実施形態の消波ブロック1においては、「m=0.936L」となっており、上記の条件(1)を満たしている。   The condition (1) stipulates that the thickest part M of the leg part 3 is located outside the position of 60% of the axis A from the center of gravity G on the axis A. In the wave-dissipating block 1 of the present embodiment, “m = 0.936L” is satisfied, which satisfies the above condition (1).

上記の条件(2)は、脚部3の最細部Nが、軸線A上において、重心Gから軸線Aの40%の位置よりも内側に位置していることを規定するものである。本実施形態の消波ブロック1においては、「n=0.358L」となっており、上記の条件(2)を満たしている。   The condition (2) defines that the finest detail N of the leg 3 is located on the axis A inside the position of 40% of the axis A from the center of gravity G. In the wave-dissipating block 1 of the present embodiment, “n = 0.358L”, which satisfies the above condition (2).

上記の条件(3)は、最細部Nの断面の面積Qに対し、最太部Mの断面の面積Pが2.1倍以上となることを規定するものである。本実施形態の消波ブロック1においては、「P=2.59Q」となっており、上記の条件(3)を満たしている。   The condition (3) defines that the area P of the cross section of the thickest portion M is 2.1 times or more than the area Q of the cross section of the finest detail N. In the wave-dissipating block 1 of the present embodiment, “P = 2.59Q”, which satisfies the above condition (3).

本実施形態の消波ブロック1は、上述したように、条件(1)〜(3)を満たすような構成とすることにより、積み上げた場合において各ブロック間に形成される空隙を大きくすることができる。より具体的に説明すると、従来の消波ブロックは、付根部分が最も太く、先端にかけて次第に細くなるような形状のものや、付根部分から先端にかけて太さが均一であるものが殆どで、かかるブロックにおける積み上げ時の空隙率は50〜60%程度であるのに対し、本実施形態の消波ブロック1においては、積み上げ時の空隙率を約68%とすることができる。   As described above, the wave-dissipating block 1 of the present embodiment is configured to satisfy the conditions (1) to (3), thereby increasing the gap formed between the blocks when stacked. it can. More specifically, most of the conventional wave-dissipating blocks have a base portion that is the thickest and gradually narrows from the tip to the tip, and those that have a uniform thickness from the root to the tip. In the wave-dissipating block 1 of the present embodiment, the porosity at the time of stacking can be about 68%, while the porosity at the time of stacking is about 50 to 60%.

その結果、堤体の構築に際し、単位体積当たりの使用ブロック数を少なくすることができ、ブロックの製造に使用するコンクリートの量を縮減できるため、堤体の構築に際し、施工コストを低く抑えることができる。   As a result, the number of blocks used per unit volume can be reduced when building a levee body, and the amount of concrete used to manufacture the block can be reduced, so the construction cost can be kept low when building a levee body. it can.

また、先太りとなっているため(特に、最太部Mが脚部3の先端部に近い位置にあるため)、積み上げた際、隣接するブロック間相互のかみ合わせが良好となり、高い安定性を得ることができる(ハドソン式によるKD値:約13)。   In addition, since it is thicker (particularly because the thickest part M is close to the tip of the leg part 3), when stacked, the adjacent blocks are well meshed with each other, and high stability is achieved. (KD value by Hudson equation: about 13).

尚、従来の消波ブロックは、殆どのものが無筋で製造されているが、本実施形態の消波ブロック1は、先太りとなっているため、コンクリート内部に鉄筋を配設することによって補強を行っている。但し、鉄筋による補強が必要な部分(ウィークポイント)は、基部2の近傍に集中しており、脚部3の先端部付近については、必ずしも補強を行う必要はない。従って、鉄筋の配設作業も簡略化することができ、材料コストもそれほど嵩まずに済む。   In addition, although most conventional wave-dissipating blocks are manufactured with no streaks, the wave-dissipating block 1 of the present embodiment is tapered so that a reinforcing bar is disposed inside the concrete. Reinforcement is performed. However, the portions (weak points) that require reinforcement by the reinforcing bars are concentrated in the vicinity of the base portion 2, and the vicinity of the tip portion of the leg portion 3 does not necessarily need to be reinforced. Therefore, the arrangement work of the reinforcing bars can be simplified, and the material cost is not so high.

図3は、本発明の第2の実施形態に係る消波ブロック11の斜視図である。この消波ブロック11は、図1に示した第1の実施形態の消波ブロック1を基本形状とするものであり、図1の消波ブロック1と同様に、中央の基部12と、四つの脚部13(13a〜13d)とによって構成されている。   FIG. 3 is a perspective view of the wave-dissipating block 11 according to the second embodiment of the present invention. This wave-dissipating block 11 has the basic shape of the wave-dissipating block 1 of the first embodiment shown in FIG. 1, and like the wave-dissipating block 1 of FIG. It is comprised by the leg part 13 (13a-13d).

但し、図1の消波ブロック1と異なり、各脚部13には、各天端面の三つの頂点を中心として、それぞれ張出部14が形成されている。これらの張出部14により、図3の消波ブロック11においては、最細部の断面の面積に対する最太部の断面の面積比が、図1の消波ブロック1よりも大きくなっており、その結果、図1の消波ブロック1よりも更に、安定性及び空隙率の向上を期待することができる。   However, unlike the wave-dissipating block 1 in FIG. 1, each leg portion 13 is formed with an overhanging portion 14 around the three vertices of each top end surface. Due to these overhang portions 14, in the wave-dissipating block 11 of FIG. 3, the area ratio of the cross-section of the thickest part to the area of the cross-section of the finest detail is larger than that of the wave-dissipating block 1 of FIG. As a result, stability and porosity can be expected to be further improved than the wave-dissipating block 1 of FIG.

本発明の第1の実施形態に係る消波ブロック1の斜視図。1 is a perspective view of a wave-dissipating block 1 according to a first embodiment of the present invention. 図1の消波ブロック1の側面図。The side view of the wave-dissipating block 1 of FIG. 本発明の第2の実施形態に係る消波ブロック11の斜視図。The perspective view of the wave-dissipating block 11 which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,11:消波ブロック、
2,12:基部、
3,3a〜3d,13,13a〜13d:脚部、
14:張出部、
A:軸線、
G:重心、
L:脚部3の軸線Aの長さ寸法(重心Gから脚部3の先端までの寸法)、
M:最太部、
m:重心Gから最太部Mまでの軸線A上の寸法、
N:最細部、
n:重心Gから最細部Nまでの軸線A上の寸法
1,11: wave-dissipating block,
2, 12: base,
3, 3a to 3d, 13, 13a to 13d: legs,
14: Overhang,
A: axis,
G: Center of gravity,
L: Length dimension of the axis A of the leg 3 (dimension from the center of gravity G to the tip of the leg 3),
M: thickest part,
m: dimension on the axis A from the center of gravity G to the thickest part M,
N: Most detailed,
n: dimension on the axis A from the center of gravity G to the finest detail N

Claims (2)

基部を中心として複数の脚部が外側へ向かって放射状に突出した形状の消波ブロックであって、
前記複数の脚部のうち少なくとも一つの脚部において、最太部が、最細部よりも外側に位置し、
重心から前記最太部までの軸線上の寸法が、重心から前記脚部の先端までの軸線上の寸法の0.6倍よりも大きく、
重心から前記最細部までの軸線上の寸法が、重心から前記脚部の先端までの軸線上の寸法の0.4倍よりも小さくなるように構成されていることを特徴とする消波ブロック。
A wave-dissipating block having a shape in which a plurality of legs project radially outward from the base,
In at least one leg among the plurality of legs, the thickest part is located outside the most detail,
The axial dimension from the center of gravity to the thickest part is greater than 0.6 times the axial dimension from the center of gravity to the tip of the leg,
A wave-dissipating block, characterized in that the axial dimension from the center of gravity to the most detailed dimension is smaller than 0.4 times the axial dimension from the center of gravity to the tip of the leg.
前記最太部における脚部断面の面積が、前記最細部における脚部断面の面積の2.1倍よりも大きくなるように構成されていることを特徴とする、請求項1に記載の消波ブロック。   The wave extinguishing according to claim 1, wherein an area of a leg section in the thickest part is configured to be larger than 2.1 times an area of a leg section in the most detailed part. block.
JP2007064623A 2007-03-14 2007-03-14 Wave-absorbing concrete block Pending JP2008223373A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007064623A JP2008223373A (en) 2007-03-14 2007-03-14 Wave-absorbing concrete block
PCT/JP2008/054307 WO2008111561A1 (en) 2007-03-14 2008-03-10 Wave-dissipating block
CNA2008100920198A CN101265698A (en) 2007-03-14 2008-03-13 Wave-dissipating block
KR1020080023326A KR20080084679A (en) 2007-03-14 2008-03-13 Wave dissipation block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064623A JP2008223373A (en) 2007-03-14 2007-03-14 Wave-absorbing concrete block

Publications (1)

Publication Number Publication Date
JP2008223373A true JP2008223373A (en) 2008-09-25

Family

ID=39759496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064623A Pending JP2008223373A (en) 2007-03-14 2007-03-14 Wave-absorbing concrete block

Country Status (4)

Country Link
JP (1) JP2008223373A (en)
KR (1) KR20080084679A (en)
CN (1) CN101265698A (en)
WO (1) WO2008111561A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198893A1 (en) * 2019-04-05 2020-10-08 •Data53 Spa Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents
KR102239894B1 (en) * 2020-08-12 2021-04-12 김동역 Compound block

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036084A2 (en) 2008-09-29 2010-04-01 Electronics And Telecommunications Research Institute Apparatus and method for transmitting and receiving data in wireless communication system using relay
NL2004345C2 (en) * 2010-03-05 2011-09-09 Hans Hill Damping element.
KR101297714B1 (en) * 2011-06-30 2013-08-20 한동권 Tetrapod for breakwater
JP5795943B2 (en) * 2011-11-14 2015-10-14 日建工学株式会社 Method and apparatus for manufacturing wave-dissipating block
KR101679004B1 (en) * 2015-08-26 2016-11-23 한승호 Tetrapod with climbing frame and seeding band
KR101632232B1 (en) * 2015-11-13 2016-06-21 송운용 Dissipation Block of Breakwater
KR102194036B1 (en) * 2020-04-14 2020-12-22 구룡종합건설(주) Wave dissipating block and oceaninc structure using the same
KR102194035B1 (en) * 2020-04-14 2020-12-22 구룡종합건설(주) Wave dissipating block and oceaninc structure using the same
KR102227894B1 (en) * 2020-11-12 2021-03-15 주식회사 한길 Reinforced Structure of Tetrapod

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128634A (en) * 1976-04-20 1977-10-28 Shiyouzaburou Iwakawa Wave eliminating concrete block
JP2006348572A (en) * 2005-06-15 2006-12-28 Tetra Co Ltd Wave-eliminating block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198893A1 (en) * 2019-04-05 2020-10-08 •Data53 Spa Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents
KR102239894B1 (en) * 2020-08-12 2021-04-12 김동역 Compound block

Also Published As

Publication number Publication date
KR20080084679A (en) 2008-09-19
WO2008111561A1 (en) 2008-09-18
CN101265698A (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP2008223373A (en) Wave-absorbing concrete block
ITBO20120151A1 (en) GABBIONE REINFORCED AND PROCEDURE FOR ITS MANUFACTURE
JP2009148538A (en) Golf club head
JP2009503803A5 (en)
JP2006348572A (en) Wave-eliminating block
JP2006104884A (en) Concrete reinforcing bar
JP6374712B2 (en) Reinforced structure and reinforcing unit for reinforced concrete foundation beams
CN200992775Y (en) Welded steel fabric mesh
JP2014169544A (en) Lath for mortar substrate
JP2004270348A (en) Concrete block
CN205822456U (en) A kind of steel structure node
CN204959967U (en) Hoop reinforcing concrete filled steel tube
JP2008156912A (en) Assembly member and assembly using the same
JP5990052B2 (en) Threaded joint
CN206408834U (en) Co-layer draining Beams with Large Openings
CN206198841U (en) A kind of framework composition welded type water purifier structure
CN205278224U (en) Big stroke energy -absorbing device
CN220848328U (en) Carbon fiber reinforced concrete beam
CN203625901U (en) Improved prestressed concrete square pile
CN212026224U (en) Wood-like pile
CN209429391U (en) A kind of novel L-shaped shaped rc columns
CN201024590Y (en) Reinforced bar welding netting
WO2023061124A1 (en) Housing module and housing
JP3143808U (en) Precast bearing wall connection structure
JP2019059297A (en) Artificial island