WO2020198893A1 - Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents - Google Patents

Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents Download PDF

Info

Publication number
WO2020198893A1
WO2020198893A1 PCT/CL2019/050025 CL2019050025W WO2020198893A1 WO 2020198893 A1 WO2020198893 A1 WO 2020198893A1 CL 2019050025 W CL2019050025 W CL 2019050025W WO 2020198893 A1 WO2020198893 A1 WO 2020198893A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
concrete unit
concrete
volumes
sphere
Prior art date
Application number
PCT/CL2019/050025
Other languages
Spanish (es)
French (fr)
Inventor
Aldo PESCE FRINGS
Original Assignee
•Data53 Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by •Data53 Spa filed Critical •Data53 Spa
Priority to PCT/CL2019/050025 priority Critical patent/WO2020198893A1/en
Publication of WO2020198893A1 publication Critical patent/WO2020198893A1/en
Priority to CL2021002587A priority patent/CL2021002587A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/14Preformed blocks or slabs for forming essentially continuous surfaces; Arrangements thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Definitions

  • the present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others, from the adverse effect of the waves and hydrodynamic currents of the water.
  • the set is formed by joining the spheres or polyhedra using cylindrical or polygonal connecting bars.
  • the waves that the wind originates in the sea for example, when a strong breeze blows over the coast, approaches the coastline in mixed series of different wavelengths, directions and heights.
  • the hydrodynamic waves and currents of the water bring with them a large amount of energy that must be dissipated to protect the coasts, beaches, lakes, reservoirs, ports and others.
  • Document SU 802448 discloses a concrete unit, commercially known as "DOLO", whose block
  • (1) is made up of a central connecting bar (2) made up of a straight octagonal parallelepiped. At the ends of the central connecting bar (2) emerge a first projection (3) and a second projection (4) rotated 90 and with respect to each other.
  • the first projection (3) is made up of a first straight pyramidal octagonal prism (3a) and a second straight pyramidal octagonal prism (3b), inverted with respect to the first, where said first straight pyramidal octagonal prism (3a) and Said second straight pyramidal truncated octagonal prism (3b) are joined by a polygonal central portion (3c) where the central connecting bar is spliced
  • US 5620280 discloses a concrete unit, commercially known as CORE-LOC.
  • the concrete unit is constituted by a block (5) has a central elongated member (6) that has a longitudinal axis (7), wherein said central elongated member (6) is formed by a first straight pyramidal octagonal prism (6a) and by a second prism octagonal straight pyramidal trunk (6b), inverted with respect to the first, wherein said first octagonal straight pyramidal trunk prism (6a) and said second octagonal straight pyramidal trunk prism (6b) are joined by a polygonal central portion (6c).
  • the first and second outer elongated members (8, 9) have parallel longitudinal axes (10, 1 1) which extend normal to the longitudinal axis (7) of the central elongated member (6).
  • the first and second elongated members (8, 9) may each have an octagonal cross section tapering from an intermediate portion toward opposite ends.
  • DOLOS and CORE-LOC are the types of concrete units most used to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others.
  • Various types of concrete units formed by a central body, from which projections with different types of shapes emerge, are disclosed in documents CA 613390, US 3176468, US 3614866, US 3636713, US 4347017, US 5190403, US 2010104366 and US 2016017556 All these Concrete units have the disadvantage of having few faces that face the waves and hydrodynamic currents, with which the energy dissipation is quite impaired. Also, many of these concrete units have centers of gravity that are higher than desired, which can cause the blocks to slip when they are connected to each other.
  • the present invention aims to overcome the disadvantages of the prior art, by providing a concrete unit that has the greatest number of faces that face the waves and hydrodynamic currents and, at the same time, has the lowest possible center of gravity, to prevent the blocks from slipping when they are joined together to form a row or coastal protection zone.
  • the present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others, from the adverse effect of the waves and hydrodynamic currents of the water.
  • the set is formed by joining the spheres or polyhedra using cylindrical or polygonal connecting bars.
  • Figure 1 shows a front elevation view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
  • Figure 2 shows a left side view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
  • Figure 3 shows a top plan view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
  • Figure 4 shows a right side view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
  • Figure 5 shows a perspective view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
  • Figure 6 shows a right side view of a concrete unit to form a breakwater block of the prior art, known commercially as DOLO, where said unit is inclined resembling a DOLO resting on the seabed.
  • Figure 7 shows a perspective view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
  • Figure 8 shows a top plan view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
  • Figure 9 shows a front elevation view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
  • Figure 10 shows a regular tetrahedron, in which the concrete unit of the present invention is circumscribed.
  • Figure 11 shows a regular tetrahedron circumscribed within a sphere, at the vertices of which are the spheres that form part of the concrete unit of the present invention.
  • Figure 12 shows a regular tetrahedron with its geometric center, in which the concrete unit of the present invention is circumscribed.
  • Figure 13 shows a regular tetrahedron with its geometric center circumscribed within a sphere, at whose vertices and geometric center are the spheres that are part of the concrete unit of the present invention.
  • Figure 14 shows a perspective view of a first embodiment of the concrete unit of the present invention.
  • Figure 15 shows a right side view of a first embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
  • Figure 16 shows a front elevation view of a first embodiment of the concrete unit of the present invention.
  • Figure 17 shows a left side view of a first embodiment of the concrete unit of the present invention.
  • Figure 18 shows a top plan view of a first embodiment of the concrete unit of the present invention.
  • Figure 19 shows a right side view of a first embodiment of the concrete unit of the present invention.
  • Figure 20 shows a perspective view of a second embodiment of the concrete unit of the present invention.
  • Figure 21 shows a right side view of a second embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
  • Figure 22 shows a front elevation view of a second embodiment of the concrete unit of the present invention.
  • Figure 23 shows a left side view of a second embodiment of the concrete unit of the present invention.
  • Figure 24 shows a top plan view of a second embodiment of the concrete unit of the present invention.
  • Figure 25 shows a right side view of a second embodiment of the concrete unit of the present invention.
  • Figure 26 shows a perspective view of a third embodiment of the concrete unit of the present invention.
  • Figure 27 shows a right side view of a third embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
  • Figure 28 shows a front elevation view of a third embodiment of the concrete unit of the present invention.
  • Figure 29 shows a left side view of a third embodiment of the concrete unit of the present invention.
  • Figure 30 shows a top plan view of a third embodiment of the concrete unit of the present invention.
  • Figure 31 shows a right side view of a third embodiment of the concrete unit of the present invention.
  • Figure 32 shows a perspective view of a fourth embodiment of the concrete unit of the present invention.
  • Figure 33 shows a right side view of a fourth embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
  • Figure 34 shows a front elevation view of a fourth embodiment of the concrete unit of the present invention.
  • Figure 35 shows a left side view of a fourth embodiment of the concrete unit of the present invention.
  • Figure 36 shows a top plan view of a fourth embodiment of the concrete unit of the present invention.
  • Figure 37 shows a right side view of a fourth embodiment of the concrete unit of the present invention.
  • Figure 38 shows a left side view of a fifth embodiment of the concrete unit of the present invention.
  • Figure 39 shows a right side view of a fifth embodiment of the concrete unit of the present invention.
  • Figure 40 shows a front elevation view of a fifth embodiment of the concrete unit of the present invention.
  • Figure 41 shows a left side view of a sixth embodiment of the concrete unit of the present invention.
  • Figure 42 shows a right side view of a sixth embodiment of the concrete unit of the present invention.
  • Figure 43 shows a front elevation view of a sixth embodiment of the concrete unit of the present invention.
  • Figure 44 shows a schematic view of the alternatives of the connecting bar with cylindrical and polygonal section for a sphere that forms the concrete unit of the present invention.
  • Figure 45 shows a schematic view of the alternatives of the connecting bar with cylindrical and polygonal section for a polyhedron that forms the concrete unit of the present invention.
  • Figure 46 shows a front view of a sphere attached with a connecting bar having a shape of a truncated cone.
  • Figure 47 shows a front view of a polyhedron attached with a connecting bar having a shape of an elongated truncated cone.
  • Fig. 48 shows a front view of a polyhedron attached with a connecting bar having a shape of a right truncated pyramidal octagonal prism.
  • Figure 49 shows a front view of a sphere attached with a connecting rod having a shape of a right octagonal truncated pyramidal prism.
  • Figure 50 shows a top plan view of an alternative of the third embodiment of the concrete unit of the present invention, shown in Figures 26 to 31.
  • Figure 51 shows a section of a top plan view of an alternative of the fourth embodiment of the concrete unit of the present invention, shown in Figures 32 to 37.
  • the present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others from the adverse effect of waves and hydrodynamic water currents.
  • the set is formed by joining the spheres or polyhedra by means of cylindrical or polygonal connecting bars.
  • the concrete unit is circumscribed in a virtual tetrahedron, allows spheres or polyhedra to be used at the vertices and in the geometric center of said tetrahedron, which present a greater surface area or a greater number of faces that face waves or hydrodynamic currents, allowing considerable energy dissipation relative to prior art concrete units. Furthermore, the fact that the concrete units are circumscribed within a virtual tetrahedron, allows the concrete unit to have a much lower center of mass, which prevents the concrete units from slipping when they are joined relative to each other. the others.
  • Figure 10 shows a virtual tetrahedron (12) that has four triangular faces which generate the vertices "a”, “b”, “c” and “d”.
  • a regular tetrahedron its vertices are circumscribed within the cap of a sphere (13), as shown in figure 11.
  • four volumes of spheres 14, 15, 16, 17 are located, where the volumes of spheres (14, 15, 17) are located in the base of the tetrahedron.
  • the volumes of spheres can be replaced by volumes of polyhedra which have multiple faces that face the waves and hydrodynamic currents, improving energy dissipation.
  • Figure 12 shows a virtual tetrahedron (12) in which the geometric center “e” has been included, where it is possible to include a volume of sphere (18), to form a concrete unit with five volumes of spheres, such as as shown in figure 13.
  • the unit consists of five volumes of spheres or polyhedra, three of these volumes will be centered on the vertices “a”, “b” and “c” of the base triangle of a virtual tetrahedron, where the fourth volume will coincide with the vertex "d", which is the cusp of the virtual tetrahedron.
  • the fifth volume is coincident with the geometric center "e" of the tetrahedron.
  • Figures 14 to 19 show a first embodiment of the invention made up of a block of concrete (22) that is formed by four volumes of spheres.
  • a first volume of sphere (14) is connected to a second volume of sphere (15) through a first connecting rod of circular section (19).
  • From the middle of said first connecting rod of circular section (19) emerges a second connecting rod of circular section (20) perpendicular and inclined that connects with a third connecting rod of circular section (21) perpendicular and inclined with respect to the second connecting bar of circular section (20).
  • This third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (22) that has a first volume of sphere (14) , a second volume of sphere
  • (16) is located on the cusp of the virtual tetrahedron (12).
  • Figures 20 to 25 show a second embodiment of the invention made up of a block of concrete (23) that is formed by five volumes of spheres.
  • a first volume of sphere (14) is connected to a second volume of sphere (15) through a first connecting rod of circular section (19). From the middle of said first connecting bar of circular section
  • This third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (22) that has a first volume of sphere (14) , a second volume of sphere (15) and a third volume of sphere (17) forming part of its base.
  • the fourth volume of sphere (16) is located on the cusp of the virtual tetrahedron (12). The fact that in this modality a fifth volume of sphere (18) is included, allows accentuating the center of gravity of the concrete block (23), giving said block greater stability.
  • the connecting bars are straight circular cylinders to increase their mass, resistance, interlocking in the grouping, and residual stability. Also, in the first and second embodiments, the connecting bars of circular section have a radius that is always less than the radius of the spherical volumes.
  • Figures 26 to 31 show a third embodiment of the invention made up of a block of concrete (24) that is formed by four polyhedral volumes that, as an example of this modality, have the shape of a dodecahedron.
  • a first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (29). Since the polygonal connecting rod (29) must join a dodecahedron volume, the cross section of the connecting rod (29) has the shape of a dodecagon.
  • both the polygonal connecting bar and the polyhedral volume have twelve faces, which allows a perfect joint between the faces.
  • a second connecting rod of polygonal section (30) perpendicular and inclined that connects with a third connecting rod of polygonal section (31) perpendicular and inclined with respect to the second connecting rod.
  • This third connecting bar of polygonal section (31) joins from its ends a third polyhedron volume (28) and a fourth polyhedron volume (27), forming a concrete block (24) that has a first polyhedron volume (25), a second polyhedron volume (26) and a third polyhedron volume (23) forming part of its base.
  • the fourth volume of polyhedron (27) is located on the cusp of the virtual tetrahedron (12).
  • this third modality is shown where the concrete block (24) has polyhedral volumes whose shape is that of an octadecahedron (18 sides).
  • figures 32 to 37 show a fourth embodiment of the invention made up of a block of concrete (46) that is formed by five volumes of polyhedra that, as an example of this modality, have the shape of an octahedron.
  • a first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (19). Since the polygonal connecting rod (29) must join an octahedron volume, the cross section of the connecting rod (29) has the shape of an octagon.
  • both the polygonal connecting bar and the polyhedral volume have eight faces, which allows a perfect joint between the faces.
  • a first short connecting rod of polygonal section (30a) perpendicular and inclined with respect to the first connecting rod of polygonal section (29).
  • a fifth volume of polyhedron (32) which is located at the center of mass of the concrete block (46).
  • a second short connecting rod of polygonal section (30b) From said fifth polyhedron volume (32) emerges a second short connecting rod of polygonal section (30b), wherein the short connecting rod of polygonal section (30a, 30b) are collinear with each other.
  • the second short polygonal section bar (30b) connects with a third polygonal section connecting bar (31) perpendicular and inclined with respect to the short polygonal section connecting bars (30a, 30b).
  • This third connecting bar of polygonal section (31) joins from its ends a third polyhedron volume (28) and a fourth polyhedron volume (27), forming a concrete block (46) that has a first polyhedron volume (25) , a second volume of polyhedron (26) and a third volume of polyhedron (28) forming part of its base.
  • the fourth volume of polyhedron (27) is located on the cusp of the virtual tetrahedron (12).
  • a fifth embodiment of a concrete block (47) is shown which is made up of volumes of spheres joined with polygonal connecting bars.
  • the concrete block (47) that is formed by four volumes of spheres.
  • a The first sphere volume (14) is connected to a second sphere volume (15) through a first connecting rod of polygonal section (35) which, by way of example, has a hexagonal cross section. From the middle of said first connecting rod of polygonal section (35) emerges a second connecting rod of polygonal section (34) perpendicular and inclined that connects with a third connecting rod of polygonal section (33) perpendicular and inclined with respect to the second connecting rod. polygonal section (34).
  • This third connecting bar of polygonal section (33) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (47) that has a first volume of sphere (14) , a second volume of sphere (15) and a third volume of sphere (17) forming part of its base.
  • the fourth volume of sphere (16) is located on the cusp of the virtual tetrahedron (12).
  • the concrete block (47) has a fifth sphere volume (not shown) that is located in the geometric center of the virtual tetrahedron (12).
  • a sixth embodiment of a concrete block (48) is shown which is made up of volumes of polyhedra joined with connecting bars of circular section.
  • the concrete block (48) that is formed by four volumes of polyhedra.
  • a first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting bar of circular section (19).
  • From the middle of said first connecting bar of circular section (19) emerges a second connecting bar of circular section (20) perpendicular and inclined that connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the second connecting bar of circular section (20).
  • This third connecting bar of circular section (21) joins from its ends a third volume of polyhedron (27) and a fourth volume of polyhedron (28), forming a concrete block (48) that has a first volume of polyhedron (25) , a second volume of polyhedron (26) and a third volume of polyhedron (27) forming part of its base.
  • the fourth volume of sphere (28) is located at the cusp of the virtual tetrahedron (12).
  • the concrete block (48) has a fifth spherical volume (not shown) located in the geometric center of said virtual tetrahedron (12).
  • Figure 44 represents an example of the possible combinations that can be obtained to form concrete units.
  • one sphere volume (36) can be connected to another using a connecting rod with a circular section (37), or a connecting rod with a hexagonal section (38).
  • a polyhedron volume (39) in the shape of a hexahedron is shown that can be joined to another using a connecting bar with a hexagonal section (40), or a bar circular section connector (41).
  • the connecting bar that joins the volumes in the form of a sphere and polyhedron may have a smaller thickness in the area of contact with said volumes and a greater thickness towards the center of the connecting bar.
  • Figures 46 to 49 show examples of this alternative.
  • Figure 46 shows a volume of sphere (36) attached to a connecting bar that has the shape of a truncated cone (42).
  • Figure 47 shows a polyhedron volume (39) in the shape of a hexahedron attached to a connecting bar that has the shape of a truncated cone (45).
  • Figure 48 shows a volume of an irregular polyhedron in the shape of a hexahedron (39) attached to a connecting bar in the form of a straight pyramidal polygonal prism (44), which in this example has an octagonal section.
  • Figure 49 shows a volume of sphere (36) attached to a connecting bar in the form of a straight truncated pyramidal polygonal prism (45), which in this example has an octagonal section.
  • the polyhedra that can be used in the volumes that are located at the vertices and geometric center of the virtual tetrahedron (12) are: pentahedron, hexahedron, heptahedron, octahedron, eneahedron, nonahedron, decahedron, hendecahedron, dodecahedron, tridecahedron, tetradecahedron, pentadecahedron, hexadecahedron, heptadecahedron, octadecahedron, enneadecahedron, icosahedron, triacontahedron and tetracontahedron among others.
  • the volumes of the polyhedra used in this invention are of the regular type, that is, their vertices contact the surface of a sphere cap.
  • polyhedra can also be irregular.
  • the polygons that can be used as the cross section of the connecting bars are: pentagon, hexagon, heptagon, octagon, nonagon, decagon, hendecagon, undecagon, dodecagon, tridecagon, tetradecagon, pentadecagon, hexadecagon, heptadecagon, octadecagon, octadecagon, octadecagon , icosakaid ⁇ gono, icosakaitr ⁇ gono, triacontagon, tetracontagon, and pentacontagon among others.
  • the connecting bars have a polygonal section whose faces are parallel to increase their mass, strength, interlocking and residual stability.
  • the apothem of said polygonal section is always smaller than the radius of the spherical volumes.
  • the circular cross section of the connecting bar may have a radius that will be less than the apothem of the polyhedral volumes.
  • the concrete unit When the concrete unit is made up of a connecting bar with a polygonal cross section and the volumes are polyhedral, the apothem of the polygonal section trunks is always less than the apothem corresponding to the polyhedral volumes.
  • the concrete units of the present invention have circular or polygonal connecting bars that join the spherical and polygonal volumes, said joint has chamfers that reduce the tensional stresses generated in said joint.
  • the distances between the centers, the spherical volumes or polyhedron volumes can be increased or decreased, preferably by constant values, in such a way that the block always remains within a regular tetrahedron.
  • the ratio of the measurements of the radius of the connecting bars in the form of straight circular cylinders to the radius of the spherical volumes is less than unity (1 , 0), and preferably between 0.6 and 0.9.
  • the relationship between the measures of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is less than the unit (1, 0 ), and preferably between 0.6 and 0.9.
  • the relationship between the apothem measures of the polygonal connecting bars with respect to the radius of the sphere of the spherical volumes is always less than the unit ( 1.0), and preferably between 0.6 and 0.9.
  • the concrete units are made up of a straight circular cylindrical connecting bar and the volumes are polyhedral, the relationship between the measurements of the radius of the cylindrical connecting bars with respect to the apothem of the polyhedral volumes is always less than the unit (1, 0) , and preferably between 0.6 and 0.9.
  • the concrete unit of the present invention can be formed from concrete only. However, it is possible to use in the construction process reinforcing bars and / or steel mesh.
  • the armor can be previously treated with protective paint, be galvanized. Likewise, concrete can be supplied with different additives.
  • a reinforced concrete unit as it is made up of connecting bars of polygonal section with parallel faces and polyhedral volumes, has the maximum number of faces exposed to the hydrodynamic waves of the waves and water currents.
  • a concrete unit of the present invention with polygonal sections of twelve faces generates 306 planes exposed to waves and hydrodynamic currents, while a "DOLO" as disclosed in the Russian document SU 802448, has only 94 planes or faces. exposed.
  • the reinforced concrete unit of the present invention as it is formed by straight circular cylindrical connecting bars that join spherical volumes, present the maximum amount of points that reflect the hydrodynamic waves of the waves in all directions, cushioning the incident waves and allowing their fluid passage, but with less energy, through the barrier of concrete units arranged as protection.
  • the concrete unit of the present invention being made of concrete inside a mold, develops a greater external surface by dividing said surface by the volume of concrete used in its manufacture, (m2 / m3).

Abstract

A reinforced concrete structure for the protection of coastlines, ports, canals, rivers, lakes, reservoirs, beaches, sand-dunes, plantations and buildings against the possible damage caused by the force of currents and waves in water, comprising five spherical or polyhedral elements linked by four cylindrical or polygonal connecting bars orthogonally disposed within a virtual tetrahedral volume. With this disposition of the spheres or polyhedrons, whichever triangular side of the virtual tetrahedron is resting on the ground, it will always be resting on three spheres or polyhedrons, thus ensuring that the centre of mass, and consequently the stability of the item, is always optimal.

Description

UNIDAD DE HORMIGÓN PARA AMORTIGUAR EL EFECTO DEL CONCRETE UNIT TO CUSHION THE EFFECT OF
OLEAJE Y PROTEGER COSTAS. PLAYAS. LAGOS. EMBALSES. PUERTOS Y OTROS. DEL EFECTO ADVERSO DEL OLEAJE Y CORRIENTES HIDRODINÁMICAS DEL AGUA. SURF AND PROTECT COASTS. BEACHES. LAKES. RESERVOIRS. PORTS AND OTHERS. OF THE ADVERSE EFFECT OF WAVES AND HYDRODYNAMIC CURRENTS OF WATER.
CAMPO TECNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se refiere a una unidad de hormigón conformada por cuatro o cinco esferas o poliedros y circunscritas en el volumen de un tetraedro virtual, para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, del efecto adverso del oleaje y corrientes hidrodinámicas del agua. El conjunto se conforma uniendo las esferas o poliedros mediante barras conectoras cilindricas o poligonales. The present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others, from the adverse effect of the waves and hydrodynamic currents of the water. The set is formed by joining the spheres or polyhedra using cylindrical or polygonal connecting bars.
ANTECEDENTES DE LA INVENCION BACKGROUND OF THE INVENTION
Las olas que origina el viento en el mar, por ejemplo, cuando sopla una fuerte brisa sobre la costa, se aproxima a la línea costera en series mixtas de distintas longitudes de onda, direcciones y alturas. Las olas y corrientes hidrodinámicas del agua traen consigo una gran cantidad de energía que debe ser disipada para proteger las costas, playas, lagos, embalses, puertos y otros. The waves that the wind originates in the sea, for example, when a strong breeze blows over the coast, approaches the coastline in mixed series of different wavelengths, directions and heights. The hydrodynamic waves and currents of the water bring with them a large amount of energy that must be dissipated to protect the coasts, beaches, lakes, reservoirs, ports and others.
Para disipar dicha energía, en el arte previo se han creado diferentes tipos de unidades de hormigón las cuales son colocadas en el borde costero una al lado de la otra, de manera ordenada o desordenada, conformando una línea de defensa que disipa la energía de las olas y las corrientes hidrodinámicas. Al chocar las olas en las unidades de hormigón, éstas rebotan generando torbellinos lo que hace perder energía a las olas. To dissipate this energy, in the prior art different types of concrete units have been created which are placed on the coastal edge one next to the other, in an orderly or disorderly manner, forming a line of defense that dissipates the energy of waves and hydrodynamic currents. When the waves hit the concrete units, they bounce generating vortexes which makes the waves lose energy.
En el estado del arte han existido intentos por proveer de una unidad de hormigón que disipe de mejor manera la energía que traen las olas y las corrientes hidrodinámicas. El documento SU 802448 divulga una unidad de hormigón, conocida comercialmente como“DOLO”, cuyo bloque In the state of the art, there have been attempts to provide a concrete unit that better dissipates the energy brought by waves and hydrodynamic currents. Document SU 802448 discloses a concrete unit, commercially known as "DOLO", whose block
(1 ) está constituido por una barra conectora central (2) conformado por un paralelepípedo recto octogonal. En los extremos de la barra conectora central (2) emerge una primera proyección (3) y una segunda proyección (4) rotadas 90e entre sí. La primera proyección (3) esta conformada por un primer prisma octogonal tronco piramidal recto (3a) y por un segundo prisma octogonal tronco piramidal recto (3b), invertido respecto del primero, en donde dicho primer prisma octogonal tronco piramidal recto (3a) y dicho segundo prisma octogonal tronco piramidal recto (3b) están unidos por una porción central poligonal (3c) donde se empalma la barra conectora central(1) is made up of a central connecting bar (2) made up of a straight octagonal parallelepiped. At the ends of the central connecting bar (2) emerge a first projection (3) and a second projection (4) rotated 90 and with respect to each other. The first projection (3) is made up of a first straight pyramidal octagonal prism (3a) and a second straight pyramidal octagonal prism (3b), inverted with respect to the first, where said first straight pyramidal octagonal prism (3a) and Said second straight pyramidal truncated octagonal prism (3b) are joined by a polygonal central portion (3c) where the central connecting bar is spliced
(2), según se muestra en las figuras 1 a 6. (2), as shown in Figures 1 to 6.
El documento US 5620280 divulga una unidad de hormigón, conocida comercialmente como CORE-LOC. Haciendo referencia a las figuras 7 a 9, la unidad de hormigón está constituida por un bloque (5) posee un miembro alargado central (6) que tiene un eje longitudinal (7), en donde dicho miembro alargado central (6) está conformado por un primer prisma octogonal tronco piramidal recto (6a) y por un segundo prisma octogonal tronco piramidal recto (6b), invertido respecto del primero, en donde dicho primer prisma octogonal tronco piramidal recto (6a) y dicho segundo prisma octogonal tronco piramidal recto (6b) están unidos por una porción central poligonal (6c). Centradamente a cada lado del miembro alargado central (6) emergen un primer miembro alargado exterior (8) y segundo miembro alargado exterior (9), los cuales están conectados con el miembro alargado central (6) en sus lados centrales opuestos. Los miembros alargados exteriores primero y segundo (8, 9) tienen ejes longitudinales paralelos (10, 1 1 ) que se extienden normales al eje longitudinal (7) del miembro alargado central (6). Los miembros alargados primero y segundo (8, 9) pueden tener cada uno una sección transversal octogonal que disminuye desde una parte intermedia hacia los extremos opuestos. Cuando una pluralidad de bloques (5) se entrelazan para definir una matriz protectora que se extiende a lo largo de, por ejemplo, una playa, se proporciona un alto grado de acuñamiento entre los miembros octogonales. US 5620280 discloses a concrete unit, commercially known as CORE-LOC. With reference to Figures 7 to 9, the concrete unit is constituted by a block (5) has a central elongated member (6) that has a longitudinal axis (7), wherein said central elongated member (6) is formed by a first straight pyramidal octagonal prism (6a) and by a second prism octagonal straight pyramidal trunk (6b), inverted with respect to the first, wherein said first octagonal straight pyramidal trunk prism (6a) and said second octagonal straight pyramidal trunk prism (6b) are joined by a polygonal central portion (6c). Centrally on each side of the central elongated member (6) emerge a first exterior elongated member (8) and second exterior elongated member (9), which are connected to the central elongated member (6) on their opposite central sides. The first and second outer elongated members (8, 9) have parallel longitudinal axes (10, 1 1) which extend normal to the longitudinal axis (7) of the central elongated member (6). The first and second elongated members (8, 9) may each have an octagonal cross section tapering from an intermediate portion toward opposite ends. When a plurality of blocks (5) are interlocked to define a protective matrix that extends along, for example, a beach, a high degree of wedging is provided between the octagonal members.
Los DOLOS y los CORE-LOC son los tipos de unidades de hormigón más utilizados para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros. Diversos tipos de unidades de hormigón conformadas por un cuerpo central, desde el cual emergen proyecciones con diferentes tipos de formas se divulgan en los documentos CA 613390, US 3176468, US 3614866, US 3636713, US 4347017, US 5190403, US 2010104366 y US 2016017556. Todas estas unidades de hormigón presentan la desventaja de tener pocas caras que enfrenten a las olas y corrientes hidrodinámicas, con lo cual la disipación de energía se ve bastante desmejorada. Asimismo, muchos de estas unidades de hormigón presentan centros de gravedad que son más altos de lo deseado, lo cual puede generar deslizamientos de los bloques cuando están unos conectados con los otros. DOLOS and CORE-LOC are the types of concrete units most used to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others. Various types of concrete units formed by a central body, from which projections with different types of shapes emerge, are disclosed in documents CA 613390, US 3176468, US 3614866, US 3636713, US 4347017, US 5190403, US 2010104366 and US 2016017556 All these Concrete units have the disadvantage of having few faces that face the waves and hydrodynamic currents, with which the energy dissipation is quite impaired. Also, many of these concrete units have centers of gravity that are higher than desired, which can cause the blocks to slip when they are connected to each other.
La presente invención tiene por objeto superar las desventajas del arte previo, proveyendo una unidad de hormigón que presente el mayor número de caras que enfrenten el oleaje y las corrientes hidrodinámicas y, a la vez, tenga un centro de gravedad lo más bajo posible, para evitar el deslizamiento de los bloques, cuando éstos están unidos entre sí formando una hilera o zona de protección costera. The present invention aims to overcome the disadvantages of the prior art, by providing a concrete unit that has the greatest number of faces that face the waves and hydrodynamic currents and, at the same time, has the lowest possible center of gravity, to prevent the blocks from slipping when they are joined together to form a row or coastal protection zone.
RESEÑA DE LA INVENCION SUMMARY OF THE INVENTION
La presente invención se refiere a una unidad de hormigón conformada por cuatro o cinco esferas o poliedros y circunscritas en el volumen de un tetraedro virtual, para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, del efecto adverso del oleaje y corrientes hidrodinámicas del agua. El conjunto se conforma uniendo las esferas o poliedros mediante barras conectoras cilindricas o poligonales. The present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others, from the adverse effect of the waves and hydrodynamic currents of the water. The set is formed by joining the spheres or polyhedra using cylindrical or polygonal connecting bars.
BREVE DESCRIPCION DE LOS DIBUJOS Los dibujos que se acompañan se incluyen para proporcionar una mayor compresión de la invención y constituyen parte de esta descripción y muestran una de las ejecuciones preferidas. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are included to provide a further understanding of the invention and constitute part of this description and show one of the preferred embodiments.
La figura 1 muestra una vista en elevación frontal de una primera unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO. Figure 1 shows a front elevation view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
La figura 2 muestra una vista lateral izquierda de una primera unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO. Figure 2 shows a left side view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
La figura 3 muestra una vista en planta superior de una primera unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO. Figure 3 shows a top plan view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
La figura 4 muestra una vista lateral derecha de una primera unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO. Figure 4 shows a right side view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
La figura 5 muestra una vista en perspectiva de una primera unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO. Figure 5 shows a perspective view of a first concrete unit for forming a prior art breakwater block, commercially known as DOLO.
La figura 6 muestra una vista lateral derecha de una unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como DOLO, en donde dicha unidad está inclinada asemejando a un DOLO apoyado en el fondo marino. La figura 7 muestra una vista en perspectiva de una segunda unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como CORE-LOC. Figure 6 shows a right side view of a concrete unit to form a breakwater block of the prior art, known commercially as DOLO, where said unit is inclined resembling a DOLO resting on the seabed. Figure 7 shows a perspective view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
La figura 8 muestra una vista en planta superior de una segunda unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como CORE-LOC. Figure 8 shows a top plan view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
La figura 9 muestra una vista en elevación frontal de una segunda unidad de hormigón para conformar un bloque rompeolas del arte previo, conocida comercialmente como CORE-LOC. Figure 9 shows a front elevation view of a second concrete unit for forming a prior art breakwater block, commercially known as CORE-LOC.
La figura 10 muestra un tetraedro regular, en el cual se circunscribe la unidad de hormigón de la presente invención. Figure 10 shows a regular tetrahedron, in which the concrete unit of the present invention is circumscribed.
La figura 1 1 muestra un tetraedro regular circunscrito dentro de una esfera, en cuyos vértices se encuentran las esferas que forman parte de la unidad de hormigón de la presente invención. Figure 11 shows a regular tetrahedron circumscribed within a sphere, at the vertices of which are the spheres that form part of the concrete unit of the present invention.
La figura 12 muestra un tetraedro regular con su centro geométrico, en el cual se circunscribe la unidad de hormigón de la presente invención. Figure 12 shows a regular tetrahedron with its geometric center, in which the concrete unit of the present invention is circumscribed.
La figura 13 muestra un tetraedro regular con su centro geométrico circunscrito dentro de una esfera, en cuyos vértices y centro geométrico se encuentran las esferas que forman parte de la unidad de hormigón de la presente invención. Figure 13 shows a regular tetrahedron with its geometric center circumscribed within a sphere, at whose vertices and geometric center are the spheres that are part of the concrete unit of the present invention.
La figura 14 muestra una vista en perspectiva de una primera modalidad de la unidad de hormigón de la presente invención. La figura 15 muestra una vista lateral derecha de una primera modalidad de la unidad de hormigón de la presente invención, en donde la unidad está inclinada mostrando el apoyo sobre el fondo marino. Figure 14 shows a perspective view of a first embodiment of the concrete unit of the present invention. Figure 15 shows a right side view of a first embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
La figura 16 muestra una vista en elevación frontal de una primera modalidad de la unidad de hormigón de la presente invención. Figure 16 shows a front elevation view of a first embodiment of the concrete unit of the present invention.
La figura 17 muestra una vista lateral izquierda de una primera modalidad de la unidad de hormigón de la presente invención. Figure 17 shows a left side view of a first embodiment of the concrete unit of the present invention.
La figura 18 muestra una vista en planta superior de una primera modalidad de la unidad de hormigón de la presente invención. Figure 18 shows a top plan view of a first embodiment of the concrete unit of the present invention.
La figura 19 muestra una vista lateral derecha de una primera modalidad de la unidad de hormigón de la presente invención. Figure 19 shows a right side view of a first embodiment of the concrete unit of the present invention.
La figura 20 muestra una vista en perspectiva de una segunda modalidad de la unidad de hormigón de la presente invención. Figure 20 shows a perspective view of a second embodiment of the concrete unit of the present invention.
La figura 21 muestra una vista lateral derecha de una segunda modalidad de la unidad de hormigón de la presente invención, en donde la unidad está inclinada mostrando el apoyo sobre el fondo marino. Figure 21 shows a right side view of a second embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
La figura 22 muestra una vista en elevación frontal de una segunda modalidad de la unidad de hormigón de la presente invención. Figure 22 shows a front elevation view of a second embodiment of the concrete unit of the present invention.
La figura 23 muestra una vista lateral izquierda de una segunda modalidad de la unidad de hormigón de la presente invención. Figure 23 shows a left side view of a second embodiment of the concrete unit of the present invention.
La figura 24 muestra una vista en planta superior de una segunda modalidad de la unidad de hormigón de la presente invención. La figura 25 muestra una vista lateral derecha de una segunda modalidad de la unidad de hormigón de la presente invención. Figure 24 shows a top plan view of a second embodiment of the concrete unit of the present invention. Figure 25 shows a right side view of a second embodiment of the concrete unit of the present invention.
La figura 26 muestra una vista en perspectiva de una tercera modalidad de la unidad de hormigón de la presente invención. Figure 26 shows a perspective view of a third embodiment of the concrete unit of the present invention.
La figura 27 muestra una vista lateral derecha de una tercera modalidad de la unidad de hormigón de la presente invención, en donde la unidad está inclinada mostrando el apoyo sobre el fondo marino. Figure 27 shows a right side view of a third embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
La figura 28 muestra una vista en elevación frontal de una tercera modalidad de la unidad de hormigón de la presente invención. Figure 28 shows a front elevation view of a third embodiment of the concrete unit of the present invention.
La figura 29 muestra una vista lateral izquierda de una tercera modalidad de la unidad de hormigón de la presente invención. Figure 29 shows a left side view of a third embodiment of the concrete unit of the present invention.
La figura 30 muestra una vista en planta superior de una tercera modalidad de la unidad de hormigón de la presente invención. Figure 30 shows a top plan view of a third embodiment of the concrete unit of the present invention.
La figura 31 muestra una vista lateral derecha de una tercera modalidad de la unidad de hormigón de la presente invención. Figure 31 shows a right side view of a third embodiment of the concrete unit of the present invention.
La figura 32 muestra una vista en perspectiva de una cuarta modalidad de la unidad de hormigón de la presente invención. Figure 32 shows a perspective view of a fourth embodiment of the concrete unit of the present invention.
La figura 33 muestra una vista lateral derecha de una cuarta modalidad de la unidad de hormigón de la presente invención, en donde la unidad está inclinada mostrando el apoyo sobre el fondo marino. Figure 33 shows a right side view of a fourth embodiment of the concrete unit of the present invention, where the unit is inclined showing the support on the seabed.
La figura 34 muestra una vista en elevación frontal de una cuarta modalidad de la unidad de hormigón de la presente invención. La figura 35 muestra una vista lateral izquierda de una cuarta modalidad de la unidad de hormigón de la presente invención. Figure 34 shows a front elevation view of a fourth embodiment of the concrete unit of the present invention. Figure 35 shows a left side view of a fourth embodiment of the concrete unit of the present invention.
La figura 36 muestra una vista en planta superior de una cuarta modalidad de la unidad de hormigón de la presente invención. Figure 36 shows a top plan view of a fourth embodiment of the concrete unit of the present invention.
La figura 37 muestra una vista lateral derecha de una cuarta modalidad de la unidad de hormigón de la presente invención. Figure 37 shows a right side view of a fourth embodiment of the concrete unit of the present invention.
La figura 38 muestra una vista lateral izquierda de una quinta modalidad de la unidad de hormigón de la presente invención. Figure 38 shows a left side view of a fifth embodiment of the concrete unit of the present invention.
La figura 39 muestra una vista lateral derecha de una quinta modalidad de la unidad de hormigón de la presente invención. Figure 39 shows a right side view of a fifth embodiment of the concrete unit of the present invention.
La figura 40 muestra una vista en elevación frontal de una quinta modalidad de la unidad de hormigón de la presente invención. Figure 40 shows a front elevation view of a fifth embodiment of the concrete unit of the present invention.
La figura 41 muestra una vista lateral izquierda de una sexta modalidad de la unidad de hormigón de la presente invención. Figure 41 shows a left side view of a sixth embodiment of the concrete unit of the present invention.
La figura 42 muestra una vista lateral derecha de una sexta modalidad de la unidad de hormigón de la presente invención. Figure 42 shows a right side view of a sixth embodiment of the concrete unit of the present invention.
La figura 43 muestra una vista en elevación frontal de una sexta modalidad de la unidad de hormigón de la presente invención. Figure 43 shows a front elevation view of a sixth embodiment of the concrete unit of the present invention.
La figura 44 muestra una vista esquemática de las alternativas de la barra conectora con sección cilindrica y poligonal para una esfera que conforma la unidad de hormigón de la presente invención. La figura 45 muestra una vista esquemática de las alternativas de la barra conectora con sección cilindrica y poligonal para un poliedro que conforma la unidad de hormigón de la presente invención. Figure 44 shows a schematic view of the alternatives of the connecting bar with cylindrical and polygonal section for a sphere that forms the concrete unit of the present invention. Figure 45 shows a schematic view of the alternatives of the connecting bar with cylindrical and polygonal section for a polyhedron that forms the concrete unit of the present invention.
La figura 46 muestra una vista frontal de una esfera unida con una barra conectora que tiene una forma de un cono truncado. Figure 46 shows a front view of a sphere attached with a connecting bar having a shape of a truncated cone.
La figura 47 muestra una vista frontal de un poliedro unido con una barra conectora que tiene una forma de un cono truncado alargado. Figure 47 shows a front view of a polyhedron attached with a connecting bar having a shape of an elongated truncated cone.
La figura 48 muestra una vista frontal de un poliedro unido con una barra conectora que tiene una forma de un prisma octogonal tronco piramidal recto. Fig. 48 shows a front view of a polyhedron attached with a connecting bar having a shape of a right truncated pyramidal octagonal prism.
La figura 49 muestra una vista frontal de una esfera unida con una barra conectora que tiene una forma de un prisma octogonal tronco piramidal recto. Figure 49 shows a front view of a sphere attached with a connecting rod having a shape of a right octagonal truncated pyramidal prism.
La figura 50 muestra una vista en planta superior de una alternativa de la tercera modalidad de la unidad de hormigón de la presente invención, mostrada en las figuras 26 a 31. Figure 50 shows a top plan view of an alternative of the third embodiment of the concrete unit of the present invention, shown in Figures 26 to 31.
La figura 51 muestra una sección de una vista en planta superior de una alternativa de la cuarta modalidad de la unidad de hormigón de la presente invención, mostrada en las figuras 32 a 37. Figure 51 shows a section of a top plan view of an alternative of the fourth embodiment of the concrete unit of the present invention, shown in Figures 32 to 37.
DESCRIPCION DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a una unidad de hormigón conformada por cuatro o cinco esferas o poliedros y circunscritas en el volumen de un tetraedro virtual, para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, del efecto adverso del oleaje y corrientes hidrodinámicas del agua. El conjunto se conforma uniendo las esferas o poliedros mediante barras conectoras cilindricas o poligonales. The present invention refers to a concrete unit made up of four or five spheres or polyhedra and circumscribed in the volume of a virtual tetrahedron, to cushion the effect of waves, to protect coasts, beaches, lakes, reservoirs, ports and others from the adverse effect of waves and hydrodynamic water currents. The set is formed by joining the spheres or polyhedra by means of cylindrical or polygonal connecting bars.
El hecho que la unidad de hormigón esté circunscrita en un tetraedro virtual, permite que en los vértices y en el centro geométrico de dicho tetraedro se utilicen esferas o poliedros, los cuales presentan una mayor superficie o mayor número de caras que enfrentan a las olas o corrientes hidrodinámicas, lo que permite una disipación considerable de la energía respecto de las unidades de hormigón del arte previo. Además, el hecho de que las unidades de hormigón estén circunscritas dentro de un tetraedro virtual, permite que la unidad de hormigón tenga un centro de masa mucho más bajo, lo cual evita el deslizamiento de las unidades de hormigón cuando éstas están unidas unas respecto de las otras. The fact that the concrete unit is circumscribed in a virtual tetrahedron, allows spheres or polyhedra to be used at the vertices and in the geometric center of said tetrahedron, which present a greater surface area or a greater number of faces that face waves or hydrodynamic currents, allowing considerable energy dissipation relative to prior art concrete units. Furthermore, the fact that the concrete units are circumscribed within a virtual tetrahedron, allows the concrete unit to have a much lower center of mass, which prevents the concrete units from slipping when they are joined relative to each other. the others.
En la figura 10 se muestra un tetraedro virtual (12) que tiene cuatro caras triangulares las cuales generan los vértices“a”,“b”,“c” y“d”. Cuando se trata de un tetraedro regular, sus vértices se encuentran circunscritos dentro del casquete de una esfera (13), tal como se muestra en la figura 1 1 . En los vértices “a”, “b”, “c” y“d” se localizan cuatro volúmenes de esferas (14, 15, 16, 17), en donde los volúmenes de esferas (14, 15, 17) están localizados en la base del tetraedro. Esto permite que la unidad de hormigón tenga una base de apoyo en tres puntos lo que genera una mayor estabilidad, respecto de las unidades de hormigón del arte previo. Dentro de las modalidades de la invención, los volúmenes de esferas pueden ser reemplazados por volúmenes de poliedros los cuales poseen múltiples caras que se enfrentan a las olas y corrientes hidrodinámicas mejorando la disipación de energía. Figure 10 shows a virtual tetrahedron (12) that has four triangular faces which generate the vertices "a", "b", "c" and "d". When it comes to a regular tetrahedron, its vertices are circumscribed within the cap of a sphere (13), as shown in figure 11. At the vertices "a", "b", "c" and "d" four volumes of spheres (14, 15, 16, 17) are located, where the volumes of spheres (14, 15, 17) are located in the base of the tetrahedron. This allows the concrete unit to have a support base at three points, which generates greater stability, compared to the concrete units of the art. previous. Within the embodiments of the invention, the volumes of spheres can be replaced by volumes of polyhedra which have multiple faces that face the waves and hydrodynamic currents, improving energy dissipation.
En la figura 12 se muestra un tetraedro virtual (12) en el cual se ha incluido el centro geométrico“e”, donde es posible incluir un volumen de esfera (18), para conformar una unidad de hormigón con cinco volúmenes de esferas, tal como se muestra en la figura 13. Cuando la unidad consta de cinco volúmenes de esferas o poliedros, tres de estos volúmenes estarán centrados en los vértices“a”,“b” y“c” del triángulo base de un tetraedro virtual, en donde el cuarto volumen coincidirá con el vértice“d”, que es cúspide del tetraedro virtual. El quinto volumen es coincidente con el centro geométrico“e” del tetraedro. Figure 12 shows a virtual tetrahedron (12) in which the geometric center “e” has been included, where it is possible to include a volume of sphere (18), to form a concrete unit with five volumes of spheres, such as as shown in figure 13. When the unit consists of five volumes of spheres or polyhedra, three of these volumes will be centered on the vertices “a”, “b” and “c” of the base triangle of a virtual tetrahedron, where the fourth volume will coincide with the vertex "d", which is the cusp of the virtual tetrahedron. The fifth volume is coincident with the geometric center "e" of the tetrahedron.
Tomando como base los tetraedros mostrados en las figuras 10 a 13 y teniendo en cuenta que en sus vértices y centro geométrico se pueden localizar volúmenes de esferas o poliedros, en las figuras 14 a 19 se muestra una primera modalidad de la invención conformada por un bloque de hormigón (22) que está formado por cuatro volúmenes de esferas. Un primer volumen de esfera (14) está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección circular (19). Desde la mitad de dicha primera barra conectora de sección circular (19) emerge una segunda barra conectora de sección circular (20) perpendicular e inclinada que empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de la segunda barra conectora de sección circular (20). Esta tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16), conformando un bloque de hormigón (22) que tiene un primer volumen de esfera (14), un segundo volumen de esferaTaking as a basis the tetrahedra shown in Figures 10 to 13 and taking into account that volumes of spheres or polyhedra can be located at their vertices and geometric center, Figures 14 to 19 show a first embodiment of the invention made up of a block of concrete (22) that is formed by four volumes of spheres. A first volume of sphere (14) is connected to a second volume of sphere (15) through a first connecting rod of circular section (19). From the middle of said first connecting rod of circular section (19) emerges a second connecting rod of circular section (20) perpendicular and inclined that connects with a third connecting rod of circular section (21) perpendicular and inclined with respect to the second connecting bar of circular section (20). This third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (22) that has a first volume of sphere (14) , a second volume of sphere
(15) y un tercer volumen de esfera (17) formando parte de su base. Sin embargo, debido a que el bloque de hormigón está conformado dentro de un tetraedro virtual, cualquiera sea la cara triangular virtual que apoya contra el terreno, siempre apoyarán tres volúmenes de esferas, con lo cual se asegura que el centro de masa sea más bajo que los bloques del arte previo, mejorando notablemente la estabilidad. El cuarto volumen de esfera(15) and a third volume of sphere (17) forming part of its base. However, because the concrete block is formed within a virtual tetrahedron, whatever the virtual triangular face that rests against the ground, they will always support three volumes of spheres, thereby ensuring that the center of mass is lower. than prior art blocks, notably improving stability. The fourth volume of sphere
(16) está localizado en la cúspide del tetraedro virtual (12). (16) is located on the cusp of the virtual tetrahedron (12).
Tomando como base los tetraedros mostrados en las figuras 10 a 13 y teniendo en cuenta que en sus vértices y centro geométrico se pueden localizar volúmenes de esferas o poliedros, en las figuras 20 a 25 se muestra una segunda modalidad de la invención conformada por un bloque de hormigón (23) que está formado por cinco volúmenes de esferas. Un primer volumen de esfera (14) está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección circular (19). Desde la mitad de dicha primera barra conectora de sección circular Taking as a basis the tetrahedra shown in Figures 10 to 13 and taking into account that volumes of spheres or polyhedra can be located at their vertices and geometric center, Figures 20 to 25 show a second embodiment of the invention made up of a block of concrete (23) that is formed by five volumes of spheres. A first volume of sphere (14) is connected to a second volume of sphere (15) through a first connecting rod of circular section (19). From the middle of said first connecting bar of circular section
(19) emerge una primera barra corta conectora de sección circular (20a) perpendicular e inclinada respecto de la primera barra conectora de sección circular (19). En el extremo de dicha primera barra corta conectora de sección circular (20a) emerge un quinto volumen de esfera (18), el cual se localiza en el centro de masa del bloque de hormigón (23). Desde dicho quinto volumen de esfera (18) emerge una segunda barra corta conectora de sección circular (20b), en donde las barras cortas conectoras de sección circular (20a, 20b) son colineales entre sí. La segunda barra corta de sección circular (20b) empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de las barras cortas conectoras de sección circular (20a, 20b). Esta tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16), conformando un bloque de hormigón (22) que tiene un primer volumen de esfera (14), un segundo volumen de esfera (15) y un tercer volumen de esfera (17) formando parte de su base. Sin embargo, debido a que el bloque de hormigón está conformado dentro de un tetraedro virtual, cualquiera sea la cara triangular virtual que apoya contra el terreno, siempre apoyarán tres volúmenes de esferas, con lo cual se asegura que el centro de masa sea más bajo que los bloques del arte previo, mejorando notablemente la estabilidad. El cuarto volumen de esfera (16) está localizado en la cúspide del tetraedro virtual (12). El hecho que en esta modalidad se incluya un quinto volumen de esfera (18), permite acentuar en centro de gravedad del bloque de hormigón (23) dando mayor estabilidad a dicho bloque. (19) emerges a first short connecting rod of circular section (20a) perpendicular and inclined with respect to the first connecting rod of circular section (19). At the end of said first short connecting rod of circular section (20a) emerges a fifth sphere volume (18), which is located at the center of mass of the concrete block (23). From said fifth volume of sphere (18) emerges a second short connecting rod of circular section (20b), wherein the short connecting rod of circular section (20a, 20b) are collinear with each other. The second short bar of circular section (20b) connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the short connecting bars of circular section (20a, 20b). This third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (22) that has a first volume of sphere (14) , a second volume of sphere (15) and a third volume of sphere (17) forming part of its base. However, because the concrete block is formed within a virtual tetrahedron, whatever the virtual triangular face that rests against the ground, they will always support three volumes of spheres, thereby ensuring that the center of mass is lower. than prior art blocks, notably improving stability. The fourth volume of sphere (16) is located on the cusp of the virtual tetrahedron (12). The fact that in this modality a fifth volume of sphere (18) is included, allows accentuating the center of gravity of the concrete block (23), giving said block greater stability.
En las primera y segunda modalidades las barras conectoras son cilindros circulares rectos para aumentar su masa, resistencia, trabazón en el agrupamiento, y estabilidad residual. También, en las primera y segunda modalidades las barras conectoras de sección circular tienen un radio que es siempre menor que el radio de los volúmenes esféricos. In the first and second modalities the connecting bars are straight circular cylinders to increase their mass, resistance, interlocking in the grouping, and residual stability. Also, in the first and second embodiments, the connecting bars of circular section have a radius that is always less than the radius of the spherical volumes.
Tomando como base los tetraedros mostrados en las figuras 10 a 13 y teniendo en cuenta que en sus vértices y centro geométrico se pueden localizar volúmenes de esferas o poliedros, en las figuras 26 a 31 se muestra una tercera modalidad de la invención conformada por un bloque de hormigón (24) que está formado por cuatro volúmenes poliédricos que, a manera de ejemplo de esta modalidad, tienen la forma de un dodecaedro. Un primer volumen de poliedro (25) está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección poligonal (29). En vista que la barra conectora poligonal (29) debe unir un volumen de dodecaedro, la sección transversal de la barra conectora (29) tiene la forma un dodecágono. Es decir, tanto la barra conectora poligonal como el volumen poliédrico tienen doce caras, lo que permite un perfecto empalme entre las caras. Desde la mitad de dicha primera barra conectora de sección poligonal (29) emerge una segunda barra conectora de sección poligonal (30) perpendicular e inclinada que empalma con una tercera barra conectora de sección poligonal (31 ) perpendicular e inclinada respecto de la segunda barra conectora de sección poligonal (30). Esta tercera barra conectora de sección poligonal (31 ) une desde sus extremos un tercer volumen de poliedro (28) y un cuarto volumen de poliedro (27), conformando un bloque de hormigón (24) que tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (23) formando parte de su base. El cuarto volumen de poliedro (27) está localizado en la cúspide del tetraedro virtual (12). En la figura 50 se muestra esta tercera modalidad en donde el bloque de hormigón (24) tiene volúmenes poliédricos cuya forma es la de un octadecaedro (18 lados). Taking as a basis the tetrahedra shown in Figures 10 to 13 and taking into account that volumes of spheres or polyhedra can be located at their vertices and geometric center, Figures 26 to 31 show a third embodiment of the invention made up of a block of concrete (24) that is formed by four polyhedral volumes that, as an example of this modality, have the shape of a dodecahedron. A first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (29). Since the polygonal connecting rod (29) must join a dodecahedron volume, the cross section of the connecting rod (29) has the shape of a dodecagon. In other words, both the polygonal connecting bar and the polyhedral volume have twelve faces, which allows a perfect joint between the faces. From the middle of said first connecting rod of polygonal section (29) emerges a second connecting rod of polygonal section (30) perpendicular and inclined that connects with a third connecting rod of polygonal section (31) perpendicular and inclined with respect to the second connecting rod. polygonal section (30). This third connecting bar of polygonal section (31) joins from its ends a third polyhedron volume (28) and a fourth polyhedron volume (27), forming a concrete block (24) that has a first polyhedron volume (25), a second polyhedron volume (26) and a third polyhedron volume (23) forming part of its base. The fourth volume of polyhedron (27) is located on the cusp of the virtual tetrahedron (12). In figure 50 this third modality is shown where the concrete block (24) has polyhedral volumes whose shape is that of an octadecahedron (18 sides).
Tomando como base los tetraedros mostrados en las figuras 10 a 13 y teniendo en cuenta que en sus vértices y centro geométrico se pueden localizar volúmenes de esferas o poliedros, en las figuras 32 a 37 se muestra una cuarta modalidad de la invención conformada por un bloque de hormigón (46) que está formado por cinco volúmenes de poliedros que, a manera de ejemplo de esta modalidad, tienen la forma de octaedro. Un primer volumen de poliedro (25) está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección poligonal (19). En vista que la barra conectora poligonal (29) debe unir un volumen de octaedro, la sección transversal de la barra conectora (29) tiene la forma un octágono. Es decir, tanto la barra conectora poligonal como el volumen poliédrico tienen ocho caras, lo que permite un perfecto empalme entre las caras. Desde la mitad de dicha primera barra conectora de sección poligonal (29) emerge una primera barra corta conectora de sección poligonal (30a) perpendicular e inclinada respecto de la primera barra conectora de sección poligonal (29). En el extremo de dicha primera barra corta conectora de sección poligonal (30a) emerge un quinto volumen de poliedro (32), el cual se localiza en el centro de masa del bloque de hormigón (46). Desde dicho quinto volumen de poliedro (32) emerge una segunda barra corta conectora de sección poligonal (30b), en donde las barras cortas conectoras de sección poligonales (30a, 30b) son colineales entre sí. La segunda barra corta de sección poligonal (30b) empalma con una tercera barra conectora de sección poligonal (31) perpendicular e inclinada respecto de las barras cortas conectoras de sección poligonal (30a, 30b). Esta tercera barra conectora de sección poligonal (31 ) une desde sus extremos un tercer volumen de poliedro (28) y un cuarto volumen de poliedro (27), conformando un bloque de hormigón (46) que tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (28) formando parte de su base. El cuarto volumen de poliedro (27) está localizado en la cúspide del tetraedro virtual (12). El hecho que en esta modalidad se incluya un quinto volumen de poliedro (32), permite acentuar en centro de gravedad del bloque de hormigón (46) dando mayor estabilidad a dicho bloque. En la figura 51 se muestra esta cuarta modalidad en donde el bloque de hormigón (46) tiene volúmenes poliédricos cuya forma es la de un dodecaedro. Taking as a basis the tetrahedra shown in figures 10 to 13 and taking into account that volumes of spheres or polyhedra can be located at their vertices and geometric center, figures 32 to 37 show a fourth embodiment of the invention made up of a block of concrete (46) that is formed by five volumes of polyhedra that, as an example of this modality, have the shape of an octahedron. A first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (19). Since the polygonal connecting rod (29) must join an octahedron volume, the cross section of the connecting rod (29) has the shape of an octagon. In other words, both the polygonal connecting bar and the polyhedral volume have eight faces, which allows a perfect joint between the faces. From the middle of said first connecting rod of polygonal section (29) emerges a first short connecting rod of polygonal section (30a) perpendicular and inclined with respect to the first connecting rod of polygonal section (29). At the end of said first bar short connector of polygonal section (30a) emerges a fifth volume of polyhedron (32), which is located at the center of mass of the concrete block (46). From said fifth polyhedron volume (32) emerges a second short connecting rod of polygonal section (30b), wherein the short connecting rod of polygonal section (30a, 30b) are collinear with each other. The second short polygonal section bar (30b) connects with a third polygonal section connecting bar (31) perpendicular and inclined with respect to the short polygonal section connecting bars (30a, 30b). This third connecting bar of polygonal section (31) joins from its ends a third polyhedron volume (28) and a fourth polyhedron volume (27), forming a concrete block (46) that has a first polyhedron volume (25) , a second volume of polyhedron (26) and a third volume of polyhedron (28) forming part of its base. The fourth volume of polyhedron (27) is located on the cusp of the virtual tetrahedron (12). The fact that a fifth volume of polyhedron (32) is included in this mode, allows to accentuate the center of gravity of the concrete block (46), giving said block greater stability. Figure 51 shows this fourth modality where the concrete block (46) has polyhedral volumes whose shape is that of a dodecahedron.
Haciendo referencia a las figuras 38 a 40, se muestra una quinta modalidad de un bloque de hormigón (47) que está conformado por volúmenes de esferas unidos con barras conectoras poligonales. El bloque de hormigón (47) que está formado por cuatro volúmenes de esferas. Un primer volumen de esfera (14) está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección poligonal (35) que, a manera de ejemplo, tiene una sección transversal hexagonal. Desde la mitad de dicha primera barra conectora de sección poligonal (35) emerge una segunda barra conectora de sección poligonal (34) perpendicular e inclinada que empalma con una tercera barra conectora de sección poligonal (33) perpendicular e inclinada respecto de la segunda barra conectora de sección poligonal (34). Esta tercera barra conectora de sección poligonal (33) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16), conformando un bloque de hormigón (47) que tiene un primer volumen de esfera (14), un segundo volumen de esfera (15) y un tercer volumen de esfera (17) formando parte de su base. El cuarto volumen de esfera (16) está localizado en la cúspide del tetraedro virtual (12). En esta quinta modalidad, el bloque de hormigón (47) posee un quinto volumen de esfera (no mostrado) que está localizado en el centro geométrico del tetraedro virtual (12). Referring to Figures 38 to 40, a fifth embodiment of a concrete block (47) is shown which is made up of volumes of spheres joined with polygonal connecting bars. The concrete block (47) that is formed by four volumes of spheres. A The first sphere volume (14) is connected to a second sphere volume (15) through a first connecting rod of polygonal section (35) which, by way of example, has a hexagonal cross section. From the middle of said first connecting rod of polygonal section (35) emerges a second connecting rod of polygonal section (34) perpendicular and inclined that connects with a third connecting rod of polygonal section (33) perpendicular and inclined with respect to the second connecting rod. polygonal section (34). This third connecting bar of polygonal section (33) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16), forming a concrete block (47) that has a first volume of sphere (14) , a second volume of sphere (15) and a third volume of sphere (17) forming part of its base. The fourth volume of sphere (16) is located on the cusp of the virtual tetrahedron (12). In this fifth mode, the concrete block (47) has a fifth sphere volume (not shown) that is located in the geometric center of the virtual tetrahedron (12).
Haciendo referencia a las figuras 41 a 43, se muestra una sexta modalidad de un bloque de hormigón (48) que está conformado por volúmenes de poliedros unidos con barras conectoras de sección circular. El bloque de hormigón (48) que está formado por cuatro volúmenes de poliedros. Un primer volumen de poliedro (25) está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección circular (19). Desde la mitad de dicha primera barra conectora de sección circular (19) emerge una segunda barra conectora de sección circular (20) perpendicular e inclinada que empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de la segunda barra conectora de sección circular (20). Esta tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de poliedro (27) y un cuarto volumen de poliedro (28), conformando un bloque de hormigón (48) que tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (27) formando parte de su base. El cuarto volumen de esfera (28) está localizado en la cúspide del tetraedro virtual (12). El bloque de hormigón (48) tiene un quinto volumen esférico (no mostrado) localizado en el centro geométrico de dicho tetraedro virtual (12). Referring to Figures 41 to 43, a sixth embodiment of a concrete block (48) is shown which is made up of volumes of polyhedra joined with connecting bars of circular section. The concrete block (48) that is formed by four volumes of polyhedra. A first polyhedron volume (25) is connected to a second polyhedron volume (26) through a first connecting bar of circular section (19). From the middle of said first connecting bar of circular section (19) emerges a second connecting bar of circular section (20) perpendicular and inclined that connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the second connecting bar of circular section (20). This third connecting bar of circular section (21) joins from its ends a third volume of polyhedron (27) and a fourth volume of polyhedron (28), forming a concrete block (48) that has a first volume of polyhedron (25) , a second volume of polyhedron (26) and a third volume of polyhedron (27) forming part of its base. The fourth volume of sphere (28) is located at the cusp of the virtual tetrahedron (12). The concrete block (48) has a fifth spherical volume (not shown) located in the geometric center of said virtual tetrahedron (12).
La figura 44 representa un ejemplo de las posibles combinaciones que se pueden obtener para conformar unidades de hormigón. Así, un volumen de esfera (36) puede estar unido a otro utilizando una barra conectora de sección circular (37), o bien, una barra conectora de sección hexagonal (38). De la misma forma, en la figura 45, a manera de ejemplo, se muestra un volumen de poliedro (39) con forma de hexaedro que puede ser unido a otro utilizando una barra conectora de sección hexagonal (40), o bien, una barra conectora de sección circular (41 ). Figure 44 represents an example of the possible combinations that can be obtained to form concrete units. Thus, one sphere volume (36) can be connected to another using a connecting rod with a circular section (37), or a connecting rod with a hexagonal section (38). In the same way, in figure 45, by way of example, a polyhedron volume (39) in the shape of a hexahedron is shown that can be joined to another using a connecting bar with a hexagonal section (40), or a bar circular section connector (41).
La barra conectora que une los volúmenes en forma de esfera y poliedro puede tener un grosor menor en la zona de contacto con dichos volúmenes y un grosor mayor hacia el centro de la barra conectora. En las figuras 46 a 49 se observan ejemplificaciones de esta alternativa. En la figura 46 se observa un volumen de esfera (36) unido a una barra conectora que tiene la forma de un tronco de cono (42). En la figura 47 se observa un volumen de poliedro (39) en forma de hexaedro unido a una barra conectora que tiene la forma de un tronco de cono (45). En la figura 48 se observa un volumen de un poliedro irregular en forma de hexaedro (39) unido a una barra conectora en forma de un prisma poligonal tronco piramidal recto (44), que en este ejemplo tiene sección octogonal. En la figura 49 se observa un volumen de esfera (36) unido a una barra conectora en forma de un prisma poligonal tronco piramidal recto (45), que en este ejemplo es de sección octogonal. The connecting bar that joins the volumes in the form of a sphere and polyhedron may have a smaller thickness in the area of contact with said volumes and a greater thickness towards the center of the connecting bar. Figures 46 to 49 show examples of this alternative. Figure 46 shows a volume of sphere (36) attached to a connecting bar that has the shape of a truncated cone (42). Figure 47 shows a polyhedron volume (39) in the shape of a hexahedron attached to a connecting bar that has the shape of a truncated cone (45). Figure 48 shows a volume of an irregular polyhedron in the shape of a hexahedron (39) attached to a connecting bar in the form of a straight pyramidal polygonal prism (44), which in this example has an octagonal section. Figure 49 shows a volume of sphere (36) attached to a connecting bar in the form of a straight truncated pyramidal polygonal prism (45), which in this example has an octagonal section.
Los poliedros que se pueden usar en los volúmenes que se ubican en los vértices y centro geométrico del tetraedro virtual (12) son: pentaedro, hexaedro, heptaedro, octaedro, eneaedro, nonaedro, decaedro, endecaedro, dodecaedro, tridecaedro, tetradecaedro, pentadecaedro, hexadecaedro, heptadecaedro, octadecaedro, eneadecaedro, icosaedro, triacontaedro y tetracontaedro entre otros. Por lo general, los volúmenes de los poliedros que se utilizan en esta invención son de tipo regular, es decir, sus vértices contactan la superficie de un casquete de esfera. Sin embargo, tal como se muestra en la figura 48, los poliedros también pueden ser irregulares. Los polígonos que se pueden usar como sección transversal de las barras conectoras son: pentágono, hexágono, heptágono, octógono, nonágono, decágono, endecágono, undecágono, dodecágono, tridecágono, tetradecágono, pentadecágono, hexadecágono, heptadecágono, octodecágono, nonadecágono, isodecágono, icosakaihenágono, icosakaidígono, icosakaitrígono, triacontágono, tetracontágono, y pentacontágono entre otros. En general se prefiere que las barras conectoras tengan una sección poligonal cuyas caras sean paralelas para aumentar su masa, resistencia, trabazón y estabilidad residual. The polyhedra that can be used in the volumes that are located at the vertices and geometric center of the virtual tetrahedron (12) are: pentahedron, hexahedron, heptahedron, octahedron, eneahedron, nonahedron, decahedron, hendecahedron, dodecahedron, tridecahedron, tetradecahedron, pentadecahedron, hexadecahedron, heptadecahedron, octadecahedron, enneadecahedron, icosahedron, triacontahedron and tetracontahedron among others. In general, the volumes of the polyhedra used in this invention are of the regular type, that is, their vertices contact the surface of a sphere cap. However, as shown in Figure 48, polyhedra can also be irregular. The polygons that can be used as the cross section of the connecting bars are: pentagon, hexagon, heptagon, octagon, nonagon, decagon, hendecagon, undecagon, dodecagon, tridecagon, tetradecagon, pentadecagon, hexadecagon, heptadecagon, octadecagon, octadecagon, octadecagon , icosakaidígono, icosakaitrígono, triacontagon, tetracontagon, and pentacontagon among others. In general it is preferred that the connecting bars have a polygonal section whose faces are parallel to increase their mass, strength, interlocking and residual stability.
Cuando la unidad de hormigón tiene una barra conectora de sección transversal poligonal y los volúmenes son esféricos, el apotema de dicha sección poligonal es siempre menor que el radio de los volúmenes esféricos. When the concrete unit has a connecting bar with a polygonal cross section and the volumes are spherical, the apothem of said polygonal section is always smaller than the radius of the spherical volumes.
Cuando la unidad de hormigón está conformada por una barra conectora que es un cilindro circular recto y los volúmenes son poliedros, la sección transversal circular de la barra conectora podrá tener un radio que será menor que el apotema de los volúmenes poliédricos. When the concrete unit is made up of a connecting bar that is a right circular cylinder and the volumes are polyhedra, the circular cross section of the connecting bar may have a radius that will be less than the apothem of the polyhedral volumes.
Cuando la unidad de hormigón está conformada por una barra conectora de sección transversal poligonal y los volúmenes son poliédricos, el apotema de los troncos de sección poligonal es siempre menor que el apotema correspondiente a los volúmenes poliédricos. En general las unidades de hormigón de la presente invención tienen barras conectoras circulares o poligonales que unen los volúmenes esféricos y poligonales, dicha unión tiene chaflanes que disminuyen los esfuerzos tensionales que se genera en dicha unión. When the concrete unit is made up of a connecting bar with a polygonal cross section and the volumes are polyhedral, the apothem of the polygonal section trunks is always less than the apothem corresponding to the polyhedral volumes. In general, the concrete units of the present invention have circular or polygonal connecting bars that join the spherical and polygonal volumes, said joint has chamfers that reduce the tensional stresses generated in said joint.
En las unidades de hormigón las distancias entre los centros los volúmenes esféricos o volúmenes poliedros pueden ser aumentadas o disminuidas, preferentemente, por valores constantes, de tal forma que el bloque siempre quede comprendido dentro de un tetraedro regular. In concrete units, the distances between the centers, the spherical volumes or polyhedron volumes can be increased or decreased, preferably by constant values, in such a way that the block always remains within a regular tetrahedron.
Cuando las unidades de hormigón están conformadas por barras conectoras cilindricas circulares rectas y los volúmenes son esféricos, la relación entre las medidas del radio de las barras conectoras en forma de cilindros circulares rectos respecto del radio de los volúmenes esféricos es menor que la unidad (1 ,0), y preferentemente entre 0,6 y 0,9. When concrete units are made up of straight circular cylindrical connecting bars and the volumes are spherical, the ratio of the measurements of the radius of the connecting bars in the form of straight circular cylinders to the radius of the spherical volumes is less than unity (1 , 0), and preferably between 0.6 and 0.9.
Cuando las unidades de hormigón están conformadas por barras conectoras de sección transversal poligonal y por volúmenes poliédricos, la relación entre las medidas del apotema de las barras conectoras de sección poligonal con respecto al apotema de los volúmenes poliédricos es menor que la unidad (1 ,0), y preferentemente entre 0,6 y 0,9. When the concrete units are made up of connecting bars of polygonal cross-section and polyhedral volumes, the relationship between the measures of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is less than the unit (1, 0 ), and preferably between 0.6 and 0.9.
Cuando las unidades de hormigón están conformadas por una barra conectora de sección poligonal y los volúmenes son esféricos, la relación entre las medidas del apotema de las barras conectoras poligonales con respecto al radio de la esfera de los volúmenes esféricos es siempre menor que la unidad (1 ,0), y preferentemente entre 0,6 y 0,9. Cuando las unidades de hormigón están conformadas por una barra conectora cilindrica circular recta y los volúmenes son poliédricos la relación entre las medidas del radio de las barras conectoras cilindricas con respecto al apotema de los volúmenes poliédricos es siempre inferior a la unidad (1 ,0), y preferentemente entre 0,6 y 0,9. When the concrete units are made up of a connecting bar with a polygonal section and the volumes are spherical, the relationship between the apothem measures of the polygonal connecting bars with respect to the radius of the sphere of the spherical volumes is always less than the unit ( 1.0), and preferably between 0.6 and 0.9. When the concrete units are made up of a straight circular cylindrical connecting bar and the volumes are polyhedral, the relationship between the measurements of the radius of the cylindrical connecting bars with respect to the apothem of the polyhedral volumes is always less than the unit (1, 0) , and preferably between 0.6 and 0.9.
La unidad de hormigón de la presente invención puede estar conformada solamente en hormigón. Sin embargo, es posible utilizar en el proceso construcción armaduras hechas de barras y/o mallas de acero. La armadura puede estar tratada previamente con pintura de protección, estar galvanizada. Asimismo, al hormigón se le puede proveer de diferentes aditivos. The concrete unit of the present invention can be formed from concrete only. However, it is possible to use in the construction process reinforcing bars and / or steel mesh. The armor can be previously treated with protective paint, be galvanized. Likewise, concrete can be supplied with different additives.
Dentro de las ventajas de la invención anteriormente descrita, una unidad de hormigón armado al estar conformada por barras conectoras de sección poligonal de caras paralelas y volúmenes poliédricos, presentan la máxima cantidad de caras expuestas a las ondas hidrodinámicas del oleaje y corrientes del agua. Comparativamente, una unidad de hormigón de la presente invención con que tenga secciones poligonales de doce caras genera 306 planos expuestos al oleaje y corrientes hidrodinámicas, mientras que un“DOLO” como el divulgado en el documento ruso SU 802448, tiene solamente 94 planos o caras expuestas. Among the advantages of the above-described invention, a reinforced concrete unit, as it is made up of connecting bars of polygonal section with parallel faces and polyhedral volumes, has the maximum number of faces exposed to the hydrodynamic waves of the waves and water currents. Comparatively, a concrete unit of the present invention with polygonal sections of twelve faces generates 306 planes exposed to waves and hydrodynamic currents, while a "DOLO" as disclosed in the Russian document SU 802448, has only 94 planes or faces. exposed.
Asimismo, la unidad de hormigón armado de la presente invención al estar conformada por barras conectoras cilindricas circulares rectas que unen volúmenes esféricos, presentan la máxima cantidad de puntos que reflejan las ondas hidrodinámicas del oleaje en todas direcciones, amortiguando las olas incidentes y permitiendo su paso fluido, pero con menor energía, a través de la barrera de unidades de hormigón dispuestas como protección. Likewise, the reinforced concrete unit of the present invention, as it is formed by straight circular cylindrical connecting bars that join spherical volumes, present the maximum amount of points that reflect the hydrodynamic waves of the waves in all directions, cushioning the incident waves and allowing their fluid passage, but with less energy, through the barrier of concrete units arranged as protection.
Por otra parte, la unidad de hormigón de la presente invención al estar fabricada de hormigón dentro de un molde, desarrolla mayor superficie externa al dividir dicha superficie por el volumen del hormigón empleado en su fabricación, (m2/m3). Al comparar la superficie generada por cada metro cúbico de hormigón vertido en las diferentes unidades se obtiene que en DOLOS rinde 5,23 m2; en los CORE-LOC (documento de patente US5620280) rinde 4,64 m2; y en la presente invención rinde 5,74 m2. On the other hand, the concrete unit of the present invention, being made of concrete inside a mold, develops a greater external surface by dividing said surface by the volume of concrete used in its manufacture, (m2 / m3). When comparing the surface generated by each cubic meter of concrete poured in the different units, it is obtained that in DOLOS it yields 5.23 m2; in CORE-LOC (patent document US5620280) it yields 4.64 m2; and in the present invention it yields 5.74 m2.
Cuando la unidad de hormigón de la presente invención al estar fabricada con una barra conectora poligonal de forma de un dodecágono y un volumen poliédrico con forma de dodecaedro (12 caras), genera un total de 306 caras, en circunstancia que el CORE-LOC, con sección octogonal de 9,4 toneladas genera solamente 88 caras expuestas. Asimismo, un DOLO de 7,0 toneladas genera más de 24 caras por cada m3, el CORE- LOC genera 22,39 caras por cada metro cúbico de hormigón y la unidad de la presente invención de 7,44 toneladas genera el máximo con 98 caras por cada metro cúbico de hormigón vertido en el molde. When the concrete unit of the present invention, being manufactured with a polygonal connecting bar in the shape of a dodecagon and a polyhedral volume in the shape of a dodecahedron (12 faces), generates a total of 306 faces, in the circumstance that the CORE-LOC, with an octagonal section of 9.4 tons it generates only 88 exposed faces. Likewise, a 7.0-ton DOLO generates more than 24 faces for each m3, CORE-LOC generates 22.39 faces for each cubic meter of concrete and the unit of the present invention of 7.44 tons generates the maximum with 98 faces for every cubic meter of concrete poured into the mold.

Claims

REIVINDICACIONES
1.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, CARACTERIZADA porque 1.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others, CHARACTERIZED because
está conformada por un bloque de hormigón (22) circunscrito en un tetraedro virtual (12), que está formado por cuatro volúmenes de esferas; un primer volumen de esfera (14) que está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección circular (19); desde la mitad de dicha primera barra conectora de sección circular (19) emerge una segunda barra conectora de sección circular (20) perpendicular e inclinada que empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de la segunda barra conectora de sección circular (20); en donde esta tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16). It is made up of a concrete block (22) circumscribed in a virtual tetrahedron (12), which is made up of four volumes of spheres; a first sphere volume (14) which is connected to a second sphere volume (15) through a first connecting rod of circular section (19); from the middle of said first connecting bar of circular section (19) emerges a second connecting bar of circular section (20) perpendicular and inclined that connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the second connecting bar circular section (20); wherein this third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16).
2.- Una unidad de hormigón, según la reivindicación 1 , 2.- A concrete unit according to claim 1,
CARACTERIZADA porque dicho bloque de hormigón (22) que tiene dicho primer volumen de esfera (14), dicho segundo volumen de esfera (15) y dicho tercer volumen de esfera (17) formando parte de su base. CHARACTERIZED in that said concrete block (22) having said first volume of sphere (14), said second volume of sphere (15) and said third volume of sphere (17) forming part of its base.
3.- Una unidad de hormigón, según la reivindicación 2, 3. A concrete unit according to claim 2,
CARACTERIZADA porque debido a que dicho bloque de hormigón (22) está conformado dentro de un tetraedro virtual (12), cualquiera sea la cara triangular virtual de dicho tetraedro (12) que apoya contra el terreno, siempre apoyarán cualquiera de tres volúmenes de esferas, en donde el cuarto volumen de esfera se localiza en la cúspide del tetraedro virtual (12). CHARACTERIZED because due to the fact that said concrete block (22) is formed within a virtual tetrahedron (12), whatever the virtual triangular face of said tetrahedron (12) that rests against the ground, they will always support any of three volumes of spheres, where the fourth volume of sphere is located at the cusp of the virtual tetrahedron (12).
4.- Una unidad de hormigón, según cualquiera de las reivindicaciones 1 a 3, CARACTERIZADA porque las barras conectoras de sección circular tienen un radio que es siempre menor que el radio de los volúmenes esféricos. 4. A concrete unit, according to any of claims 1 to 3, CHARACTERIZED in that the connecting bars of circular section have a radius that is always less than the radius of the spherical volumes.
5.- Una unidad de hormigón, según cualquiera de las reivindicaciones 1 a 4, CARACTERIZADA porque las barras conectoras de sección circular tienen forma de cono truncado. 5. A concrete unit, according to any of claims 1 to 4, CHARACTERIZED in that the connecting bars of circular section have the shape of a truncated cone.
6.- Una unidad de hormigón, según cualquiera de las reivindicaciones 1 a 5, CARACTERIZADA porque la unión entre las barras conectoras de sección circular y los volúmenes esféricos tienen chaflanes. 6. A concrete unit according to any of claims 1 to 5, CHARACTERIZED in that the joint between the connecting bars of circular section and the spherical volumes have chamfers.
7.- Una unidad de hormigón, según cualquiera de las reivindicaciones 1 a 6, CARACTERIZADA porque las distancias entre los centros los volúmenes esféricos son aumentadas o disminuidas por valores constantes, de tal forma que el bloque de hormigón siempre quede circunscrito dentro de un tetraedro regular. 7.- A concrete unit, according to any of claims 1 to 6, CHARACTERIZED because the distances between the centers of the spherical volumes are increased or decreased by constant values, in such a way that the concrete block is always circumscribed within a tetrahedron regular.
8.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, CARACTERIZADA porque 8.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others, CHARACTERIZED because
está conformada por un bloque de hormigón (23) circunscrito en un tetraedro virtual (12), que está formado por cinco volúmenes de esferas; un primer volumen de esfera (14) que está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección circular (19); en donde desde la mitad de dicha primera barra conectora de sección circular (19) emerge una primera barra corta conectora de sección circular (20a) perpendicular e inclinada respecto de la primera barra conectora de sección circular (19); en donde en el extremo de dicha primera barra corta conectora de sección circular (20a) emerge un quinto volumen de esfera (18), el cual se localiza en el centro de masa del bloque de hormigón (23); en donde desde dicho quinto volumen de esfera (18) emerge una segunda barra corta conectora de sección circular (20b), en donde las barras cortas conectoras de sección circular (20a, 20b) son colineales entre sí; en que la segunda barra corta de sección circular (20b) empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de las barras cortas conectoras de sección circular (20a, 20b); en donde dicha tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16). It is made up of a concrete block (23) circumscribed in a virtual tetrahedron (12), which is made up of five volumes of spheres; a first sphere volume (14) that is connected with a second sphere volume (15) through a first connecting rod of circular section (19); wherein from the middle of said first connecting rod of circular section (19) emerges a first short connecting rod of circular section (20a) perpendicular and inclined with respect to the first connecting rod of circular section (19); wherein at the end of said first short connecting bar of circular section (20a) emerges a fifth volume of sphere (18), which is located at the center of mass of the concrete block (23); wherein from said fifth sphere volume (18) emerges a second short connecting rod of circular section (20b), wherein the short connecting rod of circular section (20a, 20b) are collinear with each other; in which the second short bar of circular section (20b) connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the short connecting bars of circular section (20a, 20b); wherein said third connecting bar of circular section (21) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16).
9.- Una unidad de hormigón, según la reivindicación 8, 9.- A concrete unit according to claim 8,
CARACTERIZADA porque dicho bloque de hormigón (22) que tiene un primer volumen de esfera (14), un segundo volumen de esfera (15) y un tercer volumen de esfera (17) formando parte de su base. CHARACTERIZED in that said concrete block (22) that has a first volume of sphere (14), a second volume of sphere (15) and a third volume of sphere (17) forming part of its base.
10.- Una unidad de hormigón, según la reivindicación 9, 10.- A concrete unit according to claim 9,
CARACTERIZADA porque debido a que el bloque de hormigón está conformado dentro de un tetraedro virtual, cualquiera sea la cara triangular virtual que apoya contra el terreno, siempre apoyarán tres volúmenes de esferas, en donde el cuarto volumen de esfera está localizado en la cúspide del tetraedro virtual (12). El hecho que en esta modalidad se incluya un quinto volumen de esfera (18), permite acentuar en centro de gravedad del bloque de hormigón (23) dando mayor estabilidad a dicho bloque. CHARACTERIZED because because the concrete block is shaped within a virtual tetrahedron, whatever the triangular face is virtual that supports against the ground, will always support three volumes of spheres, where the fourth volume of sphere is located at the cusp of the virtual tetrahedron (12). The fact that in this modality a fifth volume of sphere (18) is included, allows accentuating the center of gravity of the concrete block (23), giving said block greater stability.
1 1.- Una unidad de hormigón, según cualquiera de las reivindicaciones 8 a 10, CARACTERIZADA porque las barras conectoras de sección circular tienen un radio que es siempre menor que el radio de los volúmenes esféricos. 1 1.- A concrete unit, according to any of claims 8 to 10, CHARACTERIZED in that the connecting bars of circular section have a radius that is always less than the radius of the spherical volumes.
12.- Una unidad de hormigón, según cualquiera de las reivindicaciones 8 a 1 1 , CARACTERIZADA porque las barras conectoras de sección circular tienen forma de cono truncado. 12. A concrete unit according to any of claims 8 to 1, CHARACTERIZED in that the connecting bars of circular section have the shape of a truncated cone.
13.- Una unidad de hormigón, según cualquiera de las reivindicaciones 8 a 12, CARACTERIZADA porque la unión entre las barras conectoras de sección circular y los volúmenes esféricos tienen chaflanes. 13.- A concrete unit, according to any of claims 8 to 12, CHARACTERIZED in that the joint between the connecting bars of circular section and the spherical volumes have chamfers.
14.- Una unidad de hormigón, según cualquiera de las reivindicaciones 8 a 13, CARACTERIZADA porque las distancias entre los centros los volúmenes esféricos son aumentadas o disminuidas por valores constantes, de tal forma que el bloque de hormigón siempre quede circunscrito dentro de un tetraedro regular. 14. A concrete unit, according to any of claims 8 to 13, CHARACTERIZED in that the distances between the centers of the spherical volumes are increased or decreased by constant values, in such a way that the concrete block is always circumscribed within a tetrahedron regular.
15.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, CARACTERIZADA porque está conformada por un bloque de hormigón (24) circunscrito en un tetraedro virtual (12), que está formado por cuatro volúmenes poliédricos; un primer volumen de poliedro (25) que está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección poligonal (29); en donde desde la mitad de dicha primera barra conectora de sección poligonal (29) emerge una segunda barra conectora de sección poligonal (30) perpendicular e inclinada que empalma con una tercera barra conectora de sección poligonal (31 ) perpendicular e inclinada respecto de la segunda barra conectora de sección poligonal (30); en donde dicha tercera barra conectora de sección poligonal (31 ) une desde sus extremos un tercer volumen de poliedro (28) y un cuarto volumen de poliedro (27). 15.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others, CHARACTERIZED because It is made up of a concrete block (24) circumscribed in a virtual tetrahedron (12), which is made up of four polyhedral volumes; a first polyhedron volume (25) which is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (29); wherein from the middle of said first connecting rod of polygonal section (29) emerges a second connecting rod of polygonal section (30) perpendicular and inclined that connects with a third connecting rod of polygonal section (31) perpendicular and inclined with respect to the second connecting rod of polygonal section (30); wherein said third connecting bar of polygonal section (31) joins from its ends a third volume of polyhedron (28) and a fourth volume of polyhedron (27).
16.- Una unidad de hormigón, según la reivindicación 15, CARACTERIZADA porque dicho bloque de hormigón (24) que tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (23) formando parte de su base, en donde el cuarto volumen de poliedro está localizado en la cúspide del tetraedro virtual (12). 16. A concrete unit according to claim 15, CHARACTERIZED in that said concrete block (24) having a first polyhedron volume (25), a second polyhedron volume (26) and a third polyhedron volume (23) forming part of its base, where the fourth polyhedron volume is located on the cusp of the virtual tetrahedron (12).
17.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 o 16, CARACTERIZADA porque el apotema de las barras conectoras de sección poligonal es menor que el apotema correspondiente a los volúmenes poliédricos. 17. A concrete unit, according to any of claims 15 or 16, CHARACTERIZED in that the apothem of the connecting bars of polygonal section is less than the apothem corresponding to the polyhedral volumes.
18.- Una unidad de hormigón, según la reivindicación 17, CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectoras de sección poligonal con respecto al apotema de los volúmenes poliédricos es menor que la unidad (1 ,0). 18. A concrete unit according to claim 17, CHARACTERIZED in that the relationship between the measures of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is less than the unit (1, 0).
19.- Una unidad de hormigón, según la reivindicación 18, 19.- A concrete unit according to claim 18,
CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectoras de sección poligonal con respecto al apotema de los volúmenes poliédricos está en un rango entre 0,6 y 0,9. CHARACTERIZED because the relationship between the measurements of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is in a range between 0.6 and 0.9.
20.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 a 19, CARACTERIZADA porque los volúmenes poliédricos son: pentaedro, hexaedro, heptaedro, octaedro, eneaedro, nonaedro, decaedro, endecaedro, dodecaedro, tridecaedro, tetradecaedro, pentadecaedro, hexadecaedro, heptadecaedro, octadecaedro, eneadecaedro, icosaedro, triacontaedro y tetracontaedro entre otros. 20. A concrete unit according to any of claims 15 to 19, CHARACTERIZED in that the polyhedral volumes are: pentahedron, hexahedron, heptahedron, octahedron, enneahedron, nonahedron, decahedron, hendecahedron, dodecahedron, tridecahedron, tetradecahedron, pentadecahedron, hexadecahedron heptadecahedron, octadecahedron, enneadecahedron, icosahedron, triacontahedron and tetracontahedron among others.
21.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 a 20, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro regular. 21.- A concrete unit, according to any of claims 15 to 20, CHARACTERIZED in that the polyhedral volumes are circumscribed in a regular tetrahedron.
22.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 a 20, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro irregular. 22.- A concrete unit, according to any of claims 15 to 20, CHARACTERIZED in that the polyhedral volumes are circumscribed in an irregular tetrahedron.
23.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 a 22, CARACTERIZADA porque las secciones de los polígonos que conforman las barras conectoras son: pentágono, hexágono, heptágono, octógono, nonágono, decágono, endecágono, undecágono, dodecágono, tridecágono, tetradecágono, pentadecágono, hexadecágono, heptadecágono, octodecágono, nonadecágono, isodecágono, icosakaihenágono, icosakaidígono, icosakaitrígono, triacontágono, tetracontágono, y pentacontágono entre otros. 23.- A concrete unit, according to any of claims 15 to 22, CHARACTERIZED in that the sections of the polygons that make up the connecting bars are: pentagon, hexagon, Heptagon, octagon, nonagon, decagon, hendecagon, undecagon, dodecagon, tridecagon, tetradecagon, pentadecagon, hexadecagon, heptadecagon, octadecagon, nonadecagon, isodecagon, icosakaihenagon, other icosakaconagon, octagon, other icosakacontagon, icosakonagon
24.- Una unidad de hormigón, según cualquiera de las reivindicaciones 15 a 23, CARACTERIZADA porque las barras conectoras con una sección poligonal, las caras son paralelas. 24.- A concrete unit according to any of claims 15 to 23, CHARACTERIZED in that the connecting bars with a polygonal section, the faces are parallel.
25.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, 25.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others,
CARACTERIZADA porque CHARACTERIZED because
está conformada por un bloque de hormigón (46) circunscrito en un tetraedro virtual (12), que está formado por cinco volúmenes de poliedros; un primer volumen de poliedro (25) que está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección poligonal (19); en donde desde la mitad de dicha primera barra conectora de sección poligonal (29) emerge una primera barra corta conectora de sección poligonal (30a) perpendicular e inclinada respecto de la primera barra conectora de sección poligonal (29); en donde en el extremo de dicha primera barra corta conectora de sección poligonal (30a) emerge un quinto volumen de poliedro (32), el cual se localiza en el centro de masa del bloque de hormigón (46); en donde desde dicho quinto volumen de poliedro (32) emerge una segunda barra corta conectora de sección poligonal (30b), en donde las barras cortas conectoras de sección poligonales (30a, 30b) son colineales entre sí; en donde la segunda barra corta de sección poligonal (30b) empalma con una tercera barra conectora de sección poligonal (31 ) perpendicular e inclinada respecto de las barras cortas conectoras de sección poligonal (30a, 30b); en donde dicha tercera barra conectora de sección poligonal (31 ) une desde sus extremos un tercer volumen de poliedro (28) y un cuarto volumen de poliedro (27). It is made up of a concrete block (46) circumscribed in a virtual tetrahedron (12), which is made up of five volumes of polyhedra; a first polyhedron volume (25) which is connected to a second polyhedron volume (26) through a first connecting rod of polygonal section (19); wherein from the middle of said first connecting rod of polygonal section (29) emerges a first short connecting rod of polygonal section (30a) perpendicular and inclined with respect to the first connecting rod of polygonal section (29); wherein at the end of said first short connecting rod of polygonal section (30a) emerges a fifth polyhedron volume (32), which is located at the center of mass of the concrete block (46); where from said fifth polyhedron volume (32) emerges a second short connecting bar of polygonal section (30b), wherein the short polygonal section connecting bars (30a, 30b) are collinear with each other; wherein the second short polygonal section bar (30b) connects with a third polygonal section connecting bar (31) perpendicular and inclined with respect to the short polygonal section connecting bars (30a, 30b); wherein said third connecting bar of polygonal section (31) joins from its ends a third volume of polyhedron (28) and a fourth volume of polyhedron (27).
26.- Una unidad de hormigón, según la reivindicación 25, CARACTERIZADA porque dicho bloque de hormigón (46) que tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (28) formando parte de su base, en donde el cuarto volumen de poliedro (27) está localizado en la cúspide del tetraedro virtual (12). 26.- A concrete unit according to claim 25, CHARACTERIZED in that said concrete block (46) having a first polyhedron volume (25), a second polyhedron volume (26) and a third polyhedron volume (28) forming part of its base, where the fourth volume of polyhedron (27) is located on the cusp of the virtual tetrahedron (12).
27.- Una unidad de hormigón, según cualquiera de las reivindicaciones 26 o 18, CARACTERIZADA porque el apotema de las barras conectoras de sección poligonal es siempre menor que el apotema correspondiente a los volúmenes poliédricos. 27.- A concrete unit according to any of claims 26 or 18, CHARACTERIZED in that the apothem of the connecting bars of polygonal section is always less than the apothem corresponding to the polyhedral volumes.
28.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 27, CARACTERIZADA porque los volúmenes poliédricos son: pentaedro, hexaedro, heptaedro, octaedro, eneaedro, nonaedro, decaedro, endecaedro, dodecaedro, tridecaedro, tetradecaedro, pentadecaedro, hexadecaedro, heptadecaedro, octadecaedro, eneadecaedro, icosaedro, triacontaedro y tetracontaedro entre otros. 28.- A concrete unit, according to any of claims 25 to 27, CHARACTERIZED in that the polyhedral volumes are: pentahedron, hexahedron, heptahedron, octahedron, enneahedron, nonahedron, decahedron, hendecahedron, dodecahedron, tridecahedron, tetradecahedron, pentadecahedron, hexadecahedron heptadecahedron, octadecahedron, enneadecahedron, icosahedron, triacontahedron and tetracontahedron among others.
29.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 28, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro regular. 29.- A concrete unit according to any of claims 25 to 28, CHARACTERIZED in that the polyhedral volumes are circumscribed in a regular tetrahedron.
30.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 28, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro irregular. 30.- A concrete unit according to any of claims 25 to 28, CHARACTERIZED in that the polyhedral volumes are circumscribed in an irregular tetrahedron.
31.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 30, CARACTERIZADA porque las secciones de los polígonos que conforman las barras conectoras son: pentágono, hexágono, heptágono, octógono, nonágono, decágono, endecágono, undecágono, dodecágono, tridecágono, tetradecágono, pentadecágono, hexadecágono, heptadecágono, octodecágono, nonadecágono, isodecágono, icosakaihenágono, icosakaidígono, icosakaitrígono, triacontágono, tetracontágono, y pentacontágono entre otros. 31.- A concrete unit, according to any of claims 25 to 30, CHARACTERIZED because the sections of the polygons that make up the connecting bars are: pentagon, hexagon, heptagon, octagon, nonagon, decagon, hendecagon, undecagon, dodecagon, tridecagon , tetradecagon, pentadecagon, hexadecagon, heptadecagon, octadecagon, nonadecagon, isodecagon, icosakaihenagon, icosakaidigon, icosakaitrgon, triacontagon, tetracontagon, and pentacontagon among others.
32.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 31 , CARACTERIZADA porque las barras conectoras con una sección poligonal, las caras son paralelas. 32.- A concrete unit according to any of claims 25 to 31, CHARACTERIZED in that the connecting bars with a polygonal section, the faces are parallel.
33.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 o 32, CARACTERIZADA porque el apotema de las barras conectoras de sección poligonal es menor que el apotema correspondiente a los volúmenes poliédricos. 33.- A concrete unit according to any of claims 25 or 32, CHARACTERIZED in that the apothem of the connecting bars of polygonal section is less than the apothem corresponding to the polyhedral volumes.
34.- Una unidad de hormigón, según la reivindicación 33, CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectaras de sección poligonal con respecto al apotema de tas volúmenes poliédricos es menor que la unidad (1 ,0). 34.- A concrete unit, according to claim 33, CHARACTERIZED in that the relationship between the measures of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is less than unity (1, 0).
35.- Una unidad de hormigón, según la reivindicación 34, CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectaras de sección poligonal con respecto al apotema de tas volúmenes poliédricos está en un rango entre 0,6 y 0,9. 35.- A concrete unit according to claim 34, CHARACTERIZED in that the relationship between the measurements of the apothem of the connecting bars of polygonal section with respect to the apothem of the polyhedral volumes is in a range between 0.6 and 0.9.
36.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 35, CARACTERIZADA porque las barras conectaras de sección poligonal tienen forma de prisma poligonal troco piramidal recto. 36.- A concrete unit according to any of claims 25 to 35, CHARACTERIZED in that the connecting bars of polygonal section are in the form of a straight pyramidal polygonal prism.
37.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 36, CARACTERIZADA porque la unión entre las barras conectaras de sección poligonal y tas volúmenes poliédricos tienen chaflanes. 37.- A concrete unit, according to any of claims 25 to 36, CHARACTERIZED in that the joint between the connecting bars of polygonal section and the polyhedral volumes have chamfers.
38.- Una unidad de hormigón, según cualquiera de las reivindicaciones 25 a 37, CARACTERIZADA porque las distancias entre tas centros los volúmenes poliédricos son aumentadas o disminuidas por valores constantes, de tal forma que el bloque de hormigón siempre quede circunscrito dentro de un tetraedro regular. 38.- A concrete unit, according to any of claims 25 to 37, CHARACTERIZED in that the distances between the centers of the polyhedral volumes are increased or decreased by constant values, in such a way that the concrete block is always circumscribed within a tetrahedron regular.
39.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, 39.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others,
CARACTERIZADA porque CHARACTERIZED because
está conformada por un bloque de hormigón (47) circunscrito en un tetraedro virtual (12), que está formado por volúmenes de esferas unidos con barras conectoras poligonales, que está formado por cuatro volúmenes de esferas; un primer volumen de esfera (14) está conectado con un segundo volumen de esfera (15) a través de una primera barra conectora de sección poligonal (35); en donde desde la mitad de dicha primera barra conectora de sección poligonal (35) emerge una segunda barra conectora de sección poligonal (34) perpendicular e inclinada que empalma con una tercera barra conectora de sección poligonal (33) perpendicular e inclinada respecto de la segunda barra conectora de sección poligonal (34; en donde esta tercera barra conectora de sección poligonal (33) une desde sus extremos un tercer volumen de esfera (17) y un cuarto volumen de esfera (16). It is made up of a concrete block (47) circumscribed in a virtual tetrahedron (12), which is formed by volumes of joined spheres with polygonal connecting bars, which is formed by four volumes of spheres; a first volume of sphere (14) is connected to a second volume of sphere (15) through a first connecting bar of polygonal section (35); wherein from the middle of said first connecting bar of polygonal section (35) emerges a second connecting bar of polygonal section (34) perpendicular and inclined that connects with a third connecting bar of polygonal section (33) perpendicular and inclined with respect to the second connecting rod of polygonal section (34; wherein this third connecting rod of polygonal section (33) joins from its ends a third volume of sphere (17) and a fourth volume of sphere (16).
40.- Una unidad de hormigón, según la reivindicación 39, CARACTERIZADA porque dicho bloque de hormigón (47) tiene un primer volumen de esfera (14), un segundo volumen de esfera (15) y un tercer volumen de esfera (17) formando parte de su base, en donde el cuarto volumen de esfera está localizado en la cúspide del tetraedro virtual (12). 40.- A concrete unit according to claim 39, CHARACTERIZED in that said concrete block (47) has a first volume of sphere (14), a second volume of sphere (15) and a third volume of sphere (17) forming part of its base, where the fourth volume of the sphere is located on the cusp of the virtual tetrahedron (12).
41.- Una unidad de hormigón, según la reivindicación 39 o 40, CARACTERIZADA porque el bloque de hormigón (47) posee un quinto volumen de esfera que está localizado en el centro geométrico del tetraedro virtual (12). 41.- A concrete unit according to claim 39 or 40, CHARACTERIZED in that the concrete block (47) has a fifth volume of sphere that is located in the geometric center of the virtual tetrahedron (12).
42.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 41 , CARACTERIZADA porque las secciones de los polígonos que conforman las barras conectoras son: pentágono, hexágono, heptágono, octógono, nonágono, decágono, endecágono, undecágono, dodecágono, tridecágono, tetradecágono, pentadecágono, hexadecágono, heptadecágono, octodecágono, nonadecágono, isodecágono, icosakaihenágono, icosakaidígono, icosakaitrígono, triacontágono, tetracontágono, y pentacontágono entre otros. 42.- A concrete unit, according to any of claims 39 to 41, CHARACTERIZED in that the sections of the polygons that make up the connecting bars are: pentagon, hexagon, Heptagon, octagon, nonagon, decagon, hendecagon, undecagon, dodecagon, tridecagon, tetradecagon, pentadecagon, hexadecagon, heptadecagon, octadecagon, nonadecagon, isodecagon, icosakaihenagon, other icosakaconagon, octagon, other icosakacontagon, icosakonagon
43.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 42, CARACTERIZADA porque las barras conectoras con una sección poligonal, las caras son paralelas. 43.- A concrete unit according to any of claims 39 to 42, CHARACTERIZED in that the connecting bars with a polygonal section, the faces are parallel.
44.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 o 43, CARACTERIZADA porque el apotema de las barras conectoras de sección poligonal es menor que el radio correspondiente a los volúmenes esféricos. 44.- A concrete unit according to any of claims 39 or 43, CHARACTERIZED in that the apothem of the connecting bars of polygonal section is less than the radius corresponding to the spherical volumes.
45.- Una unidad de hormigón, según la reivindicación 44, CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectoras de sección poligonal con respecto al radio de los volúmenes esféricos es menor que la unidad (1 ,0). 45.- A concrete unit according to claim 44, CHARACTERIZED in that the relationship between the measurements of the apothem of the connecting bars of polygonal section with respect to the radius of the spherical volumes is less than the unit (1, 0).
46.- Una unidad de hormigón, según la reivindicación 45, CARACTERIZADA porque la relación entre las medidas del apotema de las barras conectoras de sección poligonal con respecto al radio de los volúmenes esféricos está en un rango entre 0,6 y 0,9. 46.- A concrete unit according to claim 45, CHARACTERIZED in that the relationship between the measurements of the apothem of the connecting bars of polygonal section with respect to the radius of the spherical volumes is in a range between 0.6 and 0.9.
47.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 46, CARACTERIZADO porque las barras conectoras de sección poligonal tienen forma de un prisma poligonal tronco piramidal recto. 47.- A concrete unit according to any of claims 39 to 46, CHARACTERIZED in that the connecting bars of polygonal section have the shape of a straight pyramidal polygonal prism.
48.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 47, CARACTERIZADA porque las barras conectoras de sección poligonal tienen forma de prisma poligonal tronco piramidal. 48.- A concrete unit according to any of claims 39 to 47, CHARACTERIZED in that the connecting bars of polygonal section have the shape of a polygonal truncated pyramidal prism.
49.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 48, CARACTERIZADA porque la unión entre las barras conectoras de sección poligonal y los volúmenes esféricos tienen chaflanes. 49.- A concrete unit according to any of claims 39 to 48, CHARACTERIZED in that the joint between the connecting bars of polygonal section and the spherical volumes have chamfers.
50.- Una unidad de hormigón, según cualquiera de las reivindicaciones 39 a 49, CARACTERIZADA porque las distancias entre los centros los volúmenes esféricos son aumentadas o disminuidas por valores constantes, de tal forma que el bloque de hormigón siempre quede circunscrito dentro de un tetraedro regular. 50.- A concrete unit, according to any of claims 39 to 49, CHARACTERIZED because the distances between the centers of the spherical volumes are increased or decreased by constant values, in such a way that the concrete block is always circumscribed within a tetrahedron regular.
51.- Una unidad de hormigón para amortiguar el efecto del oleaje, para proteger costas, playas, lagos, embalses, puertos y otros, CARACTERIZADA porque 51.- A concrete unit to cushion the effect of the waves, to protect coasts, beaches, lakes, reservoirs, ports and others, CHARACTERIZED because
está conformada por un bloque de hormigón (48) circunscrito en un tetraedro virtual (12), que está formado por volúmenes de poliedros unidos con barras conectoras de sección circular; en donde un primer volumen de poliedro (25) está conectado con un segundo volumen de poliedro (26) a través de una primera barra conectora de sección circular (19); en donde desde la mitad de dicha primera barra conectora de sección circular (19) emerge una segunda barra conectora de sección circular (20) perpendicular e inclinada que empalma con una tercera barra conectora de sección circular (21 ) perpendicular e inclinada respecto de la segunda barra conectora de sección circular (20); en donde dicha tercera barra conectora de sección circular (21 ) une desde sus extremos un tercer volumen de poliedro (27) y un cuarto volumen de poliedro (28). It is made up of a concrete block (48) circumscribed in a virtual tetrahedron (12), which is made up of volumes of polyhedra joined with connecting bars of circular section; wherein a first polyhedron volume (25) is connected with a second polyhedron volume (26) through a first connecting rod of circular section (19); where from the middle of said first section connecting bar circular (19) emerges a second connecting bar of circular section (20) perpendicular and inclined that connects with a third connecting bar of circular section (21) perpendicular and inclined with respect to the second connecting bar of circular section (20); wherein said third connecting bar of circular section (21) joins from its ends a third polyhedron volume (27) and a fourth polyhedron volume (28).
52.- Una unidad de hormigón, según la reivindicación 51 , CARACTERIZADA porque dicho bloque de hormigón (48) tiene un primer volumen de poliedro (25), un segundo volumen de poliedro (26) y un tercer volumen de poliedro (27) formando parte de su base, en donde el cuarto volumen de esfera (28) está localizado en la cúspide del tetraedro virtual (12). 52.- A concrete unit according to claim 51, CHARACTERIZED in that said concrete block (48) has a first polyhedron volume (25), a second polyhedron volume (26) and a third polyhedron volume (27) forming part of its base, where the fourth volume of sphere (28) is located at the top of the virtual tetrahedron (12).
53.- Una unidad de hormigón, según la reivindicación 51 o 52, CARACTERIZADA porque dicho bloque de hormigón (48) tiene un quinto volumen esférico localizado en el centro geométrico de dicho tetraedro virtual (12). 53.- A concrete unit according to claim 51 or 52, CHARACTERIZED in that said concrete block (48) has a fifth spherical volume located in the geometric center of said virtual tetrahedron (12).
54.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 53, CARACTERIZADA porque los volúmenes poliédricos son: pentaedro, hexaedro, heptaedro, octaedro, eneaedro, nonaedro, decaedro, endecaedro, dodecaedro, tridecaedro, tetradecaedro, pentadecaedro, hexadecaedro, heptadecaedro, octadecaedro, eneadecaedro, icosaedro, triacontaedro y tetracontaedro entre otros. 54.- A concrete unit according to any of claims 51 to 53, CHARACTERIZED because the polyhedral volumes are: pentahedron, hexahedron, heptahedron, octahedron, enneahedron, nonahedron, decahedron, hendecahedron, dodecahedron, tridecahedron, tetradecahedron, pentadecahedron, hexadecahedron heptadecahedron, octadecahedron, enneadecahedron, icosahedron, triacontahedron and tetracontahedron among others.
55.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 54, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro regular. 55.- A concrete unit according to any of claims 51 to 54, CHARACTERIZED in that the polyhedral volumes are circumscribed in a regular tetrahedron.
56.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 54, CARACTERIZADA porque los volúmenes poliédricos están circunscritos en un tetraedro irregular. 56.- A concrete unit according to any of claims 51 to 54, CHARACTERIZED in that the polyhedral volumes are circumscribed in an irregular tetrahedron.
57.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 56, CARACTERIZADA porque las barras conectoras de sección circular tienen forma de cono truncado. 57.- A concrete unit according to any of claims 51 to 56, CHARACTERIZED in that the connecting bars of circular section have the shape of a truncated cone.
58.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 o 57, CARACTERIZADA porque el radio de las barras conectoras de sección circular es menor que el apotema correspondiente a los volúmenes poliédricos. 58.- A concrete unit, according to any of claims 51 or 57, CHARACTERIZED in that the radius of the connecting bars of circular section is less than the apothem corresponding to the polyhedral volumes.
59.- Una unidad de hormigón, según la reivindicación 58, CARACTERIZADA porque la relación entre las medidas del radio de las barras conectoras de sección circular con respecto al apotema de los volúmenes poliédricos es menor que la unidad (1 ,0). 59.- A concrete unit according to claim 58, CHARACTERIZED in that the relationship between the measurements of the radius of the connecting bars of circular section with respect to the apothem of the polyhedral volumes is less than the unit (1, 0).
60.- Una unidad de hormigón, según la reivindicación 59, CARACTERIZADA porque la relación entre las medidas del radio de las barras conectoras de sección circular con respecto al apotema de los volúmenes poliédricos está en un rango entre 0,6 y 0,9. 60.- A concrete unit according to claim 59, CHARACTERIZED in that the relationship between the measurements of the radius of the connecting bars of circular section with respect to the apothem of the polyhedral volumes is in a range between 0.6 and 0.9.
61.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 60, CARACTERIZADA porque las barras conectoras de sección circular tienen forma de cono truncado. 61.- A concrete unit according to any of claims 51 to 60, CHARACTERIZED in that the connecting bars of circular section have the shape of a truncated cone.
62.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 61 , CARACTERIZADA porque la unión entre las barras conectoras de sección circular y los volúmenes poliédricos tienen chaflanes. 62.- A concrete unit according to any of claims 51 to 61, CHARACTERIZED in that the joint between the connecting bars of circular section and the polyhedral volumes have chamfers.
63.- Una unidad de hormigón, según cualquiera de las reivindicaciones 51 a 62, CARACTERIZADA porque las distancias entre los centros los volúmenes poliédricos son aumentadas o disminuidas por valores constantes, de tal forma que el bloque de hormigón siempre quede circunscrito dentro de un tetraedro regular. 63.- A concrete unit, according to any of claims 51 to 62, CHARACTERIZED because the distances between the centers of the polyhedral volumes are increased or decreased by constant values, in such a way that the concrete block is always circumscribed within a tetrahedron regular.
PCT/CL2019/050025 2019-04-05 2019-04-05 Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents WO2020198893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CL2019/050025 WO2020198893A1 (en) 2019-04-05 2019-04-05 Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents
CL2021002587A CL2021002587A1 (en) 2019-04-05 2021-10-04 Concrete unit to cushion the effect of waves and protect coasts, beaches, lakes, reservoirs, ports and others, from the adverse effect of waves and hydrodynamic water currents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050025 WO2020198893A1 (en) 2019-04-05 2019-04-05 Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents

Publications (1)

Publication Number Publication Date
WO2020198893A1 true WO2020198893A1 (en) 2020-10-08

Family

ID=72664374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050025 WO2020198893A1 (en) 2019-04-05 2019-04-05 Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents

Country Status (2)

Country Link
CL (1) CL2021002587A1 (en)
WO (1) WO2020198893A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310868B1 (en) * 2021-03-05 2021-10-12 상록엔비텍(주) Structure to Prevent Soil Loss in River and Coastal Slopes and Installation Method Thereof
KR102312995B1 (en) * 2021-03-05 2021-10-13 상록엔비텍(주) Wave Dissipating Block Structure and Its Mounting Method
WO2022186573A1 (en) * 2021-03-05 2022-09-09 상록엔비텍(주) Structure for preventing soil loss in river and coastal slope surface and installation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223373A (en) * 2007-03-14 2008-09-25 Fudo Tetra Corp Wave-absorbing concrete block
KR20130003396A (en) * 2011-06-30 2013-01-09 한동권 Tetrapod for breakwater
KR101602956B1 (en) * 2015-12-30 2016-03-11 주식회사 스틸플라워 Wave reducing block

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223373A (en) * 2007-03-14 2008-09-25 Fudo Tetra Corp Wave-absorbing concrete block
KR20130003396A (en) * 2011-06-30 2013-01-09 한동권 Tetrapod for breakwater
KR101602956B1 (en) * 2015-12-30 2016-03-11 주식회사 스틸플라워 Wave reducing block

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIWEI GUO: "Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite- discrete element method", COMPUTERS AND STRUCTURES, vol. 146, 2015, pages 117 - 142, XP055745795 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310868B1 (en) * 2021-03-05 2021-10-12 상록엔비텍(주) Structure to Prevent Soil Loss in River and Coastal Slopes and Installation Method Thereof
KR102312995B1 (en) * 2021-03-05 2021-10-13 상록엔비텍(주) Wave Dissipating Block Structure and Its Mounting Method
WO2022186573A1 (en) * 2021-03-05 2022-09-09 상록엔비텍(주) Structure for preventing soil loss in river and coastal slope surface and installation method thereof

Also Published As

Publication number Publication date
CL2021002587A1 (en) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2020198893A1 (en) Concrete structure to deaden the effect of waves and to protect coastlines, beaches, lakes, reservoirs, ports and the like against the adverse effect of waves and hydrodynamic water currents
ES2935973T3 (en) Stabilization system, in particular for a floating support, with at least three interconnected liquid reservoirs
EP0721532B1 (en) Concrete armor unit to protect coastal and hydraulic structures and shorelines
ES2643818T3 (en) Finishing depth turning insert comprising a chip control arrangement
ES2611454T3 (en) Self-stable wall layout and procedures
ES2399073T3 (en) Puzzles formed by a plurality of cubes
US7165912B2 (en) Apparatus for rebuilding a sand beach
JPH03286786A (en) Golf ball
ES2214475T3 (en) APPARATUS TO DISSIP THE POWER OF THE WAVES.
ES2278002T3 (en) AUTOMATIC POOL CLEANER WITH TILT VALVE.
ES2540580T3 (en) Absorption pump
ES2333397B1 (en) BEARING FOR CABLES.
KR970069059A (en) Dimple arrangement of golf balls
KR101632232B1 (en) Dissipation Block of Breakwater
ES2321052B1 (en) UNION OF FOUR OBLIQUE RECTANGULAR PRISMS AND SQUARE SECTIONS.
ES2564729B2 (en) Bicircular selector for sets of 4 elements
ES2919048T3 (en) magnetic construction toy
ES2364093T3 (en) SET TO DISSIP THE POWER OF THE WAVES BY DIFFACTION.
ES1225763U (en) SUPPORT FOR AQUATIC PLANTS HELOFITAS (Machine-translation by Google Translate, not legally binding)
ES1297312U (en) Blade paddle (Machine-translation by Google Translate, not legally binding)
US20170136306A1 (en) Golf ball having surface divided by small circles
ES2224874B1 (en) PERFECTED ARTIFICIAL BLOCK, CONFIGURED FOR ITS PLACEMENT ORDERED IN A LAYER, FOR THE PROTECTION OF DIVES AND MARITIME AND FLUVIAL BANKS.
ES2385696B1 (en) ARTIFICIAL PIECE FOR THE FORMATION OF PROTECTIVE TABLES OF ONE OR MORE LAYERS OF THE ROMPEAN DICHES AND THE DEFENSES OF COASTAL, LAGUNARY AND FLUVIAL RIBERAS
ES1304390U (en) Edge connector for assembly of three-dimensional structures (Machine-translation by Google Translate, not legally binding)
WO2021068091A1 (en) Watertight modular anchoring buoy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922269

Country of ref document: EP

Kind code of ref document: A1