JP2008223245A - Column base structure - Google Patents

Column base structure Download PDF

Info

Publication number
JP2008223245A
JP2008223245A JP2007059108A JP2007059108A JP2008223245A JP 2008223245 A JP2008223245 A JP 2008223245A JP 2007059108 A JP2007059108 A JP 2007059108A JP 2007059108 A JP2007059108 A JP 2007059108A JP 2008223245 A JP2008223245 A JP 2008223245A
Authority
JP
Japan
Prior art keywords
pile
steel
base structure
column base
underground wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059108A
Other languages
Japanese (ja)
Other versions
JP4724680B2 (en
Inventor
Kenji Saikai
健二 西海
Yoshiro Ishihama
吉郎 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007059108A priority Critical patent/JP4724680B2/en
Publication of JP2008223245A publication Critical patent/JP2008223245A/en
Application granted granted Critical
Publication of JP4724680B2 publication Critical patent/JP4724680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a column base structure capable of constructing a structure at low cost in a short period by eliminating the construction of footing from a conventional pile bent column base structure, constructed particularly in a soft ground, and enhanced in quake resistance by improving a horizontal resistance during earthquake produced in the pile vent structure. <P>SOLUTION: In this column base structure, the pile members constructed in a ground are connected to the column members constructed on the ground for supporting a bridge beam. A connection joint is fixed to the pile members along the outer surface axial direction. A steel underground wall having a joint along the side surface axial direction is disposed between the pile members adjacent to each other in the direction perpendicular to the bridge axis. The connection joint is fitted to the joint of the steel underground wall to connect the pile members to the steel underground wall. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、道路や鉄道の高架構造において、杭部材と柱部材を用いて構成される柱脚構造に関するものである。   The present invention relates to a column base structure configured using a pile member and a column member in an elevated structure of a road or a railway.

従来、杭部材を地上に立ち上げて柱部材とし、橋桁を直接支えるパイルベント式柱脚構造がある。パイルベント式柱脚構造は、直接基礎や杭基礎と比較して、フーチングを省略できることから、建設コストを削減しかつ短工期で施工できる構造である。パイルベント式柱脚構造の例として、特許文献1記載の発明があるが、この発明は、鋼管杭と鋼管柱を差し込み接合し、かつ鋼管柱と鋼製桁を横桁を介して連結した立体ラーメン式高架構造であり、温度変化により発生する鋼製桁の軸力を低減することにより桁サイズの縮小を特徴とした発明である。   Conventionally, there is a pile vent type column base structure in which a pile member is raised on the ground to be a column member and directly supports a bridge girder. The pile vent type column base structure can reduce the construction cost and can be constructed in a short construction period because the footing can be omitted compared to the direct foundation and the pile foundation. As an example of the pile vent type column base structure, there is an invention described in Patent Document 1. This invention is a three-dimensional structure in which a steel pipe pile and a steel pipe column are inserted and joined, and the steel pipe column and the steel girder are connected via a horizontal girder. This is a ramen-type elevated structure, and is an invention characterized by reducing the beam size by reducing the axial force of the steel beam generated by temperature changes.

特開2004−156292号公報JP 2004-156292 A

パイルベント式柱脚構造は、杭部材の水平方向の地盤抵抗面積が小さいために、地震力などの水平力が作用した場合に、杭部材および柱部材の水平方向の変位が大きくなることが課題である。柱部材の上部に枕梁を設置し、橋桁を架設した構造では、地震時に大きな水平変位が発生し、橋桁の落下の危険性がある。また、柱部材と鋼桁を連結したラーメン式高架構造では、地震力が作用した場合に、柱部材の基部および杭部材の上部に大きな曲げモーメントが作用するために、中規模の地震に対しても柱脚構造に大きな損傷が発生することが課題である。また、杭部材に大きな水平変位が発生し、杭部材周囲の地盤に大きな変形を生じるために、地震後の残留変位が大きくなり、補修が困難になることが課題である。   The pile-vented column base structure has a small ground resistance area in the horizontal direction of the pile member, so that when horizontal force such as seismic force is applied, the horizontal displacement of the pile member and column member becomes large. It is. In a structure in which a pillow beam is installed on the top of a column member and a bridge girder is installed, a large horizontal displacement occurs during an earthquake, and there is a risk of the bridge girder falling. In addition, in a rigid frame structure with a column member and a steel girder connected, when a seismic force is applied, a large bending moment acts on the base of the column member and the upper part of the pile member. Another problem is that large damage to the column base structure occurs. Moreover, since a big horizontal displacement generate | occur | produces in a pile member and a big deformation | transformation arises in the ground around a pile member, the residual displacement after an earthquake becomes large and it is a subject that repair becomes difficult.

特に地盤が軟弱な場合には、地震時の水平変位を抑制することが重要であるために、水平変位を抑制する方策として、軟弱地盤にセメントミルクを注入することにより地盤強度を向上させる地盤改良工法が採用されるが、地盤改良コストが非常に高価となることが課題である。また、地震力に対して充分な水平抵抗が不足する場合には、杭部材の断面を大きくする工法が採用される。しかし、杭部材の鉛直支持力や発生断面力から必要とされる形状より大きな杭部材が必要となることから、杭部材の施工コストが高価となり、パイルベント式柱脚構造の利点が失われることが課題である。   In particular, when the ground is soft, it is important to suppress the horizontal displacement during an earthquake, so as a measure to suppress the horizontal displacement, the ground improvement that improves the ground strength by injecting cement milk into the soft ground Although the construction method is adopted, the problem is that the ground improvement cost becomes very expensive. Moreover, when sufficient horizontal resistance with respect to a seismic force is insufficient, the construction method which enlarges the cross section of a pile member is employ | adopted. However, since the pile member larger than the shape required from the vertical support force and generated cross-sectional force of the pile member is required, the construction cost of the pile member becomes expensive, and the advantage of the pile vent type column base structure is lost. Is an issue.

本発明の目的は、パイルベント式柱脚構造を対象として、フーチングの施工を省略することにより、安価でかつ短期間で施工する構造物を提供することに加えて、特に軟弱な地盤に建設される柱脚構造において、従来のパイルベント構造が抱えていた地震時の水平方向の抵抗を改善することにより、耐震性に優れた柱脚構造を提供することにある。   The object of the present invention is to provide a structure that can be constructed at a low cost and in a short period of time by omitting the footing work for the pile vent type column base structure, and is constructed on a particularly soft ground. An object of the present invention is to provide a column base structure having excellent earthquake resistance by improving the horizontal resistance at the time of an earthquake that the conventional pile vent structure has.

前記の課題を解決するために、本発明では次のように構成する。
第1の発明は、地中部に構築された複数の杭部材が地上部に構築された複数の柱部材と接続されて、橋桁を支える柱脚構造において、前記杭部材には外面軸方向に沿った連結用継手が固着されており、橋軸直角方向に隣り合う前記杭部材の間に、側面軸方向に沿った継手を有する鋼製地中壁が配置され、前記連結用継手と前記鋼製地中壁の継手とが嵌合されて、前記杭部材と前記鋼製地中壁とが連結されていることを特徴とする。
In order to solve the above problem, the present invention is configured as follows.
A first aspect of the present invention is a column base structure in which a plurality of pile members constructed in the underground portion are connected to a plurality of column members constructed in the ground portion to support a bridge girder, and the pile members are arranged along the outer surface axial direction. A steel ground wall having a joint along the side surface axial direction is disposed between the pile members adjacent to each other in the direction perpendicular to the bridge axis, and the coupling joint and the steel The pile wall and the steel underground wall are connected by fitting a joint of the underground wall.

第2の発明は、第1の発明において、前記鋼製地中壁が鋼矢板であることを特徴とする。
第3の発明は、第1又は第2の発明において、前記鋼製地中壁の上部にコンクリート梁が設けられ、当該梁により前記橋軸直角方向に隣り合う杭部材同士が連結されていることを特徴とする。
第4の発明は、第1〜第3のいずれかの発明において、前記杭部材の中立軸と前記鋼製地中壁の橋軸方向の中立軸とが一致するように配置されていることを特徴とする。
第5の発明は、第1〜第4のいずれかの発明において、前記杭部材と柱部材との接続部において、前記杭部材が鋼管杭で構成され、当該鋼管杭内に前記柱部材が差し込まれていると共に、前記鋼管杭と前記柱部材との隙間にコンクリートが充填されていることを特徴とする。
第6の発明は、第1〜第5のいずれかの発明において、支承形式の高架構造に用いられていることを特徴とする。
A second invention is characterized in that, in the first invention, the steel ground wall is a steel sheet pile.
3rd invention WHEREIN: Concrete beam is provided in the upper part of the said steel underground wall in 1st or 2nd invention, The pile members adjacent to the said bridge axis right angle direction are connected by the said beam. It is characterized by.
4th invention is arrange | positioned so that the neutral axis | shaft of the said pile member and the neutral axis | shaft direction of the said steel underground wall may correspond in any 1st-3rd invention. Features.
5th invention is either 1st-4th invention, In the connection part of the said pile member and a column member, the said pile member is comprised with a steel pipe pile, and the said column member is inserted in the said steel pipe pile. In addition, the gap between the steel pipe pile and the column member is filled with concrete.
A sixth invention is characterized in that, in any one of the first to fifth inventions, the invention is used in a support type elevated structure.

本発明は、橋軸直角方向に配置された複数の杭部材を鋼製地中壁で連結された構造であり、地震力などの水平力が作用した場合には、杭部材の地盤抵抗に加えて、鋼製地中壁が抵抗するために、水平変位が抑制されるとともに、地震時の安全性を飛躍的に高めることができる。この杭部材と鋼製地中壁は継手を介して連結した構造であるために、橋梁上部構造に発生する荷重が杭部材から継手を介して鋼製地中壁に伝達され、確実に水平変位を抑制する効果を発揮させることができる。鋼製地中壁には、鋼矢板を用いることにより地上部から地中に打設することが可能となるために、堅実な鋼製地中壁を構成することが可能であり、確実な施工を実現することができる。また、鋼矢板上部をコンクリートにより橋軸直角方向に連結することにより、鋼製地中壁での荷重伝達を可能とし、鋼製地中壁で均等に水平荷重を地盤に伝達することができる。さらに、杭部材と鋼製地中壁の中立軸が一致するように配置することにより、継手部での断面性能の低減を不要とし、部材の断面性能を充分に発揮させることができる。   The present invention is a structure in which a plurality of pile members arranged in a direction perpendicular to the bridge axis are connected by a steel underground wall, and when a horizontal force such as seismic force is applied, in addition to the ground resistance of the pile members. In addition, since the steel underground wall resists, horizontal displacement is suppressed and safety during an earthquake can be dramatically improved. Since this pile member and steel underground wall are connected via a joint, the load generated in the bridge superstructure is transmitted from the pile member to the steel underground wall via the joint, ensuring horizontal displacement. The effect which suppresses can be exhibited. The steel underground wall can be driven into the ground from the ground by using steel sheet piles, so it is possible to construct a solid steel underground wall for reliable construction. Can be realized. Further, by connecting the steel sheet pile upper portion with the concrete in the direction perpendicular to the bridge axis, it is possible to transmit the load on the steel underground wall, and to transmit the horizontal load evenly to the ground with the steel underground wall. Furthermore, by arranging the pile member and the neutral shaft of the steel ground wall to coincide with each other, it is not necessary to reduce the cross-sectional performance at the joint portion, and the cross-sectional performance of the member can be sufficiently exhibited.

図を用いて本発明を実施するための最良の形態について述べる。
図1は本発明の第1の実施形態に係る柱脚構造の正面図を、図2は本発明の第1の実施形態に係る柱脚構造の地中部における平面図を示す。橋軸直角方向に2本の杭部材2が地中に配置され、杭部材2の上部に2本の柱部材1が各々接続されており、柱部材1の上部は橋桁3と連結されたパイルベント式ラーメン高架構造である。杭部材2の外面軸方向に沿ってあらかじめ連結用継手4が固着されており、また、鋼製地中壁の側面軸方向に沿って継手6が固着されている。連結用継手4と継手6を連結して2本の杭部材2の橋軸直角方向の間が鋼製地中壁5で連結されている。
The best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a column base structure according to the first embodiment of the present invention, and FIG. 2 is a plan view of an underground portion of the column base structure according to the first embodiment of the present invention. Two pile members 2 are arranged in the ground in the direction perpendicular to the bridge axis, and two pillar members 1 are connected to the upper part of the pile member 2, and the upper part of the pillar member 1 is connected to the bridge girder 3. It is a bent ramen elevated structure. The coupling joint 4 is fixed in advance along the outer surface axial direction of the pile member 2, and the joint 6 is fixed along the side surface axial direction of the steel underground wall. The connecting joint 4 and the connecting joint 6 are connected, and the space between the two pile members 2 in the direction perpendicular to the bridge axis is connected by a steel underground wall 5.

図2は、更に杭部材2と鋼製地中壁5の連結方法の例を示している。図2(A)に示すように、杭部材2の外面軸方向に沿って連結用継手4が固着されている。一方、鋼製地中壁5には、1枚の鋼板の両側面軸方向に沿って継手6が固着されている。連結用継手4と鋼製地中壁5の継手6が嵌合されて杭部材2と鋼製地中壁5が橋軸直角方向に連結された構造である。また、図2(B)および(C)は鋼製地中壁に鋼矢板5aを用いた例である。図2(B)にはハット形状の鋼矢板5aを用いた例が示され、図2(C)には直線鋼矢板5aを用いた例が示されている。鋼矢板は継手6を有しており、杭部材の施工後に連結用継手4と連結して、地上から地中部に打設できるために、堅実な鋼製地中壁5を構成することが可能である。図2(D)は、鋼製地中壁5に二重の継手を有する鋼製土留め壁を用いた例を示している。杭部材2の間に配置する鋼製地中壁5は、図2(A)のように1枚の場合でも良いし、図2(B)〜(D)のように複数の鋼矢板5aなどを連結して配置しても良い。さらに、連結用継手4および鋼製地中壁の継手6の間隙にグラウトを充填してもよい。この場合には、杭部材2と鋼製地中壁5との荷重伝達が確実となるので、水平抵抗をさらに向上させることができる。   FIG. 2 further shows an example of a method for connecting the pile member 2 and the steel underground wall 5. As shown in FIG. 2A, the coupling joint 4 is fixed along the outer surface axial direction of the pile member 2. On the other hand, a joint 6 is fixed to the steel ground wall 5 along the axial direction of both side surfaces of one steel plate. The coupling 4 and the joint 6 of the steel underground wall 5 are fitted, and the pile member 2 and the steel underground wall 5 are connected in the direction perpendicular to the bridge axis. Moreover, FIG. 2 (B) and (C) are the examples which used the steel sheet pile 5a for the steel underground wall. FIG. 2 (B) shows an example using a hat-shaped steel sheet pile 5a, and FIG. 2 (C) shows an example using a straight steel sheet pile 5a. The steel sheet pile has a joint 6 and can be driven from the ground to the ground by connecting to the joint 4 after construction of the pile member, so that a solid steel underground wall 5 can be constructed. It is. FIG.2 (D) has shown the example using the steel earth retaining wall which has a double joint in the steel underground wall 5. FIG. The steel underground wall 5 arranged between the pile members 2 may be a single sheet as shown in FIG. 2 (A), or a plurality of steel sheet piles 5a as shown in FIGS. 2 (B) to (D). May be connected to each other. Further, the grout may be filled in the gap between the coupling joint 4 and the joint 6 of the steel underground wall. In this case, since the load transmission between the pile member 2 and the steel underground wall 5 is ensured, the horizontal resistance can be further improved.

図3(A)は従来のパイルベント式柱脚構造の地盤抵抗の模式図を、図3(B)は本発明の柱脚構造の地盤抵抗の模式図を示す。また、図9は本発明の第1の実施形態に係る橋脚構造の側面図を示す。従来のパイルベント式柱橋構造では、地盤中での杭部材2の水平力に抵抗する面積は、杭径のみであるのに対して、本発明の柱脚構造では、杭径に加えて鋼製地中壁5aの前面が水平力に抵抗するために、抵抗面積が向上する。このために同じ水平力が作用した場合には、地盤に発生する応力が小さくすることができるために、水平変位を小さくすることができる。   FIG. 3A is a schematic diagram of the ground resistance of the conventional pile vent type column base structure, and FIG. 3B is a schematic diagram of the ground resistance of the column base structure of the present invention. FIG. 9 shows a side view of the pier structure according to the first embodiment of the present invention. In the conventional pile vent type column bridge structure, the area that resists the horizontal force of the pile member 2 in the ground is only the pile diameter, whereas in the column base structure of the present invention, steel is added in addition to the pile diameter. Since the front surface of the ground wall 5a resists horizontal force, the resistance area is improved. For this reason, when the same horizontal force is applied, the stress generated in the ground can be reduced, so that the horizontal displacement can be reduced.

高架構造に地震力が作用した場合には、橋桁3および柱部材2の慣性力が水平力として作用する。この水平力は杭部材2に伝達され、杭部材2の周囲の地盤で抵抗することとなる。杭部材2が橋軸直角方向に連結用継手4を介して鋼製地中壁5で連結されているために、杭部材2の水平力は連結用継手4を介して鋼製地中壁5に伝達され、鋼製地中壁5の前面の地盤も抵抗することとなる。   When the seismic force acts on the elevated structure, the inertial force of the bridge girder 3 and the column member 2 acts as a horizontal force. This horizontal force is transmitted to the pile member 2 and resists on the ground around the pile member 2. Since the pile member 2 is connected to the steel underground wall 5 via the connecting joint 4 in the direction perpendicular to the bridge axis, the horizontal force of the pile member 2 is connected to the steel underground wall 5 via the connecting joint 4. The ground on the front side of the steel underground wall 5 also resists.

ここで、外径が1mの杭部材2の中心間隔が7mで配置されており、杭部材2間が鋼矢板5aで連結されている場合には、抵抗する地盤の幅は従来の杭部材2のみの場合の約4倍となる。ただし、深度方向の抵抗面積は、杭部材2と鋼矢板5aの曲げ剛性が影響するために、地盤抵抗の抵抗面積で比較した場合には、従来の杭部材2のみと比較して約2.5倍となる。すなわち、地震力が作用した場合の杭部の上部に発生する水平変位は、従来の構造と比較して約2.5分の1に低減することができる。   Here, when the center space | interval of the pile member 2 whose outer diameter is 1 m is arrange | positioned by 7 m, and the pile members 2 are connected with the steel sheet pile 5a, the width | variety of the ground to resist is the conventional pile member 2 It is about 4 times that of the case of only. However, since the resistance area in the depth direction is affected by the bending rigidity of the pile member 2 and the steel sheet pile 5a, when compared with the resistance area of the ground resistance, the resistance area in the depth direction is about 2. 5 times. That is, the horizontal displacement generated at the upper part of the pile portion when the seismic force is applied can be reduced to about 1/2 of the conventional structure.

図4は本発明の第2の実施形態に係る柱脚構造の正面図を示す。本構造では、柱部材1の上部に枕梁7が設置され連結されており、枕梁7の上部に支承8を介して橋桁3が架設されている。従来のパイルベント式柱脚構造を用いた支承形式の高架構造では地震時の水平変位が大きいために橋桁の落下の危険性があるが、本発明では地震時の水平変位を改善できるために、支承形式の高架構造も実現可能である。さらに、鋼製地中壁5の上部はコンクリート梁9により一体化され、隣接する杭部材2同士が連結されている。地震時に柱部材1に発生する水平力は、杭部材2に伝達されるが、杭部材2と鋼製地中壁5が上部でコンクリート梁9で連結されているために、鋼製地中壁5への水平力の伝達が確実となり、水平方向の地盤抵抗が確実に発揮される。   FIG. 4 shows a front view of a column base structure according to the second embodiment of the present invention. In this structure, the pillow beam 7 is installed and connected to the upper part of the pillar member 1, and the bridge girder 3 is installed on the upper part of the pillow beam 7 via the support 8. In the conventional elevated structure using a pile vent type column base structure, there is a risk of the bridge girder falling due to the large horizontal displacement at the time of earthquake, but the present invention can improve the horizontal displacement at the time of the earthquake, A support-type elevated structure is also feasible. Furthermore, the upper part of the steel underground wall 5 is integrated by the concrete beam 9, and the adjacent pile members 2 are connected. The horizontal force generated in the column member 1 at the time of the earthquake is transmitted to the pile member 2, but the pile member 2 and the steel underground wall 5 are connected by the concrete beam 9 at the upper part, so the steel underground wall The transmission of the horizontal force to 5 is ensured, and the ground resistance in the horizontal direction is reliably exhibited.

また、杭部材2は支持力を確保するために、強固な支持層に固着されているが、鋼製地中壁5は支持層にまで配置する必要はなく、鋼製地中壁5は水平方向の地盤抵抗が有効な範囲以上に配置されていれば良い。たとえば、鋼製地中壁の長さは、1/β(m)の長さであれば良い。ここで、βは鋼製地中壁の特性値であり、地盤の水平反力係数kh、鋼製地中壁の幅B、鋼製地中壁のヤング係数E、鋼製地中壁の断面2次モーメントIを用いて、式(1)により算定される。鋼製地中壁を必要最低限の長さに設置することにより、施工コストを削減することができる。   In addition, the pile member 2 is fixed to a strong support layer in order to secure the support force, but the steel underground wall 5 does not need to be arranged up to the support layer, and the steel underground wall 5 is horizontal. It is only necessary that the ground resistance in the direction is more than the effective range. For example, the length of the steel ground wall may be 1 / β (m) long. Here, β is a characteristic value of the steel underground wall, the horizontal reaction coefficient kh of the ground, the width B of the steel underground wall, the Young's modulus E of the steel underground wall, the cross section of the steel underground wall Using the second moment I, it is calculated by equation (1). Installation cost can be reduced by installing the steel underground wall to the minimum required length.

β={(kh・B)/(4・E・I)}0.25 (1/m) …(1) β = {(kh · B) / (4 · E · I)} 0.25 (1 / m) (1)

図5および図6は本発明の第3の実施形態に係る柱脚構造の正面図を示す。図5はラーメン高架構造、図6は支承形式の高架構造に適用した例である。また、図7(A)〜(C)はそれぞれ、図5におけるVIIA、VIIBおよびVIICの矢視図(平面図)を示す。橋桁3の幅員が大きい場合には、3本以上の柱部材1で支える構造とすることができる。この場合には、柱部材1と同位置に杭部材2を配置し、橋軸方向の1列の杭部材同士を地中部で鋼製地中壁5により連結した構造である。本構造では、第1の実施形態と同様に地盤の水平抵抗面積を改善することができるために、地震時の水平変位を飛躍的に改善することができる。   5 and 6 are front views of a column base structure according to a third embodiment of the present invention. FIG. 5 shows an example applied to a ramen elevated structure, and FIG. 6 shows an example applied to a support type elevated structure. FIGS. 7A to 7C show arrow views (plan views) of VIIA, VIIB, and VIIC in FIG. 5, respectively. When the width of the bridge girder 3 is large, it can be configured to be supported by three or more column members 1. In this case, the pile member 2 is arranged at the same position as the column member 1, and the pile members in one row in the bridge axis direction are connected to each other by the steel underground wall 5 in the underground portion. In this structure, since the horizontal resistance area of the ground can be improved as in the first embodiment, the horizontal displacement during an earthquake can be drastically improved.

図8は、杭部材と鋼製地中壁の連結構造の詳細図の例を示す。図8(A)は、杭部材が鋼管杭2aであり、鋼製地中壁がハット形状の鋼矢板5aの場合の連結構造の詳細図である。鋼管杭2aの外面軸方向には、鋼矢板5aの継手6と嵌合する連結用継手4aが予め固着されている。鋼管杭2aの施工後に、連結用継手4aと鋼矢板5aの継手6が嵌合されて連結された構造である。連結用継手4aが鋼矢板5aの継手6と嵌合する形状の継手であるために、継手間の隙間を少なくすることができ、杭部材と鋼製地中壁が強固に連結することができる。   FIG. 8: shows the example of the detailed view of the connection structure of a pile member and a steel underground wall. FIG. 8A is a detailed view of the connection structure when the pile member is the steel pipe pile 2a and the steel underground wall is the hat-shaped steel sheet pile 5a. In the outer surface axial direction of the steel pipe pile 2a, a coupling joint 4a to be fitted to the joint 6 of the steel sheet pile 5a is fixed in advance. After construction of the steel pipe pile 2a, the coupling joint 4a and the joint 6 of the steel sheet pile 5a are fitted and connected. Since the coupling joint 4a is a joint that fits with the joint 6 of the steel sheet pile 5a, the gap between the joints can be reduced, and the pile member and the steel underground wall can be firmly coupled. .

ところで、鋼管杭2aの橋軸方向の中立軸と鋼矢板5aの橋軸方向の中立軸が一致していない場合には、連結用継手4aでのせん断力の伝達が不十分であるために、鋼矢板5aの断面性能が充分に発揮されない。そこで、図8(A)では、鋼管杭2aの橋軸方向の中立軸11と鋼矢板5aの橋軸方向の中立軸12が一致するように連結用継手4aを配置した構造となっている。このような構造にすれば、連結用継手4aと鋼製地中壁の継手6の間にせん断力が発生しないために、鋼管杭2aと鋼製地中壁5aの断面性能を充分に発揮し、効率的に水平力に抵抗することができる。   By the way, when the neutral axis in the bridge axis direction of the steel pipe pile 2a and the neutral axis in the bridge axis direction of the steel sheet pile 5a do not coincide with each other, the transmission of the shearing force in the coupling joint 4a is insufficient. The cross-sectional performance of the steel sheet pile 5a is not sufficiently exhibited. Therefore, in FIG. 8A, the coupling joint 4a is arranged so that the neutral axis 11 of the steel pipe pile 2a in the bridge axis direction and the neutral axis 12 of the steel sheet pile 5a coincide with each other. With such a structure, no shear force is generated between the coupling joint 4a and the steel underground wall joint 6, so that the cross-sectional performance of the steel pipe pile 2a and the steel underground wall 5a is sufficiently exhibited. Can resist the horizontal force efficiently.

図8(B)は別な連結構造の詳細図を示す。鋼管杭2aの外面軸方向に沿って軸方向にスリットを設けた小径の鋼管継手4bが予め固着されている。このスリット幅は鋼矢板5aの板厚より大きく、鋼矢板5aの継手6より小さい寸法に設定されている。鋼管杭2aの施工後に、連結用継手4bのスリットを介して、鋼矢板5aの継手部が嵌合されて連結された構造である。スリットを有する小径鋼管継手を用いることにより、施工誤差の吸収が可能となる。この連結構造において、継手での嵌合余裕が過大となる場合には、連結用継手4b内にセメントなどを充填することにより、強固に連結することができる。   FIG. 8B shows a detailed view of another connecting structure. A small-diameter steel pipe joint 4b provided with a slit in the axial direction along the outer surface axial direction of the steel pipe pile 2a is fixed in advance. The slit width is set to be larger than the thickness of the steel sheet pile 5a and smaller than the joint 6 of the steel sheet pile 5a. It is the structure where the joint part of the steel sheet pile 5a was fitted and connected through the slit of the coupling joint 4b after construction of the steel pipe pile 2a. By using a small diameter steel pipe joint having a slit, construction errors can be absorbed. In this connection structure, when the fitting margin at the joint becomes excessive, the coupling joint 4b can be firmly connected by filling with cement or the like.

図8に示した杭部材2は鋼管杭2aの場合を示したが、杭部材2は、鋼管杭以外の鋼製の杭でも、コンクリート製の杭でも良い。鋼製の杭の場合には、連結用継手は溶接などにより接続することができる。また、コンクリート製の杭の場合には、連結用継手に別途連結材を配置しておき、コンクリート杭の外面軸方向に渡って埋め込むことにより接続することができる。さらに、図8(A)、(B)に示した鋼製地中壁はハット形状の鋼矢板5aの例を示すが、図8(C)に示すようにU型の鋼矢板でもよく、図2(A)、(C)、(D)に示した別な形状の鋼製地中壁でも良い。   Although the pile member 2 shown in FIG. 8 showed the case of the steel pipe pile 2a, the pile member 2 may be steel piles other than a steel pipe pile, or a concrete pile. In the case of a steel pile, the coupling joint can be connected by welding or the like. In the case of a pile made of concrete, it is possible to connect by placing a connecting material separately in the connecting joint and embedding it in the axial direction of the concrete pile. Furthermore, although the steel underground wall shown in FIGS. 8A and 8B shows an example of a hat-shaped steel sheet pile 5a, a U-shaped steel sheet pile as shown in FIG. The steel underground wall of another shape shown to 2 (A), (C), (D) may be sufficient.

図10は杭部材と柱部材の接続構造の詳細図を示す。柱部材と杭部材が鋼製であり、かつ同じ外径である場合には、現場で溶接により接続することができる。また、柱部材と杭部材がコンクリート製である場合には、杭部材の鉄筋と柱部材の鉄筋を重ね継手で連結し、コンクリートを充填施工することにより現場で接続することができる。図10(A)は、杭部材2が鋼管杭2aで柱部材1がコンクリート製である場合の接続構造を示す。鋼管杭2aの上部空間にコンクリート柱の鉄筋13を所定の長さ挿入し、間隙にコンクリート14を充填することにより連結した構造である。この場合に、鋼管杭2aの内周面にずれ止め(図示せず)が配置されていれば、鉄筋から鋼管への荷重伝達が確実となるので、なお望ましい。   FIG. 10 shows a detailed view of the connection structure between the pile member and the column member. When the column member and the pile member are made of steel and have the same outer diameter, they can be connected by welding on site. Moreover, when the column member and the pile member are made of concrete, the reinforcing members of the pile member and the reinforcing members of the column member are connected by lap joints, and can be connected on the spot by filling concrete. FIG. 10A shows a connection structure when the pile member 2 is a steel pipe pile 2a and the column member 1 is made of concrete. The steel pipe pile 2a has a structure in which a concrete column rebar 13 is inserted into the upper space of a predetermined length, and a concrete 14 is filled in the gap. In this case, it is more desirable if a stopper (not shown) is disposed on the inner peripheral surface of the steel pipe pile 2a, because load transmission from the reinforcing bar to the steel pipe is ensured.

図10(B)は、鋼管杭2aと鋼管柱1であり、鋼管杭2aの外径が鋼管柱1の外径より大きな場合の接続構造を示す。鋼管杭2aの上部空間に鋼管柱の下端部を所定の長さ挿入し、接続空間にコンクリート14を充填して連結した構造である。この場合に、接続区間における鋼管柱1の外周面および鋼管杭2aの内周面にずれ止め(図示せず)が配置されていれば、鋼管柱1から鋼管杭2aへの荷重伝達が確実となるので、なお望ましい。   FIG. 10 (B) shows the steel pipe pile 2 a and the steel pipe column 1, and shows a connection structure when the outer diameter of the steel pipe pile 2 a is larger than the outer diameter of the steel pipe column 1. The lower end portion of the steel pipe column is inserted into the upper space of the steel pipe pile 2a for a predetermined length, and the connection space is filled with concrete 14 and connected. In this case, if a stopper (not shown) is arranged on the outer peripheral surface of the steel pipe column 1 and the inner peripheral surface of the steel pipe pile 2a in the connection section, the load transmission from the steel pipe column 1 to the steel pipe pile 2a is ensured. This is still desirable.

また、図10(B)の接続構造では、鋼管杭2aの外径が鋼管柱1の外径より大きな場合の接続構造を示している。この場合には、地震力が作用した時の鋼管杭の地盤抵抗面積が大きくなるので、柱脚構造の水平変位を抑制する効果を奏する。さらには、高架橋構造に地震力が作用した場合に発生する曲げモーメントは、柱部材よりも杭部材方が大きくなる。従って、杭部材の外径を大きくすることにより、柱部材の曲げ耐力よりも杭部材の曲げ耐力を大きくした構造となり、耐震性からも望ましい構造である。   Moreover, in the connection structure of FIG.10 (B), the connection structure in case the outer diameter of the steel pipe pile 2a is larger than the outer diameter of the steel pipe pillar 1 is shown. In this case, since the ground resistance area of the steel pipe pile when the seismic force is applied is increased, the horizontal displacement of the column base structure is suppressed. Furthermore, the bending member generated when the seismic force is applied to the viaduct structure is larger in the pile member than in the column member. Therefore, by increasing the outer diameter of the pile member, it becomes a structure in which the bending strength of the pile member is larger than the bending strength of the column member, which is also desirable from the viewpoint of earthquake resistance.

図11は、本発明の第1の実施形態に係る施工手順図を示す。まず、図11(A)では、連結用継手4が側面軸方向に沿って配置された杭部材2を地中に建て込む。図11(B)では、杭部材2の橋軸直角方向に鋼製地中壁5を鋼製地中壁5の継手が連結用継手4と嵌合されて連結するように地中に打設する。図11(C)では、杭部材2の上部に柱部材1を配置し、杭部材2と柱部材1を接続する。図11(D)では、柱部材1の上部に橋桁3を配置する。   FIG. 11 shows a construction procedure diagram according to the first embodiment of the present invention. First, in FIG. 11 (A), the pile member 2 in which the coupling joint 4 is disposed along the side surface axial direction is built in the ground. In FIG. 11 (B), the steel underground wall 5 is driven in the ground so that the joint of the steel underground wall 5 is connected to the connecting joint 4 in the direction perpendicular to the bridge axis of the pile member 2. To do. In FIG. 11C, the column member 1 is disposed on the top of the pile member 2, and the pile member 2 and the column member 1 are connected. In FIG. 11 (D), the bridge girder 3 is arranged on the upper part of the column member 1.

本発明の第1の実施形態に係る柱脚構造の正面図である。It is a front view of the column base structure concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る柱脚構造の地中部における平面図である。It is a top view in the underground part of the column base structure which concerns on the 1st Embodiment of this invention. 従来の技術と本発明に係る水平方向の地盤抵抗の説明図である。It is explanatory drawing of the ground resistance of the horizontal direction which concerns on a prior art and this invention. 本発明の第2の実施形態に係る柱脚構造の正面図である。It is a front view of the column base structure concerning the 2nd Embodiment of this invention. 本発明のその他の実施形態に係る柱脚構造の正面図である。It is a front view of the column base structure concerning other embodiments of the present invention. 本発明のその他の実施形態に係る柱脚構造の正面図である。It is a front view of the column base structure concerning other embodiments of the present invention. 図5の実施形態に係る柱脚構造の平面図である。It is a top view of the column base structure which concerns on embodiment of FIG. 本発明の杭部材と鋼製地中壁の連結構造に係る平面図である。It is a top view which concerns on the connection structure of the pile member of this invention, and a steel underground wall. 本発明の第1の実施形態に係る柱脚構造の側面図である。It is a side view of the column base structure concerning a 1st embodiment of the present invention. 本発明の柱部材と杭部材の接続構造の側面図である。It is a side view of the connection structure of the pillar member and pile member of the present invention. 本発明の第1の実施形態に係る柱脚構造の施工手順図である。It is a construction procedure figure of the column base structure concerning a 1st embodiment of the present invention.

符号の説明Explanation of symbols

1 柱部材
2 杭部材
2a 鋼管杭
3 橋桁
4 連結用継手
4a 連結用継手の例
4b 連結用継手の別な例
5 鋼製地中壁
5a 鋼矢板
6 継手
7 枕梁
8 支承
9 コンクリート梁
11 杭部材の中立軸
12 鋼製地中壁の中立軸
13 鉄筋
14 コンクリート
DESCRIPTION OF SYMBOLS 1 Column member 2 Pile member 2a Steel pipe pile 3 Bridge girder 4 Connection joint 4a Example of connection joint 4b Another example of connection joint 5 Steel underground wall 5a Steel sheet pile 6 Joint 7 Pillow beam 8 Bearing 9 Concrete beam 11 Pile Neutral shaft 12 Steel neutral wall 13 Steel rebar 14 Concrete

Claims (6)

地中部に構築された複数の杭部材が地上部に構築された複数の柱部材と接続されて、橋桁を支える柱脚構造において、
前記杭部材には外面軸方向に沿った連結用継手が固着されており、橋軸直角方向に隣り合う前記杭部材の間に、側面軸方向に沿った継手を有する鋼製地中壁が配置され、前記連結用継手と前記鋼製地中壁の継手とが嵌合されて、前記杭部材と前記鋼製地中壁とが連結されていることを特徴とする柱脚構造。
In the column base structure that supports the bridge girder by connecting the multiple pile members built in the underground part with the multiple pillar members built in the ground part,
A coupling joint along the outer surface axial direction is fixed to the pile member, and a steel underground wall having a joint along the side surface axial direction is disposed between the pile members adjacent in the direction perpendicular to the bridge axis. A column base structure in which the coupling joint and the joint of the steel underground wall are fitted, and the pile member and the steel underground wall are connected.
前記鋼製地中壁が鋼矢板であることを特徴とする請求項1記載の柱脚構造。   The column base structure according to claim 1, wherein the steel underground wall is a steel sheet pile. 前記鋼製地中壁の上部にコンクリート梁が設けられ、当該梁により前記橋軸直角方向に隣り合う杭部材同士が連結されていることを特徴とする請求項1又は2記載の柱脚構造。   The column base structure according to claim 1, wherein a concrete beam is provided on an upper portion of the steel underground wall, and pile members adjacent to each other in a direction perpendicular to the bridge axis are connected by the beam. 前記杭部材の中立軸と前記鋼製地中壁の橋軸方向の中立軸とが一致するように配置されていることを特徴とする請求項1〜3のいずれか1項に記載の柱脚構造。   The column base according to any one of claims 1 to 3, wherein the pile member is disposed so that a neutral axis of the pile member and a neutral axis of the steel ground wall coincide with each other. Construction. 前記杭部材と柱部材との接続部において、前記杭部材が鋼管杭で構成され、当該鋼管杭内に前記柱部材が差し込まれていると共に、前記鋼管杭と前記柱部材との隙間にコンクリートが充填されていることを特徴とする請求項1〜4のいずれか1項に記載の柱脚構造。   In the connection part of the said pile member and a column member, while the said pile member is comprised with the steel pipe pile, while the said column member is inserted in the said steel pipe pile, concrete is in the clearance gap between the said steel pipe pile and the said column member. The column base structure according to claim 1, wherein the column base structure is filled. 支承形式の高架構造に用いられていることを特徴とする請求項1〜5のいずれか1項に記載の柱脚構造。   The column base structure according to any one of claims 1 to 5, wherein the column base structure is used for a support type elevated structure.
JP2007059108A 2007-03-08 2007-03-08 Column base structure Active JP4724680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059108A JP4724680B2 (en) 2007-03-08 2007-03-08 Column base structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059108A JP4724680B2 (en) 2007-03-08 2007-03-08 Column base structure

Publications (2)

Publication Number Publication Date
JP2008223245A true JP2008223245A (en) 2008-09-25
JP4724680B2 JP4724680B2 (en) 2011-07-13

Family

ID=39842178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059108A Active JP4724680B2 (en) 2007-03-08 2007-03-08 Column base structure

Country Status (1)

Country Link
JP (1) JP4724680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303598A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp Column base structure in multi-column bridge pier
JP2013112982A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Wall body structure
CN112779853A (en) * 2019-11-07 2021-05-11 中冶京诚工程技术有限公司 Abutment and design and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137324A (en) * 1985-12-12 1987-06-20 Kajima Corp Foundation structure for high building
JPH09158212A (en) * 1995-12-08 1997-06-17 Hazama Gumi Ltd Foundation reinforcing structure for structure group
JP2001159133A (en) * 1999-12-03 2001-06-12 Sumitomo Metal Ind Ltd Earth-retaining steel material
JP2004156292A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Three dimensional rigid frame structure
JP2004278148A (en) * 2003-03-17 2004-10-07 Sumitomo Mitsui Construction Co Ltd Construction method of bridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137324A (en) * 1985-12-12 1987-06-20 Kajima Corp Foundation structure for high building
JPH09158212A (en) * 1995-12-08 1997-06-17 Hazama Gumi Ltd Foundation reinforcing structure for structure group
JP2001159133A (en) * 1999-12-03 2001-06-12 Sumitomo Metal Ind Ltd Earth-retaining steel material
JP2004156292A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Three dimensional rigid frame structure
JP2004278148A (en) * 2003-03-17 2004-10-07 Sumitomo Mitsui Construction Co Ltd Construction method of bridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303598A (en) * 2007-06-07 2008-12-18 Nippon Steel Corp Column base structure in multi-column bridge pier
JP2013112982A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Wall body structure
CN112779853A (en) * 2019-11-07 2021-05-11 中冶京诚工程技术有限公司 Abutment and design and construction method thereof

Also Published As

Publication number Publication date
JP4724680B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4649360B2 (en) Seismic joint structure and construction method thereof
JP4992042B2 (en) Precast horizontal beam and pier using it
JP4548311B2 (en) Abutment structure of composite ramen bridge
JP2008303598A (en) Column base structure in multi-column bridge pier
JP2001159140A (en) Landslide-countermeasure structure
JP2016199861A (en) Pile foundation structure
JP4912030B2 (en) Junction structure between pier and pile
JP4724680B2 (en) Column base structure
JP6941492B2 (en) Pile head structure
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP5132503B2 (en) Seismic structure and building
JP5368656B1 (en) Composite structural beam
JP5785476B2 (en) Reinforcing method and structure of existing foundation
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP2006316495A (en) Foundation structure of bridge pier and its construction method
KR100658733B1 (en) Joint structure of CFT column and RC flat plate
JP3791478B2 (en) Pile head joint structure
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP3981688B2 (en) Joint structure and composite structure of steel beam and reinforced concrete column
JP2005344388A (en) Pile head connection structure
JP2014020027A (en) Pile foundation structure
JP5633524B2 (en) Steel sheet pile underground wall structure
JP2007051500A (en) Joint structure of column and pile
JP5142213B2 (en) Seismic reinforcement structure for viaduct
JP7386367B1 (en) system of structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4724680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350