JP2007051500A - Joint structure of column and pile - Google Patents

Joint structure of column and pile Download PDF

Info

Publication number
JP2007051500A
JP2007051500A JP2005238519A JP2005238519A JP2007051500A JP 2007051500 A JP2007051500 A JP 2007051500A JP 2005238519 A JP2005238519 A JP 2005238519A JP 2005238519 A JP2005238519 A JP 2005238519A JP 2007051500 A JP2007051500 A JP 2007051500A
Authority
JP
Japan
Prior art keywords
pile
column
steel pipe
ring
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005238519A
Other languages
Japanese (ja)
Inventor
Koji Oki
晃司 沖
Kazuchika Konno
和近 今野
Kunisuke Iitani
邦祐 飯谷
Original Assignee
Jfe Steel Kk
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Kk, Jfeスチール株式会社 filed Critical Jfe Steel Kk
Priority to JP2005238519A priority Critical patent/JP2007051500A/en
Publication of JP2007051500A publication Critical patent/JP2007051500A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure of a column and a pile capable of being constructed by various pile construction methods including an inner excavation method by which the lower part of the column can be inserted and fitted into the upper part of the pile to a sufficient depth irrespective of the actual depth of the driving of the pile. <P>SOLUTION: In the joint structure 1 of the column and the pile, the lower part 21 of the column 2 of an upper structure 8 is inserted into the upper part 31 of the steel pipe pile 3. The inside of the upper part 31 of the steel pipe pile 3 into which the lower part 21 of the column is inserted is filled with a filling material 5 to join the steel pipe pile 3 and the column 2. A compression force receiving part 4 which is continuous or discontinuous in an inner peripheral direction is mounted to protrude on the inner face of the upper part 31 of the steel pipe pile 3 below the lower end 21 of the column 2 in a manner that a space for the insertion of at least the lower part 21 of the column may be secured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼管杭の少なくとも上部に充填した充填材を介して、構造物の柱を設置する一柱一杭基礎構造の柱杭接合構造に関するものである。   The present invention relates to a pillar-pile joint structure of a one-pillar-pile foundation structure in which pillars of a structure are installed via a filler filled in at least the upper part of a steel pipe pile.

一柱一杭基礎構造の構造物を構築する技術は、フーチングを設けずに行う場合、構造物の鋼管または鋼管コンクリート杭において、当該杭の鋼管の上部内面にすべり止めを設けるとともに、上記構造物の鋼管柱の下部外面にすべり止めを設け、鋼管柱の下部を杭の鋼管上部に挿嵌して、コンクリートを介し両者を接合したものがある(例えば、特許文献1参照)。あるいは、上部に柱が接合される接合部と下部に杭内に挿入される脚部とを有した柱杭接合部材を用いることで、同様の柱杭接合構造を実現したものもある(例えば、特許文献2参照)。これらの柱と杭の接合構造は、場所打ち杭やコンクリートフーチングを用いた場合のような基礎穴の掘削、型枠等の設置等の問題が発生せず、また工期も短縮できる利点もある。   The technology for constructing a structure with a single pillar and one pile foundation is to provide a non-slip on the upper inner surface of the steel pipe of the pile in the steel pipe or steel pipe concrete pile of the structure when it is performed without providing a footing. There is a non-slip on the lower outer surface of the steel pipe column, the lower part of the steel pipe column is inserted into the upper part of the steel pipe of the pile, and both are joined via concrete (for example, see Patent Document 1). Or there is what realized the same pillar pile joining structure by using the pillar pile joining member which has the joined part to which a pillar is joined in the upper part, and the leg part inserted in a pile in the lower part (for example, Patent Document 2). These pillar-to-pile joint structures have the advantages that there are no problems such as excavation of foundation holes, installation of formwork, etc., as in the case of cast-in-place piles or concrete footings, and that the construction period can be shortened.

特許文献1においては、杭鋼管の上部に設けられた支持板上に鋼管柱の下端を戴置する方式(第2図)が開示されているが、この場合、鋼管柱からの鉛直方向にかかる圧縮荷重を支持板より杭鋼管へと伝達するため、支持板を予め鋼管内に溶着(現実的には溶接)しておくことが必要となる。
特開昭62−284825号公報 特開平09−268573号公報
In patent document 1, although the system (FIG. 2) which mounts the lower end of a steel pipe pillar on the support plate provided in the upper part of a pile steel pipe is disclosed, in this case, it applies to the perpendicular direction from a steel pipe pillar. In order to transmit the compressive load from the support plate to the pile steel pipe, it is necessary to weld (practically weld) the support plate in the steel pipe in advance.
Japanese Patent Laid-Open No. 62-284825 JP 09-268573 A

しかし、この特許文献1の場合のように、予め鋼管杭の内部を塞ぐような態様で支持板を溶着してしまうと、杭内部にオーガを挿入する中掘り工法では施工できないという問題点が発生する。ちなみにこの中掘り工法は、杭用の縦穴の掘削と杭の沈設を同時にできることから工期を短縮できる利点を持ち、現在最も重要な杭の施工方法の一つである。   However, as in the case of Patent Document 1, if the support plate is welded in such a manner as to block the inside of the steel pipe pile in advance, there is a problem that the construction cannot be performed by the digging method in which the auger is inserted into the pile. To do. By the way, this medium digging method has the advantage of shortening the construction period because it can simultaneously excavate vertical holes for piles and set up piles, and is one of the most important pile construction methods at present.

また、杭が実際に支持層に到達した時の深さが、支持層までの想定深さに対し±500mm程異なることは、実際の施工現場では通常良く見られる。この時、実際の到達深さが想定深さよりも浅い場合、杭上部が想定よりも長く突き出ることになる(これを杭の高止まりと呼ぶ。)。この高止まりとなった場合、支持板が想定位置よりも高い位置に来ることになり、柱下部を構造上必要十分な深さまで杭上部内に挿嵌できなくなるという問題点も発生する。   In addition, it is usually common in actual construction sites that the depth when the pile actually reaches the support layer differs by ± 500 mm from the assumed depth to the support layer. At this time, when the actual reach depth is shallower than the assumed depth, the upper part of the pile protrudes longer than expected (this is referred to as a high pile stop). When the height remains high, the support plate comes to a position higher than the assumed position, which causes a problem that the column lower part cannot be inserted into the pile upper part to a structurally sufficient depth.

本発明は、上記問題を解決し、中掘り工法を含む杭の各種施工方法(具体的には、先掘り工法、中堀り工法、回転挿入工法、打撃工法、並びにこれら工法を組み合わせた施工方法)にて施工することができ、かつ実際の杭の打込み深さに関わらず柱下部を十分な深さまで杭上部内に挿入し接続できる柱と杭の接合構造を提供することを目的とする。   The present invention solves the above-mentioned problems, and various construction methods for piles including a medium digging method (specifically, a digging method, a medium digging method, a rotary insertion method, a batting method, and a construction method combining these methods) The purpose of the present invention is to provide a pillar-to-pile joint structure that can be installed at a sufficient depth and inserted into the pile upper part to a sufficient depth regardless of the actual pile driving depth.

(1)上記の課題を解決するため、本発明にかかる柱と杭の接合構造は、鋼管杭の上部の内部に上部構造物の柱の下部を挿入し、該柱下部が挿入された鋼管杭の上部の内部に充填材を充填して、前記鋼管杭と前記柱とを接続した柱と杭の接合構造であって、少なくとも前記柱下部が進入できる空間が確保できるようにして、前記鋼管杭の上部の内面に内周方向で連続または不連続な、圧縮力の受け部を、前記柱の下端の下方に突設する。
(2)上記(1)において、前記柱が下端に底板を有する。
(3)上記(1)または(2)において、前記柱の下端から下方へ前記鋼管杭の杭上部における内径の最小幅の0.5倍以上離れた位置に、前記圧縮力の受け部を設ける。
(4)本発明にかかる構造物は、上記(1)及至(3)に記載の接合構造を有する。
(1) In order to solve the above-described problem, the column-pile joint structure according to the present invention is a steel pipe pile in which the lower part of the column of the upper structure is inserted into the upper part of the steel pipe pile, and the lower part of the column is inserted. The steel pipe pile is filled with a filler, and has a pillar-to-pile joint structure in which the steel pipe pile and the pillar are connected to each other so that at least a space into which the lower part of the pillar can enter is secured. A receiving portion for compressive force, which is continuous or discontinuous in the inner peripheral direction, is provided on the inner surface of the upper portion of the upper portion of the column so as to protrude below the lower end of the column.
(2) In the above (1), the column has a bottom plate at the lower end.
(3) In the above (1) or (2), the receiving portion for the compressive force is provided at a position separated from the lower end of the column downward by 0.5 times or more the minimum width of the inner diameter of the pile upper portion of the steel pipe pile.
(4) The structure according to the present invention has the joint structure described in (1) to (3) above.

本発明により、実際の杭の打込み深さに関わらず柱下部を十分な深さまで杭上部内に挿入し接続でき、かつ杭の各種施工方法(先掘り工法、中堀り工法、回転挿入工法、打撃工法、並びにこれら工法を組み合わせた施工方法)にて施工することができる柱杭接合構造、およびそれら接合構造を用いた構造物を提供することが可能となる。   According to the present invention, the lower part of the column can be inserted and connected to the upper part of the pile up to a sufficient depth regardless of the actual driving depth of the pile, and various construction methods of the pile (a pre-drilling method, a middle-drilling method, a rotary insertion method, a hammering) It is possible to provide a column pile joint structure that can be constructed by a construction method and a construction method that combines these construction methods), and a structure using the joint structure.

また、上記(2)のように柱下端に底板を付加することにより応力伝達領域が広がるので、受け部と柱下端の間にあり上部構造物の鉛直方向の圧縮荷重を鋼管杭へ伝達している充填材に対し、単位面積当たりにかかる応力が少なくなり柱杭接合構造の耐力を向上させることができる。   Moreover, since the stress transmission area is expanded by adding a bottom plate to the lower end of the column as in (2) above, the vertical compressive load of the upper structure located between the receiving part and the lower end of the column is transmitted to the steel pipe pile. With respect to the filler, the stress applied per unit area is reduced, and the proof stress of the column pile joint structure can be improved.

また、受け部を設ける位置を上記(3)のように柱の下端より、それぞれ杭上部における内径の最小幅の0.5倍以上の距離をもって下方とすることにより、充填材において鋼管杭上部に埋め込まれている柱からの圧縮荷重によって生じるせん断力に対する有効断面厚が十分厚く取れ、充填材のせん断破壊が起き難くなるので、柱杭接合構造の耐力を向上させることができる。   In addition, by placing the receiving part below the bottom of the column at a distance of 0.5 times the minimum width of the inner diameter of the upper part of the pile as in (3) above, the filler is embedded in the upper part of the steel pipe pile. Since the effective cross-sectional thickness with respect to the shearing force generated by the compressive load from the column is sufficiently large and shearing failure of the filler does not easily occur, the proof strength of the column pile joint structure can be improved.

図1は本発明に係る構造物に関する模式図で、縦の断面から見た図である。図1において、1は地中にある本発明に係る柱と杭の接合構造、3は地中に立設された円形鋼管からなる鋼管杭、8は鋼管杭3上に建設された上部構造物、9は上部構造物8の梁、2は下部まで円形鋼管からなる上部構造物8の柱である。また、上部構造物8は、杭3により支持される部分で、少なくとも柱2と梁9からなり、地中の構造物(例えば基礎梁や地階部分等)がある場合はそれら地中構造物も含む。鋼管杭3により柱2を含む上部構造物8からの鉛直荷重(圧縮荷重と引張荷重の双方を含む)が支持される。   FIG. 1 is a schematic view relating to a structure according to the present invention, as viewed from a longitudinal section. In FIG. 1, reference numeral 1 denotes an underground column-pile joint structure according to the present invention, 3 a steel pipe pile made of a circular steel pipe standing in the ground, and 8 an upper structure constructed on the steel pipe pile 3. , 9 is a beam of the upper structure 8, and 2 is a column of the upper structure 8 made of a circular steel pipe to the lower part. The upper structure 8 is a portion supported by the pile 3 and is composed of at least the pillar 2 and the beam 9. If there are underground structures (for example, foundation beams and basement parts), the underground structures are also Including. A vertical load (including both compressive load and tensile load) from the upper structure 8 including the column 2 is supported by the steel pipe pile 3.

図2に、図1の柱と杭の接合構造1の縦断面を拡大して模式的に示した。図2に示した接合構造は、本発明に係る第1の実施の形態の例となる。鋼管杭3の上部31には柱2の下部21が差し込まれ、それらの隙間に充填材としてコンクリート5が充填され柱2と鋼管杭3を接続し一体化する。   FIG. 2 schematically shows an enlarged vertical section of the column-pile joint structure 1 of FIG. The joining structure shown in FIG. 2 is an example of the first embodiment according to the present invention. The lower part 21 of the pillar 2 is inserted into the upper part 31 of the steel pipe pile 3, and concrete 5 is filled as a filler in the gap between them, and the pillar 2 and the steel pipe pile 3 are connected and integrated.

杭上部31の内面には、柱下端22の下方に、柱2からの圧縮荷重で生じた圧縮力の受け部として鋼で作られた円形のリング4(切断部が無く、全周連続である)が2本(上のリングを41、下のリングを42とする。)取り付けられている。ここでは、柱下端22からリング41の上端までの長さh1を、0以上としている。リング4の上面と杭上部31の内面とが、隅肉溶接43で接続されている。なお、隅肉溶接43の溶接代はリングの高さに比べ十分短いので、h1はリング41の上端までとして差し支えない。また、リングの突出幅は、杭上部31の板厚以下とした。さらに、リングの溶接位置を上面としたことで、杭打設後にも杭先端の開口部よりトーチ等の施工治具を差し込み、溶接をすることができる。   On the inner surface of the upper part 31 of the pile, there is a circular ring 4 made of steel as a receiving part for the compressive force generated by the compressive load from the pillar 2 below the lower end 22 of the pillar (there is no cutting part and is continuous all around). ) Are attached (the upper ring is 41 and the lower ring is 42). Here, the length h1 from the column lower end 22 to the upper end of the ring 41 is set to 0 or more. The upper surface of the ring 4 and the inner surface of the pile upper portion 31 are connected by a fillet weld 43. In addition, since the welding allowance of the fillet weld 43 is sufficiently shorter than the height of the ring, h1 may be up to the upper end of the ring 41. Moreover, the protrusion width of the ring was set to be equal to or less than the plate thickness of the pile upper portion 31. Furthermore, by setting the welding position of the ring as the upper surface, a construction jig such as a torch can be inserted and welded from the opening at the tip of the pile even after pile driving.

上記のように構成された柱2の柱下部21と鋼管杭3の杭上部31の接合構造1においては、柱2からの圧縮荷重はコンクリート5及びリング4を介して鋼管杭1に伝達される。また、受け部の形状をリング状とし、かつリングの突出幅を杭上部31の板厚以下としたので、少なくとも柱の下部21が進入できる空間が確保できた。また、杭3とリング(受け部)4を双方とも鋼製としたので、現場や工場での溶接や、杭製造時の一体物とすることができ、受け部から杭への力の伝達の信頼性を非常に高いものとすることができ、より好ましい形態となる。   In the joint structure 1 of the pillar lower part 21 of the pillar 2 and the pile upper part 31 of the steel pipe pile 3 configured as described above, the compressive load from the pillar 2 is transmitted to the steel pipe pile 1 through the concrete 5 and the ring 4. . In addition, since the shape of the receiving portion is a ring shape and the projecting width of the ring is equal to or less than the plate thickness of the pile upper portion 31, a space where at least the lower portion 21 of the pillar can enter can be secured. In addition, since both the pile 3 and the ring (receiving part) 4 are made of steel, they can be integrated in the field or at the factory, or at the time of manufacturing the pile, and transmission of force from the receiving part to the pile can be achieved. The reliability can be made extremely high, which is a more preferable form.

リング4の突出幅は、接合構造1が柱2からの圧縮荷重を支えるのに必要とする圧縮耐力により決まる。当該圧縮耐力と柱2からの圧縮荷重を鋼管杭3へ伝達するリング支圧部の面積とが比例することから、接合構造1が必要とする圧縮耐力が高くなれば、突出幅を広くする(あるいはリング4の内径を短くする)ことで調節する。   The protruding width of the ring 4 is determined by the compressive strength required for the joint structure 1 to support the compressive load from the column 2. Since the compression bearing strength and the area of the ring bearing section that transmits the compressive load from the column 2 to the steel pipe pile 3 are proportional, if the compression bearing required by the joint structure 1 is increased, the protrusion width is increased ( Alternatively, the inner diameter of the ring 4 is shortened).

リング1本の突出幅で調整可能な圧縮耐力より高い圧縮耐力が必要な場合は、複数本のリングをある間隔で突設する。この場合、柱下端22の下方に有るリングのみが効果を奏する。なお、リング同士の間隔が近い場合、コンクリート5が早期にせん断破壊し易く、十分な圧縮耐力が得難い。その為、リングの間隔は十分な長さを確保する事が望ましく、目安としては、リングの突出幅の15倍程度とすると良い。   When a compression strength higher than the compression strength adjustable by the protrusion width of one ring is required, a plurality of rings are projected at a certain interval. In this case, only the ring below the column lower end 22 is effective. In addition, when the space | interval of rings is near, the concrete 5 is easy to shear failure early, and it is difficult to obtain sufficient compression strength. Therefore, it is desirable to ensure a sufficient length between the rings, and as a guideline, it should be about 15 times the protruding width of the ring.

なお、中掘り工法にて施工する場合は、リングの内径に関して、オーガの掘削ビットが通過するのに問題とならない大きさとしておけば、さらに好ましい形態となる。   In addition, when it constructs by a medium digging method, it will become a more preferable form if it is set as the magnitude | size which does not become a problem for the excavation bit of an auger to pass regarding the internal diameter of a ring.

また、リング4は、例えばフラットバーや鉄筋棒を曲げ加工して製作する。   The ring 4 is manufactured by bending a flat bar or a reinforcing bar, for example.

その他、コンクリート5を杭上部31にのみ充填する場合は、仕切板7を設置する。この仕切板7は、鉛直荷重と水平荷重双方とも支持する必要は無いので、杭上部31に固定する必要は必ずしも無い。例えば施工条件によっては、杭内部に残した土砂あるいは土砂を含んだ混合物上に載置するだけでも良い。   In addition, when the concrete 5 is filled only in the upper part 31 of the pile, the partition plate 7 is installed. Since the partition plate 7 does not need to support both the vertical load and the horizontal load, it is not always necessary to fix the partition plate 7 to the pile upper portion 31. For example, depending on the construction conditions, it may be simply placed on the sediment or the mixture containing sediment left in the pile.

次に、上記のように構成される鋼管杭3と柱2の接合構造の施工方法の一例について、図1と図2を用いて説明する。
(1)建設現場において、鋼管杭3を杭打ち機により地面Eに対し鉛直に配置する。そして、鋼管杭3の内部にモーターに接続されたオーガを通す。その後、オーガによりあらかじめ定めた位置に、鋼管杭3の外径よりやや大きい内径で所定深さの縦穴を掘削しながら、杭打ち機にて鋼管杭3を沈設していく。
(2)鋼管杭3の下端が支持層Gに達すれば、オーガを鋼管杭3の内部より引抜く。
(3)ついで、仕切板7を、クレーンで鋼管杭3内の所定の位置に吊るし込んだ後、クレーンから外しワイヤーで該当位置に保持する。
(4)リング4を所定の深さに所定の本数だけ、杭上部31の内面に溶接する。鋼管杭3の上端から手を入れて、リング4の上面と杭上部31の内面が挟む空間部分を隅肉溶接する。
(5)次に、鋼管杭3の杭上部31の内部へ、上部構造物8の柱2の下部21をあらかじめ定めた位置まで挿入する。その柱下部21と杭上部3の隙間に、コンクリート5を打設する。この時、柱2の内部は中空なので、柱下部21内にもコンクリート5が充填される。なお、予め柱下部21内にコンクリートを充填しておいてもよい。
(6)コンクリート5が硬化したのち、地面Eから露出した柱2に、上部構造物8を構築する。
Next, an example of the construction method of the joining structure of the steel pipe pile 3 and the column 2 configured as described above will be described with reference to FIGS. 1 and 2.
(1) At the construction site, the steel pipe pile 3 is arranged vertically with respect to the ground E by a pile driving machine. Then, the auger connected to the motor is passed through the steel pipe pile 3. Thereafter, the steel pipe pile 3 is sunk by a pile driving machine while excavating a vertical hole having a predetermined depth with an inner diameter slightly larger than the outer diameter of the steel pipe pile 3 at a predetermined position by an auger.
(2) When the lower end of the steel pipe pile 3 reaches the support layer G, the auger is pulled out from the inside of the steel pipe pile 3.
(3) Next, after the partition plate 7 is hung at a predetermined position in the steel pipe pile 3 by a crane, it is removed from the crane and held at the corresponding position by a wire.
(4) A predetermined number of rings 4 are welded to the inner surface of the pile upper portion 31 at a predetermined depth. A hand is put in from the upper end of the steel pipe pile 3, and the space part which the upper surface of the ring 4 and the inner surface of the pile upper part 31 pinch is fillet welded.
(5) Next, the lower part 21 of the column 2 of the upper structure 8 is inserted into the pile upper part 31 of the steel pipe pile 3 to a predetermined position. Concrete 5 is placed in the gap between the column lower part 21 and the pile upper part 3. At this time, since the inside of the column 2 is hollow, the concrete 5 is also filled in the column lower portion 21. Note that concrete may be filled in the column lower portion 21 in advance.
(6) After the concrete 5 is hardened, the upper structure 8 is constructed on the pillar 2 exposed from the ground E.

以上のように本実施の形態によれば、大きな穴の掘削、土砂の搬出廃棄、型枠、鉄筋等の配設等の作業、あるいは硬化したコンクリート等の除去作業等を必要とせず、工期も短縮できる。また、溶接位置をリング4の上面とすることで、杭打設後にリング4を杭上部31の内面に溶接することが可能となる。さらに、コンクリート3は仕切板7によってせき止められるので、仕切板7よりも上部のみにコンクリート5が充填され、何十mにわたってコンクリート5を充填するという不経済を防止でき、コストと施工性に優れた柱の接合構造を得ることができる。   As described above, according to the present embodiment, work such as excavation of large holes, disposal and removal of earth and sand, placement of formwork, reinforcing bars, etc., removal work of hardened concrete, etc. is not required, and the construction period is also long. Can be shortened. Further, by setting the welding position to the upper surface of the ring 4, the ring 4 can be welded to the inner surface of the pile upper portion 31 after the pile driving. Furthermore, since the concrete 3 is dammed by the partition plate 7, the concrete 5 is filled only in the upper part of the partition plate 7, and the inconvenience of filling the concrete 5 over several tens of meters can be prevented, and the cost and workability are excellent. A column connection structure can be obtained.

図1の柱と杭の接合構造1の第2の実施の形態の例を、図3に縦断面図で模式的に示した。第1の実施の形態と同一のものは同一の符号を付し、詳細な説明は省略する。この第2の実施の形態では、柱の下端が底板6を有している。柱2を構成する円形鋼管と底板6との接続は、溶接により行われている。そして円形リング4は、この底板6付き柱2の下端22(この実施の形態の場合は底板6の下端)の下方に2本取り付けられている。ここでは、柱の下端22からリング4のうち上にあるリング41の上端までの長さh2を、0以上としている。リング4の上面と杭上部31の内面とが、隅肉溶接43で接続されているのは、第1の実施の形態と同様である。また、リング4の形状と大きさに関しては、第1の実施の形態と同様にして決定する。   The example of 2nd Embodiment of the junction structure 1 of the pillar and pile of FIG. 1 was typically shown with the longitudinal cross-sectional view in FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the second embodiment, the lower end of the column has a bottom plate 6. The connection between the circular steel pipe constituting the column 2 and the bottom plate 6 is performed by welding. Two circular rings 4 are attached below the lower end 22 of the column 2 with the bottom plate 6 (the lower end of the bottom plate 6 in this embodiment). Here, the length h2 from the lower end 22 of the column to the upper end of the ring 41 located above the ring 4 is set to 0 or more. The upper surface of the ring 4 and the inner surface of the pile upper portion 31 are connected by the fillet weld 43 as in the first embodiment. Further, the shape and size of the ring 4 are determined in the same manner as in the first embodiment.

底板6は円形の鋼板で、その直径d1は、柱2を構成する円形鋼管の外径d以上である。柱2を構成する円形鋼管の下端に、上記底板6を取り付けることにより、圧縮力f(柱2からの圧縮荷重Fが広がってfとなりコンクリート5内を伝わる。)の伝達に有効なコンクリート5の領域(以下、応力伝達領域と呼ぶ)が広がるため、接合構造の耐力向上が期待できる。   The bottom plate 6 is a circular steel plate, and the diameter d1 is equal to or larger than the outer diameter d of the circular steel pipe constituting the column 2. By attaching the bottom plate 6 to the lower end of the circular steel pipe constituting the column 2, the concrete 5 effective for transmitting the compression force f (the compression load F from the column 2 spreads and becomes f is transmitted through the concrete 5). Since the region (hereinafter referred to as the stress transmission region) is expanded, it is possible to expect an improvement in the yield strength of the joint structure.

底板6が有る場合の応力伝達領域を模式的に図3に示すと、柱下端22の外縁x、上リング41上端z1、柱下端22の中心cおよび下リング42上端z2とを結んだ領域となり、その内のある断面は図3のa1あるいはa2となる。同様に、底板6が無い場合の応力伝達領域を図4に示すと、柱下端22の外側の縁x、上リング41上端z1、下リング42上端z2および柱下端22の内側の縁yとを結んだ領域となり、その内のある断面は図4のb1とb2となる。a1、a2とb1、b2とを比較すると、a1、a2の方が面積が大きくなり上記領域の単位面積当りにかかる圧縮力が減るので、その結果、底板6がある場合の方が圧縮耐力は高くなり、底板6を設けた方がより好ましい形態となる。   FIG. 3 schematically shows a stress transmission region in the case where the bottom plate 6 is present, and is a region connecting the outer edge x of the column lower end 22, the upper ring 41 upper end z 1, the column lower end 22 center c and the lower ring 42 upper end z 2. , One of the cross sections is a1 or a2 in FIG. Similarly, when the stress transmission region in the absence of the bottom plate 6 is shown in FIG. 4, the outer edge x of the column lower end 22, the upper end 41 of the upper ring 41, the upper end z 2 of the lower ring 42, and the inner edge y of the column lower end 22. 4 and b2 in FIG. 4 are cross sections. When a1 and a2 are compared with b1 and b2, the areas of a1 and a2 are larger, and the compressive force per unit area of the region is reduced. As a result, the compressive strength is greater when the bottom plate 6 is present. It becomes high and it becomes a more preferable form that the bottom plate 6 is provided.

底板の形状と大きさは、上記理由より、柱下端22におけるコンクリートとの接触幅(この場合は、底板6の直径d1の半分、図3中のx−c間)が底板が無い場合(具体的には柱下端22での板厚d2、図4中のx−y間)よりも広くなれば良いのであるから、その様な機能を有していればどの様な形状でも良い。円形以外の底板の他の形状は、具体的には、多角形や矩形、円形や多角形や矩形の底板に穴が1以上開いていたり、あるいは(円形、多角形、または矩形の)リング状であっても良い。また、底板6の厚みは、上部構造物8からの圧縮荷重Fにより変形しない強度を有することができる厚みであれば良い。   For the above reasons, the shape and size of the bottom plate is the width of contact with concrete at the column lower end 22 (in this case, half of the diameter d1 of the bottom plate 6, between x and c in FIG. 3) when there is no bottom plate (specifically Specifically, it is sufficient that the thickness is larger than the plate thickness d2 at the column lower end 22 (between xy in FIG. 4), and therefore any shape having such a function is possible. Other shapes of the bottom plate other than the circle are specifically polygons and rectangles, or one or more holes in the bottom plate of a circle, polygon or rectangle, or a ring shape (circular, polygonal or rectangular) It may be. The thickness of the bottom plate 6 may be a thickness that can have a strength that does not deform due to the compressive load F from the upper structure 8.

さらに本実施の形態では、底板6を鋼製としたので強固な接続効果の得られる溶接で接続したが、上部構造物8からの圧縮荷重を伝達できるのなら、例えば、接着剤等の他の接続方法を用いても構わない。また同様に、底板は鋼製で無くとも、上部構造物8からの圧縮荷重を伝達できるのなら、特に、コンクリート以上の剛性と強度を有していれば、他の材質を用いても構わない。   Furthermore, in the present embodiment, since the bottom plate 6 is made of steel, the bottom plate 6 is connected by welding to obtain a strong connection effect. However, if the compressive load from the upper structure 8 can be transmitted, other materials such as an adhesive are used. A connection method may be used. Similarly, even if the bottom plate is not made of steel, other materials may be used as long as they can transmit the compressive load from the upper structure 8 as long as they have rigidity and strength higher than concrete. .

図5に、図1における接合構造1の第3の実施の形態の例を、縦断面図で模式的に示した。第1および第2の実施の形態と同一のものは同一の符号を付し、詳細な説明は省略する。この第3の実施の形態では、柱の下端22に設けられた底板6の下端からリング4(リングが複数ある図3のような場合は、最上の位置にあるリング41)の上端まで長さh2を、杭上部31の最小幅(この場合、杭上部31は円形鋼管なので内径Dに相当する)の0.5倍以上としている。リング4の上面と杭上部31の内面とが、隅肉溶接43で固定されているのは、第1および第2の実施の形態と同様である。また、リング4の形状と大きさに関しては、第1および第2の実施の形態と同様にして決定する。   FIG. 5 is a vertical sectional view schematically showing an example of the third embodiment of the bonding structure 1 in FIG. The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. In this third embodiment, the length is from the lower end of the bottom plate 6 provided at the lower end 22 of the column to the upper end of the ring 4 (in the case of FIG. 3 where there are a plurality of rings, the ring 41 is at the uppermost position). h2 is 0.5 times or more of the minimum width of the pile upper portion 31 (in this case, the pile upper portion 31 is a circular steel pipe and corresponds to the inner diameter D). The upper surface of the ring 4 and the inner surface of the pile upper portion 31 are fixed by the fillet weld 43 as in the first and second embodiments. Further, the shape and size of the ring 4 are determined in the same manner as in the first and second embodiments.

上記の構造とすることにより、杭上部31に充填されたコンクリート5のせん断力に対する有効断面厚(図5の場合は、h2に相当)が厚くなるため、接合構造のさらなる耐力向上が期待できる。一方、長さh2が杭上部における最小幅の0.5倍未満の場合を図6に示す。   By setting it as said structure, since the effective cross-sectional thickness with respect to the shearing force of the concrete 5 with which the pile upper part 31 was filled (in the case of FIG. 5, it corresponds to h2) becomes thick, it can anticipate the further yield strength improvement of a junction structure. On the other hand, the case where the length h2 is less than 0.5 times the minimum width at the top of the pile is shown in FIG.

底板6の下端からリング4の上端までの長さh2の長短とコンクリート5のせん断力に対する有効断面厚の関係について、図5と図6を用いて説明する。一般的に、固体表面から内部(この内部は中実)へ作用する圧縮力の伝達経路は、加力方向に対し45°の範囲内に広がると仮定できる(図5中のfを参照)。本発明においてこの45°の圧縮力の伝達範囲を適用し、その伝達範囲とリング4の上端が作る面とが交差してできる断面(図5と図6中の矢印iの範囲)が、コンクリート5の全断面となるのに必要な距離h2は、幾何学的に杭上部31の内径Dの0.5倍となる。この距離により、圧縮力fがリング4の位置においてコンクリート5の縁端部にまで広がっている構造が得られ、リング4に対して圧縮力が確実に伝達できる。杭断面が円形で無い場合は、最小幅の0.5倍以上であれば上記構造が満足できるので、長さh2が杭上部における最小幅の0.5倍以上であれば上記理由により、第1と第2の実施の形態に比べさらに好ましい形態となる。   The relationship between the length h2 from the lower end of the bottom plate 6 to the upper end of the ring 4 and the effective cross-sectional thickness with respect to the shearing force of the concrete 5 will be described with reference to FIGS. In general, it can be assumed that the transmission path of the compressive force acting from the solid surface to the inside (the inside is solid) extends within a range of 45 ° with respect to the direction of the applied force (see f in FIG. 5). In the present invention, this 45 ° compressive force transmission range is applied, and a cross section (range indicated by an arrow i in FIGS. 5 and 6) formed by intersecting the transmission range and the surface formed by the upper end of the ring 4 is concrete. The distance h <b> 2 necessary for the entire cross section of 5 is geometrically 0.5 times the inner diameter D of the pile upper portion 31. With this distance, a structure in which the compressive force f spreads to the edge of the concrete 5 at the position of the ring 4 is obtained, and the compressive force can be reliably transmitted to the ring 4. If the pile cross-section is not circular, the above structure can be satisfied if the minimum width is 0.5 times or more of the minimum width. Therefore, if the length h2 is 0.5 times or more of the minimum width at the top of the pile, the first and second It becomes a more preferable form compared with the embodiment.

上記説明は底板6のある場合にて説明したが、底板6が無い場合の柱下端22からリング4(リングが図3のように複数ある場合は、最上の位置にあるリング41)の上端までの長さh1が杭上部における最小幅の0.5倍以上の場合でも、同様の機能を有する。   The above description has been given in the case where the bottom plate 6 is present, but from the lower end 22 of the column without the bottom plate 6 to the upper end of the ring 4 (the ring 41 at the highest position when there are a plurality of rings as shown in FIG. 3). Even when the length h1 is 0.5 times or more the minimum width in the upper part of the pile, it has the same function.

なお、圧縮力の受け部として、第1から第3の実施の形態では周方向に連続な円形のリングとしたが、本発明においてはこれに限定しない。柱2からの圧縮荷重を伝達するに十分な充填材との付着力が得られ、かつ柱下部21通過することのできる形状であれば良い。オーガの掘削ビットが通過するのに問題とならない形状としておけば、さらに好ましい。例えば、図7(a)に示したスパイラル状の突条や、(b)に示した多数の縞状突起、(c)に示した鋼管杭3の内方に張り出して不連続に設置された弓型状の板材、並びに(d)に示した鋼管杭3の内方に張り出して不連続に設置された円弧状の角材等が考えられる。   In the first to third embodiments, the compressive force receiving portion is a circular ring that is continuous in the circumferential direction. However, the present invention is not limited to this. Any shape can be used as long as it has sufficient adhesion to the filler to transmit the compressive load from the column 2 and can pass through the column lower portion 21. It is more preferable that the auger excavation bit has a shape that does not cause a problem. For example, the spiral protrusions shown in FIG. 7A, the numerous striped protrusions shown in FIG. 7B, and the steel pipe pile 3 shown in FIG. An arcuate plate material, an arc-shaped square member and the like that are discontinuously installed and projecting inwardly of the steel pipe pile 3 shown in FIG.

なお、第1から第3の実施の形態ではリング4の溶接位置をリング4の上面としたが、本発明においてはこれに限定しない。工場等でリング4を溶接するのであれば、リング4の上下面を溶接すれば、リング4の杭上部31への固定はなお一層強固なものとすることが期待できる。また、リング4の下面と杭上部31の内面とを溶接した場合は、リング4の上面がコンクリート5と接し、更なる付着力の向上が期待でき尚一層好ましい。さらに、本実施の形態では、リング4の溶接を隅肉溶接にて対応したが、溶接面積が十分に取れるのならスポット溶接等その他の溶接方法でも構わない。   In the first to third embodiments, the welding position of the ring 4 is the upper surface of the ring 4, but the present invention is not limited to this. If the ring 4 is welded at a factory or the like, it can be expected that the ring 4 is fixed to the upper portion 31 of the ring 4 even more firmly if the upper and lower surfaces of the ring 4 are welded. Moreover, when the lower surface of the ring 4 and the inner surface of the pile upper part 31 are welded, the upper surface of the ring 4 is in contact with the concrete 5 and further improvement in adhesion can be expected. Further, in the present embodiment, the ring 4 is welded by fillet welding, but other welding methods such as spot welding may be used as long as a sufficient welding area can be obtained.

なお、第1から第3の実施の形態では受け部は柱下端22の下方にのみ取り付けたが、杭の高止まり等で、受け部が柱下端22より上方になっても、本発明の効果を妨げる事は無い。この場合、既に述べたように、柱下端22の下方にある受け部にて効果を奏する。   In the first to third embodiments, the receiving portion is attached only below the column lower end 22. However, even if the receiving portion is located above the column lower end 22 due to a high stop of the pile, the effect of the present invention. There is no hindrance. In this case, as already described, the effect is obtained at the receiving portion below the column lower end 22.

なお、第1から第3の実施の形態では受け部は柱下端22の下方にのみ取り付けたが、それに加えて、第2の圧縮力の受け部を鋼管杭3の上端部に内方に張り出して設けても良い。この構成とすることにより、柱2が引張を受けた際にコンクリート5ごと鋼管杭3より抜け出るのを防ぐ機能と共に、底板6からコンクリート5の圧縮抵抗力を介して鋼管杭3に応力伝達できる機能を、新たに有することができるので、非常に好ましい形態となる。   In the first to third embodiments, the receiving portion is attached only below the column lower end 22, but in addition, the second compressive force receiving portion extends inwardly to the upper end portion of the steel pipe pile 3. May be provided. With this configuration, when the pillar 2 is pulled, the function of preventing the concrete 5 from coming out of the steel pipe pile 3 and the function of transmitting stress from the bottom plate 6 to the steel pipe pile 3 through the compressive resistance force of the concrete 5 Since it can have newly, it becomes a very preferable form.

なお、第1から第3の実施の形態では柱2を円形鋼管としたが、本発明はこれに限定されるものではなく、上部構造物8の鉛直荷重を鋼管杭3に伝達できるものならば何でも構わない。柱2の柱下部21は、角形鋼管、H形鋼等他の断面形状でも構わないし、また材質も鋼材の替わりに、鉄筋コンクリート、鉄筋鉄骨コンクリート、プレキャストコンクリート等他の材質でも構わない。   In the first to third embodiments, the column 2 is a circular steel pipe. However, the present invention is not limited to this, as long as the vertical load of the upper structure 8 can be transmitted to the steel pipe pile 3. It does n’t matter. The column lower portion 21 of the column 2 may have another cross-sectional shape such as a square steel pipe or H-shaped steel, and the material may be other materials such as reinforced concrete, reinforced steel concrete, or precast concrete instead of steel.

なお、第1から第3の実施の形態では鋼管杭3を円形鋼管としたが、本発明はこれに限定されるものではない。鋼管杭3は、杭上部31の断面形状と柱下部21の断面形状との組み合わせで決めればよく、例えば、角形鋼管杭や断面多角形鋼管杭や断面楕円形鋼管杭、あるいは杭上部31のみ筒状の鋼管からなる各種既製杭(鋼管杭、形鋼杭、コンクリート杭、鉄筋コンクリート杭(RC杭)、プレストレストコンクリート(PC)杭、高強度プレストレストコンクリート(PHC)杭、外殻鋼管付きコンクリート(SC)杭、高強度コンクリート拡径杭(ST)杭、鉄筋または平鋼を入れたコンクリート(PRC)杭等)を用いてもよい。   In the first to third embodiments, the steel pipe pile 3 is a circular steel pipe, but the present invention is not limited to this. The steel pipe pile 3 may be determined by a combination of the cross-sectional shape of the pile upper part 31 and the cross-sectional shape of the column lower part 21, for example, a square steel pipe pile, a cross-section polygonal steel pipe pile, an elliptical steel pipe pile, or a pile upper part 31 only Ready-made piles (steel pipe piles, shaped steel piles, concrete piles, reinforced concrete piles (RC piles), prestressed concrete (PC) piles, high strength prestressed concrete (PHC) piles, concrete with shell steel pipes (SC)) Pile, high-strength concrete expanded pile (ST) pile, concrete (PRC) pile with rebar or flat steel, etc.) may be used.

なお、第1から第3の実施の形態では、上部構造物8においては、杭上部31の内径Dよりも柱下端22の外径(dまたはd1)の方が小さくなる場合で説明したが、本発明は、これに限定するものでは無い。鋼管杭3の杭径と柱2の柱径は、それぞれ構造物の設計上からの与条件によって決まるが、その与条件の結果、杭上部31の内径Dが柱下端22の外径(dまたはd1)に施工に不具合が出るほど近かったり、あるいは杭上部31の内径Dが柱下端22の外径(dまたはd1)よりも小さかったりした場合は、鋼管杭3の直径はそのままで杭上部31の内径Dのみ拡径するか、柱下端22の外径(dまたはd1)を小さくする等して、柱下部21が杭上部31に進入できるよう調整する。また、柱下部21の差込み長さも、構造物の設計上から杭上部31に必要とされる曲げ耐力に応じて決める。   In the first to third embodiments, the upper structure 8 has been described in the case where the outer diameter (d or d1) of the column lower end 22 is smaller than the inner diameter D of the pile upper portion 31. The present invention is not limited to this. The pile diameter of the steel pipe pile 3 and the column diameter of the column 2 are determined by given conditions from the design of the structure. As a result of the given conditions, the inner diameter D of the pile upper portion 31 is the outer diameter (d or When d1) is close enough to cause problems in construction, or when the inner diameter D of the pile upper part 31 is smaller than the outer diameter (d or d1) of the column lower end 22, the diameter of the steel pipe pile 3 remains unchanged and the upper part 31 of the pile is maintained. Only the inner diameter D of the column is expanded, or the outer diameter (d or d1) of the column lower end 22 is decreased, so that the column lower portion 21 is adjusted so that it can enter the pile upper portion 31. Moreover, the insertion length of the column lower part 21 is also decided according to the bending strength required for the pile upper part 31 from the design of a structure.

なお、第1から第3の実施の形態では柱下部21と杭上部31の中心軸が、ほぼ同一直線上にある例にて説明したが、本発明はこれに限定するものでは無い。柱下部21の中心軸と鋼管杭3の上部31の中心軸は、一致している必要は無く、鋼管杭2が上部構造物8の鉛直荷重を支えるという機能を果たせるのならば、施工現場での状況に応じてずれても構わない。   In the first to third embodiments, the center axes of the column lower portion 21 and the pile upper portion 31 are described as being substantially on the same straight line. However, the present invention is not limited to this. The central axis of the column lower part 21 and the central axis of the upper part 31 of the steel pipe pile 3 do not need to coincide with each other, and if the steel pipe pile 2 can perform the function of supporting the vertical load of the upper structure 8, It may be shifted depending on the situation.

なお、第1から第3の実施の形態では充填材としてコンクリート5を用いたが、本発明はこれに限定するものでは無く、柱の下部21と杭の上部31を接続し柱下部21にかかる鉛直荷重を杭上部31へ伝達する機能を有しておれば何でも良い。例えば、モルタル等があげられる。   In the first to third embodiments, the concrete 5 is used as the filler. However, the present invention is not limited to this, and the lower part 21 of the pillar and the upper part 31 of the pile are connected to the lower part 21 of the pillar. Any function may be used as long as it has a function of transmitting a vertical load to the pile upper portion 31. For example, mortar can be used.

なお、図1において、地下構造物や基礎梁の無い場合を示したが、本発明はこれに限定されるものではない。上部構造物の設計上の要求から地下構造物や地中に基礎梁が必要な場合は、柱杭接合構造1の上部に設ければ良い。また、柱と杭とを接合するにあたって、特許文献2に開示されているような、接合部材を用いても良い。この場合、接合部材の支柱の脚部13を本発明の柱下部21とみなす。   Although FIG. 1 shows the case where there is no underground structure or foundation beam, the present invention is not limited to this. If a foundation beam is required in the underground structure or underground due to the design requirements of the superstructure, it may be provided at the top of the column pile joint structure 1. Moreover, when joining a pillar and a pile, you may use a joining member as disclosed by patent document 2. FIG. In this case, the leg portion 13 of the column of the joining member is regarded as the column lower portion 21 of the present invention.

本発明に係る柱杭接合構造を用いた構造物に関する説明図。Explanatory drawing regarding the structure using the pillar pile connection structure which concerns on this invention. 本発明に係る第1の実施の形態の断面図。Sectional drawing of 1st Embodiment which concerns on this invention. 本発明に係る第2の実施の形態の断面図。Sectional drawing of 2nd Embodiment which concerns on this invention. 第1の実施の形態における応力伝達領域の説明図。Explanatory drawing of the stress transmission area | region in 1st Embodiment. 本発明に係る第3の実施の形態の断面図。Sectional drawing of 3rd Embodiment which concerns on this invention. 第2の実施の形態におけるせん断力に対する有効断面厚の説明図。Explanatory drawing of the effective cross-sectional thickness with respect to the shear force in 2nd Embodiment. 受け部のその他の例を示した図。The figure which showed the other example of the receiving part.

符号の説明Explanation of symbols

1 杭と柱の接合構造
2 柱
21 柱の下部
22 柱の下端
3 鋼管杭
31 杭の上部
4、41、42 リング(受け部)
43 隅肉溶接
5 コンクリート(充填材)
6 底板
7 仕切板
8 上部構造物
9 梁
h1 柱下端からリング上端までの距離(底板が無い場合)
h2 柱下端からリング上端までの距離(底板がある場合)
a1、a2 伝達領域(底板がある場合)
b1、b2 伝達領域(底板が無い場合)
c 柱下端22の中心
d 柱下部21の外径
d1 底板6の直径
d2 柱下端22での板厚
D 杭上部31の内径(杭上部の最小幅)
E 地面
F 鉛直方向の圧縮荷重
f コンクリート5内での鉛直方向の圧縮力
G 支持層
i リング4の上端が作る面と圧縮力の伝達範囲とが交差する範囲
x 柱下端22の外側の縁
y 柱下端22の内側の縁
z1 上リング41の上端
z2 下リング42の上端
DESCRIPTION OF SYMBOLS 1 Joint structure of a pile and a pillar 2 Pillar 21 Lower part of a pillar 22 Lower end of a pillar 3 Steel pipe pile 31 Upper part of a pile 4, 41, 42 Ring (receiving part)
43 Fillet weld 5 Concrete (filler)
6 Bottom plate 7 Partition plate 8 Upper structure 9 Beam h1 Distance from bottom of column to top of ring (when there is no bottom plate)
h2 Distance from the bottom of the pillar to the top of the ring (if there is a bottom plate)
a1, a2 Transmission area (when there is a bottom plate)
b1, b2 Transmission area (when there is no bottom plate)
c Center of column lower end 22 d Outer diameter of column lower portion 21 d1 Diameter of bottom plate 6 d2 Plate thickness at column lower end 22 D Inner diameter of pile upper portion 31 (minimum width of pile upper portion)
E Ground F Vertical compressive load f Vertical compressive force in concrete 5 G Support layer i Range where the surface formed by the upper end of the ring 4 intersects the transmission range of compressive force x The outer edge of the column lower end 22 y Inner edge of column lower end 22 z1 Upper end of upper ring 41 z2 Upper end of lower ring 42

Claims (4)

鋼管杭の上部の内部に上部構造物の柱の下部を挿入し、該柱下部が挿入された鋼管杭の上部の内部に充填材を充填して、前記鋼管杭と前記柱とを接続した柱と杭の接合構造であって、
少なくとも前記柱下部が進入できる空間が確保できるようにして、前記鋼管杭の上部の内面に内周方向で連続または不連続な、圧縮力の受け部を、前記柱の下端の下方に突設することを特徴とする柱と杭の接合構造。
A column in which the lower part of the column of the upper structure is inserted into the upper part of the steel pipe pile, the filler is filled in the upper part of the steel pipe pile into which the lower part of the column is inserted, and the steel pipe pile and the column are connected. And a pile connection structure,
A receiving portion for compressive force, which is continuous or discontinuous in the inner circumferential direction, is provided below the lower end of the column so as to ensure a space where at least the column lower portion can enter. Column and pile joint structure characterized by this.
前記柱が下端に底板を有することを特徴とする請求項1に記載の柱と杭の接合構造。   The column / pile joint structure according to claim 1, wherein the column has a bottom plate at a lower end. 前記柱の下端から下方へ前記鋼管杭の杭上部における内径の最小幅の0.5倍以上離れた位置に、前記圧縮力の受け部を設けたことを特徴とする請求項1または2に記載の柱と杭の接合構造。   The column according to claim 1 or 2, wherein a receiving portion for the compressive force is provided at a position separated from the lower end of the column by 0.5 times or more the minimum width of the inner diameter of the upper portion of the pile of the steel pipe pile. And pile connection structure. 請求項1乃至3に何れか記載の柱と杭の接合構造を有することを特徴とする構造物。   A structure having the joining structure of a pillar and a pile according to any one of claims 1 to 3.
JP2005238519A 2005-08-19 2005-08-19 Joint structure of column and pile Pending JP2007051500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238519A JP2007051500A (en) 2005-08-19 2005-08-19 Joint structure of column and pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238519A JP2007051500A (en) 2005-08-19 2005-08-19 Joint structure of column and pile

Publications (1)

Publication Number Publication Date
JP2007051500A true JP2007051500A (en) 2007-03-01

Family

ID=37916114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238519A Pending JP2007051500A (en) 2005-08-19 2005-08-19 Joint structure of column and pile

Country Status (1)

Country Link
JP (1) JP2007051500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090445A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 One column-one pile foundation structure
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351428A (en) * 1989-07-18 1991-03-05 Railway Technical Res Inst Pillar-pile junction for one pillar-one pile foundation construction and its construction method
JP2004162374A (en) * 2002-11-13 2004-06-10 Shimizu Corp Joint structure between pile and column and joint method
JP2004285737A (en) * 2003-03-24 2004-10-14 Tokyo Electric Power Co Inc:The Construction method for steel tower foundation using concrete restraining connecting member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351428A (en) * 1989-07-18 1991-03-05 Railway Technical Res Inst Pillar-pile junction for one pillar-one pile foundation construction and its construction method
JP2004162374A (en) * 2002-11-13 2004-06-10 Shimizu Corp Joint structure between pile and column and joint method
JP2004285737A (en) * 2003-03-24 2004-10-14 Tokyo Electric Power Co Inc:The Construction method for steel tower foundation using concrete restraining connecting member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090445A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 One column-one pile foundation structure
JP2012136858A (en) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd One-column and one-pile foundation structure
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure

Similar Documents

Publication Publication Date Title
JP4812324B2 (en) Retaining wall and its construction method
JP2008019608A (en) Steel pipe sheet pile, steel pipe sheet pile wall, steel pipe for pipe roof and pipe roof
JP2008038586A (en) Method of integrating joint part of pile, column and footing beam of steel frame structure
JP2008075425A (en) Joining structure of pile and column
JP4503387B2 (en) Pile head joint structure and construction method
JP2001159140A (en) Landslide-countermeasure structure
JP2831909B2 (en) Connection structure of steel columns, piles and foundation beams
JP2007146399A (en) Soil cement pile and construction method of the soil cement pile
JP2008223339A (en) Pile head strengthening method for hollow pile and pile head strengthening reinforcement material
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP5456627B2 (en) Connection structure and method of connection between pile and steel column
JP2001303584A (en) Structure for connecting head of foundation pile with footing
JP2007051500A (en) Joint structure of column and pile
JP2007100337A (en) Joint structure of pile and structure foundation
JP5008683B2 (en) Pile head reinforcement member and pile head reinforcement structure using it
JP2004244844A (en) High section modulus pile
JP2006118161A (en) Aseismic reinforcing structure of pier and its construction method
KR101187174B1 (en) Pre-founded Column System having Bearing-Shear Band and Beam-Column Connection System using Grouted Jacket having Bearing-Shear Band for Top-Down or Common Construction
JP2011157812A (en) Retaining wall and construction method therefor
JP2009019362A (en) Structure for joining pile and column
JP2005105812A (en) Pile head reinforcing member, and pile head reinforcing structure using the same
JP2009013616A (en) Long span structure building
KR101762207B1 (en) The speed up construction method using hemispherical joint
KR101238641B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
JP2000220152A (en) Pile head construction for steel pipe pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A131 Notification of reasons for refusal

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108