JP5296585B2 - Soil cement improved structure and piled raft foundation - Google Patents

Soil cement improved structure and piled raft foundation Download PDF

Info

Publication number
JP5296585B2
JP5296585B2 JP2009071743A JP2009071743A JP5296585B2 JP 5296585 B2 JP5296585 B2 JP 5296585B2 JP 2009071743 A JP2009071743 A JP 2009071743A JP 2009071743 A JP2009071743 A JP 2009071743A JP 5296585 B2 JP5296585 B2 JP 5296585B2
Authority
JP
Japan
Prior art keywords
soil cement
foundation
improved body
cement improved
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009071743A
Other languages
Japanese (ja)
Other versions
JP2010222854A (en
Inventor
直木 麻生
崇 齋藤
博章 太田
純次 濱田
友浩 谷川
富男 土屋
明彦 内田
清 山下
政史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2009071743A priority Critical patent/JP5296585B2/en
Publication of JP2010222854A publication Critical patent/JP2010222854A/en
Application granted granted Critical
Publication of JP5296585B2 publication Critical patent/JP5296585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the joint strength of a joint part between a foundation part and a soil-cement improvement body. <P>SOLUTION: The soil-cement improvement body 12 is continuously constructed in the ground 36. The soil-cement improvement body 12 is a wall body of a cylindrical column body and formed with recesses and projections 12S of circular arc shape at both side faces of the wall body. The foundation part 14 of a structure is constructed around a head 12H of the soil-cement improvement body 12, and a foundation beam 22 of the foundation part 14 is supported by a top part S1. The foundation part 14 is constituted to construct a foundation slab 23 on the ground 36 and to provide a floor slab 21 through the foundation beam 22. The periphery of the head 12H is excavated in a width dimension W and a depth dimension H, and the soil-cement improvement body 12 and the foundation slab 23 are joined with concrete 27. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ソイルセメント改良体の接合構造、及びパイルド・ラフト基礎に関する。     The present invention relates to an improved structure of soil cement and a piled raft foundation.

軟弱地盤や液状化の発生が予想される地盤では、構造物の基礎は、セメント固化剤等の地盤改良で軟弱地盤の改良や液状化防止を図った直接基礎や、杭により構造物を支持する杭基礎が一般的に用いられている。   In soft ground and ground where liquefaction is expected, the foundation of the structure is supported by a direct foundation that is intended to improve soft ground and prevent liquefaction by improving the ground such as cement solidifying agent. Pile foundations are commonly used.

近年、合理的な基礎形式として、直接基礎と杭基礎を併用した、パイルド・ラフト基礎の適用が増えてきており、液状化のおそれのある地盤においては、液状化防止のために、地盤改良と杭とを併用する場合も見られるようになってきたが、地震時の水平力に関しては、杭基礎のみで設計されているのが現状である。
このような状況の中で、広範囲の地盤改良を必要とせず、しかも地盤改良体(ソイルセメント改良体)に地震時の水平力を負担させる技術が提案されている(特許文献1)。
In recent years, as a rational foundation type, the application of piled raft foundations that use both direct foundations and pile foundations has been increasing. Although it has come to be seen when combined with piles, the horizontal force at the time of earthquake is currently designed only with pile foundations.
Under such circumstances, there has been proposed a technique that does not require a wide range of ground improvement and that causes the ground improvement body (soil cement improvement body) to bear a horizontal force during an earthquake (Patent Document 1).

図11に示すように、特許文献1に記載の基礎構造80は、液状化の可能性がある地盤82に構築された構造物84において、鉛直荷重は支持層86に達する杭88が支持する。そして、地震時に構造物84に作用する水平力は、地盤改良体90を介して非液状化層83に伝達させる。ここに、地盤改良体90は、中空の筒状とされ壁体が非液状化層83まで達する深さとされている。これにより、広範囲の地盤改良を必要とせず、杭88の負担する水平力を低減させる。   As shown in FIG. 11, the foundation structure 80 described in Patent Document 1 is supported by a pile 88 that reaches the support layer 86 in the structure 84 constructed on the ground 82 that may be liquefied. And the horizontal force which acts on the structure 84 at the time of an earthquake is transmitted to the non-liquefaction layer 83 through the ground improvement body 90. Here, the ground improvement body 90 has a hollow cylindrical shape and a depth at which the wall reaches the non-liquefaction layer 83. Thereby, the horizontal force which the pile 88 bears is reduced, without requiring the ground improvement of a wide range.

しかし、基礎構造80は、構造物84の底面と地盤改良体90が接合されていないため、水平力が大きい場合には滑りが生じ、地盤改良体90が負担できなくなった水平力は杭88が負担しなければならない。この結果、杭88の断面積を小さくできない。
この問題点を解決すべく、基礎と地盤改良体の間の滑りをなくす技術が提案されている(特許文献2、3)。
However, in the foundation structure 80, since the bottom surface of the structure 84 and the ground improvement body 90 are not joined together, slip occurs when the horizontal force is large, and the horizontal force that the ground improvement body 90 can no longer bear is generated by the pile 88. Have to bear. As a result, the cross-sectional area of the pile 88 cannot be reduced.
In order to solve this problem, techniques for eliminating slippage between the foundation and the ground improvement body have been proposed (Patent Documents 2 and 3).

図12に示すように、特許文献2に記載の接合方法は、構造物84の基礎の底面に設けた突起部94が地盤改良体91の上面の凹部に差し込まれ、水平方向の移動が制限されている。これにより、地震時の水平力が突起部と凹部の接合部を介して地盤改良体91に伝達される。また、杭88の杭頭部は、構造物84の底面と接合されていない。これにより、杭88は構造物84の鉛直荷重のみを負担し、地震時の水平力は、すべて地盤改良体91が負担する。   As shown in FIG. 12, in the joining method described in Patent Document 2, the protrusion 94 provided on the bottom surface of the foundation of the structure 84 is inserted into the recess on the top surface of the ground improvement body 91, and the horizontal movement is restricted. ing. Thereby, the horizontal force at the time of an earthquake is transmitted to the ground improvement body 91 via the junction part of a projection part and a recessed part. Further, the pile head of the pile 88 is not joined to the bottom surface of the structure 84. Thereby, the pile 88 bears only the vertical load of the structure 84, and the ground improvement body 91 bears all the horizontal force at the time of an earthquake.

しかし、特許文献2に記載の接合方法は、地盤改良体91の頭部に穴を開け、突起部94を差し込むため、地盤改良体91に断面欠損が生じ、地盤改良体91の頭部が破損する恐れがある。このため、地震時の水平力を地盤改良体91が適切に負担できないことがある。   However, in the joining method described in Patent Document 2, since a hole is made in the head of the ground improvement body 91 and the protrusion 94 is inserted, a cross-sectional defect occurs in the ground improvement body 91 and the head of the ground improvement body 91 is damaged. There is a fear. For this reason, the ground improvement body 91 may not be able to appropriately bear the horizontal force at the time of the earthquake.

また、図13に示すように、特許文献3に記載の接合方法は、構造物84の基礎の底面と地盤改良体92の上面を、接合部材で接合する構成である。即ち、接合部材であるかご筋98(図13(B))やスタッド付H鋼99(図13(C))で地盤改良体92と基礎部を接合する。なお、杭89の杭頭部は、構造物84の基礎底面と杭頭接合鉄筋96で接合されている。このとき、接合部はコンクリートで固定されてなく、半剛接合とされている。これにより、地震時の水平力の大部分を地盤改良体92が負担する。   As shown in FIG. 13, the joining method described in Patent Document 3 has a configuration in which the bottom surface of the foundation of the structure 84 and the top surface of the ground improvement body 92 are joined by a joining member. That is, the ground improvement body 92 and the foundation portion are joined by the cage wire 98 (FIG. 13B) or the H steel 99 with stud (FIG. 13C) which is a joining member. In addition, the pile head of the pile 89 is joined to the foundation bottom surface of the structure 84 by the pile head joining rebar 96. At this time, the joint portion is not fixed with concrete but is semi-rigid. Thereby, the ground improvement body 92 bears most of the horizontal force at the time of an earthquake.

しかし、特許文献3に記載の接合方法は、かご筋98若しくはスタッド付H鋼99で地盤改良体92と基礎部を接合しているため、かご筋98若しくはスタッド付H鋼99が地盤改良体92から抜け出る恐れがある。このため、地震時の水平力を地盤改良体92が適切に負担できないことがある。   However, in the joining method described in Patent Document 3, since the ground improvement body 92 and the foundation portion are joined by the car reinforcement 98 or the H steel 99 with studs, the car reinforcement 98 or the H steel 99 with studs is connected to the ground improvement body 92. There is a risk of getting out of it. For this reason, the ground improvement body 92 may not be able to properly bear the horizontal force during an earthquake.

特開平6−294137号公報JP-A-6-294137 特開2005−307594号公報JP 2005-307594 A 特開平11−200381号公報JP-A-11-200381

本発明は、上記事実に鑑み、基礎部とソイルセメント改良体の接合部の接合強度を上げる接合構造を提供することを目的とする。   An object of this invention is to provide the joining structure which raises the joining strength of the junction part of a foundation part and a soil cement improved body in view of the said fact.

請求項1に記載の発明に係るソイルセメント改良体の接合構造は、地中に連続して平面視で格子状に柱体が構築され、側面に凹凸部が形成された壁状のソイルセメント改良体と、前記ソイルセメント改良体の頭部に支持され、構造物の荷重を前記ソイルセメント改良体に伝えると共に、前記ソイルセメント改良体の側面に沿って延設する前記凹凸部が埋め込まれた基礎部と、を有することを特徴としている。 The improved structure of the soil cement according to the first aspect of the present invention is a wall-shaped soil cement improvement in which pillars are constructed in a lattice shape in plan view continuously in the ground, and uneven portions are formed on the side surfaces. And a foundation embedded with the concavo-convex portion that is supported by the head of the soil cement improved body, transmits the load of the structure to the soil cement improved body, and extends along the side surface of the soil cement improved body And a portion.

請求項1に記載の発明によれば、基礎部には、ソイルセメント改良体の側面に沿って延設する凹凸部が埋め込まれている。これにより、頭部で構造物を支持し、側面の凹凸部が抵抗となり、基礎部とソイルセメント改良体の接合部の接合強度が上がる。この結果、地震時に基礎部が受ける水平力を適切に、地中に連続して平面視で格子状に柱体が構築されたソイルセメント改良体に伝達でき、構造物の水平荷重を負担する杭の断面積を小さくできる。また、ソイルセメント改良体の平面視が格子状とされている。これにより、地震時に液状化が予測される地盤をソイルセメント改良体で取り囲み、液状化が防止できる。また、格子状とされているため、いずれの方向からの水平力に対しても、ソイルセメント改良体の水平耐力を上げることができる。 According to invention of Claim 1, the uneven | corrugated | grooved part extended along the side surface of a soil cement improved body is embedded in the base part. As a result, the structure is supported by the head, the uneven portions on the side surfaces become resistance, and the bonding strength between the base portion and the joint portion of the soil cement improved body increases. As a result, the horizontal force received by the foundation during an earthquake can be properly transmitted to the soil cement improvement body in which the pillars are constructed in a grid pattern in plan view in a continuous manner, and the pile that bears the horizontal load of the structure The cross-sectional area of can be reduced. Moreover, the planar view of the soil cement improved body has a lattice shape. Thereby, the ground where liquefaction is predicted at the time of an earthquake can be surrounded by the soil cement improved body, and liquefaction can be prevented. Moreover, since it is set as the grid | lattice form, the horizontal proof stress of a soil cement improved body can be raised with respect to the horizontal force from any direction.

請求項2に記載の発明は、請求項1に記載のソイルセメント改良体の接合構造において、前記基礎部は、前記ソイルセメント改良体の両側から前記凹凸部を挟み込むことを特徴としている。
請求項2に記載の発明によれば、基礎部が、ソイルセメント改良体の両側から凹凸部を挟み込む。このとき基礎部とソイルセメント改良体の材質を異ならせ、強度の弱い方の部材強度を調節することで接合部の破壊強度が調節できる。
According to a second aspect of the present invention, in the joint structure of a soil cement improved body according to the first aspect, the foundation portion sandwiches the uneven portion from both sides of the soil cement improved body.
According to invention of Claim 2, a base part pinches | concludes an uneven | corrugated | grooved part from the both sides of a soil cement improved body. At this time, the fracture strength of the joint portion can be adjusted by changing the material of the base portion and the improved soil cement and adjusting the strength of the weaker member.

これにより、ソイルセメント改良体が負担する地震時の水平力と、杭が負担する水平力の設定割合の調節が可能となり、杭の断面積とソイルセメント改良体の断面積の最適化が図れ、施工コストの低減、施工期間の短縮が図れる。   This makes it possible to adjust the horizontal force during the earthquake borne by the soil cement improvement body and the set ratio of the horizontal force borne by the pile, and the cross-sectional area of the pile and the cross-sectional area of the soil cement improvement body can be optimized. The construction cost can be reduced and the construction period can be shortened.

例えば、ソイルセメント改良体を基礎部より破壊強度の低い材質とすることで、ソイルセメント改良体が先に破壊される構成とされ、ソイルセメント改良体の接合部の寸法を調整することで破壊強度が設定できる。これにより、杭の断面積とソイルセメント改良体の断面積の最適化が図れる。
なお、ソイルセメント改良体自体の耐力は、ソイルセメント改良体の列数を増減することで調節できる。
For example, by making the soil cement improved body a material having a lower breaking strength than the foundation, the soil cement improved body is destroyed first, and the fracture strength can be adjusted by adjusting the dimensions of the joint of the soil cement improved body Can be set. Thereby, the cross-sectional area of a pile and the cross-sectional area of a soil cement improved body can be optimized.
In addition, the proof stress of soil cement improved body itself can be adjusted by increasing / decreasing the number of rows of soil cement improved bodies.

請求項3に記載の発明は、請求項1に記載のソイルセメント改良体の接合構造において、前記ソイルセメント改良体を、所定の隙間を開けて並列に配置し、前記隙間部を、前記基礎部で埋めたことを特徴としている。   According to a third aspect of the present invention, in the joint structure of the soil cement improved body according to the first aspect, the soil cement improved body is arranged in parallel with a predetermined gap therebetween, and the gap portion is formed as the base portion. It is characterized by being filled with.

請求項3に記載の発明によれば、所定の隙間を開けて、ソイルセメントコラム改良体が並列に配置され、隙間部が基礎部で接合されている。これにより、ソイルセメント改良体の片面と基礎部が簡単な構成で接合される。また、接合強度を調節することができる。   According to invention of Claim 3, a predetermined clearance gap is opened, the soil cement column improvement body is arrange | positioned in parallel, and the clearance gap part is joined by the base part. Thereby, the single side | surface and foundation part of a soil cement improved body are joined by simple structure. Further, the bonding strength can be adjusted.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載のソイルセメント改良体の接合構造において、前記ソイルセメント改良体の延設方向を、前記基礎部を支持する地盤が受けている片土圧の方向と一致させたことを特徴としている。   The invention according to claim 4 is the joint structure of the soil cement improved body according to any one of claims 1 to 3, wherein the ground supporting the foundation portion has an extending direction of the soil cement improved body. It is characterized by being matched with the direction of the single earth pressure received.

請求項4に記載の発明によれば、ソイルセメント改良体の延設方向が、基礎部を支持する地盤が受けている片土圧の方向と一致する方向とされている。
これにより、片土圧を受ける地盤において、片土圧の方向のソイルセメント改良体と基礎部の接合強度を必要とする強度に調節できる。また、ソイルセメント改良体が片土圧を直接受けるのを避けて、受け流しながら構造物を支持できる。この結果、杭の断面積とソイルセメント改良の体断面積の最適化を図ることができ、施工コストが低減できる。
According to the fourth aspect of the present invention, the extending direction of the soil cement improved body is a direction that coincides with the direction of the single earth pressure received by the ground supporting the foundation.
Thereby, in the ground which receives a single earth pressure, it can adjust to the intensity | strength which requires the joint strength of the soil cement improved body and foundation part of the direction of a single earth pressure. In addition, it is possible to support the structure while receiving it while avoiding the soil cement improved body directly receiving the single earth pressure. As a result, the cross-sectional area of the pile and the body cross-sectional area of the soil cement improvement can be optimized, and the construction cost can be reduced.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載のソイルセメント改良体の接合構造において、前記凹凸部と前記基礎部の接合部のソイルセメント改良体の延設方向の長さ、及び前記凹凸部と前記基礎部の接合部の上下方向の高さの少なくとも一方を調整して、前記ソイルセメント改良体と前記基礎部の接合強度を変更することを特徴としている。   Invention of Claim 5 is the joining structure of the soil cement improved body of any one of Claims 1-4, The extending direction of the soil cement improved body of the junction part of the said uneven | corrugated | grooved part and the said foundation part The joint strength between the soil cement improved body and the base portion is changed by adjusting at least one of the length of the concave and convex portions and the height in the vertical direction of the joint portion of the base portion.

請求項5に記載の発明によれば、ソイルセメント改良体と基礎部の接合強度が、ソイルセメント改良体の延設方向の凹凸部と基礎部の接合部の長さ、及び凹凸部と基礎部の接合部の上下方向の高さの少なくとも一方を調節することで変更できる。
これにより、ソイルセメント改良体と基礎部の接合強度の調節が容易となる。
According to the invention described in claim 5, the bonding strength between the soil cement improved body and the base portion is the length of the uneven portion in the extending direction of the soil cement improved body and the base portion, and the uneven portion and the base portion. This can be changed by adjusting at least one of the vertical heights of the joints.
Thereby, adjustment of the joint strength of a soil cement improved body and a base part becomes easy.

請求項に記載の発明であるパイルド・ラフト基礎は、請求項1〜に記載のソイルセメント改良体の接合構造で接合された前記ソイルセメント改良体と、前記構造物を支持する支持杭と、前記構造物が載置される直接基礎と、を有することを特徴としている。 The piled raft foundation which is the invention according to claim 6 is the soil cement improved body joined by the joint structure of the soil cement improved body according to claims 1 to 5 , and a supporting pile for supporting the structure. And a direct foundation on which the structure is placed.

請求項に記載の発明によれば、パイルド・ラフト基礎が、ソイルセメント改良体の接合構造で接合されたソイルセメント改良体と、構造物を支持する支持杭と、構造物が載置される直接基礎とを有している。
これにより、パイルド・ラフト基礎における鉛直荷重の分担に関係なく、杭とソイルセメント改良体の水平力の分担割合を任意に設定できる。
According to the invention described in claim 6 , the piled raft foundation is mounted with the soil cement improved body joined by the joint structure of the soil cement improved body, the support pile for supporting the structure, and the structure. Has a direct basis.
Thereby, irrespective of the share of the vertical load in the piled raft foundation, the share of the horizontal force between the pile and the soil cement improved body can be arbitrarily set.

本発明は、上記構成としてあるので、基礎部とソイルセメント改良体の接合部の接合強度を上げることができる。   Since this invention is set as the said structure, the joint strength of the junction part of a base part and a soil cement improved body can be raised.

本発明の第1の実施の形態に係るソイルセメント改良体の接合構造の基本構成を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るソイルセメント改良体の接合構造のA−A線断面を示す図である。It is a figure which shows the AA line cross section of the joining structure of the soil cement improved body which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るソイルセメント改良体の接合構造の基本構成、及びA−A線断面を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body which concerns on the 2nd Embodiment of this invention, and an AA line cross section. 本発明の第2の実施の形態に係るソイルセメント改良体の断面を示す図である。It is a figure which shows the cross section of the soil cement improved body which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るソイルセメント改良体の接合構造の、他の実施例の基本構成、及びA−A線断面を示す図である。It is a figure which shows the basic composition of the other Example of the joining structure of the soil cement improved body which concerns on the 2nd Embodiment of this invention, and an AA line cross section. 本発明の第3の実施の形態に係るソイルセメント改良体の接合構造の基本構成、及びA−A線断面を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body which concerns on the 3rd Embodiment of this invention, and an AA line cross section. 本発明の第4の実施の形態に係るソイルセメント改良体の接合構造の基本構成、及びA−A線断面を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body which concerns on the 4th Embodiment of this invention, and an AA line cross section. 本発明の第5の実施の形態に係るパイルド・ラフト基礎のソイルセメント改良体の接合構造を示す図である。It is a figure which shows the joining structure of the soil cement improvement body of the piled raft foundation based on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係るパイルド・ラフト基礎の基本構成を示す図である。It is a figure which shows the basic composition of the piled raft foundation based on the 5th Embodiment of this invention. 従来例のパイルド・ラフト基礎の基本構成を示す図である。It is a figure which shows the basic composition of the piled raft foundation of a prior art example. 従来例のソイルセメント改良体の接合構造の基本構成を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body of a prior art example. 従来例のソイルセメント改良体の接合構造の基本構成を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body of a prior art example. 従来例のソイルセメント改良体の接合構造の基本構成を示す図である。It is a figure which shows the basic composition of the joining structure of the soil cement improved body of a prior art example.

(第1の実施の形態)
図1に示すように、第1の実施の形態に係るソイルセメント改良体の接合構造10は、地盤36の中に連続して構築されたソイルセメント改良体12を有している。
ソイルセメント改良体12は、スラリー状とされたセメント系固化材による安定剤と、現地の地盤36の中の土とを攪拌装置で攪拌して固化させて形成され、円筒状の柱体を連続させて壁状としたものである。
(First embodiment)
As shown in FIG. 1, the soil cement improved body joint structure 10 according to the first embodiment includes a soil cement improved body 12 continuously constructed in the ground 36.
The soil cement improved body 12 is formed by stirring and solidifying a stabilizer based on a cement-based solidifying material in a slurry state and the soil in the local ground 36 with a stirrer, and a cylindrical column is continuously formed. It is made into a wall shape.

また、地盤36は、地震時には液状化の発生が予測される液状化層であり、ソイルセメント改良体12の深さは、液状化層36の底面までとされている。   The ground 36 is a liquefied layer in which liquefaction is expected to occur during an earthquake, and the depth of the soil cement improved body 12 is set to the bottom of the liquefied layer 36.

ソイルセメント改良体12の頭部12Hの周囲には、構造物(図示せず)の基礎部14が構築され、ソイルセメント改良体12の頂部S1で基礎部14の基礎梁22を支持している。これにより、構造物の鉛直荷重がソイルセメント改良体12に伝播される。   A base portion 14 of a structure (not shown) is constructed around the head 12H of the soil cement improved body 12, and the base beam 22 of the base portion 14 is supported by the top S1 of the soil cement improved body 12. . Thereby, the vertical load of the structure is transmitted to the soil cement improved body 12.

基礎部14は、パイルド・ラフト基礎の直接基礎とされ、地盤36の上に基礎スラブ23が構築され、基礎梁22を介して床スラブ21が構築されている。なお、杭は図示していない。   The foundation 14 is a direct foundation of a piled raft foundation, a foundation slab 23 is constructed on the ground 36, and a floor slab 21 is constructed via the foundation beam 22. The pile is not shown.

ソイルセメント改良体12と基礎部14の接合部は、ソイルセメント改良体12の頭部12Hの周囲の地盤36を、幅寸法W、深さ寸法Hで掘削し、掘削された頭部12Hの周囲に鉄筋16、18を配筋して、地盤36の上にコンクリート27を打設している。   The joint between the soil cement improved body 12 and the foundation portion 14 is obtained by excavating the ground 36 around the head 12H of the soil cement improved body 12 with a width dimension W and a depth dimension H, and surrounding the excavated head 12H. Reinforcing bars 16 and 18 are arranged on the ground, and concrete 27 is placed on the ground 36.

ソイルセメント改良体12は、図2のA−A線断面図に示すように、連続した柱体において隣り合う柱体と側壁の一部を共有させて一体化し、壁状に形成されている。更に、同じ構成の壁体を並列に配置させ、並列に配置された壁体において隣り合う柱体と側壁の一部を共有させて一体化している。これにより、幅方向(X軸方向)が二重構造とされている。   As shown in the cross-sectional view taken along line AA in FIG. 2, the soil cement improved body 12 is formed in a wall shape by integrating adjacent column bodies with a part of the side wall in a continuous column body. Furthermore, the wall body of the same structure is arrange | positioned in parallel, and the column body which adjoins in the wall body arrange | positioned in parallel, and a part of side wall are shared and integrated. Thereby, the width direction (X-axis direction) is a double structure.

ソイルセメント改良体12の両側面には、柱体の中央部の外周部である円弧状の凸部と、柱体の両端部の一体化された凹部の繰返しからなる凹凸部12Sが形成されている。凹凸部12Sは、基礎スラブ23のコンクリート27に深さHまで埋め込まれている。   On both side surfaces of the soil cement improved body 12, there are formed concavo-convex portions 12 </ b> S composed of arc-shaped convex portions, which are the outer peripheral portions of the central portion of the column body, and integrated concave portions at both ends of the column body. Yes. The uneven portion 12S is embedded in the concrete 27 of the foundation slab 23 to a depth H.

これにより、両側面の凹凸部12Sがコンクリート27で囲まれ、凹部にもコンクリート27が充填されている。この結果、ソイルセメント改良体12の頭部12Hと基礎スラブ23の接合強度を高くでき、地震時の水平力を、基礎スラブ23からソイルセメント改良体12へ伝えることができる。   As a result, the concave and convex portions 12S on both sides are surrounded by the concrete 27, and the concave portion is also filled with the concrete 27. As a result, the bonding strength between the head 12H of the soil cement improved body 12 and the foundation slab 23 can be increased, and the horizontal force during an earthquake can be transmitted from the foundation slab 23 to the soil cement improved body 12.

即ち、地震時のY方向の水平力Fに対しては、ソイルセメント改良体12の頂部S1における、頂部S1と基礎スラブ23の接合面の摩擦抵抗力R1(図示せず)、及び側面においては、凹凸部12Sにより滑りが生じないため、ソイルセメント改良体12の内部の面S2に生じるせん断抵抗力R2で抵抗する。   That is, for the horizontal force F in the Y direction at the time of an earthquake, the friction resistance R1 (not shown) of the joint surface between the top S1 and the foundation slab 23 at the top S1 of the soil cement improved body 12 and the side surface In addition, since slippage does not occur due to the uneven portion 12S, resistance is generated by the shear resistance R2 generated on the inner surface S2 of the soil cement improved body 12.

このとき基礎部14は鉄筋コンクリートで形成され、ソイルセメント改良体12はソイルセメントで形成されており材質が異なる。せん断強度が小さい方のソイルセメント改良体12のせん断抵抗力R2を調節することで、接合部の破壊強度が調節できる。   At this time, the base portion 14 is formed of reinforced concrete, and the soil cement improved body 12 is formed of soil cement and is made of different materials. The fracture strength of the joint can be adjusted by adjusting the shear resistance R2 of the soil cement improved body 12 having the smaller shear strength.

具体的には、凹凸部12Sと基礎スラブ23の接合のX軸方向の投影面S2の面積を調整する。即ち、ソイルセメント改良体12のY軸方向の延設長さL(図示せず)、及び凹凸部12Sと基礎スラブ23の接合部のZ軸方向の高さHの少なくとも一方を調整すれば、ソイルセメント改良体12と基礎部14の接合強度を変更できる。   Specifically, the area of the projection surface S2 in the X-axis direction of the joint between the uneven portion 12S and the basic slab 23 is adjusted. That is, if at least one of the extension length L (not shown) in the Y-axis direction of the soil cement improved body 12 and the height H in the Z-axis direction of the joint between the uneven portion 12S and the foundation slab 23 is adjusted, The joint strength between the soil cement improved body 12 and the base portion 14 can be changed.

以上説明したように、本実施の形態によれば、ソイルセメント改良体12と基礎部14の接合強度の調節が可能となる。これにより、ソイルセメント改良体12に負担させる水平力を任意に設定でき、杭の負担を軽減できる。
なお、ソイルセメント改良体12のX軸方向の強度は、柱列を増すことで対応可能である。
As described above, according to the present embodiment, the bonding strength between the soil cement improved body 12 and the base portion 14 can be adjusted. Thereby, the horizontal force borne by the soil cement improved body 12 can be arbitrarily set, and the load on the pile can be reduced.
In addition, the intensity | strength of the X-axis direction of the soil cement improved body 12 can respond | correspond by increasing a column row | line | column.

(第2の実施の形態)
図3(A)(B)に示すように、第2の実施の形態に係るソイルセメント改良体の接合構造30は、地盤36中に連続して構築されたソイルセメント改良体32を有している。
(Second Embodiment)
As shown in FIGS. 3A and 3B, the soil cement improved body joint structure 30 according to the second embodiment includes a soil cement improved body 32 continuously constructed in the ground 36. Yes.

ソイルセメント改良体32は、円筒状の柱体が連続して一列に構築され、壁体とされている。ソイルセメント改良体32の両側面には凹凸部が形成されており、ソイルセメント改良体32の頭部32Hは、構造物の基礎部14に埋め込まれている。   The soil cement improved body 32 is a wall body in which cylindrical columns are continuously constructed in a line. Concave and convex portions are formed on both side surfaces of the soil cement improved body 32, and the head portion 32H of the soil cement improved body 32 is embedded in the foundation portion 14 of the structure.

基礎部14は、ソイルセメント改良体32の頭部32Hの両側面を、コンクリート27で幅寸法W、深さ寸法Hで挟んで接合している。このとき、ソイルセメント改良体32の頂部S1で、基礎部14の基礎梁22を支持している。
他の部分は、第1の実施の形態におけるソイルセメント改良体の接合構造10と同一であり、説明は省略する。
The base portion 14 is joined by sandwiching both side surfaces of the head portion 32H of the soil cement improved body 32 with the concrete 27 between the width dimension W and the depth dimension H. At this time, the foundation beam 22 of the foundation part 14 is supported by the top part S <b> 1 of the soil cement improved body 32.
The other parts are the same as the joint structure 10 of the soil cement improved body in the first embodiment, and a description thereof will be omitted.

これにより、ソイルセメント改良体32と基礎部14の接合強度の調節が可能となり、ソイルセメント改良体32に負担させる水平力を任意に設定できる。この結果、杭の負担が軽減できる。   Thereby, adjustment of the joint strength of the soil cement improved body 32 and the base part 14 is attained, and the horizontal force borne by the soil cement improved body 32 can be arbitrarily set. As a result, the burden on the pile can be reduced.

なお、図4に示すように、ソイルセメント改良体32は、隣接する2つの柱体を同時に形成してもよい。これにより、ソイルセメント改良体32が合理的に構築でき、施工期間を短縮できる。   In addition, as shown in FIG. 4, the soil cement improvement body 32 may form two adjacent pillars simultaneously. Thereby, the soil cement improved body 32 can be constructed | assembled rationally, and a construction period can be shortened.

また、図5に示すように、ソイルセメント改良体32の断面形状は、円形でなくてもよい。例えば、断面形状が四角形の四角柱33とし、隣り合う四角柱33の角部を共有させて一体化させて連続した壁体を形成し、壁体の側面には、四角柱33から外へ突き出した角部の凸部と、接合部の凹部の繰返し基づく凹凸部33Sを形成させてもよい。   Moreover, as shown in FIG. 5, the cross-sectional shape of the soil cement improved body 32 may not be circular. For example, a rectangular column 33 having a quadrangular cross section is formed, and a continuous wall body is formed by sharing the corners of adjacent quadrangular columns 33 and projecting from the rectangular column 33 to the side surface of the wall body. Alternatively, the uneven portion 33S may be formed based on repetition of the convex portion of the corner portion and the concave portion of the joint portion.

(第3の実施の形態)
図6に示すように、第3の実施の形態のソイルセメント改良体の接合構造40は、壁状とされた、2つのソイルセメント改良体32を有している。
(Third embodiment)
As shown in FIG. 6, the joint structure 40 of the soil cement improvement body of 3rd Embodiment has the two soil cement improvement bodies 32 made into wall shape.

ソイルセメント改良体32は、第2の実施の形態で説明したソイルセメント改良体32と同じものであり、説明は省略する。2つのソイルセメント改良体32は、所定の間隔Dを開けて平行に配置されている。そして、頂部S1は、コンクリート23に埋め込まれている。所定の間隔Dには、基礎部14のコンクリート27が深さHまで入り込み、ソイルセメント改良体32と基礎スラブ23を接合している。   The soil cement improved body 32 is the same as the soil cement improved body 32 described in the second embodiment, and a description thereof will be omitted. The two soil cement improvement bodies 32 are arranged in parallel at a predetermined distance D. The top S <b> 1 is embedded in the concrete 23. In the predetermined interval D, the concrete 27 of the foundation portion 14 enters to the depth H, and the soil cement improved body 32 and the foundation slab 23 are joined.

これにより、簡単な基礎部14の構成で、ソイルセメント改良体32と基礎スラブ23を接合できる。このとき、ソイルセメント改良体32のY軸方向の延設長さL(図示せず)、及び凹凸部32Sと基礎スラブ23の接合部のZ軸方向の高さHの少なくとも一方を調整すれば、ソイルセメント改良体32と基礎部14の接合強度を変更でき、水平力を基礎部14からソイルセメント改良体32へ伝えることができる。   Thereby, the soil cement improved body 32 and the foundation slab 23 can be joined with a simple configuration of the foundation portion 14. At this time, if at least one of the extension length L (not shown) in the Y-axis direction of the soil cement improved body 32 and the height H in the Z-axis direction of the joint between the uneven portion 32S and the foundation slab 23 is adjusted. The joint strength between the soil cement improved body 32 and the base portion 14 can be changed, and the horizontal force can be transmitted from the base portion 14 to the soil cement improved body 32.

これにより、ソイルセメント改良体32に負担させる水平力を任意に設定でき、杭の負担を軽減できる。   Thereby, the horizontal force borne by the soil cement improved body 32 can be arbitrarily set, and the load on the pile can be reduced.

(第4の実施の形態)
図7に示すように、第4の実施の形態のソイルセメント改良体の接合構造48は、壁状に形成されたソイルセメント改良体12を有している。
(Fourth embodiment)
As shown in FIG. 7, the joint structure 48 of the soil cement improved body of 4th Embodiment has the soil cement improved body 12 formed in wall shape.

ソイルセメント改良体12は、第1の実施の形態で説明したものであり、説明は省略する。ソイルセメント改良体12は、頭部12Hを、地盤36の表面の上に高さHで突き出して形成されている。そして、突き出された頭部12Hは、深さHまで基礎部23の下面に呑み込まれている。   The soil cement improved body 12 has been described in the first embodiment, and a description thereof will be omitted. The soil cement improved body 12 is formed by protruding the head portion 12H on the surface of the ground 36 at a height H. And the protruded head 12H is swallowed by the lower surface of the base part 23 to the depth H.

これにより、頭部12Hの周囲を掘削する必要がなくなり、ソイルセメント改良体12と基礎部14を容易に接合できる。このとき、ソイルセメント改良体12のY軸方向の延設長さL(図示せず)、及び凹凸部12Sと基礎スラブ23の接合部のZ軸方向の高さHの少なくとも一方を調整すれば、ソイルセメント改良体12と基礎部14の接合強度を変更でき、水平力を基礎部14からソイルセメント改良体32へ伝えることができる。   Thereby, it becomes unnecessary to dig around the head 12H, and the soil cement improved body 12 and the base portion 14 can be easily joined. At this time, if at least one of the extension length L (not shown) in the Y-axis direction of the soil cement improved body 12 and the height H in the Z-axis direction of the joint between the uneven portion 12S and the foundation slab 23 is adjusted. The joint strength between the soil cement improved body 12 and the base portion 14 can be changed, and the horizontal force can be transmitted from the base portion 14 to the soil cement improved body 32.

これにより、ソイルセメント改良体12に負担させる水平力を任意に設定でき、杭の負担を軽減できる。   Thereby, the horizontal force borne by the soil cement improved body 12 can be arbitrarily set, and the load on the pile can be reduced.

(第5の実施の形態)
図8に示すように、第5の実施の形態に係るパイルド・ラフト基礎34は、外周部を除き、第1の実施の形態で説明したソイルセメント改良体12がY軸方向に構築され、基礎部14と接合されている。
(Fifth embodiment)
As shown in FIG. 8, the piled raft foundation 34 according to the fifth embodiment is constructed such that the soil cement improved body 12 described in the first embodiment is constructed in the Y-axis direction except for the outer peripheral portion. It is joined to the part 14.

また、外周部及びX軸方向には、第2の実施の形態で説明したソイルセメント改良体32が構築され、基礎部14と接合されている。そして、ソイルセメント改良体12とソイルセメント改良体32で、平面視が格子状とされている。   Moreover, the soil cement improved body 32 demonstrated in 2nd Embodiment is constructed | assembled in the outer peripheral part and the X-axis direction, and is joined with the base part 14. FIG. The soil cement improved body 12 and the soil cement improved body 32 have a lattice shape in plan view.

また、ソイルセメント改良体12、32で形成された格子の中には、パイルド・ラフト基礎34の沈下を抑制する、径が小さくされた杭28が設けられている。   Further, in the lattice formed by the soil cement modified bodies 12 and 32, a pile 28 having a reduced diameter is provided to suppress the settlement of the piled raft foundation 34.

図9の立面図に示すように、パイルド・ラフト基礎34は、建物46が載置される直接基礎である基礎部14と、格子状とされ液状化層36の底面まで到達するソイルセメント改良体12、32と、液状化層36を貫通して設けられた杭28を有している。   As shown in the elevational view of FIG. 9, the piled raft foundation 34 has a foundation 14 that is a direct foundation on which a building 46 is placed, and a soil cement improvement that reaches the bottom of the liquefied layer 36 in a lattice shape. It has the piles 28 provided through the bodies 12 and 32 and the liquefied layer 36.

このとき、ソイルセメント改良体12、32と基礎部14の接合強度を調節することで、ソイルセメント改良体12、32が杭28に加わる水平力の一部を負担し、径が小さくされた杭28が、残りの水平力を負担する。   At this time, by adjusting the joint strength between the soil cement improved bodies 12 and 32 and the foundation portion 14, the soil cement improved bodies 12 and 32 bear a part of the horizontal force applied to the pile 28 and the diameter is reduced. 28 bears the remaining horizontal force.

即ち、地震時には、ソイルセメント改良体12、32が、設定された割合の水平力を負担すると同時に、格子状に囲まれた液状化層36の液状化を防止する。この結果、杭28の外周面と地盤36との間の摩擦力は、地震前の状態が維持され、径が小さくされた杭28であっても、建物46の沈下を引き続き抑制できる。   That is, in the event of an earthquake, the soil cement improvement bodies 12 and 32 bear a set ratio of horizontal force, and at the same time, prevent liquefaction of the liquefied layer 36 surrounded by a lattice. As a result, the frictional force between the outer peripheral surface of the pile 28 and the ground 36 is maintained in the state before the earthquake, and the settlement of the building 46 can be suppressed even if the pile 28 has a reduced diameter.

このように、ソイルセメント改良体12が負担する地震時の水平力と、杭28が負担する水平力の設定割合の調節を可能とすることで、杭28の断面積とソイルセメント改良体12の断面積の最適化が図れ、パイルド・ラフト基礎34の施工コストの低減、施工期間の短縮が図れる。   In this way, by adjusting the horizontal force at the time of earthquake borne by the soil cement improved body 12 and the set ratio of the horizontal force borne by the pile 28, the cross-sectional area of the pile 28 and the soil cement improved body 12 can be adjusted. The cross-sectional area can be optimized, the construction cost of the piled raft foundation 34 can be reduced, and the construction period can be shortened.

これに対し、図10に示すように、従来のパイルド・ラフト基礎50は、ソイルセメント改良体52を一列で壁状に形成し、格子状に配置して液状化対策に利用している。また、同時に、ソイルセメント改良体52に鉛直荷重及び水平力を支持させ、杭56を沈下抑制に使用している。   On the other hand, as shown in FIG. 10, the conventional piled raft foundation 50 forms soil cement improvement bodies 52 in a wall shape in a row and arranges them in a lattice shape, and is used for liquefaction countermeasures. At the same time, the soil cement improved body 52 supports the vertical load and the horizontal force, and the pile 56 is used for suppressing settlement.

若しくは、格子状に形成されたソイルセメント改良体52を液状化対策に利用し、更に、ソイルセメント改良体52に、杭56との剛性比分の鉛直荷重、及び摩擦抵抗分の水平力を負担させ、杭56に、ソイルセメント改良体52との剛性比分の鉛直荷重、及びソイルセメント改良体52が支持できない分の水平力を負担させている。   Alternatively, the soil cement improved body 52 formed in a lattice shape is used for liquefaction countermeasures, and the soil cement improved body 52 is caused to bear the vertical load corresponding to the rigidity ratio with the pile 56 and the horizontal force corresponding to the frictional resistance. The pile 56 is caused to bear a vertical load corresponding to the rigidity ratio with the soil cement improved body 52 and a horizontal force that cannot be supported by the soil cement improved body 52.

しかし、既述したように、従来のパイルド・ラフト基礎50は、ソイルセメント改良体52と基礎部54の接合強度を調整できないため、接合面の摩擦抵抗力はパイルド・ラフト基礎50の鉛直荷重分担率によって一義的に決まってしまう。   However, as described above, since the conventional piled raft foundation 50 cannot adjust the joint strength between the soil cement improved body 52 and the foundation part 54, the frictional resistance of the joint surface is the vertical load sharing of the piled raft foundation 50. It is determined uniquely by the rate.

具体的には、片土圧を含めた水平力が非常に大きい場合、全水平力のおよそ50%しかソイルセメント改良体52で負担できず、杭56は大きな径となってしまう。   Specifically, when the horizontal force including the single earth pressure is very large, only about 50% of the total horizontal force can be borne by the soil cement improved body 52, and the pile 56 has a large diameter.

更に、基礎部54との接合強度を調整できないことから、ソイルセメント改良体52の有する高い面内剛性及びせん断強度を、液状化対策以外に十分には活用できないという問題もある。   Furthermore, since the joint strength with the base portion 54 cannot be adjusted, there is a problem that the high in-plane rigidity and shear strength of the soil cement improved body 52 cannot be fully utilized except for liquefaction countermeasures.

一方、本実施の形態では、図8に示すように、矢印Pの方向に大きな片土圧が加えられる条件においては、2重に形成されたソイルセメント改良体12を片土圧と平行な方向に配置することで、ソイルセメント改良体12と基礎部14の接合強度を強くし、基礎部14が受ける水平力を適切にソイルセメント改良体12に伝達できる。この結果、杭28の断面積とソイルセメント改良体12の断面積の最適化が図れ、従来の杭56より杭28の断面積を小さくできる。   On the other hand, in the present embodiment, as shown in FIG. 8, under the condition that a large single earth pressure is applied in the direction of arrow P, the soil cement improved body 12 formed in a double direction is parallel to the single earth pressure. By disposing in this manner, the bonding strength between the soil cement improved body 12 and the foundation portion 14 is increased, and the horizontal force received by the foundation portion 14 can be appropriately transmitted to the soil cement improved body 12. As a result, the cross-sectional area of the pile 28 and the cross-sectional area of the soil cement improved body 12 can be optimized, and the cross-sectional area of the pile 28 can be made smaller than that of the conventional pile 56.

なお、以上の説明は、すべて杭28を用いる条件で行ったが、地盤36の性状によっては、杭28を設けず、ソイルセメント改良体12と基礎部14のみで水平力を負担させてもよい。   In addition, although all the above description was performed on the conditions which use the pile 28, depending on the property of the ground 36, a pile 28 may not be provided but only the soil cement improved body 12 and the foundation part 14 may bear a horizontal force. .

10 ソイルセメント改良体の接合構造
12 ソイルセメント改良体
12S 凹凸部
14 基礎部
34 パイルド・ラフト基礎
10 Joint structure of soil cement improved body 12 Soil cement improved body 12S Concavity and convexity 14 Base part 34 Piled raft foundation

Claims (6)

地中に連続して平面視で格子状に柱体が構築され、側面に凹凸部が形成された壁状のソイルセメント改良体と、
前記ソイルセメント改良体の頭部に支持され、構造物の荷重を前記ソイルセメント改良体に伝えると共に、前記ソイルセメント改良体の側面に沿って延設する前記凹凸部が埋め込まれた基礎部と、
を有するソイルセメント改良体の接合構造。
A wall-shaped soil cement improvement body in which pillars are constructed in a lattice shape in plan view continuously in the ground, and uneven portions are formed on the side surfaces,
A foundation portion that is supported by the head of the soil cement improvement body, transmits a load of a structure to the soil cement improvement body, and is embedded with the concavo-convex portion extending along a side surface of the soil cement improvement body;
Structure of improved soil cement having a structure.
前記基礎部は、前記ソイルセメント改良体の両側から前記凹凸部を挟み込む請求項1に記載のソイルセメント改良体の接合構造。   The joint structure of the soil cement improved body according to claim 1, wherein the foundation portion sandwiches the uneven portion from both sides of the soil cement improved body. 前記ソイルセメント改良体を、所定の隙間を開けて並列に配置し、前記隙間部を、前記基礎部で埋めた請求項1に記載のソイルセメント改良体の接合構造。   The joint structure of the soil cement improved body according to claim 1, wherein the soil cement improved body is arranged in parallel with a predetermined gap therebetween, and the gap portion is filled with the foundation portion. 前記ソイルセメント改良体の延設方向を、前記基礎部を支持する地盤が受けている片土圧の方向と一致させた請求項1〜3のいずれか1項に記載のソイルセメント改良体の接合構造。   The joint of the soil cement improvement body of any one of Claims 1-3 which made the extending direction of the said soil cement improvement body correspond with the direction of the single earth pressure which the ground which supports the said foundation part has received. Construction. 前記凹凸部と前記基礎部の接合部のソイルセメント改良体の延設方向の長さ、及び前記凹凸部と前記基礎部の接合部の上下方向の高さの少なくとも一方を調整して、前記ソイルセメント改良体と前記基礎部の接合強度を変更する請求項1〜4のいずれか1項に記載のソイルセメント改良体の接合構造。   The soil is adjusted by adjusting at least one of the length in the extending direction of the soil cement improvement body of the joint portion between the uneven portion and the base portion and the height in the vertical direction of the joint portion between the uneven portion and the base portion. The joint structure of the soil cement improvement body of any one of Claims 1-4 which changes the joint strength of a cement improvement body and the said foundation part. 請求項1〜5に記載のソイルセメント改良体の接合構造で接合された前記ソイルセメント改良体と、前記構造物を支持する支持杭と、前記構造物が載置される直接基礎と、を有するパイルド・ラフト基礎。The soil cement improved body joined with the joint structure of the soil cement improved body according to claim 1, a support pile that supports the structure, and a direct foundation on which the structure is placed. Piled raft basics.
JP2009071743A 2009-03-24 2009-03-24 Soil cement improved structure and piled raft foundation Active JP5296585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071743A JP5296585B2 (en) 2009-03-24 2009-03-24 Soil cement improved structure and piled raft foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071743A JP5296585B2 (en) 2009-03-24 2009-03-24 Soil cement improved structure and piled raft foundation

Publications (2)

Publication Number Publication Date
JP2010222854A JP2010222854A (en) 2010-10-07
JP5296585B2 true JP5296585B2 (en) 2013-09-25

Family

ID=43040337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071743A Active JP5296585B2 (en) 2009-03-24 2009-03-24 Soil cement improved structure and piled raft foundation

Country Status (1)

Country Link
JP (1) JP5296585B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674425B2 (en) * 2010-11-11 2015-02-25 株式会社竹中工務店 Horizontal force transmission structure
JP6585996B2 (en) * 2015-11-17 2019-10-02 株式会社竹中工務店 Ground improvement body connection structure
JP6703857B2 (en) * 2016-02-22 2020-06-03 株式会社竹中工務店 Structure
JP6618402B2 (en) * 2016-03-28 2019-12-11 株式会社竹中工務店 Foundation structure design method and foundation structure
JP7230312B2 (en) * 2017-07-24 2023-03-01 株式会社竹中工務店 Foundation structure and foundation construction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277532A (en) * 1995-04-10 1996-10-22 Fujita Corp Structure of foundation
JP2000192479A (en) * 1998-12-28 2000-07-11 Tenox Corp Earthquake resistant reinforcing method for existing pile foundation
JP2004270215A (en) * 2003-03-06 2004-09-30 Tenotsukusu Kyushu:Kk Construction method of foundation structure
JP2008095352A (en) * 2006-10-11 2008-04-24 Skc Co Ltd Small-scale building provided with countermeasures against liquefaction
JP5124180B2 (en) * 2007-06-25 2013-01-23 株式会社竹中工務店 Pile foundation structure that distributes horizontal force to the ground improvement wall

Also Published As

Publication number Publication date
JP2010222854A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4794390B2 (en) Pile foundation reinforcement structure and reinforcement method
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP5330874B2 (en) Soil cement column mountain wall
JP4793643B2 (en) Stress reduction structure and stress reduction method for foundation pile
JP6033139B2 (en) Joint structure of pile and footing
JP6283537B2 (en) Liquefaction countermeasure structure
JP2016199861A (en) Pile foundation structure
JP5032012B2 (en) Sheet pile combined direct foundation and its construction method
JP2007146399A (en) Soil cement pile and construction method of the soil cement pile
JP5728300B2 (en) Ground improvement body and piled raft foundation equipped with the same
JP2008240356A (en) Reinforcing structure and method for pile foundation
JP4310502B1 (en) Reinforcement structure for embankment support ground
JP5071852B2 (en) Structure subsidence suppression structure
JP5551943B2 (en) Foundation structure using ground improvement body
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP2014051852A (en) Ground improvement structure
JP5557549B2 (en) Foundation structure using ground improvement body and its construction method
JP2008223245A (en) Column base structure
WO2019008866A1 (en) Foundation structure for building, and construction method therefor
JP2005307594A (en) Basic structure of construction
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP7529051B2 (en) Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile
JP5503569B2 (en) Joint structure of pile and foundation structure
JP2006316490A (en) Seismic strengthening structure and seismic strengthening method for pile foundation
JP2004316367A (en) Shearing reinforcement method of reinforced concrete column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5296585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150